Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy  

Open Energy Info (EERE)

Solar Electric Corp aka Solar MW Energy Inc Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place Ontario, California Zip 91761 Product Plans to develop STEG plants in the Mojave desert. Coordinates 34.06457°, -117.647809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.06457,"lon":-117.647809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...  

Open Energy Info (EERE)

Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

3

Jining Sunrich Solar Energy aka Huahan | Open Energy Information  

Open Energy Info (EERE)

Jining Sunrich Solar Energy aka Huahan Jump to: navigation, search Name Jining Sunrich Solar Energy (aka Huahan) Place Shandong Province, China Sector Solar Product Shandong-based...

4

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries,...

5

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...  

Open Energy Info (EERE)

Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place Beijing,...

6

Sinocome Solar aka Perfect Field Investment | Open Energy Information  

Open Energy Info (EERE)

Solar aka Perfect Field Investment Solar aka Perfect Field Investment Jump to: navigation, search Name Sinocome Solar (aka Perfect Field Investment) Place China Product Chinese manufacturer of amorphous silicon thin-film cells and modules using technology patents owned by the Target Group, also a Chinese firm. References Sinocome Solar (aka Perfect Field Investment)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sinocome Solar (aka Perfect Field Investment) is a company located in China . References ↑ "[ Sinocome Solar (aka Perfect Field Investment)]" Retrieved from "http://en.openei.org/w/index.php?title=Sinocome_Solar_aka_Perfect_Field_Investment&oldid=351122" Categories:

7

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name GCL Solar Energy Technology Holdings (formerly GCL...

8

Conserval aka SolarWall | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Conserval (aka SolarWall) Place Toronto, Ontario, Canada Zip M3J2N5 Sector Solar Product Makes solar passive heating and cooling products, and...

9

China Solar Power CSP aka General Solar Power Yantai Co Ltd ...  

Open Energy Info (EERE)

Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place China Sector Solar Product A...

10

Millennium Electric TOU Ltd aka Millennium Solar EIG Solar | Open Energy  

Open Energy Info (EERE)

Electric TOU Ltd aka Millennium Solar EIG Solar Electric TOU Ltd aka Millennium Solar EIG Solar Jump to: navigation, search Name Millennium Electric TOU Ltd (aka Millennium Solar, EIG Solar) Place Israel Zip 43650 Sector Efficiency, Solar Product Israeli manufacturer of PV modules, incorporating solar concentrators to increase cell efficiency. References Millennium Electric TOU Ltd (aka Millennium Solar, EIG Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Millennium Electric TOU Ltd (aka Millennium Solar, EIG Solar) is a company located in Israel . References ↑ "[ Millennium Electric TOU Ltd (aka Millennium Solar, EIG Solar)]" Retrieved from "http://en.openei.org/w/index.php?title=Millennium_Electric_TOU_Ltd_aka_Millennium_Solar_EIG_Solar&oldid=348837

11

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |  

Open Energy Info (EERE)

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd Jump to: navigation, search Name SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) Place Nanguan, Shandong Province, China Zip 271000 Sector Solar Product Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) is a company located in Nanguan, Shandong Province, China . References ↑ "[ SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar

12

United Solar Systems Corp USSC aka Bekaert ECD Solar Systems LLC | Open  

Open Energy Info (EERE)

Solar Systems Corp USSC aka Bekaert ECD Solar Systems LLC Solar Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place Middletown Springs, Vermont Zip VT 05757 Product Originally a JV between ECD and Bekaert to manufacture, market and sell photovoltaic products and systems References United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) is a company located in Middletown Springs, Vermont . References ↑ "[ United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC)]"

13

Solar Self Help Inc aka Light Energy Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Solar Self Help Inc. (aka Light Energy Systems) Place Concord, California Sector Solar Product California-based designer and installer of solar systems....

14

Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd aka Focus Technology Co Ltd Ltd aka Focus Technology Co Ltd Jump to: navigation, search Name Apricus Solar Co Ltd (aka Focus Technology Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210061 Sector Solar Product Designs, manufactures and exports solar tube thermal solar collectors, solar storage tanks, waste heat recovery systems, solar controllers and related components. References Apricus Solar Co Ltd (aka Focus Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Apricus Solar Co Ltd (aka Focus Technology Co Ltd) is a company located in Nanjing, Jiangsu Province, China . References ↑ "Apricus Solar Co Ltd (aka Focus Technology Co Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Apricus_Solar_Co_Ltd_aka_Focus_Technology_Co_Ltd&oldid=342253

15

CHINT Solar Co Ltd aka Astronergy | Open Energy Information  

Open Energy Info (EERE)

CHINT Solar Co Ltd aka Astronergy CHINT Solar Co Ltd aka Astronergy Jump to: navigation, search Name CHINT Solar Co Ltd (aka Astronergy) Place Hangzhou, Zhejiang Province, China Zip 310052 Sector Solar Product A subsidiary company of CHINT Group, producing multicrystalline and monocrystalline solar cells, modules, thin-film solar cells and PV application products. Coordinates 30.252501°, 120.165024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.252501,"lon":120.165024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu  

Open Energy Info (EERE)

Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon) Place Xuzhou, Jiangsu Province, China Zip 221131 Sector Solar Product China-based solar grade polysilicon producer. Coordinates 34.255489°, 117.190201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.255489,"lon":117.190201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal  

Open Energy Info (EERE)

Tianpu Xianxing Group aka Beijing Universal Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place Beijing, Beijing Municipality, China Zip 102612 Sector Buildings, Solar Product Manufacturer of buildings and leisure centres with integrated solar passive heating and cooling. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Shanghai Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd |  

Open Energy Info (EERE)

Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place Shanghai, Shanghai Municipality, China Zip 201300 Sector Solar Product Chinese manufacturer of monocrystalline silicon ingots and wafers for solar-use. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Bazhou Deli Solar Energy Heating Co Ltd aka Deli Solar PRC | Open Energy  

Open Energy Info (EERE)

Bazhou Deli Solar Energy Heating Co Ltd aka Deli Solar PRC Bazhou Deli Solar Energy Heating Co Ltd aka Deli Solar PRC Jump to: navigation, search Name Bazhou Deli Solar Energy Heating Co Ltd (aka Deli Solar (PRC)) Place Beijing, Beijing Municipality, China Zip 65700 Sector Biomass, Solar Product Seller of solar thermal water heating systems, PV-powered lamps and small-scale biomass space heating devices. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic  

Open Energy Info (EERE)

aka CG Solar formerly Weihai Bluestar Terra Photovoltaic aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra Photovoltaic Co Ltd) Place Weihai, Shandong Province, China Zip 264205 Sector Solar Product A Sino-US joint venture producing a-si thin-film solar cells Coordinates 37.497898°, 122.114731° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.497898,"lon":122.114731,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Solar Environmental Technologies Tianjin Corp aka SETC Cenicom...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

24

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network (OSTI)

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT PIPING MTO FOR 1 MW SOLAR THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M

Narayanan, H.

25

Solasta aka The Eagle Axis | Open Energy Information  

Open Energy Info (EERE)

search Name Solasta (aka The Eagle Axis) Place Newton, Massachusetts Zip 2458 Sector Efficiency, Solar Product Start-up planning to produce high-efficiency solar cells using...

26

Pan Jit International Inc aka Panjit Group | Open Energy Information  

Open Energy Info (EERE)

Jit International Inc aka Panjit Group Jit International Inc aka Panjit Group Jump to: navigation, search Name Pan Jit International Inc (aka Panjit Group) Place Kaohsiung Hsien, Taiwan Zip 820 Sector Solar Product Pan Jit is a semiconductor and electronics firm which has entered the solar PV industry by acquiring Jiangsu Aide Solar. References Pan Jit International Inc (aka Panjit Group)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pan Jit International Inc (aka Panjit Group) is a company located in Kaohsiung Hsien, Taiwan . References ↑ "[ Pan Jit International Inc (aka Panjit Group)]" Retrieved from "http://en.openei.org/w/index.php?title=Pan_Jit_International_Inc_aka_Panjit_Group&oldid=349576

27

Anwell Technologies Ltd aka Sungen | Open Energy Information  

Open Energy Info (EERE)

Anwell Technologies Ltd aka Sungen Anwell Technologies Ltd aka Sungen Jump to: navigation, search Name Anwell Technologies Ltd (aka Sungen) Place Hong Kong Sector Solar Product Anwell is a global supplier of advanced optical media equipment and process technologies. It is scouting for opportunities in providing turnkey solution for thin-film solar cells. References Anwell Technologies Ltd (aka Sungen)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Anwell Technologies Ltd (aka Sungen) is a company located in Hong Kong . References ↑ "[ Anwell Technologies Ltd (aka Sungen)]" Retrieved from "http://en.openei.org/w/index.php?title=Anwell_Technologies_Ltd_aka_Sungen&oldid=342214

28

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

29

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

30

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

31

Arizona College 5 MW System Will be "Solar with a Purpose" | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" Arizona College 5 MW System Will be "Solar with a Purpose" May 28, 2010 - 2:19pm Addthis Arizona Western College (AWC) wants to be the go-to for solar, says Bill Smith, director of facilities management. AWC is based in Yuma, Ariz., and that, according to the Guinness Book of World Records, is the sunniest place on Earth. Now, a group of private companies, researchers and AWC educators will tap the solar potential by building a 4.995 MW solar array at the college. When the solar energy system is completed, it will be the largest solar array on any U.S. college campus. "We are strategically placed geographically. Now that we have this company that has approached us with this awesome opportunity, we want ...

32

H2 Hydrogen Hungary Ltd aka Integral Energy | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Hungary Ltd aka Integral Energy Hydrogen Hungary Ltd aka Integral Energy Jump to: navigation, search Name H2 Hydrogen Hungary Ltd (aka Integral Energy) Place Ipoly u 1/A, Hungary Zip H-6000 Sector Solar Product Owns an empty factory in Hungary, which it plans to use to make heat pumps and assemble solar panels. References H2 Hydrogen Hungary Ltd (aka Integral Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. H2 Hydrogen Hungary Ltd (aka Integral Energy) is a company located in Ipoly u 1/A, Hungary . References ↑ "[ H2 Hydrogen Hungary Ltd (aka Integral Energy)]" Retrieved from "http://en.openei.org/w/index.php?title=H2_Hydrogen_Hungary_Ltd_aka_Integral_Energy&oldid=346329

33

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund | Open  

Open Energy Info (EERE)

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Jump to: navigation, search Name Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) Place New York, New York Sector Solar Product New York venture capital firm, specialising in early-stage solar companies. References Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) is a company located in New York, New York . References ↑ "Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)" Retrieved from "http://en.openei.org/w/index.php?title=Rudd_Klein_Alternative_Energy_Ventures_LLC_aka_Phoenix_Energy_Fund&oldid=350507"

34

Array Technologies Inc aka Wattsun | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc aka Wattsun Technologies Inc aka Wattsun Jump to: navigation, search Name Array Technologies Inc (aka Wattsun) Place Albuquerque,, New Mexico Zip 87107 Sector Solar Product Manufactures the Wattsun Solar Tracker, a sun-tracking mounting system for PV modules. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Solar Pilot Plant: Phase I. Quarterly report No. 3, April--June 1976. CDRL item No. 10. [10 MW  

DOE Green Energy (OSTI)

The baseline design for a 10 MW proof-of-concept pilot central receiver solar power plant is described. Detailed designs for the collector, steam generator, and thermal storage subsystem research experiments are presented. (WHK)

None

1976-10-28T23:59:59.000Z

36

Eye hazard and glint evaluation for the 5-MW/sub t/ Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Potential eye hazards associated with concentrated reflected light are evaluated for the ERDA 5-MW/sub t/ Solar Thermal Test Facility to be constructed at Sandia Laboratories, Albuquerque, New Mexico. Light intensities and hazardous ranges of single and multiple coincident heliostat beams are evaluated at ground level and in the air space above the facility. Possible long-range and short-range effects of distractive effects of reflected beams are discussed. Also described are certain beam control modifications which were incorporated to minimize the altitudes at which overflying aircraft could encounter unsafe levels. Recommendations are made for further evaluation of intensity excursions during fail-safe shutdown situations, and for experiments to verify analytical models and to assess distractive glint effects.

Brumleve, T.D.

1977-05-01T23:59:59.000Z

37

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative Wind Energy Co Ltd) Place Shenyang, Liaoning Province, China Sector Wind energy Product A company engaged in 1.5MW wind turbine manufacturing. It is also known as China Creative Wind Energy Co Ltd. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

39

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative...

40

Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW  

DOE Green Energy (OSTI)

This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

Not Available

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HI-MW Roadmap SCE DER  

Science Conference Proceedings (OSTI)

... 4,000 MW Wind 1,000 MW Solar Energy Storage with Advanced PCS, A Solution? ... Reliable, Cost Competitive, Innovation Incentive Rate ...

2012-07-07T23:59:59.000Z

42

Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant  

DOE Green Energy (OSTI)

This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

Radosevich, L.G.

1988-03-01T23:59:59.000Z

43

Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report  

DOE Green Energy (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

1980-08-01T23:59:59.000Z

44

Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report  

DOE Green Energy (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

1980-07-01T23:59:59.000Z

45

Xtreme Power 1.5 MW / 1.0 MWh "Solar-to-Battery Demonstration" at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

Utility-scale advanced electrical energy storage has the potential to improve the reliability and efficiency of the energy delivery network and also pave the way for greater additions of variable renewable resources onto the grid. With this in mind, EPRI, Xcel Energy, and other stakeholders are engaged in a multi-year project, known as the Solar-to-Battery (S2B) initiative, to demonstrate the use of utility-scale energy storage to support the grid integration of renewables, specifically, solar ...

2012-12-20T23:59:59.000Z

46

Solar Pilot Plant, Phase I. Preliminary design report. Volume I. Executive overview (approved). CDRL item 2. [10 MW; Barstow, California  

DOE Green Energy (OSTI)

The project goals, program schedules, and preliminary design for the 10 MW central receiver pilot plant at Barstow, California are presented. Details of the collector field, receiver/tower, thermal storage system, electrical power conversion subsystem, and control systems are given. (WHK)

None

1977-08-01T23:59:59.000Z

47

Functional Conceptual Design Criteria - 5-MW/sub e/ salt-gradient solar pond power plant at Great Salt Lake  

DOE Green Energy (OSTI)

The purpose of this solar pond plant facility would be to provide valid data on the cost, operation, and reliability of salt-gradient solar ponds as a means of producing power. A general facility description is given which includes design code requirements, site selection, site characteristics, and site-specific design requirements. Functional requirements discussed include: civil-structural; mechanical; electrical; and control, instrumentation and alarms. Occupational and environmental safety, security, and quality assurance are also discussed.

Brown, L.M.; Barnhart, J.S.; Cavola, R.G.; Drost, M.K.; Hauser, S.G.; Johnson, B.M.

1983-08-01T23:59:59.000Z

48

Seattle Biodiesel aka Seattle BioFuels | Open Energy Information  

Open Energy Info (EERE)

Seattle Biodiesel aka Seattle BioFuels Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name Seattle Biodiesel (aka Seattle BioFuels) Place Seattle, Washington Sector Renewable Energy Product Subsidiary of Imperium Renewables which operates the 19m liter Seattle biodiesel plant. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Mepsolar AG aka Munich Energy Partners | Open Energy Information  

Open Energy Info (EERE)

Mepsolar AG aka Munich Energy Partners Mepsolar AG aka Munich Energy Partners Jump to: navigation, search Name Mepsolar AG (aka Munich Energy Partners) Place Munich, Germany Zip 81829 Product Develops utility scale PV projects in Spain and Bulgaria and plans also to launch a PV direct selling business for residential customers. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Thermal Product Solutions aka Kayex | Open Energy Information  

Open Energy Info (EERE)

Product Solutions aka Kayex Product Solutions aka Kayex Jump to: navigation, search Name Thermal Product Solutions (aka Kayex) Place Rochester, New York Zip 14624 Product Makes industrial ovens and furnaces; division Kayex develops and manufactures crystal growing equipment for the semiconductor and PV industry. Coordinates 43.1555°, -77.616033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1555,"lon":-77.616033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Nippon Mining Holdings Inc aka Shinnikko | Open Energy Information  

Open Energy Info (EERE)

Mining Holdings Inc aka Shinnikko Mining Holdings Inc aka Shinnikko Jump to: navigation, search Name Nippon Mining Holdings Inc (aka Shinnikko) Place Tokyo, Japan Zip 105-0001 Product Japanese holding company engaged in oil, metals, and electronics businesses. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Parke Panda Corporation aka Parke Industries | Open Energy Information  

Open Energy Info (EERE)

Panda Corporation aka Parke Industries Panda Corporation aka Parke Industries Jump to: navigation, search Name Parke Panda Corporation (aka Parke Industries) Place Glendora, California Zip 91740 Product A licensed, bonded, and fully insured C-10 design/build contractor. Coordinates 39.83977°, -75.074694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83977,"lon":-75.074694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Selsam Innovations aka Selsam Superturbine | Open Energy Information  

Open Energy Info (EERE)

Selsam Innovations aka Selsam Superturbine Selsam Innovations aka Selsam Superturbine Jump to: navigation, search Name Selsam Innovations (aka Selsam Superturbine) Place Fullerton, California Zip 92833 Sector Wind energy Product Multiple rotors wind turbine designer. Coordinates 46.16041°, -98.420506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.16041,"lon":-98.420506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

GRR/Section 13-AK-a - Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRRSection 13-AK-a - Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-AK-a -...

55

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...  

Open Energy Info (EERE)

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited...

56

Causes of Death among Aka Pygmies of the Central  

E-Print Network (OSTI)

. No specific term111 !. Njala bene 1 B. Malnutrition 1. Tokonbondo and sopo 1 2. Sopo I C. During or after term of acute abdomen; and (5) tokombondo and sopo each describes a form of malnu- #12;3. CAUSES OF DEATH AMONG AKA PYGMIES 53 trition-fokombondo is probably kwashiorkor while sopo, which literally means

57

Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant  

DOE Green Energy (OSTI)

The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1977-11-01T23:59:59.000Z

58

NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development |  

Open Energy Info (EERE)

NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development Jump to: navigation, search Name NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development) Place China Sector Wind energy Product China-based Sino-Norwegian joint venture that develops wind projects. References NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development) is a company located in China . References ↑ "[ NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development)]" Retrieved from "http://en.openei.org/w/index.php?title=NBT_Baicheng_New_Energy_Development_aka_Ao_Lu_Jia_New_Energy_Development&oldid=349122

59

Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG | Open  

Open Energy Info (EERE)

Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG Jump to: navigation, search Name Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG) Place Berlin, Germany Zip 12489 Product Specialised in fuel cell demonstration applications for education and outreach. References Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG) is a company located in Berlin, Germany . References ↑ "[ Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG)]" Retrieved from "http://en.openei.org/w/index.php?title=Heliocentris_Energiesysteme_GmbH_aka_Heliocentris_Fuel_Cells_AG&oldid=346452"

60

Asia Silicon Qinghai Co Ltd aka Asia Si Material | Open Energy Information  

Open Energy Info (EERE)

Qinghai Co Ltd aka Asia Si Material Qinghai Co Ltd aka Asia Si Material Jump to: navigation, search Name Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) Place Xining, Qinghai Province, China Zip 810007 Product Developing a 6,000-tonne polysilicon factory in Xining, Qinghai Province, supplier to Suntech. References Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) is a company located in Xining, Qinghai Province, China . References ↑ "Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material)" Retrieved from "http://en.openei.org/w/index.php?title=Asia_Silicon_Qinghai_Co_Ltd_aka_Asia_Si_Material&oldid=342359"

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra-fast outflows (aka UFOs) from AGNs and QSOs  

E-Print Network (OSTI)

During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

Cappi, M; Giustini, M

2013-01-01T23:59:59.000Z

62

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Xtreme Power 1.5 MW / 1.0 MWh Dynamic Power Resource (DPR) System Evaluation at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

Utility-scale advanced electrical energy storage has the potential to improve the reliability and efficiency of the energy delivery network and also pave the way for greater additions of variable renewable resources onto the grid. This in mind, Xcel Energy, EPRI, and other stakeholders are engaged in a multi-year project to demonstrate the use of energy storage to support the grid integration of renewablesspecifically, solar PV on the distribution network. To better understand the capabilities of the Xt...

2011-12-29T23:59:59.000Z

64

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company  

Open Energy Info (EERE)

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) Place Jiaozuo, Henan Province, China Sector Wind energy Product Wind turbine blades provider. References Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) is a company located in Jiaozuo, Henan Province, China . References ↑ "[ Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)]" Retrieved from

65

GRR/Section 1-AK-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 1-AK-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

66

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

67

GRR/Section 18-AK-a - Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-AK-a - Storage Tank Registration GRR/Section 18-AK-a - Storage Tank Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-a - Storage Tank Registration 18AKA - StorageTankRegistration (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.380 As 46.03.385 18 AAC 78 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18AKA - StorageTankRegistration (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any project that requires installation or operation of a storage tank must

68

GRR/Section 6-AK-a - Transportation | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-AK-a - Transportation GRR/Section 6-AK-a - Transportation < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-a - Transportation 06AKATransportationOversizeOverweight.pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities Regulations & Policies 17 AAC 25: Operations, Wheeled Vehicles Triggers None specified Click "Edit With Form" above to add content 06AKATransportationOversizeOverweight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 6-AK-a.1 to 6-AK-a.2 - Does the Load Exceed the Size or Weight Regulations for State Highway Transportation Established by 17 AAC 25?

69

GRR/Section 9-AK-a - State Environmental Process | Open Energy...  

Open Energy Info (EERE)

GRRSection 9-AK-a - State Environmental Process < GRR Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRRSection9-AK-a-StateEnvironmentalP...

70

GRR/Section 7-AK-a - Power Plant Siting and Construction | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon GRRSection 7-AK-a - Power Plant Siting and Construction < GRR Jump to: navigation, search GRR-logo.png...

71

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co  

Open Energy Info (EERE)

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) Place Xi An, Shaanxi Province, China Zip 710021 Sector Wind energy Product Subsidiary of Xiâ€(tm)an Aero-Engine that manufactures its 600kW wind turbines in Xi An, China. References Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) is a company located in Xi An, Shaanxi Province, China . References ↑ "[ Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind

72

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

2,000 MW of mainly rooftop solar capacity (smaller than 1.5connected solar, 100 MW of rooftop solar PV, and 200 MW ofthe installation of solar PV on residential rooftops is less

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

73

Solar Secure Schools: Strategies and Guidelines; October 2004--April 2005  

DOE Green Energy (OSTI)

This report explores the technical and economic aspects of installing solar power (photovoltaic aka PV) systems on schools to improve the schools' energy security and provide power during disasters.

Braun, G. W.; Varadi, P. F.

2006-01-01T23:59:59.000Z

74

GRR/Section 20-AK-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-AK-a - Well Abandonment Process 20-AK-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-AK-a - Well Abandonment Process 20AKAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Regulations & Policies 20 AAC 25.105 20 AAC 25.112 Triggers None specified Click "Edit With Form" above to add content 20AKAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for abandoning wells in the state of Alaska. The Alaska Oil and Gas Conservation Commission ("commission")

75

GRR/Section 9-AK-a - Alaska Environmental Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9-AK-a - Alaska Environmental Process GRR/Section 9-AK-a - Alaska Environmental Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-AK-a - Alaska Environmental Process 09AKAStateEnvironmentalProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 38.05.035: Powers & Duties of ADNR Director AS 38.05.082: Leases for Shore Fisheries AS 38.05.115: Conditions of Sale AS 38.05.850: Permits AS 38.05.945: Notice AS 38.05.946: Hearings Triggers None specified Click "Edit With Form" above to add content 09AKAStateEnvironmentalProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

76

GRR/Section 8-AK-a - Transmission | Open Energy Information  

Open Energy Info (EERE)

8-AK-a - Transmission 8-AK-a - Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-AK-a - Transmission 08AKATransmission.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 08AKATransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under the Alaska Public Utilities Regulatory Act, transmission is included in Alaska's regulation of public utilities. According to AS 42.05.990(5), "public utility" or "utility" includes every corporation whether public, cooperative, or otherwise, company, individual, or association of

77

Coeur d Alene Fiber Fuels Inc aka Atlas | Open Energy Information  

Open Energy Info (EERE)

Coeur d Alene Fiber Fuels Inc aka Atlas Coeur d Alene Fiber Fuels Inc aka Atlas Jump to: navigation, search Name Coeur d' Alene Fiber Fuels, Inc. (aka Atlas) Place Hauser, Idaho Zip ID 83854 Product Coeur dâ€(tm)Alene Fiber manufactures and markets processed wood fuel. Coordinates 47.74743°, -117.014694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.74743,"lon":-117.014694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

GRR/Section 14-AK-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-a - Nonpoint Source Pollution GRR/Section 14-AK-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-a - Nonpoint Source Pollution 14AKANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's Nonpoint Source Water Pollution Control Strategy is a statewide plan for protecting Alaska's natural resources from polluted runoff also

79

GRR/Section 19-AK-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-AK-a - Water Access and Water Rights Issues GRR/Section 19-AK-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-a - Water Access and Water Rights Issues 19AKAWaterAccessWaterRights.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKAWaterAccessWaterRights.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

80

GRR/Section 11-AK-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

1-AK-a - State Cultural Considerations 1-AK-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-AK-a - State Cultural Considerations 11AKAStateCulturalConsiderations (2).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 41.35.060: Power to Acquire AS 41.35.070: Preservation of Historic Resources AS 41.35.090: Notice AS 41.35.100: Excavation Triggers None specified Click "Edit With Form" above to add content 11AKAStateCulturalConsiderations (2).pdf 11AKAStateCulturalConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative It is the policy of the State of Alaska to preserve and protect the

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process GRR/Section 3-AK-a - State Competitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-a - State Competitive Mineral Leasing Process 03AKAStateCompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKAStateCompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

82

GRR/Section 5-AK-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-AK-a - Drilling and Well Development GRR/Section 5-AK-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-AK-a - Drilling and Well Development 05AKADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Alaska Department of Natural Resources Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 05AKADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All wells drilled in search or in support of the recovery of geothermal

83

GRR/Section 15-AK-a - Air Quality Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-AK-a - Air Quality Assessment Process GRR/Section 15-AK-a - Air Quality Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-a - Air Quality Assessment Process 15AKAAirQualityAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Statute Title 46 Alaska Administrative Code 18 AAC 50 Air Quality Regulations 40 CFR 71 Operating Permits Triggers None specified Click "Edit With Form" above to add content 15AKAAirQualityAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

84

Jiangsu Linyang Solarfun Co Ltd aka Solarfun Power Holdings | Open Energy  

Open Energy Info (EERE)

Linyang Solarfun Co Ltd aka Solarfun Power Holdings Linyang Solarfun Co Ltd aka Solarfun Power Holdings Jump to: navigation, search Name Jiangsu Linyang Solarfun Co Ltd (aka Solarfun Power Holdings) Place Qidong, Jiangsu Province, China Zip 226200 Product Chinese manufacturer of mono and multicrystalline PV cells and modules. Coordinates 31.811399°, 121.667503° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.811399,"lon":121.667503,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Solar technical assistance provided to Forest City military communities in Hawaii for incorporation of 20-30 MW of solar energy generation to power family housing for US Navy personnel.  

DOE Green Energy (OSTI)

In May 2007, Forest City Military Communities won a US Department of Energy Solar America Showcase Award. As part of this award, executives and staff from Forest City Military Communities worked side-by-side with a DOE technical assistance team to overcome technical obstacles encountered by this large-scale real estate developer and manager. This paper describes the solar technical assistance that was provided and the key solar experiences acquired by Forest City Military Communities over an 18 month period.

Dominick, Jeff (National Renewable Energy Laboratory, Golden, CO); Merrigan, Tim (National Renewable Energy Laboratory, Golden, CO); Boudra, Will (Forest City Military Communities, Honolulu, HI); Miller, Ryan (CH2M Hill, Englewood, CO); Cisneros, Gabriela (New Mexico State University, Las Cruces, NM); Rosenthal, Andrew L. (New Mexico State University, Las Cruces, NM); Kuszmaul, Scott S.; Gupta, Vipin P.

2010-06-01T23:59:59.000Z

86

Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 10. Third quarterly technical progress report, 1 April 1976--30 June 1976. [10 MW  

DOE Green Energy (OSTI)

Results of analysis and design efforts by McDonnell Douglas Astronautics Company (MDAC), Rocketdyne, Stearns-Roger, Inc., Sheldahl, Inc., and the University of Houston between 1 April 1976 and 30 June 1976 on ERDA Contract No. EY-76-C-03-1108 are summarized. This is the third quarterly technical progress report published on the Phase 1 Central Receiver Solar Thermal Power System contract. The dominant activities during the reporting period have involved the preparation of test facilities for the subsystem research experiments and the fabrication of the test hardware. Summaries of these activities are presented. Alternative design approaches for the 10-MWe pilot plant system and the current pilot plant project schedule are also presented and described.

Hallet, Jr., R. W.; Gervais, R. L.

1976-07-01T23:59:59.000Z

87

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume III. Appendix. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

This is the appendix to the Stearns-Roger Engineering Company conceptual design report on ERDA's Large Scale Experiment No. 2 (LSE No. 2). The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. Under this contract Stearns-Roger developed a conceptual design, which was site specific, containing the following major elements: System Requirements Analysis, Site Description, System Conceptual Design, Conceptual Test and Operating Plans, Development Plans, Procurement and Management Plans for Subsequent Phases, and Cost Estimates. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. Drawings, tables, and data sheets are included on hourly temperatures, displacement, utility rates, power conversion system, seasonal design load summary, average collector temperature optimization study, system operating temperature optimization study, power conversion system seasonal performance, thermal storage/fluid loop, system integration, and cost estimates. (WHK)

None,

1977-10-17T23:59:59.000Z

88

Solar Express | Open Energy Information  

Open Energy Info (EERE)

Solar Express Jump to: navigation, search Name Solar Express Place Italy Product A joint venture established to install some 11MW of photovoltaic generation capacity around the...

89

Solar Hold | Open Energy Information  

Open Energy Info (EERE)

Solar Hold Jump to: navigation, search Name Solar-Hold Place Sofia, Bulgaria Sector Solar Product Bulgarian solar project developer; as of September 2007, seeking permit for 10x5MW...

90

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar PowerTechnology, Cost, and2009). Concentrating solar power plants of the southwest

Price, S.

2010-01-01T23:59:59.000Z

91

Update on the Southwest 1000 MW CSP Initiative  

Science Conference Proceedings (OSTI)

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.

Mancini, T.; Mehos, M.; Wilkins, F.; Morse, F.

2005-11-01T23:59:59.000Z

92

GRR/Section 17-AK-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-AK-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-AK-a - Aesthetic Resource Assessment 17AKAAestheticResourceAssessment.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 17AKAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

93

GRR/Section 4-AK-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-AK-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-a - State Exploration Process 04AKAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

94

GRR/Section 12-AK-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 12-AK-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-AK-a - Flora & Fauna Considerations 12AKAFloraFaunaConsiderations (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Fish and Game Regulations & Policies AS 16.05.841: Fishways AS 16.05.871: Protection of Fish and Game AS 16.20: Conservation and Protection 5 AAC 95.011: Waters Important to Anadromous Fish Triggers None specified Click "Edit With Form" above to add content 12AKAFloraFaunaConsiderations (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

95

PVM Lines and Services LLC aka PVML Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

PVM Lines and Services LLC aka PVML Photovoltaics PVM Lines and Services LLC aka PVML Photovoltaics Jump to: navigation, search Name PVM Lines and Services LLC (aka PVML Photovoltaics) Place Princeton, New Jersey Zip 8540 Product US-based equipment manufacturer for ingots, wafers, turkey cell and turnkey and semi-automated module production. Coordinates 43.85105°, -89.129909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.85105,"lon":-89.129909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Solar Power In China | Open Energy Information  

Open Energy Info (EERE)

Solar Power In China Solar Power In China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Working on #ask query to display all Chinese solar companies TODO: query not working: need to select only certain "Place" - China and "Sector" - Solar All Solar PV Anwell Technologies Ltd aka Sungen BSL-Solar Beijing Sijimicoe Solar Energy Beijing Sky Solar Investment Management Co Big China Solar Energy Group CETC Solar Energy Centro Renewables Holding Limited China Innovation Investment Limited China Technology Solar Power Holdings Ltd Hong Kong Taiyang Investment Group Co Ltd Hope Solar Sun Bear Solar Ltd Sunrain Trina Solar Yingli Solar ZTE Energy Co Ltd Investment in Solar China's state-owned banks have provided low-cost loans to China's renewable

97

Solar Pricing Trends  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SB 2 1X SB 2 1X Category % of Retail Sales From Eligible Renewable Resources Date by Which Compliance Must Occur Category or Compliance Period 1 20% Dec. 31, 2013 Category or Compliance Period 2 25% Dec. 31, 2016 Category or Compliance Period 3 33% Dec. 31, 2020 2 Solar Pricing Trends 3 U.S. Grid-Connected PV Capacity Additions 4 U.S. Renewable Additions wind, 7537 MW biogas, 91 MW biomass, 330 MW geothermal, 910 MW ocean, 0 MW small hydro, 38 MW solar thermal, 3804 MW solar photovoltaic, 5778 MW CA IOU's Total Renewable Energy Capacity Currently Under Contract from Contracts Signed Since 2002, by Technology 5 CA IOU's Renewable Portfolio 6 CA IOU's Future Renewable Portfolio

98

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

99

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume II, Section 3. Facility concept design. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is presented. The various LSEs are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The details of studies conducted for Phase II of the Solar Total Energy System (STES) for the conceptual design requirements of the facility are presented. Included in this section are the detailed descriptions and analyses of the following subtasks: facility concept design, system concept design, performance analysis, operation plan, component and subsystem development, procurement plan, cost estimating and scheduling, and technical and management plans. (WHK)

None,

1977-10-17T23:59:59.000Z

100

Solar Total Energy System: Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume I. Section 1. Conclusions and recommendations. Section 2. Systems requirements. [1. 72-MW thermal and 383. 6-kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is described. The various LSE's are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power (both space heating and process heat) and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The section on conclusions and recommendations described the baseline design recommendation, facility requirements, the solar system, power conversion system, schedules and cost, and additional candidate systems. The systems requirements analysis includes detailed descriptions and analyses of the following subtasks: load analysis, energy displacement, local laws and ordinances, life cycle cost, health and safety, environmental assessment, reliability assessment, and utility interface. (WHK)

None,

1977-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

102

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

MW) solar thermal for absorption cooling (MW) adopoted heatdisplaced due to absorption building cooling (GWh/a) annualthat cooling is necessary all day long and the absorption

Marnay, Chris

2010-01-01T23:59:59.000Z

103

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

104

Austin Energy's Residential Solar Rate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leslie Libby Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW Municipal and Schools - 1.0 MW TOTAL - 9.4 MW $0 $2 $4 $6 $8 $10 $12 $14 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 Installed Cost ($/Watt-DC) Residential Commercial Municipal Residential Rebate $2.00/Watt Average Installed Cost $3.75/Watt - SEIA Q2 2012 Report - Austin had the lowest installed cost in the nation ($3.88/W-DC)

105

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

power sales agreements. Duke Energy North Carolina SolarGeneration Program: Duke Energy plans to install 10 MW of

Wiser, Ryan

2010-01-01T23:59:59.000Z

106

Solar Two  

DOE Green Energy (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

Not Available

1998-04-01T23:59:59.000Z

107

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

and applications solar PV included have historicallymultiplier for DG OR: 20 MW solar PV by 2020 2x multipliersolar electric by PA: 0.5% solar PV by 2020 OH: 0.5% solar

Wiser, Ryan

2010-01-01T23:59:59.000Z

108

Sonnen Solar Park GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonnen Solar Park GmbH & Co KG Place Germany Sector Solar Product 1.75MW solar PV park in Bavaria, developed by Voltwerk. References Sonnen Solar Park GmbH & Co...

109

Smart grid adds value to solar photovoltaics  

Science Conference Proceedings (OSTI)

This panel session examines the challenges and opportunities of integrating large scale solar photovoltaic units into the electric power grid. As large solar PV projects (hundreds of MW) come online, their output variation due to weather changes will ...

2012-01-01T23:59:59.000Z

110

NREL: Concentrating Solar Power Research - Southwest Concentrating Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwest Concentrating Solar Power 1000-MW Initiative Southwest Concentrating Solar Power 1000-MW Initiative Photos of various concentrating solar power systems. NREL, working through SunLab, supports the U.S. Department of Energy's goal to install 1,000 megawatts (MW) of new concentrating solar power systems in the southwestern United States by 2010. This level of deployment, combined with research and development to reduce technology component costs, could help reduce concentrating solar power electricity costs to $0.07/kilowatt-hour. At this cost, concentrating solar power can compete effectively in the Southwest's energy markets. To achieve the Initiative's goal, the U.S. Department of Energy is partnering with the Western Governors' Association to encourage concentrating solar power installations in Arizona, California, Colorado,

111

Crossroads (3 MW) | Open Energy Information  

Open Energy Info (EERE)

MW) MW) Jump to: navigation, search Name Crossroads (3 MW) Facility Crossroads (3 MW) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer Renewable Energy Systems Ltd Energy Purchaser Oklahoma Gas & Electric Location Near Canton OK Coordinates 36.019889°, -98.669894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.019889,"lon":-98.669894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Siemens Solar formerly ARCO Solar Corporation | Open Energy Information  

Open Energy Info (EERE)

Solar formerly ARCO Solar Corporation Solar formerly ARCO Solar Corporation Jump to: navigation, search Name Siemens Solar (formerly ARCO Solar Corporation) Place Arizona Product Built a 6MW CPV project in 1984, which was a technical failure due to encapsulation issues and was dismantled, absorbed by Siemens in 1990. References Siemens Solar (formerly ARCO Solar Corporation)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Siemens Solar (formerly ARCO Solar Corporation) is a company located in Arizona . References ↑ "Siemens Solar (formerly ARCO Solar Corporation)" Retrieved from "http://en.openei.org/w/index.php?title=Siemens_Solar_formerly_ARCO_Solar_Corporation&oldid=351054"

113

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

114

Northeast Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus Solar PV Array Size and Type * ~1.0 MW total - Area 1 sized for testing utility-scale inverters * System voltage level of 1,000V * Connected to BNL electrical distribution system * Capability to test multiple panel technologies with crystalline silicon PV modules making up the bulk of the array * Capability to re-configure the array into

115

PCFB Repowering Project 80 MW plant description  

Science Conference Proceedings (OSTI)

This report documents the design of a 80 MW Pressurized Circulating Fluidized Bed (PCFB) boiler for the repowering of Unit 1 at the Des Moines Energy Center. Objective is to demonstrate that PCFB combined-cycle technology is cost effective and environmentally superior compared to traditional pulverized coal burning facilities.

Not Available

1994-05-01T23:59:59.000Z

116

Solar Torx New Solar Ventures | Open Energy Information  

Open Energy Info (EERE)

Torx New Solar Ventures Torx New Solar Ventures Jump to: navigation, search Name Solar Torx / New Solar Ventures Place Arizona Product Set up in November 2005 to secure finance for a thin-film amorphous silicon cell and module manufacturing plant, and an associated 300MW power project. No evidence of progress as of June 2008, has probably been abandoned. References Solar Torx / New Solar Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Torx / New Solar Ventures is a company located in Arizona . References ↑ "Solar Torx / New Solar Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Torx_New_Solar_Ventures&oldid=351340" Categories:

117

Inovateus Solar | Open Energy Information  

Open Energy Info (EERE)

Inovateus Solar Inovateus Solar Jump to: navigation, search Logo: Inovateus Solar Name Inovateus Solar Address 19890 State Line Rd. Place South Bend, Indiana Zip 46637 Sector Solar Product Indiana-based PV systems integrator focusing on the commercial market. Inovateus also operates a string of dealerships distributing solar modules around the US. References Inovateus Solar[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Inovateus Solar is a company located in South Bend, Indiana . Inovateus Solar is a distributor and integrator of solar electric solutions. Headquartered in South Bend, Indiana, Ind. Inovateus Solar has completed 80MW of solar installations in the Midwest and across the United States in 2012. Since 2004, the company has been working closely with the

118

Why did the solar power sector develop quickly in Japan?  

E-Print Network (OSTI)

The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

Rogol, Michael G

2007-01-01T23:59:59.000Z

119

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

120

Solar Field Gives Tennessee Economy a Boost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Field Gives Tennessee Economy a Boost Solar Field Gives Tennessee Economy a Boost September 14, 2010 - 6:24pm Addthis Efficient Energy of Tennessee installs panels at a 1-MW...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

122

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

123

Solar and Allison receive ATS contracts  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has awarded contracts to Solar Turbines Incorporated and Allison Engine Company, for development of advanced power generation engines in the under-20-MW category, as part of Phase III of the Advanced Turbine Systems (ATS) program. The contracts are for construction of complete prototype engines. Solar`s contract, announced on September 15, is for development of 5- and 15-MW engines. Allison`s contract, announced October 17, is for a family of engines in the 4.5- to 11-MW range. Solar`s 5- and 15-MW engines will be variations on the same design, with the smaller engine being the focus of engineering work, and the larger one scale up from it. The Solar ATS engine will be a two-shaft, simple-cycle engine. Efficiency targets are 42% for the 5-MW engine and 43% for the 15-MW model. The NOx target is `single digits.` The Allison ATS engine family will cover the power range from 4.5-11MW. The engines will be two-shaft, simple-cycle units. The DOE target for (LHV) simple cycle efficiency is 15% over the best current technology, which would mean something close to 40%. Allison`s target for NOx is a ppm figure in the single digits. 1 fig.

NONE

1995-11-01T23:59:59.000Z

124

Developed by: Solar Permitting Work Group  

E-Print Network (OSTI)

) 3 g p ( ) ·Tropical country like India, available for most of the year #12;Grid connected Solar-PV DAY Off-grid Solar-PV (islanded) DAY Other NIGHT Other renewable Energy STORAGE #12;Photovoltaic 100KWp Bangalore 5 100KWp Lakshadeep 6 100KWp Hyderabad · 2.12 MW only (2008) #12;Pl t f hi Solar-PV

125

Sacramento Municipal Utility District 100 MW Photovoltaic Power Plant: Final environmental impact report  

Science Conference Proceedings (OSTI)

The Sacramento Municipal Utility District (SMUD) proposes constructing a 100 megawatt (MW) solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. The project, to be built in increments over the next 12 years, is the largest facility of its kind proposed by any utility in the country. The initial 1 MW photovoltaic field will consist of four 250 kW subfields, each with its own power conditioning unit. Photovoltaic cell modules will be mounted on flat-plate arrays attached to centrally located torque tubes which allow the arrays to rotate on their long axis to )openreverse arrowquotes)track)closereverse arrowquotes) the sun. This Final Environmental Impact Report (FEIR) addresses environmental aspects of the proposed project according to the guidelines for implementing the California Environmental Quality Act and the National Enviornmental Policy Act (NEPA).

Not Available

1982-04-01T23:59:59.000Z

126

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

128

3D Simulation of a 5MW Wind Turbine.  

E-Print Network (OSTI)

??In the present work, the influence of turbulence and gravity forces on the tower and the rotor of a 5MW onshore wind turbine has been (more)

Namiranian, Abtin

2011-01-01T23:59:59.000Z

129

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

130

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

large (>500 kW) rooftop systems and solar gardens owned bySolar PV Distributed Generation Program: Duke Energy plans to install 10 MW of ground-mounted and rooftop

Wiser, Ryan

2010-01-01T23:59:59.000Z

131

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

133

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

134

Property:Permit/License Buildout (MW) | Open Energy Information  

Open Energy Info (EERE)

Permit/License Buildout (MW) Permit/License Buildout (MW) Jump to: navigation, search Property Name Permit/License Buildout (MW) Property Type String Pages using the property "Permit/License Buildout (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 40 + MHK Projects/Algiers Light Project + 20 + MHK Projects/Anconia Point Project + 15 + MHK Projects/Ashley Point Project + 148 + MHK Projects/Avalon Tidal + 30 + MHK Projects/Avondale Bend Project + 18 + MHK Projects/BW2 Tidal + 3 + MHK Projects/Bar Field Bend + 94 + MHK Projects/Barfield Point + 114 + MHK Projects/Bayou Latenache + 50 + MHK Projects/Bondurant Chute + 152 + MHK Projects/Breeze Point + 198 + MHK Projects/Brilliant Point Project + 56 + MHK Projects/Brough Head Wave Farm + 200 +

135

Concentrating Solar Power Program overview  

DOE Green Energy (OSTI)

Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

NONE

1998-04-01T23:59:59.000Z

136

OUT Success Stories: Solar Trough Power Plants  

DOE Green Energy (OSTI)

The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

Jones, J.

2000-08-05T23:59:59.000Z

137

Solar power tower development: Recent experiences  

DOE Green Energy (OSTI)

Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

Tyner, C.; Kolb, G.; Prairie, M. [and others

1996-12-01T23:59:59.000Z

138

Antaris Solar | Open Energy Information  

Open Energy Info (EERE)

Antaris Solar Antaris Solar Jump to: navigation, search Name Antaris Solar Place Waldaschaff, Germany Zip D-63857 Product German project developer operating a 1.25MW PV plant in the Czech Republic. References Antaris Solar[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antaris Solar is a company located in Waldaschaff, Germany . References ↑ "Antaris Solar" Retrieved from "http://en.openei.org/w/index.php?title=Antaris_Solar&oldid=342205" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

139

Maharishi Solar Technology Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Maharishi Solar Technology Pvt Ltd Maharishi Solar Technology Pvt Ltd Jump to: navigation, search Name Maharishi Solar Technology Pvt Ltd Place New Delhi, Andhra Pradesh, India Zip 110044 Sector Solar Product Vertically integrated PV manufacturer with annual production of 2.5MW, under expansion to 10.0MW, also makes solar passive products. References Maharishi Solar Technology Pvt Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maharishi Solar Technology Pvt Ltd is a company located in New Delhi, Andhra Pradesh, India . References ↑ "Maharishi Solar Technology Pvt Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Maharishi_Solar_Technology_Pvt_Ltd&oldid=348592

140

Oregon Solar Company Expands, Hires Soldiers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Company Expands, Hires Soldiers Solar Company Expands, Hires Soldiers Oregon Solar Company Expands, Hires Soldiers November 12, 2010 - 1:34pm Addthis SolarWorld received an $82 million tax manufacturing tax credit for expansion of its Hillsboro, Ore., solar plant. They project SolarWorld received an $82 million tax manufacturing tax credit for expansion of its Hillsboro, Ore., solar plant. They project Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? SolarWorld received $82 million tax credit to expand their plant Created about 400 new jobs in Hillsboro, Oregon, area Increased solar panel capacity from 140 MW to 500 MW per year With six kids and a wife, 32 year-old Tobin Tidwell of Hillsboro, Ore., didn't want to pick up and move for a new job. But the Army reservist,

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The solar thermal report. Volume 3, Number 5  

SciTech Connect

This report is published by the Jet Propulsion Laboratory for the DOE Solar Thermal Technology Division to provide an account of work sponsored by the Division and to aid the community of people interested in solar thermal technology in gaining access to technical information. Contents include articles entitled the following: Solar system supplies thermal energy for producing chemicals at USS plant; Solar thermal power module designed for small community market; Roof-mounted trough system supplies process heat for Caterpillar plant; Solar thermal update -- 10 MW(e) pilot plant and 3-MW(t) total energy system; Solar steam processes crude oil; New York investigates solar ponds as a source of thermal energy; On-farm solar -- Finding new uses for the sun; and Topical index of solar thermal report articles.

1982-09-01T23:59:59.000Z

142

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Accessed May 2008 from www.sce.com 9. The California BiomassCollaborative, Biomass gasification / power generationECONOMIC ANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

143

Why Cogeneration? 24MW of local renewable energy  

E-Print Network (OSTI)

Why Cogeneration? · 24MW of local renewable energy · Reduced emissions and cleaner air · Retain 300 Wood Chips Sawdust Pulp Paper Emissions Production #12;Port Townsend Paper - Cogeneration Biomass

144

Optimal power capturing of multi-MW wind generation system  

Science Conference Proceedings (OSTI)

Recently, an increasing number of multi-MW (1MW and up) wind generation systems are being developed and variable speed-variable pitch (VS-VP) control technology is usually adopted to improve the fast response speed and obtain the optimal energy, which ... Keywords: adaptive fuzzy proportional integral derivative, doubly-fed induction generator, hydraulic variable pitch mechanism, optimal, variable speed-variable pitch, wind turbine

Kong Yigang; Wang Zhixin

2008-03-01T23:59:59.000Z

145

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

788-1), December 1976. Electric Power Research Institute,CONCEPT FOR SOLAR ELECTRIC POWER: Interim Report, Report No.generate t 100 MW , gross electric power. e Storage has been

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

146

Aero-Structural Optimization of a 5 MW Wind Turbine Rotor.  

E-Print Network (OSTI)

??A 5 MW wind turbine rotor blade based on the NREL 5 MW Reference Turbine is optimized for maximum efficiency and minimum flapwise hub bending (more)

Vesel, Richard W., Jr.

2012-01-01T23:59:59.000Z

147

Latest Results in SLAC 75-MW PPM Klystrons  

Science Conference Proceedings (OSTI)

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

148

Solar Two technology for Mexico  

DOE Green Energy (OSTI)

Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

KOLB,GREGORY J.; STRACHAN,JOHN W.; GASCO,CLAUDIO ESTRADA

2000-03-02T23:59:59.000Z

149

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solaren Space Solar Power Plant Solaren Space Solar Power Plant Jump to: navigation, search Name Solaren Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000 W 200,000,000,000 mW 0.2 GW References [1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Overview of the 1000 MW CSP Southwest Initiative (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the costs, potential, and benefits of large-scale concentrating solar power (CSP) deployment.

Mehos, M. S.

2004-07-01T23:59:59.000Z

151

Solar Power Potential in SE New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Potential in Southeast New Mexico Solar Power Potential in Southeast New Mexico Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

152

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Energy storage solutions for Renewable Integration and Transmission and Distribution (T&D) Grid Support often require systems of 10's of MWs in scale, and energy durations of longer than 4 hours. The goals of this study were to develop cost, performance and conceptual design information for several current and emerging alternative bulk storage systems in the scale of 50 MW / 250 MWh.

2011-12-28T23:59:59.000Z

153

Sacremento Municipal Utility District 100-MW sub e photovoltaic plant  

Science Conference Proceedings (OSTI)

A status report on plans for the Sacramento Municipal Utility District (SMUD) 1-MW photovoltaic power plant is presented. DOE, the California Energy Commission, and SMUD will fund the project cooperatively. Emphasis is placed on the details of the government contract/cooperation agreement.

Powell, R.V.

1982-04-01T23:59:59.000Z

154

Intense Atmospheric Vortices Associated with a 1000 MW Fire  

Science Conference Proceedings (OSTI)

Observations of vortices of various types produced in a large thermal plume are described. The apparatus used to generate the plume is the Mtotron, an array of 105 fuel oil burners with a total heat output of approximately 1000 MW. Three types ...

Christopher R. Church; John T. Snow; Jean Dessens

1980-07-01T23:59:59.000Z

155

Repowering the 250 MW Supercritical Power Plant at Lenenergo, Russia  

Science Conference Proceedings (OSTI)

This report describes the repowering of a supercritical 250 MW generating unit with an ABB 52.9 MN gas turbine at the Southern Plant of the Lenenergo system in Russia. It includes a review of the performance parameters of the repowered unit and an economic analysis of the repowering project.

1999-11-30T23:59:59.000Z

156

Solar energy conversion: an analysis of impacts on desert ecosystems. Final report, June 1, 1977-December 31, 1977  

DOE Green Energy (OSTI)

A research program is proposed to determine the response of desert ecosystems to the operation of various solar conversion systems. Existing solar powered irrigation pumping systems are described, as well as the 5 MW solar thermal test system at Albuquerque, the proposed 10 MW central receiver system at Barstow, and photovoltaic solar dispersed power systems. The theoretical ecological impacts of solar conversion system are described. Three major impact categories are discussed in detail: shading, wind deflection, and physical disturbance. Research needs necessary to evaluate biotic and abiotic changes in the desert ecosystem are delineated, and specific monitoring and manipulation programs for existing and proposed solar conversion sites are proposed.

Patten, D.C.

1978-05-01T23:59:59.000Z

157

California Energy Commission "We have the largest rooftop solar  

E-Print Network (OSTI)

solar system in the nation!" Matt Muniz, P.E. Energy Program Manager Alameda County "With the Energy Commission's Energy Efficiency Financing Program we installed our 1.18 MW solar project at Santa Rita JailLOW INTEREST RATE LOANS AVAILABLE NOW! California Energy Commission "We have the largest rooftop

158

Once perks' poster child, Spain slashes subsidies for solar energy  

Science Conference Proceedings (OSTI)

Spanish solar subsidies peaked at $1.6 billion in 2008 from $310 million in 2007. Towards the end of 2008, the government slashed the subsidies and put a 500 MW annual limit on how much new solar installations it would take.

NONE

2009-11-15T23:59:59.000Z

159

LADWP - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LADWP - Solar Incentive Program LADWP - Solar Incentive Program LADWP - Solar Incentive Program < Back Eligibility Commercial Local Government Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Up to 75% of project costs for residential installations and up to 50% for commercial systems The maximum system size for incentive payment is 1 MW AC per site, or per government, or per corporate parent per year. 2 MW may be reserved depending on fund availability Program Info Expiration Date 12/31/2017 State California Program Type Utility Rebate Program Rebate Amount Incentives will step down over time. Current incentive levels as of 1/8/2013: Residential (customer-owned): $1.05/W CEC-AC Residential (leased systems): $1.05/W CEC-AC Commercial: Closed until July 2013

160

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner  

E-Print Network (OSTI)

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner Sandia National Laboratories.S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power, is $48.5 million. The plant will begin operation in early 1996. Introduction A solar power tower plant

Laughlin, Robert B.

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network (OSTI)

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy Few bytes per second Up to 2MB per second Peak power (mW) 198 2200 Solar harvesting is one of the most

Simunic, Tajana

162

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

164

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network (OSTI)

The on-line avilability of the five Frame-7E gas turbine generators installed at the 465MW Lyondell Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140MW steam turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs utilized before and continued after plant startup, (2) redundancies designed into the critical components of the plant, (3) the immediate actions taken on failures or near-failures, (4) a sound preventive maintenance program, and (5) improvements performed promptly on discovered design, operating, and maintenance weaknesses uncovered during the early months of operation.

Theisen, R. E.

1988-09-01T23:59:59.000Z

165

Sacramento Municipal Utility District, 100-MW photovoltaic power plant: draft environmental impact report  

SciTech Connect

The Sacramento Municipal Utility District proposes constructing a 100 MW solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. After a brief description of the proposed facility, including the location and an explanation of the need for it, the project-specific environmental analysis is presented. This addresses: geology/seismicity, soils, biological resources, land use, air quality, water resources, water quality, wastes management, public/occupational health, safety, energy and material resources, cultural resources, socioeconomics, and aesthetics. For each of these areas, the setting is described, impacts analyzed, mitigation measures given where appropriate, and cumulative impacts described. Unavoidable adverse environmental effects, irreversible environmental changes and irretrievable commitments of energy and materials are summarized. Also briefly summarized is the relationship between local short-term use of the environment and the maintenance and enhancement of long-term productivity. Environmental benefits and disadvantages associated with various alternatives to building and operating the proposed solar photovoltaic power plant are described, considering project objectives other than producing electricity. (LEW)

Not Available

1982-02-01T23:59:59.000Z

166

Solar Dish Project  

DOE Green Energy (OSTI)

(Original wording, now somewhat outdated.) The Nevada Solar Dish Project is designed to deploy at least 1 MW of dish-based, field validation power generation systems in a mini-power plant near Las Vegas, Nevada, as a transitional precursor to the full commercialization of the technology. This will occur over a period of about three years, from 2001 through 2004. The statement of work defines activities that the University of Nevada Las Vegas (UNLV) will provide by establishing a test site for two dish/Stirling systems on the UNLV campus and providing operation, test and training, and education in support of the project.

Robert F. Boehm

2004-06-06T23:59:59.000Z

167

Greene County 100 MW Biomass Conceptual Engineering Study  

Science Conference Proceedings (OSTI)

Southern Company Services, Incorporated, (SCS) is interested in constructing a 100-megawatt (MW) (net) biomass-fueled facility at an existing facility to increase its share of renewable energy generation and to support future load growth. The site of interest is the Greene County Electric Generating Plant in Demopolis, Alabama. This report represents the formal compilation of key engineering deliverables that collectively provide a better understanding of the conceptual-level parameters associated with t...

2010-12-10T23:59:59.000Z

168

SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

Galambos, John D [ORNL

2011-01-01T23:59:59.000Z

169

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

170

MHK Technologies/14 MW OTECPOWER | Open Energy Information  

Open Energy Info (EERE)

MW OTECPOWER MW OTECPOWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description MINIMIZE SURFACE ACTIVITIES TO REDUCE THE CAPITAL COST AND TO IMPROVE EFFICIENCY ALTERNATE WORKING FLUIDS ARE USED FOR ENHANCED POWER EFFICIENCY IN OPTEC POWER HYBRID CYCLES ARE USED TO IMPROVE POWER AND NEED WITH SUBSEA HEAT EXCHANGERS ADVANCED SUPPORTING VESSEL CONCEPT AND FREE STANDING RISER TECHNOLOGIES TO WITH STAND HARSH OCEAN ENVIRONMENT IN DEEPWATER HAD BEEN DEVELOPED FOR THIS OPTEC POWER IT IS THE ONLY RELIABLE AND PROFITABLE RENEWABLE ENERGY SOURCE FOR THE NEED OF WORLD ENERGY FOR THE NEXT DECADE DESALINATION AND HDROGEN PRODUCTION ARE LINKED TO THE POWER GENERATION OF THE OTEC POWER FOR SEVERAL BY PRODUCTS COST EFFECTIVE PRODUCTION CLEAN ENERGY AND CLEAN WATER IS THE GOAL OF OTECPOWER INC OUR 14 MW OTEC POWER COSTS 50 MILLION USD ALL EQUIPMENT HAD BEEN DESINGED AND A FEW OF THEM ARE TESTED FOR OIL AND GAS INDUSTRY APPLICATION WHICHA RE BEING USED FOR OTECPOWER A RELIABLE AND FEASIBLE OTECPOWER IS PROPOSED

171

Low Beam Voltage, 10 MW, L-Band Cluster Klystron  

SciTech Connect

Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.; /Fermilab; Kazakov, S.; /KEK, Tsukuba; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

2009-05-01T23:59:59.000Z

172

5 Super-Sized Solar Projects Transforming the Clean Energy Landscape |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Super-Sized Solar Projects Transforming the Clean Energy Super-Sized Solar Projects Transforming the Clean Energy Landscape 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape April 8, 2013 - 4:00pm Addthis The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo County. | Photo courtesy of SunPower. The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo County. | Photo courtesy of SunPower. Arial shot of the California Valley Solar Ranch in San Luis Obispo County. | Photo courtesy of SunPower. Arial shot of the California Valley Solar Ranch in San Luis Obispo County. | Photo courtesy of SunPower. The Alamosa Solar project in Colorado is the largest high-concentration solar facility in the world. | Photo courtesy of Cogentrix.

173

Solar Power Purchase Agreements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at $3/kW installed cost, simple payback is 18 years (initial electricity cost of $0.10/kWh and 3%/year electricity cost inflation) * Politics: How to justify expense with such a long payback * If RECS begin to have some real value, this would be a positive for ownership. 2 PPA Advantages * No/low up-front costs * City can take advantage of Investment Tax Credits (ITCs) - This leads to low electricity costs * Predictable electricity cost for length of contract * Avoid direct design/rebate/permitting work * No maintenance/operation headaches 3 PPA Financial Case (1 MW system) * PPA allows a developer to reduce system cost through:

174

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

175

The design of a 200 MW interphase power controller prototype  

SciTech Connect

The paper addresses the practical design aspects of a 200 MW prototype for the interconnection of two synchronous 120-kV networks that are close to their short-circuit limits. The Interphase Power Controller is a new concept for the control of active and reactive power; it uses only standard components connected in an original manner. The paper gives the results of EMTP simulations for the conditions governing the design of the components. The significant steady-state and transient capabilities of the components are given as well as insulation coordination and protection aspects. Finally, a preliminary layout is presented for the prototype.

Habashi, K.; Lombard, J.J.; Mourad, S. (ABB Canada, Inc., Montreal, Quebec (Canada)); Pelletier, P.; Morin, G.; Beauregard, F.; Brochu, J. (CITEQ, Varennes, Quebec (Canada))

1994-04-01T23:59:59.000Z

176

Latest developments on the Dutch 1MW free electron maser  

SciTech Connect

The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz{endash}250GHz with wall plug efficiencies of 60{percent}. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception ({lt}25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse ({lt}10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8{percent} beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible. {copyright} {ital 1999 American Institute of Physics.}

Caplan, M. [Lawrence Livermore National Laboratory, 7000 East Ave, L-637 Livermore California, 94551 (United States); Verhoeven, A.G.; Urbanus, W. [FOM Instituut voor Plasma Fysica, Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (The Netherlands)

1999-05-01T23:59:59.000Z

177

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

178

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network (OSTI)

or denying all applications to construct and operate thermal electric power plants, 50 MW and greater: The solar thermal technology would provide 100 percent of the power generated by the plant; no supplementary and safety, environmental impacts, and engineering aspects of proposed power plants and all related

179

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

180

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

effect (Smart effect (Smart Grid Project) (Thisted, Denmark) Jump to: navigation, search Project Name Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167°, 8.703492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.959167,"lon":8.703492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Conceptual design 10 MW experimental power generation facility  

DOE Green Energy (OSTI)

The overall or ultimate program envisions a small (10 MW) field experimental, highly instrumented, binary fluid cycle power plant facility planned to confirm the concept and evaluate technical and economic feasibility of the large scale use of geothermal energy resources. The eight year program duration anticipates four years for exploration and construction, two years for research and development of initial operations, and two years for research and development effort during production operating phase. The following are covered: a review of the design of all facilities between the supply and reinjection wells; a detailed description of the project scope; the project, system or performance requirements; the project design, procurement and construction schedule; the site layout, power plant perspective, plant layouts, single line electrical diagram, piping and instrument diagram and flow diagram; the cost estimate based on the included drawings; and project feasibility. (MHR)

Not Available

1974-09-30T23:59:59.000Z

182

A conceptual design of the 2+ MW LBNE beam absorber  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility will aim a beam of neutrinos, produced by 60-120 GeV protons from the Fermilab Main Injector, toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. Secondary particles that do not decay into muons and neutrinos as well as any residual proton beam must be stopped at the end of the decay region to reduce noise/damage in the downstream muon monitors and reduce activation in the surrounding rock. This goal is achieved by placing an absorber structure at the end of the decay region. The requirements and conceptual design of such an absorber, capable of operating at 2+ MW primary proton beam power, is described.

Velev, G.; Childress, S.; Hurh, P.; Hylen, J.; Makarov, A.; Mohkhov, N.; Moore, C.D.; Novitski, I.; /Fermilab

2011-03-01T23:59:59.000Z

183

Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar...

184

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

185

5 MW pulsed spallation neutron source, Preconceptual design study  

Science Conference Proceedings (OSTI)

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

186

Auxin Solar | Open Energy Information  

Open Energy Info (EERE)

Auxin Solar Auxin Solar Jump to: navigation, search Name Auxin Solar Place Campbell, California Product Silicon Valley-based Auxin manufactures crystalline PV modules ranging from 10W to 290W. The company has signed a tentative 4MW supply deal with Wild Brush Energy. Coordinates 33.14919°, -95.951444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.14919,"lon":-95.951444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

BNL | NSERC, the Northeast Solar Energy Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Research Center Northeast Solar Energy Research Center A multi-purpose research facility on the BNL campus Home Map of the Research Array Project Updates solar array NSERC, a multi-purpose research facility on the Brookhaven campus Brookhaven National Laboratory is developing a new Northeast Solar Energy Research Center (NSERC) on its campus that will serve as a solar energy research and test facility for the solar industry. The NSERC will include laboratories for standardized testing in accordance with industry standards, along with a solar PV research array for field testing existing or innovative new technologies under actual northeastern weather conditions. The NSERC will also include access to unique high-resolution data sets from the 32MW Long Island Solar Farm located at Brookhaven. Our vision is to

188

Chandradeep Solar Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Chandradeep Solar Pvt Ltd Chandradeep Solar Pvt Ltd Jump to: navigation, search Name Chandradeep Solar Pvt Ltd Place kolkata, West Bengal, India Zip 700068 Sector Solar Product Distributor of solar products, plans to set up 10MW PV modules factory. Coordinates 22.52667°, 88.34616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.52667,"lon":88.34616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)  

DOE Green Energy (OSTI)

The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

Not Available

2011-09-01T23:59:59.000Z

190

Model Validation at the 204-MW New Mexico Wind Energy Center  

DOE Green Energy (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

191

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

192

Wind industry installs almost 5,300 MW of capacity in December ...  

U.S. Energy Information Administration (EIA)

Approximately 40% of the total 2012 wind capacity additions (12,620 MW) came online in December, just before the scheduled expiration of the wind production tax ...

193

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

194

Solar trough systems  

DOE Green Energy (OSTI)

Trough systems predominate among today`s commercial solar power plants. All together, nine trough power plants, also called Solar Energy Generating Systems (SEGS), were built in the 1980s in the Mojave Desert near Barstow, California. These plants have a combined capacity of 354 megawatts (MW) and today generate enough electricity to meet the needs of approximately 500,000 people. Trough systems convert the heat from the sun into electricity. Because of their parabolical shape, troughs can focus the sun at 30--60 times its normal intensity on a receiver pipe located along the focal line of the trough. Synthetic oil captures this heat as the oil circulates through the pipe, reaching temperatures as high as 390 C (735 F). The hot oil is pumped to a generating station and routed through a heat exchanger to produce steam. Finally, electricity is produced in a conventional steam turbine. In addition to operating on solar energy the SEGS plants are configured as hybrids to operate on natural gas on cloudy days or after dark. Natural gas provides 25% of the output of the SEGS plants.

NONE

1998-04-01T23:59:59.000Z

195

Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report  

DOE Green Energy (OSTI)

A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

None

1979-11-01T23:59:59.000Z

196

p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells  

E-Print Network (OSTI)

everything accelerates. ARCO solar produces more than 1 MW PV cells in `80, being the first in the world, the Million Solar Roofs in the US, and many more. Besides these programs, the efficiency of CdTe thin film PV energy source is the photovoltaic (PV) cell, which converts sunlight to electrical current, without any

Bieber, Michael

197

Modular 5 MW geothermal power plant design considerations and guidelines  

DOE Green Energy (OSTI)

The design considerations and guideline documents given define the principal design requirements for a nominal 5 MW geothermal power plant of a type to permit over-the-road transport of its several modules. The power plant system defined is supplied with steam from a single flash steam separator stage, located at the plant area, and supplied with steam from two wells at nominal pressure of 3.8 Kg/cm/sup 2/ Abs (54 psia). In some cases where the content of noxious noncondensable gases is high, a shell and tube condenser would be substituted for the direct contact type condenser specified and an additional module containing an H/sub 2/S removal system would be added. Guidelines are given for the following: site preparation, collection system, plant installation, assembly, and test; turbine generator module; condenser and noncondensable gas removal module; plant control and switchgear module; cooling water circulation pump module; steam-water separator module; maintenance, office, and lavatory module; reinjection pump module; cooling tower modules; spray pond installation and piping; and auxiliary generator module. (MHR)

Not Available

1976-05-01T23:59:59.000Z

198

350 MW(t) design fuel cycle selection. Revision 1  

Science Conference Proceedings (OSTI)

This document discusses the results of this evaluation and a recommendation to retain the graded fuel cycle in which one-half of the fuel elements are exchanged at each refueling. This recommendation is based on the better performance of the graded cycle relative to the evaluation criteria of both economics and control margin. A choice to retain the graded cycle and a power density of 5.9 MW/m{sup 3} for the upcoming conceptual design phase was deemed prudent for the following reasons: the graded cycle has significantly better economics, and essentially the same expected availability factor as the batch design, when both are evaluated against the same requirements, including water ingress; and the reduction in maximum fuel pin power peaking in the batch design compared to the graded cycle is only a few percent and gas hot streaks are not improved by changing to a batch cycle. The preliminary 2-D power distribution studies for both designs showed that maximum fuel pin power peaking, particularly near the inner reflector, was high for both designs and nearly the same in magnitude. 10 figs., 9 tabs.

Lane, R.K.; Lefler, W.; Shirley, G.

1986-01-01T23:59:59.000Z

199

Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant  

DOE Green Energy (OSTI)

A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

1979-07-01T23:59:59.000Z

200

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Progress in passive solar energy systems. Volume 8. Part 1  

DOE Green Energy (OSTI)

This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

Hayes, J.; Andrejko, D.A.

1983-01-01T23:59:59.000Z

202

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

203

Potential of Securitization in Solar PV Finance  

SciTech Connect

This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.

Lowder, T.; Mendelsohn, M.

2013-12-01T23:59:59.000Z

204

Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)  

DOE Green Energy (OSTI)

As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

2011-05-01T23:59:59.000Z

205

Performance of the Solar Two central receiver power plant  

DOE Green Energy (OSTI)

Solar Two is a utility-led project to promote the commercialization of solar power towers by retrofitting the Solar One pilot plant from a water/steam-based system to a molten salt system. Solar Two is capable of producing 10 MW(e) net electricity with enough thermal storage capacity to operate the turbine for three hours after sunset. The plant was turned over to its operations and maintenance contractor in February 1998, marking transition from start-up to the test and evaluation phase. Solar Two has collected as much as 230 MWh thermal and generated as much as 72 MWh(e) gross electricity in one day. The plant has demonstrated dispatchability after dark, during clouds, and during sunshine hours. To date, Solar Two has collected thermal energy at a maximum rate of 39 MW(t) and generated gross electricity at a maximum rate of 11.1 MW(e). Important lessons have been learned in the areas of heat trace, valve selection, materials of construction, and steam generator design. Testing has begun in a number of areas relating to receiver performance, storage tank performance, salt chemistry, overnight thermal conditioning, electricity dispatching, performance monitoring and evaluation, availability tracking, and receiver controls.

Prairie, M.R.; Pacheco, J.E.; Gilbert, R.L.; Reilly, H.E. [Sandia National Labs., Albuquerque, NM (United States); Speidel, P.J. [Shada Environmental Specialists, Inc., Huntington Beach, CA (United States); Kelly, B.D. [Bechtel Corp., San Francisco, CA (United States)

1998-09-01T23:59:59.000Z

206

North Brawley Power Plant Placed in Service; Currently Generating 17 MW;  

Open Energy Info (EERE)

North Brawley Power Plant Placed in Service; Currently Generating 17 MW; North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author Electric Energy Publications Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Citation Electric Energy Publications Inc.. North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update [Internet]. [updated 2010;cited 2010]. Available from:

207

Boston, Massachusetts: Solar in Action (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

Not Available

2011-10-01T23:59:59.000Z

208

U.S. Solar Market Trends  

SciTech Connect

Grid-connected photovoltaic installations grew by 60% in 2006. California and New Jersey have the largest markets and installations more than doubled in New Jersey, Nevada, Colorado, Connecticut, and many other states with smaller markets. The off-grid growth has been steady, but significantly lower. For the first time in more than a decade, a solar thermal electric plant was installed in 2006. More than 350 MW installed in the 1990's still generates electricity today. Solar water heating and solar space heating installations grew in 2006 after years offlat installation numbers. Hawaii dominates this market, with nearly half of the market. Solar pool heating accounts for the largest number of installations and has grown at an average rate of 10% since 1998. However, installations decreased by 7% in 2006. Installations in California and Florida together are 73% of the pool heating market.

Larry Sherwood

2007-07-01T23:59:59.000Z

209

U.S. Solar Market Trends  

SciTech Connect

Grid-connected photovoltaic installations grew by 60% in 2006. California and New Jersey have the largest markets and installations more than doubled in New Jersey, Nevada, Colorado, Connecticut, and many other states with smaller markets. The off-grid growth has been steady, but significantly lower. For the first time in more than a decade, a solar thermal electric plant was installed in 2006. More than 350 MW installed in the 1990's still generates electricity today. Solar water heating and solar space heating installations grew in 2006 after years offlat installation numbers. Hawaii dominates this market, with nearly half of the market. Solar pool heating accounts for the largest number of installations and has grown at an average rate of 10% since 1998. However, installations decreased by 7% in 2006. Installations in California and Florida together are 73% of the pool heating market.

Larry Sherwood

2007-07-01T23:59:59.000Z

210

Program on Technology Innovation: Central Station Solar Photovoltaic, Linear Fresnel, and Dish-Engine Technology Assessment  

Science Conference Proceedings (OSTI)

This Technology Innovation (TI) project, performed in conjunction with an EPRI feasibility study for a 50 to 500 megawatt (MW) central station solar power (CSSP) plant to be developed in New Mexico by mid-2010, surveyed and characterized photovoltaic (PV), linear Fresnel, and dish-engine solar technology options. The overall feasibility study also assessed the status of parabolic trough and central receiver solar technologies.

2008-05-06T23:59:59.000Z

211

Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Neutrinos at the Conclusion of the Sudbury Neutrino Observatory Noah Oblath April 22, 2008 The study of solar neutrinos began with the idea that one could use the neutrinos...

212

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

213

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

214

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Idahos solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

215

Solar collectors  

SciTech Connect

Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

Cassidy, V.M.

1981-11-01T23:59:59.000Z

216

Solar project  

SciTech Connect

A solar laundry was installed on a college campus in South Carolina, including two separate systems installed in parallel. (LEW)

1983-01-01T23:59:59.000Z

217

U.S. Solar Market Trends  

SciTech Connect

Grid-connected photovoltaic installations grew by 40% in 2009 compared with installations in 2008. California and New Jersey have the largest markets. Growth occurred in the residential and utility markets, but non-residential customer-sited installations did not change compared with the installations in 2008. Two small solar thermal electric plants were connected to the grid in 2009 with a combined capacity of 7 MW. The future prospects for solar thermal electric plants look bright, although developers are not expected to complete any new large plants until at least 2011. Solar water heating and solar space heating annual installations grew by 40% in 2008 compared with 2007. Hawaii, California, Puerto Rico, and Florida dominate this market. Solar pool heating annual installation capacity fell by 1% in 2008 following a dramatic decline of 15% in solar pool heating capacity in 2007 compared with 2006. Florida and California are the largest markets for solar pool heating. The economic decline in the real estate markets in Florida and California likely led to the decrease in pool installations and thus the dramatic decline in capacity installed of solar pool systems in 2007.

Larry Sherwood

2010-04-01T23:59:59.000Z

218

Solar Optics  

DOE Green Energy (OSTI)

Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

Rozsnyai, B.F.

2000-10-04T23:59:59.000Z

219

4 MW fast wave current drive upgrade for DIII-D  

SciTech Connect

The DIII-D program has just completed a major addition to its ion cyclotron range of frequency (ICRF) systems. This upgrade project added two new fast wave current drive (FWCD) systems, with each system consisting of a 2 MW, 30 to 120 MHz transmitter, ceramic insulated transmission lines and tuner elements, and water-cooled four-strap antenna. With this addition of 4 MW of FWCD power to the original 2 MW, 30 to 60 MHz capability, experiments can be performed that will explore advanced tokamak plasma configurations by using the centrally localized current drive to effect current profile modifications.

Callis, R.W.; Cary, W.P. [General Atomics, San Diego, CA (United States); Baity, F.W. [Oak Ridge National Lab., TN (United States)] [and others

1994-09-01T23:59:59.000Z

220

CEC - New Solar Homes Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » CEC - New Solar Homes Partnership CEC - New Solar Homes Partnership < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type State Rebate Program Rebate Amount Varies by customer class and system performance (see below) Provider California Energy Commission In January 2006, the California Public Utilities Commission (CPUC) adopted a program - the California Solar Initiative (CSI) - to provide more than $3 billion in incentives for solar projects with the objective of achieving participation levels accounting for 3,000 MW of solar capacity by 2017. Senate Bill 1 was signed by the Governor in August 2006, expanding

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

World's Largest Solar Energy Project Heads to Mojave | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World's Largest Solar Energy Project Heads to Mojave World's Largest Solar Energy Project Heads to Mojave World's Largest Solar Energy Project Heads to Mojave April 16, 2010 - 4:47pm Addthis A California company will harness the Mojave Desert sunshine to create the world's largest solar energy system by the end of 2013. The Ivanpah Solar Electric Generating System, located just a few miles from the California - Nevada border near Interstate 15, will generate approximately 400 MW of energy per year, almost doubling the amount of solar thermal energy produced in the United States. Ivanpah will focus sunlight from mirrors placed on poles, which don't require the land to be graded and can be placed around areas that are already in use or environmentally sensitive. The project of Oakland, Calif.-based BrightSource Energy, Inc. will likely generate enough power

222

Department of Energy Commits Support for Landmark Rooftop Solar Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commits Support for Landmark Rooftop Solar Commits Support for Landmark Rooftop Solar Project Department of Energy Commits Support for Landmark Rooftop Solar Project June 22, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to provide a partial guarantee for a $1.4 billion loan to support Project Amp. This project will support the installation of solar panels on industrial buildings across the country, with the electricity generated from those panels contributing directly to the electrical grid, as opposed to powering the buildings where they are installed. Supported by funding from the 2009 stimulus bill, the solar generation project includes the installation of approximately 733 megawatts (MW) of photovoltaic (PV) solar panels, which is nearly equal to the total

223

SOLAR REFLE TION PANELS  

Unlike other solar collectors that are known to lose solar reflectivity due to issues with their design, the solar collector

224

EA-1876: Pennsylvania State Energy Program's Conergy Navy Yard Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Pennsylvania State Energy Program's Conergy Navy Yard 76: Pennsylvania State Energy Program's Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania EA-1876: Pennsylvania State Energy Program's Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania Overview Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania's Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid. After considering a number of alternative PV configurations and acquiring land via a lease to install the facility, the project proponents have identified a final proposed layout that meets the production criteria and minimizes the footprint of the system. The

225

Solar Field Gives Tennessee Economy a Boost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Gives Tennessee Economy a Boost Field Gives Tennessee Economy a Boost Solar Field Gives Tennessee Economy a Boost September 14, 2010 - 6:24pm Addthis Efficient Energy of Tennessee installs panels at a 1-MW solar farm outside Knoxville in July. | Photo by Harvey Abouelata and courtesy of Efficient Energy of Tennessee Efficient Energy of Tennessee installs panels at a 1-MW solar farm outside Knoxville in July. | Photo by Harvey Abouelata and courtesy of Efficient Energy of Tennessee Lorelei Laird Writer, Energy Empowers Outside Knoxville, Tenn., a new construction project began raising eyebrows in May. The project was clearly visible from cars on the nearby Andrew Johnson Highway, but passers-by had no idea what to make of it at first, according to Robbie Thomas, president of Efficient Energy of Tennessee, a

226

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 California Solar Initiative - Single-Family Affordable Solar...

228

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 Solar Energy Resources Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be...

229

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

230

Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator  

E-Print Network (OSTI)

This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron ...

Anderson, James P. (James Paul), 1972-

2005-01-01T23:59:59.000Z

231

BEOWAWE number1-A 10 MW geothermal unit in northern Nevada  

SciTech Connect

This paper describes a project to build and operate a nominal 10 mw electrical generating unit using the geothermal heat from the Beowawe, Nevada, geothermal reservoir to power an isobutane binary unit. This 10 mw unit would be fabricated on portable skids by equipment supplier for shipment to the site. The project will be owned and operated by the NORNEV Demonstration Geothermal Company which is made up of Pacific Power and Light, Eugene Water and Electric Board, Sierra Pacific Power Company, and Sacramento Municipal Utility District. The geothermal brine for powering the 10 mw binary WGU will be purchased from Chevron Resource Company. This first unit is a research and development unit and will, hopefully, lead to total development of the 300 mw plus Beowawe reservoir.

Keilman, L.

1982-10-01T23:59:59.000Z

232

A 1-mW vibration energy harvesting system for moth flight-control applications  

E-Print Network (OSTI)

This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

Chang, Samuel C

2010-01-01T23:59:59.000Z

233

Survey of Landfill Gas Generation Potential: 2-MW Molten Carbonate Fuel Cell  

Science Conference Proceedings (OSTI)

Molten carbonate fuel cells can operate almost as efficiently on landfill gas as on natural gas. This study identified 749 landfills in the United States having the potential to support a total of nearly 3000 2-MW fuel cells.

1992-10-01T23:59:59.000Z

234

Performance of the H{sup -} Ion Source Supporting 1-MW Beam Operations at SNS  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 1-MW of beam power in September 2009, and now routinely operates near 1-MW for the production of neutrons. This paper reviews the performance, operational issues, implemented and planned mitigations of the SNS H{sup -} ion source to support such high power-level beams with high availability. Some results from R and D activities are also briefly described.

Han, B. X.; Hardek, T.; Kang, Y.; Murray, S. N. Jr.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R. F.; Stockli, M. P. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2011-09-26T23:59:59.000Z

235

Performance of the H- Ion Source Supporting 1-MW Beam Operations at SNS  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 1-MW of beam power in September 2009, and now routinely operates near 1-MW for the production of neutrons. This paper reviews the performance, operational issues, implemented and planned mitigations of the SNS H- ion source to support such high power-level beams with high availability. Some results from R&D activities are also briefly described.

Han, Baoxi [ORNL; Hardek, Thomas W [ORNL; Kang, Yoon W [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Piller, Chip [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL; Stockli, Martin P [ORNL

2011-01-01T23:59:59.000Z

236

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

237

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from all participants is 100MW, with no more than 50MW from any one renewable technology. October 16, 2013 TVA - Mid-Sized Renewable Standard Offer Program The Tennessee...

238

Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

239

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar...

240

Solar News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Engineering and Economic Evaluation of Central-Station Solar Photovoltaic Power Plants  

Science Conference Proceedings (OSTI)

The market for solar photovoltaics (PV) is growing rapidly as the technology continues to mature. By the end of 2010, the installed global PV capacity was upwards of 40,000 MWp, of which roughly 17,000 MW were installed in 2010. Total PV capacity in the U.S. grew to about 2,500 MW.1 As the manufacturing capacity for solar PV cells and modules has increased, the cost of modules has decreased significantly. This engineering and economic evaluation addressed 22 combinations of six PV technologies and four l...

2012-03-15T23:59:59.000Z

242

Akhter Solar Limited | Open Energy Information  

Open Energy Info (EERE)

Akhter Solar Limited Akhter Solar Limited Jump to: navigation, search Name Akhter Solar Limited Place Islamabad, Pakistan Product Owns a 3MW module assembly line in Pakistan, which uses Q-Cells cells. Coordinates 33.709839°, 73.075912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.709839,"lon":73.075912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Solar Power Beaming: From Space to Earth  

Science Conference Proceedings (OSTI)

Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

2009-04-14T23:59:59.000Z

244

Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Solar 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

337 Million Loan Guarantee to Mesquite 337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant September 28, 2011 - 12:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced that the Energy Department finalized a $337 million loan guarantee to Mesquite Solar 1, LLC to support the development of an innovative photovoltaic solar generating project. The optimized 150 megawatt (MW) alternating current photovoltaic (PV) solar generation project will be located in Maricopa County, Arizona, approximately 45 miles west of Phoenix. Sempra Energy, the project sponsor, estimates the project will fund up to 300 construction jobs. "Domestic solar power generation strengthens and diversifies our

245

VP 100: Growth in solar means growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in solar means growth in Ohio Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy Empowers Market research company Solarbuzz reports that global demand for solar power soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW as of June -- and

246

DOE Solar Decathlon: Solar Decathlon Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

247

EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, 60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management, with Western Area Power Administration as a cooperating agency, prepared an EA to evaluate potential impacts of a proposal to build and operate a 180-MW photovoltaic facility; a 220, 230, or 500 kV transmission line; and associated facilities in Clark County, Nevada. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 28, 2013 EA-1960: Finding of No Significant Impact Townsite Solar Project Transmission Line, Clark County, Nevada June 28, 2013 EA-1960: Final Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada

248

SolarPark Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

SolarPark Engineering Co Ltd SolarPark Engineering Co Ltd Jump to: navigation, search Name SolarPark Engineering Co Ltd Place Bucheon, Gyeonggi-do, Korea (Republic) Sector Solar Product Korean solar project developer, currently building a 15MW PV plant in Gochang County. Coordinates 37.500069°, 126.792229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.500069,"lon":126.792229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

250

Silicon Valley Power - Solar Electric Buy Down Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Electric Buy Down Program Solar Electric Buy Down Program Silicon Valley Power - Solar Electric Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentives step down over time as installed capacity goals are met. Check program web site for current incentive level. '''Rebate levels as of 9/20/12:''' Residential: $2.00/watt AC Commercial (up to 100 kW): $1.10/watt AC Commercial (>100 kW to 1 MW): $0.15/kWh for 5 years Provider Silicon Valley Power Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as certain installed

251

Conversion of Solar Two to a Kokhala hybrid power tower  

DOE Green Energy (OSTI)

The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

Price, H.W.

1997-06-01T23:59:59.000Z

252

Dominion Virginia Power - Solar Purchase Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Virginia Power - Solar Purchase Program Dominion Virginia Power - Solar Purchase Program Dominion Virginia Power - Solar Purchase Program < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 6/20/2013 Expiration Date 6/20/2018 State Virginia Program Type Performance-Based Incentive Rebate Amount $0.15/kWh In March 2013, the Virginia State Corporation Commission approved a rate program for Dominion Virginia Power customers that install solar PV systems. The rate was approved at 15 cents per kWh with a 5 year contract. Both residential and nonresidential customers are eligible for the program. The program is capped 3 MW, with 60% of the capacity reserved for

253

Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Small and Medium Scale Advanced Solar Initiative Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) < Back Eligibility Agricultural Commercial General Public/Consumer Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2013 State Georgia Program Type Other Incentive Provider GPASI Project Manager '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity limit of 45 megawatts (MW), a lottery will be conducted, with Georgia Public Service Commission

254

PNM - Performance-Based Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate None specified Program Info Start Date 3/1/2006 State New Mexico Program Type Performance-Based Incentive Rebate Amount ''These prices will step down over time as certain MW goals are met Prices below are current as of 09/19/2012; see program website for current prices'' Systems up to 10 kW: $0.04/kWh for RECs >10 kW up to 100 kW: $0.05/kWh for RECs >100 kW up to 1 MW: $0.02/kWh for RECs 1 MW+: Fully subscribed Provider PNM In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N...

255

Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems  

SciTech Connect

Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

2012-11-09T23:59:59.000Z

256

Solar ponds  

DOE Green Energy (OSTI)

The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

Jayadev, T.S.; Edesess, M.

1980-04-01T23:59:59.000Z

257

Economic Development Impact of 1,000 MW of Wind Energy in Texas  

DOE Green Energy (OSTI)

Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

Reategui, S.; Hendrickson, S.

2011-08-01T23:59:59.000Z

258

The conversion of the 2 MW reactor at the Rhode Island Nuclear Science Center  

Science Conference Proceedings (OSTI)

The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more U-235 than the current HEU plate. These differences, coupled with a desire to upgrade the characteristics and capability of the reactor, have resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during 23 years of operation, it has become clear that the main uses of the reactor have been neutron scattering and neutron activation analysis. The requirement to convert to LEU presents and opportunity to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper presents the current conclusions of both aspects. 2 refs., 9 figs.

DiMeglio, A.F.; Matos, J.E.; Freese, K.E.; Spring, E.F. (Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center; Argonne National Lab., IL (USA); Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center)

1989-01-01T23:59:59.000Z

259

kjkjkjkjkjkj kj Document Path: T:\\Projects\\CEC\\TLPP_Maps\\Statewide PP\\ARCGIS\\State OpPP_A_solar.mxdDate: 8/28/2012  

E-Print Network (OSTI)

Rose at (916) 654-3902. California Solar Power Plants (Power Plants shown are Operational Only .1 mw and above) kj = Solar Power Plant #12; kj kj kj kj kj kj kj kj kj kj kj kj kjkj kj kj kj kj kj kj Document Path: T:\\Projects

260

Solar PST | Open Energy Information  

Open Energy Info (EERE)

Solar PST Jump to: navigation, search Name Solar PST Place Bergondo, Spain Zip 15 165 Sector Solar Product Spanish company producing thermodynamic solar panels. References Solar...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High-MW Electronics Key to a Future Grid which is Smarter ...  

Science Conference Proceedings (OSTI)

... State renewable portfolio goal www.dsireusa.org / October 2009 Solar water heating eligible ... Substation automation ? Home area networks ...

2010-08-12T23:59:59.000Z

262

2 MW Active Bouncer Converter Design for Long Pulse Klystron Modulators  

E-Print Network (OSTI)

This paper presents some design issues of a 2 MW interleaved buck converter which is used as an active bouncer droop compensator for a 5.5MW long pulse klystron modulator. This novel design concept presents many challenges in terms of voltage ripple versus pulse rise-time. Issues related to the voltage ripple specification versus output filter design are discussed in detail. The design study is analyzed analytically, simulated numerically and is validated by experimental results obtained from a full power prototype.

Aguglia, D

2012-01-01T23:59:59.000Z

263

Internal Technical Report, Heat Exchanger Sizing for 20 MW Geothermal Power Plants at MX Sites  

DOE Green Energy (OSTI)

This report presents the details of the analyses used to size the heaters, steam condenser, and working fluid condenser for a proposed 20 MW geothermal power plant application at MX sites in the southwest. These units would use a mixture of hydrocarbons (90% isobutane--10% n-hexane) to extract energy from moderate temperature resources (resource temperatures of 365 F, 400 F, and 450 F were considered). The working fluid will be maintained at supercritical pressures in the heater units. Studies have shown that this cycle will provide a significant net power increase over standard dual boiling single fluid cycles currently in use, e.g., the Raft River 5 MW pilot plant.

Kochan, R.J.; Bliem, C.J.

1981-12-01T23:59:59.000Z

264

Solar paraphotons  

E-Print Network (OSTI)

I revisit the question of production of paraphotons, or hidden photons, in the Sun and suggest that a simultaneous observations of solar flares by conventional instruments and by axion helioscopes may provide a discovery channel for paraphotons.

Troitsky, Sergey V

2011-01-01T23:59:59.000Z

265

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In Kentucky, solar easements may be obtained for the purpose of ensuring access to direct sunlight. Easements must be expressed in writing and will become an interest in real property that may be...

266

Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis  

DOE Green Energy (OSTI)

This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

2012-09-01T23:59:59.000Z

267

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

268

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

269

Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Solar 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant Energy Department Finalizes $337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant September 28, 2011 - 12:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced that the Energy Department finalized a $337 million loan guarantee to Mesquite Solar 1, LLC to support the development of an innovative photovoltaic solar generating project. The optimized 150 megawatt (MW) alternating current photovoltaic (PV) solar generation project will be located in Maricopa County, Arizona, approximately 45 miles west of Phoenix. Sempra Energy, the project sponsor, estimates the project will fund up to 300 construction

270

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

271

EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

449: Department of Energy Loan Guarantee to Solar Millennium 449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California Overview This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right-of-way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

272

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

The University of Wisconsin Interactive Solar Heating DesignProgram, , , , c, Solar Heating of Buildings and DomesticProperty Standards for Solar Heating and Domestic Hot Water

Berdahl, P.

2010-01-01T23:59:59.000Z

273

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Program, , , , c, Solar Heating of Buildings and DomesticR.L. (1976): Solar Heating of Buildings and Domestic Hotthe costs. c. SOLAR HEATING OF BUILDINGS AND DOMESTIC HOT

Berdahl, P.

2010-01-01T23:59:59.000Z

274

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Energy - Value of Solar Residential Rate (Texas) Austin...

275

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 City of Tallahassee Utilities - Solar Water Heating Rebate The...

276

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Utilities - Solar Rebate Program Austin Utilities provides...

277

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Commonwealth Solar Hot Water Commercial Program Feasibility study...

278

DOE Solar Decathlon: Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Solar Decathlon 2013 at the Orange Country Great Park in Irvine, California The Solar Decathlon houses and surrounding Solar Decathlon village are open to...

279

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 8, 2009 DOE Announces 87 Million in Funding to Support Solar Energy Technologies Projects Aim to Accelerate Adoption of Solar Energy and Develop Solar Workforce September...

280

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contracts which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Solar Energy Technologies Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes,...

282

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, and Energy Efficiency Easements and Rights Laws Colorado's solar access laws, which date back to 1979, prohibit any residential covenants that restrict solar access....

283

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

loans for renewable energy and energy efficiency projects. Eligible renewable energy technologies include solar thermal, solar space heat, solar process heat,...

284

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plan. October 16, 2013 Residential Solar and Wind Energy Systems Tax Credit Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind...

285

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is joining America's solar revolution. January 13, 2010 San Antonio is using these unique solar energy systems. | Photo courtesy CPS Energy San Antonio spurs increase in solar...

286

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data, FinalEstimating incident solar radiation at the surface from geo-

Inman, Richard Headen

2012-01-01T23:59:59.000Z

287

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

288

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Power, Inc. - Solar Energy System Rebate Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar...

289

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a...

290

Solar powered desalination system  

E-Print Network (OSTI)

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

291

Overview and Challenges of Thin Film Solar Electric Technologies  

DOE Green Energy (OSTI)

In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

Ullal, H. S.

2008-12-01T23:59:59.000Z

292

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

DOE Green Energy (OSTI)

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

293

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

294

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

295

EK 131/132 module: Introduction to Wind Energy MW 3-5  

E-Print Network (OSTI)

EK 131/132 module: Introduction to Wind Energy MW 3-5 Course. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind. Students will measure personal energy use and analyze wind turbine data from the Museum of Science's wind

296

Solar Pilot Plant project review No. 9, May 4--5, 1977. CDRL item 10  

DOE Green Energy (OSTI)

Drawings and illustrations for the project review are presented. These are included for the 10 MW(e) solar pilot plant, the collector subsystem, the receiver subsystem, the electrical power generation system and balance of plant, plant controls and transient analysis, availability and safety, pilot and commercial plant designs, and summary and recommendations. (MHR)

None

1977-01-01T23:59:59.000Z

297

Design and Test of a 100MW X Band TE01 Window  

Science Conference Proceedings (OSTI)

Research at Stanford Linear Accelerator Center (SLAC) is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present generation accelerators. This will require development of high power X-Band sources generating 50-100 MW per source. Conventional pillbox window designs are capable of transmitting peak rf powers up to about 30 MW, well below the desired level required for the use of a single window per tube. SLAC has developed a 75 MW TE{sub 01} window [1] that uses a 'traveling wave' design to minimize fields at the window face. Irises match to the dielectric window impedance, resulting in a pure traveling wave in the ceramic and minimum fields on the window face. The use of the TE{sub 01} mode also has zero electric field on the braze fillet. Unfortunately, in-band resonances prevented this window design from achieving the desired 75MW power level. It was believed the resonances resulted from sudden steps in the circular guide to match the 38mm input diameter to the overmoded (TE{sub 01} and TE{sub 02} mode propagating) 65 mm diameter of the window ceramic. Calabazas Creek Research Inc. is currently developing a traveling wave window using compact, numerically optimized, parabolic tapers to match the input diameter of 38mm to the window ceramic diameter of 76mm (Figure 1). The design is projected to handle 100 MW of pulse power with a peak field at the window face of 3.6 MV/m. Cold test of the window has shown the return loss to be better than -25 dB over a 100 MHz bandwidth and to be resonance free (Figure 2). The window is scheduled for high-power testing in July 2003 at the SLAC.

Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

2008-03-24T23:59:59.000Z

298

An efficient solar energy harvester for wireless sensor nodes  

E-Print Network (OSTI)

Solar harvesting circuits have been recently proposed to increase the autonomy of embedded systems. One key design challenge is how to optimize the efficiency of solar energy collection under non stationary light conditions. This paper proposes a scavenger that exploits miniaturized photovoltaic modules to perform automatic maximum power point tracking at a minimum energy cost. The system adjusts dynamically to the light intensity variations and its measured power consumption is less than 1mW. Experimental results show increments of global efficiency up to 80%, diverging from ideal situation by less than 10%, and demonstrate the flexibility and the robustness of our approach. 1.

Davide Brunelli; Luca Benini; Clemens Moser; Lothar Thiele

2008-01-01T23:59:59.000Z

299

Solar Electricity - The Power of Choice, First Quarter 2001  

DOE Green Energy (OSTI)

Solar Electricity--The Power of Choice (formerly NREL PV Working With Industry) is a quarterly newsletter devoted to the research and development activities performed by NREL staff in concert with their industry and university partners. This issue is devoted to NREL's renewables workshop for farmers and ranchers, presented at the National Western Stock Show in Denver; the PV Industry Roadmap; the Siemens Solar Industries celebration of 200 MW of cumulative PV module production; and a profile of ''PV Beyond the Horizon'' initiative. The editorialist for this issue is Tim Anderson of the University of Florida.

Poole, L.; Schnelten, K.; Moon, S.

2001-04-26T23:59:59.000Z

300

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Constant Solar Noon Solar Time Sun Cha rt Sunshine Hours Seeof people and sun creates a high potential for solar energyposition of the sun, The relationship between solar time and

Berdahl, P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Radiation in Canada. Solar Energy ~, p.153. Threlkeld, J.L.pool. As the use of solar energy becomes more widespread,a high potential for solar energy use. Solar-heated swimming

Berdahl, P.

2010-01-01T23:59:59.000Z

302

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Solar Information. . . . A. Solar Spectrum. . . . . . .measure a part of the solar spectrum, usually the red andin Fig. 1 shows the solar spectrum Q Ii! N til SEA-LEVEL

Berdahl, P.

2010-01-01T23:59:59.000Z

303

DOE Solar Decathlon: Solar Decathlon China  

NLE Websites -- All DOE Office Websites (Extended Search)

China Logo of SD China. Solar Decathlon China is the most recent addition to the international family of Solar Decathlon competitions. Solar Decathlon China is the result of a...

304

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

305

Solar two: A molten salt power tower demonstration  

Science Conference Proceedings (OSTI)

A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.

Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sutherland, J.P. [Southern California Edison, Rosemead, CA (United States); Gould, W.R. Jr. [Bechtel Corp., San Francisco, CA (United States)

1995-08-01T23:59:59.000Z

306

Solar ADEPT: Efficient Solar Energy Systems  

DOE Green Energy (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

307

Concentrating Solar Power  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

308

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

309

Solar forecasting review  

E-Print Network (OSTI)

ASME Journal of Solar Energy Engineering (in press), 2012. [ASME Journal of Solar Energy Engineering (in press), 2012. [

Inman, Richard Headen

2012-01-01T23:59:59.000Z

310

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applications will be accepted starting August 1, 2013. ''''' July 12, 2013 TVA - Green Power Providers '''''Note: TVA has approved enough applications to meet the MW goals for...

311

Solar heater  

SciTech Connect

The invention is a solar heater which may function as a humidifier and which has a reflector that is constructed to provide a window, and external thermal insulation. The window has a cover that is positioned to transmit solar radiation to the reflector. The top portion of the reflector has an opening, and a container is removably positioned in the opening. The reflector has a geometry that reflects a high percentage of solar energy to the container, which has a surface with high absorptance. The container has a removable lid for confining heat within the container for certain functions, such as boiling water or drying clothes. When used as a humidifier, the container is filled with water and the lid is removed.

Hill, C.W.

1981-06-23T23:59:59.000Z

312

Solar Neutrinos  

DOE R&D Accomplishments (OSTI)

The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

Davis, R. Jr.; Harmer, D. S.

1964-12-00T23:59:59.000Z

313

Solar Energy Technologies Program: Solar Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy EERE Home Programs & Offices Consumer Information Solar Multimedia search Home EERE » SunShot Initiative » Solar Multimedia Printable Version Bookmark and Share Feature Photo of 3 solar dishes, which have reflective, square-shaped material that creates a mirror image of the sky and clouds. Each dish is anchored to the ground by a vertical pole. Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Photovoltaics Concentrating Solar Power Concentrating Solar Power Solar Applications Residential Residential Commercial Commercial Large Installations Large Installations City and County City and County Federal Federal Manufacturing Manufacturing Development and Testing

314

Solar Energy Systems - Research - Biomimetic Solar Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

using renewable resources such as sunlight. They also offer an enticing way to store solar energy in a very compact form. Challenges in solar fuels production lie in...

315

Solar Easements & Local Option Solar Rights Laws  

Energy.gov (U.S. Department of Energy (DOE))

Utah's solar easement provisions are similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

316

Solar Energy: What's next for Solar Technology  

Solar Energy: Whats next for Solar Technology John P. Benner Group Leader, Electronic Materials and Devices. National Center for Photovoltaics. National Renewable ...

317

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network (OSTI)

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

318

Solar collectors  

SciTech Connect

Reasons are reviewed for selection of building shapes which are very unsatisfactory from the viewpoint of making rational use of solar energy for room comfort, and to reduce room heating costs. How to make best direct use of this energy source both by better building design and building installations and more careful control of energy use in towns is examined.

Borasi, V.

1974-12-01T23:59:59.000Z

319

Solar oven  

Science Conference Proceedings (OSTI)

A portable, foldable solar oven is provided wherein the basic construction material is ordinary cardboard, some surfaces of which are coated with a reflective material. The portable oven doubles as an insulated container for keeping refrigerated foodstuffs cold while being transported to a distant site for cooking.

Golder, J.C.

1981-10-06T23:59:59.000Z

320

Solar cooker  

SciTech Connect

A solar cooking device made of a flat array of concentric mirrors tilted to focus at a small area, the array being movable mounted on a stand to be movable around a ball joint and with a carrier for a cooking vessel held by a double crank to be at the focal area of the mirrors.

Long, J. B.; Ware, R. R.

1985-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E  

NLE Websites -- All DOE Office Websites (Extended Search)

a solar energy project development company developing large-scale solar energy projects worldwide, utilizes the NSTTF (a.k.a. Solar Tower), via a Technology Deployment...

322

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

323

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

NLE Websites -- All DOE Office Websites (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

324

MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

NJBPU 1 5 MW Demonstration Program NJBPU 1 5 MW Demonstration Program < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6032,"lon":-74.3401,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

325

Beam Loss Studies for the 2-MW LBNE Proton Beam Line  

SciTech Connect

Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

2012-05-01T23:59:59.000Z

326

Microsoft PowerPoint - DOE Tribal Leader Solar Energy Forum.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility-Scale Solar Utility-Scale Solar Efforts at SRP Stephen Mellentine Senior Planning Analyst, Resource Planning l i j Salt River Project * Third largest public power tilit i th ti utility in the nation * Over 940,000 electric customers in Phoenix area customers in Phoenix area * 7,400 MW generation portfolio p * Largest water provider in Phoenix area * Delivers nearly 1 million acre- feet annually 2 DOE Tribal Leader Solar Energy Forum Mellentine SRP & Arizona Perspective of Utility Solar SRP & Arizona Perspective of Utility Solar * SRP not regulated by Arizona Corporation Commission regulated by own Board of Commission, regulated by own Board of Directors d l b * IOUs under ACC regulation subject to different solar requirements *

327

DOE Solar Decathlon: News Blog Solar Decathlon 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation to Main Content U.S. Department of Energy Solar Decathlon Solar Decathlon Home Blog Home Posts Tagged 'Solar Decathlon 2009' Solar Decathlon Alumni Association...

328

California Solar Initiative - Single-Family Affordable Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program Eligibility...

329

California Solar Initiative - Multi-Family Affordable Solar Housing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program < Back...

330

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network (OSTI)

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University..................................................................................................................... 1 2 Solar Resource Assessment ........................................................................................... 2 2.1 Solar Radiation

Brownstone, Rob

331

Solar Easements and Local Option Solar Rights Laws | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government...

332

DOE Solar Decathlon: News Blog Blog Archive Solar Decathlon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Comfort Zone Energy Balance Engineering Home Entertainment Hot Water Market Appeal Events Media Solar Decathlon Solar Decathlon 2009 Solar Decathlon 2011 Solar...

333

Tests with a microcomputer based adaptive synchronous machine stabilizer on a 400MW thermal unit  

Science Conference Proceedings (OSTI)

Field tests have been conducted on a microcomputer-based adaptive synchronous machine stabilizer. The adaptive control algorithm tracks the system operating conditions using a least squares identification technique with variable forgetting factor and the control is calculated by a self-searching pole-shift method. An outline of the control algorithm and the results of field tests on a 400MW thermal generating unit are described in this paper.

Malik, O.P.; Hope, G.S.; Hancock, G.C. (Univ. of Calgary, Alberta (Canada)); Mao, C.X. (Huazhong Univ. of Science and Technology, Wuhan (China)); Prakash, K.S. (Bharat Heavy Electricals, Banglore (India))

1993-03-01T23:59:59.000Z

334

Economics of a conceptual 75 MW Hot Dry Rock geothermal electric power station  

DOE Green Energy (OSTI)

Man-made, Hot Dry Rock (HDR) geothermal energy reservoirs have been investigated for over ten years. As early as 1977 a research-sized reservoir was created at a depth of 2.9 km near the Valles Caldera, a dormant volcanic complex in New Mexico, by connecting two wells with hydraulic fractures. Thermal power was generated at rates of up to 5 MW(t) and the reservoir was operated for nearly a year with a thermal drawdown less than 10/sup 0/C. A small 60kW(e) electrical generation unit using a binary cycle (hot geothermal water and a low boiling point organic fluid, R-114) was operated. Interest is now worldwide with field research being conducted at sites near Le Mayet de Montagne, France; Falkenberg and Urach, Federal Republic of Germany; Yakedake, Japan; and Rosemanowes quarry in Cornwall, United Kingdom. To assess the commercial viability of future HDR electrical generating stations, an economic modeling study was conducted for a conceptual 75 MW(e) generating station operating at conditions similar to those prevailing at the New Mexico HDR site. The reservoir required for 75 MW(e), equivalent to 550 MW of thermal energy, uses at least 9 wells drilled to 4.3 km and the temperature of the water produced should average 230/sup 0/C. Thermodynamic considerations indicate that a binary cycle should result in optimum electricity generation and the best organic fluids are refrigerants R-22, R-32, R-115 or R-600a (Isobutane). The break-even bus bar cost of HDR electricity was computed by the levelized life-cycle method, and found to be competitive with most alternative electric power stations in the US.

Murphy, H.D.; Drake, R.H.; Tester, J.W.; Zyvoloski, G.A.

1984-01-01T23:59:59.000Z

335

1 MW / 7.2 MWh NaS Battery Demonstration and Case Study Update  

Science Conference Proceedings (OSTI)

The New York Power Authority (NYPA), working together with the Metropolitan Transit Authority Long Island Bus (LIB) Company, has installed an advanced sodium sulfur battery energy storage system (NaS BESS) at the LIB facility located at 700 Commercial Avenue, Garden City, New York. The BESS is capable of providing a nominal 1MW of power to the bus fueling compressor station for 6-8 hours per day, 7 days per week.

2009-12-18T23:59:59.000Z

336

COST STUDY OF A 100-Mw(e) DIRECT-CYCLE BOILING WATER REACTOR PLANT  

SciTech Connect

A technical and economic evaluation is presented of a direct-cycle light- water boiling reactor designed for natural circulation and internal steam-water separation. The reference lOO-Mw(e) reactor power plant design evolved from the study should have the best chance (compared to similar plants) of approaching the 8 to 9 mill/kwh total power-cost level. (W.D.M.)

Bullinger, C.F.; Harrer, J.M.

1960-07-01T23:59:59.000Z

337

4 MW upgrade to the DIII-D fast wave current drive system  

SciTech Connect

The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

1993-10-01T23:59:59.000Z

338

Multi-Mission Capable, High g Load mW RPS  

DOE Green Energy (OSTI)

Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

2007-05-23T23:59:59.000Z

339

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

DOE Green Energy (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

340

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

342

Sylcom Solar | Open Energy Information  

Open Energy Info (EERE)

research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric installations. References Sylcom...

343

Alterative LEU designs for the FRM-II with power levels of 20-22 MW.  

SciTech Connect

Alternative LEU Designs for the FRM-II have been developed by the RERTR Program at Argonne National Laboratory (ANL) at the request of an FRM-II Expert Group established by the German Federal Government in January 1999 to evaluate the options for using LEU fuel instead of HEU fuel in cores with power levels of 20 MW. The ANL designs would use the same building structure and maintain as many of the HEU design features as practical. The range of potential LEU fuels was expanded from previous studies to include already-tested silicide fuels with uranium densities up to 6.7 g/cm{sup 3} and the new U-Mo fuels that show excellent prospects for achieving uranium densities in the 8-9 g/cm{sup 3} range. For each of the LEU cores; the design parameters were chosen to match the 50 day cycle length of the HEU core and to maximize the thermal neutron flux in the Cold Neutron Source and beam tubes. The studies concluded that an LEU core with a diameter of about 29 cm instead of 24 cm in HEU design and operating at a power level of 20 MW would have thermal neutron fluxes that are 0.85 times that of the HEU design at the center of the Cold Neutron Source. With a potential future upgrade to a power of 22 MW, this ratio would increase to 0.93.

Hanan, N. A.; Smith, R. S.; Matos, J. E.

1999-09-27T23:59:59.000Z

344

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

345

Solar Kit Lessons  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Kit Lessons Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Cell Inquiry Sunshine Timer Parts of a Solar Panel Part 1 Parts of a Solar Panel Part 2 Build a Simple Ammeter Solar-Powered Battery Charger Positioning Solar Panels 1 Positioning Solar Panels 2 Properties of Solar Radiation: Reflection, Transmission, and Absorption Properties of Solar Radiation: Direct and Diffuse Light Power Maximum: An Electrical Determination Calibration Curve for a Radiation Meter Solarize a Toy Solar Cells as Control Devices Solar-Powered Electrolysis of Water and the Hydrogen Economy Solar Kit Lesson #1 Solar Cell Inquiry TEACHER INFORMATION LEARNING OUTCOME

346

Two New Reports on Utility-Scale Solar from NREL | OpenEI Community  

Open Energy Info (EERE)

Two New Reports on Utility-Scale Solar from NREL Two New Reports on Utility-Scale Solar from NREL Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 June, 2012 - 14:33 imported OpenEI Article courtesy of the NREL Finance Blog Utility-scale solar is still something of a novelty in the renewable energy ecosystem. Large-scale deployment of these multi-megawatt (MW) installations has only recently been enabled in the United States by two key pieces of federal legislation and state-level implementation of renewable energy standards. The market boomed in 2011, adding more than 760 MW of capacity and ending the year with a bullish outlook for 2012. In April, the National Renewable Energy Laboratory (NREL) published a series of three reports on the market, technologies, policies, and cost of energy

347

Microsoft Word - FONSI_CalValleySolarRanch_Final For Silver Sig_8-2-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO HIGH PLAINS RANCH II, LLC FOR THE CALIFORNIA VALLEY SOLAR RANCH PROJECT IN SAN LUIS OBISPO COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Loan Programs Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a 250-megawatt (MW) gross output commercial solar photovoltaic (PV) power plant project proposed by High Plains Ranch II, LLC (HPR II) in southeastern San Luis Obispo County, California. The CVSR Project would include the construction, operation, maintenance, and

348

Marin Solar | Open Energy Information  

Open Energy Info (EERE)

Marin Solar Jump to: navigation, search Name Marin Solar Place San Rafael, California Zip 94901 Sector Solar Product Marin Solar is a residential installer of photovoltaic systems....

349

Declination Solar | Open Energy Information  

Open Energy Info (EERE)

Declination Solar Jump to: navigation, search Name Declination Solar Place San Francisco, California Sector Solar Product San Francisco solar installation firm acquired by...

350

Carlson Solar | Open Energy Information  

Open Energy Info (EERE)

Carlson Solar Jump to: navigation, search Name Carlson Solar Place California Sector Solar Product Carlson Solar is an installer of residential and small-scale commercial...

351

Aztec Solar | Open Energy Information  

Open Energy Info (EERE)

Aztec Solar Jump to: navigation, search Name Aztec Solar Place Rancho Cordova, California Zip 95742 Sector Solar Product Installer of solar hot water and pool heating systems....

352

Sereno Solar | Open Energy Information  

Open Energy Info (EERE)

Sereno Solar Jump to: navigation, search Name Sereno Solar Place Monte Sereno, California Sector Solar Product Has developed a solar passive water heating panel to be installed...

353

Solar Mimizan | Open Energy Information  

Open Energy Info (EERE)

Solar Mimizan Jump to: navigation, search Name Solar Mimizan Place PARIS, France Zip 75002 Sector Solar Product Paris-based, building-integrated solar power plant developer....

354

Apex Solar | Open Energy Information  

Open Energy Info (EERE)

Apex Solar Place Sofia, Bulgaria Zip 1616 Sector Solar Product Bulgarian PV and solar thermal project developer and installer. References Apex Solar1 LinkedIn Connections...

355

Solar Monkey | Open Energy Information  

Open Energy Info (EERE)

search Name Solar Monkey Place Irvine, California Zip 92618 Sector Solar Product Solar Monkey installs PV systems for commercial and industrial users. References Solar...

356

ESPEE Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place Bangalore, Karnataka, India Zip 560 091 Sector Solar Product Distributor of solar thermal water heating systems and PV lights. References ESPEE Solar1 LinkedIn...

357

Evolution Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place Road Town Tortola, United Kingdom Sector Solar Product British Virgin Islands-based solar energy company dedicated to establishing solar panel factories in the...

358

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name Solar Junction Place San Jose, California Zip CA 95131 Sector Efficiency, Solar Product Solar Junction is developing high efficiency solar...

359

Tejas Solares | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Tejas Solares Jump to: navigation, search Name Tejas Solares Place Spain Sector Solar Product Tejas Solares is a...

360

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

DOE Green Energy (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solar panel  

SciTech Connect

A solar panel is shown for use as a double panel window structure. It has an outer frame formed by an H-shaped extrusion that has one of its outermost legs shortened, and a pair of generally parallel legs or flanges that are inwardly directed of the frame. The outer surface of these flanges are furnished with a dual pressure-sensitive adhesive tape having a width between 1/4 inch and 1 inch. A pane of transparent material is sealed around its periphery into engagement with the adhesive tape for forming a double pane solar panel. Several modifications are also shown for exerting a mechanical locking force on at least one of the panes.

Sitzler, E.R.; Moore, F.W.

1984-06-19T23:59:59.000Z

362

Solar Neutrinos  

E-Print Network (OSTI)

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05T23:59:59.000Z

363

Solar energy collector  

DOE Patents (OSTI)

The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

Brin, Raymond L. (Cedar Crest, NM); Pace, Thomas L. (Albuquerque, NM)

1978-01-01T23:59:59.000Z

364

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

365

Solar neutrinos and the solar composition problem  

E-Print Network (OSTI)

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Carlos Pena-Garay; Aldo Serenelli

2008-11-16T23:59:59.000Z

366

Solar neutrinos and the solar composition problem  

E-Print Network (OSTI)

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Pena-Garay, Carlos

2008-01-01T23:59:59.000Z

367

Microphysics of Clouds Initiated from a 1000 MW Dry Heat Source in Comparison with Environmental ClodsA Statistical Study  

Science Conference Proceedings (OSTI)

To evaluate potential atmospheric impacts of wate heat released by dry cooling towers, studies have been made of an oil burning system (the Mtotron), which emits sensible heat at a rate of 1000 MW and large quantities of aerosol particles ...

Pham van Dinh; Bruno Bnech; Lawrence F. Radke

1986-08-01T23:59:59.000Z

368

Solar Heating Contractor Licensing  

Energy.gov (U.S. Department of Energy (DOE))

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

369

Solar Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy,...

370

SOLAR ENERGY RESEARCH ENCLAVE  

E-Print Network (OSTI)

1 SOLAR ENERGY RESEARCH ENCLAVE submitted to Indian Institute of Technology Kanpur R.S. Anand (EE......................................................................................................................46 SOLAR ENERGY: ECONOMICS AND PROJECT IMPLEMENTATION the many bottle necks are cost of technology, energy storage, distribution of solar power and daily

Srivastava, Kumar Vaibhav

371

Solar Energy Entrepreneurs  

E-Print Network (OSTI)

Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

Rubloff, Gary W.

372

EIA Energy Kids - Solar  

U.S. Energy Information Administration (EIA)

Solar Basics Energy from the Sun. The sun has produced energy for billions of years. Solar energy is the suns rays (solar radiation) that reach the Earth.

373

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

easement from another property owner for the purpose of ensuring adequate exposure of a solar-energy system to sunlight. A solar easement must include: October 16, 2013 Solar...

374

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 28, 2011 What Do You Wish You Knew About Home Solar Energy? Solar Decathlon 2011 is in full swing, and the Energy Savers blog is all about home solar energy during the...

375

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Home Could Get from Solar or Wind? Have you ever thought about installing wind or solar energy on your property? Learn more about it in this post. August 2, 2011 A Solar...

376

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

iStockphoto.com Heat Exchangers for Solar Water Heating Systems Heat exchangers transfer solar energy absorbed in solar collectors to the liquid or air used to heat water. Learn...

377

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Ashland - Solar Rights Ordinance The City of Ashland has been promoting the use of solar energy since 1981, when it passed one of the first city-wide solar rights, or...

378

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

379

Nanocrystal Solar Cells  

E-Print Network (OSTI)

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

380

Nanocrystal Solar Cells  

E-Print Network (OSTI)

absorption of the solar spectrum. Also, like branched CdSeonly a fraction of the solar spectrum may be utilized for PVonly part of the solar spectrum. As such, blends should

Gur, Ilan

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

of the requisite solar and weather parameters. This manualas well as hourly solar and weather data, The other type issystem, and monthly solar and weather data, such as those

Berdahl, P.

2010-01-01T23:59:59.000Z

382

HelioSphera formerly Next Solar SA | Open Energy Information  

Open Energy Info (EERE)

HelioSphera formerly Next Solar SA HelioSphera formerly Next Solar SA Jump to: navigation, search Name HelioSphera (formerly Next Solar SA) Place Athens, Greece Zip 11523 Product Greek thin-film silicon PV module manufacturer with a 60MW plant in Tripolis. Coordinates 37.97615°, 23.736415° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.97615,"lon":23.736415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility Project Eagle Phase 1 Direct Wafer/Cell Solar Facility 1366 Technologies Description of Proposed Action: The Department of Energy (DOE) proposed action is for the use of a federal loan guarantee by 1366 Technologies (1366) to support the renovation of an existing building, located at 159 Wells Avenue, Newton, Massachusetts, into a solar wafer production facility. The new facility would constitute Phase 1 of Project Eagle and accommodate 20 megawatts (MW) of multi crystalline silicon wafer production, laboratory areas, offices, and ancillary spaces. Phase 2 of Proje~y an existing DOE Categorical Exclusion and would occur at a site in _ _ _ _ . The Phase 1 facility in Newton, MA is an existing building of 50,600 square feet on a site approximately 4.7 acres. 1366 would renovate the interior of the facility to provide office

384

Energy Department Finalizes Loan Guarantee to Support California Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Support California to Support California Solar Generation Project Energy Department Finalizes Loan Guarantee to Support California Solar Generation Project September 30, 2011 - 3:15pm Addthis Washington, D.C. -- U.S. Energy Secretary Steven Chu today announced that the Department finalized partial loan guarantees of $1.46 billion in loans to Desert Sunlight 250, LLC and Desert Sunlight 300, LLC to support the Desert Sunlight Project. The 550 MW project is expected to be one of the world's largest solar photovoltaic plants and is expected to fund over 550 construction jobs. The project will be located on land managed by the Bureau of Land Management in eastern Riverside County, California. "To win the clean energy race we must invest in projects like this that fund jobs and increase the generation of clean, renewable power in the

385

DOE Solar Decathlon: News Blog Solar Decathlon 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation to Main Content U.S. Department of Energy Solar Decathlon Solar Decathlon Home Blog Home Solar Decathlon Blog - Solar Decathlon 2009 Below you will find Solar...

386

Petrovay: Solar physics Activity phenomena 2 SOLAR PROMINENCES  

E-Print Network (OSTI)

SOLAR FLARES Flare = sudden (solar disk. Energy release . #12;Petrovay: Solar physics Activity phenomena 2 Energy distribution of flares: Nanoflare heating? #12Petrovay: Solar physics Activity phenomena 2 SOLAR PROMINENCES History: 12th­18th century: sporadic

Petrovay, Kristóf

387

Compound Solar Technology CompSolar | Open Energy Information  

Open Energy Info (EERE)

Solar Technology CompSolar Jump to: navigation, search Name Compound Solar Technology (CompSolar) Place Jhunan, Taiwan Zip 350 Sector Solar Product Producer of glass-based...

388

Silicon Valley Solar Inc SV Solar | Open Energy Information  

Open Energy Info (EERE)

Silicon Valley Solar Inc SV Solar Jump to: navigation, search Name Silicon Valley Solar Inc (SV Solar) Place Santa Clara, California Zip 95051 Sector Solar Product A US-based...

389

Unique design features of the SMUDPV1 1MW /SUB AC/ photovoltaic central station powerplant  

SciTech Connect

This paper discusses the unique and innovative balance of system design features incorporated into the SMUDPV1 1MW /SUB ac/ photovoltaic central station powerplant design. These include: single-axis flat-plate tracking arrays, resistance grounded dc neutral, dc fault detection and location systems and other features designed to maximize the value of the plant to the utility, while complying with standard utility design practices and standards. The paper presents the design criteria and selection rationale, design description and expected cost and performance implications to PV1 and future large-scale photovoltaic powerplants.

Daniels, R.E.; Dilts, B.; Rosen, D.J.

1984-05-01T23:59:59.000Z

390

T/g upgrade adds 15 MW, extends unit life. [Turbogenerator  

SciTech Connect

This article describes turbogenerator upgrade at Maine Yankee's PWR. Maine Yankee Atomic Power Co.'s excellent experience in the upgrading and uprating of the two low-pressure (l-p) steam turbines at its only generating unit - an 865-MW, three-loop pressurized-water reactor installed in 1972 - has motivated the utility to also contract for replacement of both the high-pressure (h-p) steam path and the generator. ABB Power Generation Inc., North Brunswick, NJ, which retrofitted the l-p steam-path components, will handle the other two projects as well.

Not Available

1990-02-01T23:59:59.000Z

391

A new Main Injector radio frequency system for 2.3 MW Project X operations  

SciTech Connect

For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

Dey, J.; Kourbanis, I.; /Fermilab

2011-03-01T23:59:59.000Z

392

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

393

100-MW NUCLEAR POWER PLANT UTILIZING A SODIUM COOLED, GRAPHITE MODERATED REACTOR  

SciTech Connect

The conceptual design of a 100 Mw(e) nuclear power plant is described. The plant utilized a sodium-cooled graphite-moderated reactor with stainless- steel clad. slightiy enriched UO/sub 2/ fuel. The reactor is provided with three main coolant circuits, and the steam cycle has three stages of regenerative heating. The plant control system allows automatic operation over the range of 20 to 100% load, or manual operation at all loads. The site, reactor, sodium systems, reactor auxiliaries, fuel handling, instrumentation, turbine-generator, buildings. and safety measures are described. Engineering drawings are included. (W.D.M.)

1958-02-28T23:59:59.000Z

394

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

Science Conference Proceedings (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

395

Solar '94: Technical papers  

Science Conference Proceedings (OSTI)

The Solar 94 Conference of the American Solar Energy Society met in San Jose, California to provide a forum for state-of-the-art work in all the solar technologies. The following topics were included in the proceedings: Photovoltaic Modules and Systems; Wind Energy; Solar Thermal Systems; Utility Programs; Solar Water Heating; Solar Fuels; Resource Assessment; Economics and Education. A total of 83 papers were indexed separately for the data base.

Burley, S.M.; Arden, M.E.; Campbell-Howe, R.; Wilkins-Crowder, B. (eds.)

1994-01-01T23:59:59.000Z

396

Solar greenhouses in Minnesota  

DOE Green Energy (OSTI)

After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

Polich, M.

1981-12-01T23:59:59.000Z

397

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Photovoltaic Industry: Looking Through the Storm.Solar Photovoltaic Industry: Looking Through the Storm.

Price, S.

2010-01-01T23:59:59.000Z

398

Can fluid-bed take on p-c units in the 250- to 400-MW range  

Science Conference Proceedings (OSTI)

This article is a comparison of the state of fluid-bed design with commercial pulverized coal fossil-fuel power plants. With successful operation of several units in the 100- to 200-MW range, designers have set their sights on a doubling of unit capacity. To compete with p-c units, however, comparable gains in efficiency, operability, environmental performance, and cost are necessary, too. In a decade or so, circulating fluidized-bed (CFB) boilers and bubbling-bed units have progressed from industrial-sized curiosities to several 150-200-MW single units operating today. A 250-MW CFB unit is being installed in France for startup in 1995, a 225-MW unit is being designed for installation as part of the US DOE Clean Coal Technology Demonstration program, two 230-MW units are slated to start up in Poland in 1995, and a 350-MW bubbling-bed unit is under construction in Japan. Thus, fluid-bed technology is poised to compete with pulverized-coal (p-c)-fired units for utility-scale applications. But size isn't everything. To fully compete, CFB designers have to consider thermal efficiency, environmental performance, operability, fuel flexibility, cost, and a host of other factors.

Makansi, J.

1993-09-01T23:59:59.000Z

399

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Applications for Certificates...

400

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Atlanta - Sustainable Development Design Standards In December...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 San Diego County - Green Building Program The County of San Diego...

402

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Salem Electric - Low-Interest Loan Program Salem Electric...

403

Solar | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Solar EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative...

404

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri - Solar Renewable Energy Credits Ameren Missouri offers a Standard Offer Contract to customers that generate solar power. The customer must meet Ameren's net...

405

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Made in Minnesota Solar Thermal Rebate Beginning in 2014, the Department of Commerce will offer a Made in Minnesota Solar Thermal Rebate program. Rebates are 25% of installed...

406

Passive Solar Design  

Energy.gov (U.S. Department of Energy (DOE))

The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate.

407

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Departments of Energy and Interior Announce Site for Solar Energy Demonstration Projects in the Nevada Desert Plan will advance renewable, solar energy at former nuclear...

408

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program, initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), wind, and micro-hydro energy system installations....

409

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho...

410

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helios USA will build photovoltaic modules such as these this fall. August 6, 2010 Energy 101: Concentrating Solar Power Concentrating solar power technologies use mirrors...

411

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or...

412

Solar radiation resource assessment  

DOE Green Energy (OSTI)

The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

Not Available

1990-11-01T23:59:59.000Z

413

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar? The Sacramento Municipal Utility District is looking for approximately 70 homeowners with residential solar willing to monitor their energy use. October 25, 2010 Park...

414

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar...

415

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems In May 2007, Maryland established a property tax exemption for residential solar energy systems. Under this law solar energy devices "installed to heat or cool a...

416

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Easements In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems....

417

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the solar thermal system must be SRCC certified. October 16, 2013 Made in Minnesota Solar Energy Production Incentive Beginning in January 2014, The Department of Commerce...

418

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturing facility. February 7, 2013 Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula Papanek....

419

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Commonwealth Energy Policy ( 67-102) * Provide reasonable criteria for wind and solar energy siting, protecting the locality while promoting wind and solar development *...

420

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to...

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sources Renewables Solar Solar October 16, 2013 Zero-Emission Facilities Production Tax Credit '''''Note: No credits will be paid during 2011 for electricity produced...

422

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

certification for solar thermal systems from the North American Board of Certified Energy Practitioners (NABCEP). The state solar thermal rebate program maintains a list of...

423

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 6, 2012 Concentrating Solar Power Facilities December 4, 2012 The Energy Department is gathering input on solar designation programs that could one day help consumers...

424

How Solar Panels Work  

NLE Websites -- All DOE Office Websites (Extended Search)

their understanding of this concept. Finally, students will investigate careers in solar energy and report on the growing solar industry. LESSON OVERVIEW Grade Level &...

425

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind, and solar thermal water heating systems. Natural gas customers qualify for the solar thermal water heating reward. October 16, 2013 Alliant Energy Interstate Power and...

426

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sign solar easements to ensure that proper sunlight is available to those who operate solar energy systems. California's Government Code (65850.5) provides that subdivisions...

427

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

panels and monthly "Solar Made Simple" seminars. August 26, 2010 Butte College's solar panels are helping it make more energy than it uses, providing it financial as well...

428

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

section describes the atomic structure and bandgap energy of these cells. August 16, 2013 Solar Energy Technologies Solar energy technologies produce electricity from the energy of...

429

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric systems, solar water heating systems...

430

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Job Creation Tax Credits Program (Pennsylvania) The Job Creation Tax Credits Program can be...

431

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Energy Equipment Loan Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar...

432

Focus on Solar Energy  

Science Conference Proceedings (OSTI)

... Focus on Solar Energy. Why a net-zero energy house? ... Solar Energy Presentation. Additional information, tools, weblinks, and photos from the day. ...

2012-12-03T23:59:59.000Z

433

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Green Energy Program Incentives Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed...

434

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ulm Public Utilities - Solar Electric Rebate Program New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

435

Solar forecasting review  

E-Print Network (OSTI)

Online 24-h solar power forecasting based on weather typeweather observations at blue hill massachusetts, Solarof weather patterns on the intensity of solar irradiance;

Inman, Richard Headen

2012-01-01T23:59:59.000Z

436

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington County - Solar Ordinance Provides for zoning restrictions on solar energy systems, including (1) six foot setbacks; (2) 20 foot height limitations on freestanding...

437

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment for water heating and electricity generation. Photovoltaic (PV)...

438

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Solar Virginia allows any county, city or town to exempt or partially exempt solar energy equipment or recycling equipment from local property taxes. Residential,...

439

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind, and solar thermal water heating systems. Natural gas customers qualify for the solar thermal water heating reward. July 12, 2013 Alliant Energy Interstate Power and...

440

New Mexico's Pioneering Steps in Commercializing Solar Power  

DOE Green Energy (OSTI)

Over the past two years, New Mexico has been engaged in a significant new approach to implement large purchases of solar power. This effort followed a regulatory process that treated solar power generation similar to conventional generation obtained by an investor-owned utility under the regulation of a public utility commission. In 1997, Public Service Company of New Mexico (PNM) gained approval to purchase power from a 100-MW combustion turbine facility that would be owned and operated by a wholesale generator. At the same time it issued the approval, and following discussions with the utility, the New Mexico Public Utility Commission (NMPUC) also required PNM to issue a request for proposal for a 5-MW central station solar facility, a major step for solar technologies in the state, in what would be the world's largest of its technology type. In cooperation with the staff of the NMPUC, PNM reviewed the proposals received, and Applied Power Corporation was selected for the photovoltaic portion of the proposed plan; retaining ownership of the plant, assuming the risks connected with the technology, and operating the plant in exchange for a power purchase agreement in a first-of-its-kind contract for photovoltaics. During the NMPUC hearings, various parties raised significant opposition to the cost-recovery mechanism that was proposed and voiced issues about the type of solar plant, its size, cost and the tiding approaches to building it. Because of these issues, alternative proposals were put forth that reduced the size and costs of the plant and had implied changes in ownership and risks. The order issued by the NMPUC on October 21, 1998, requires PNM to impose a charge of 0.5% on its retail electric customers' monthly bills to be used to acquire the solar facilities, but also to obtain other renewable electric power resources, both on a pay-as-you-go basis. This paper identifies the issues and their resolution that similar projects are expected to encounter.

Hill, R.R.

1999-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SJ Solar | Open Energy Information  

Open Energy Info (EERE)

SJ Solar Jump to: navigation, search Name SJ Solar Place San Jose, California Zip 95131 Sector Solar Product Cell design firm for concentrated solar References SJ Solar1 LinkedIn...

442

MPX Solar | Open Energy Information  

Open Energy Info (EERE)

MPX Solar Place Rio de Janeiro, Rio de Janeiro, Brazil Sector Solar Product Rio de Janeiro-based solar company, MPX's subsidiary for the solar sector. References MPX Solar1...

443

DOE Solar Decathlon: Solar Decathlon Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Logo of Solar Decathlon Europe. On Oct. 18, 2007, the Spanish and U.S. governments signed a memorandum of understanding to create Solar Decathlon Europe, a complementary...

444

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together |  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 July, 2012 - 13:20 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Think of it like Costco or Sam's Club for purchasing solar photovolatics (PV). Some savvy folks in Oregon thought it would be a great idea to buy PV in bulk for their neighborhood to get a big volume discount and share the savings with neighbors. So they created the Solarize campaign, which over the last three years has helped Portland add "[more than] 1.7 MW of distributed PV and [establish] a strong, steady solar installation economy" [1]. In fact, so successful was the Portland model that several other

445

Land-Use Requirements for Solar Power Plants in the United States  

DOE Green Energy (OSTI)

This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

2013-06-01T23:59:59.000Z

446

Solar Magnetic Field Solar Thermonuclear Energy Generation Solar Evolution Presolar Evolution Stages  

E-Print Network (OSTI)

core radiative zone convective envelope photosphere chromosphere corona Solar Activity granules spicules sunspots prominences solar flares

unknown authors

1995-01-01T23:59:59.000Z

447

Solar skylight  

DOE Patents (OSTI)

A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

Adamson, James C. (Osprey La., Rumson, NJ 07760)

1984-01-01T23:59:59.000Z

448

Solar collector  

DOE Patents (OSTI)

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

449

Solar Tracing Sensors for Maximum Solar Concentrator ...  

Concentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful forms of energy. Accurate sun tracking ...

450

MW-class hybrid power system based on planar solid oxide stack technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

451

Initial operating experience of the 12-MW La Ola photovoltaic system.  

DOE Green Energy (OSTI)

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

2011-10-01T23:59:59.000Z

452

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

453

NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)  

DOE Green Energy (OSTI)

In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

2013-04-01T23:59:59.000Z

454

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

1980-05-30T23:59:59.000Z

455

DOE Solar Decathlon: Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Dow Corning Lowe's M.C. Dean Pepco Schneider Electric Supporting Sponsors Contributing Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Sponsors The U.S. Department of Energy (DOE) Solar Decathlon is organized by the National Renewable Energy Laboratory, which works in partnership with sponsors at all levels to make this student solar housing competition and event a reality. 2011 Sustaining Sponsors These sponsors made significant contributions-including financial support, materials, volunteers, outreach, and awards-to the success of Solar Decathlon 2011. Learn more about each sponsor and its role in Solar Decathlon 2011. Dow Corning

456

Technical and economic assessment of solar hybrid repowering. Final report  

DOE Green Energy (OSTI)

Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

None

1978-09-01T23:59:59.000Z

457

Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint  

DOE Green Energy (OSTI)

Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

2012-08-01T23:59:59.000Z

458

Using RPS Policies to Grow the Solar Market in the United States  

SciTech Connect

The market for photovoltaics in the United States remains small relative to the nation's solar resource potential. Nonetheless, annual grid-connected PV installations have grown from just 4 MW in 2000 to over 100 MW in 2006, fast enough to the catch the attention of the global solar industry. The state of California deserves much of the credit for this growth. The State's historical rebate programs resulted in roughly 75% of the nation's grid-connected PV additions from 2000 through 2006 being located in California, and the $3 billion California Solar Initiative will ensure that the State remains a mainstay of the US solar industry for years to come. But California is not the only market for solar in the US; other states have recently developed policies that may rival those of the western state in terms of future growth potential. In particular, 25 states, as well as Washington, D.C., have established renewables portfolio standards (RPS), sometimes called quota systems in Europe, requiring electricity suppliers in those states to source a minimum portion of their need from renewable electricity. (Because a national RPS is not yet in place, my focus here is on state policies). Under many of these state policies, solar is not expected to fare particularly well: PV installations simply cannot compete on cost or scale with large wind plants in the US, at least not yet. In response, an expanding list of states have established solar or distributed generation (DG) set-asides within their RPS policies, effectively requiring that some fraction of RPS-driven supply derive from solar energy. The popularity of set-asides for solar and/or DG has increased dramatically in recent years. Already, 11 states and D.C. have developed such RPS set-asides. These include states with outstanding solar resources, such as Nevada, Arizona, Colorado, and New Mexico, as well as areas where the solar resource is less robust, including North Carolina, Maryland, Pennsylvania, New Jersey, New York, New Hampshire, Delaware, and DC. Among those states with set-asides, two are restricted to PV applications, nine also allow solar-thermal electric to qualify, three allow solar heating and/or cooling to qualify, and three have broader renewable DG set-asides. The policies also differ in their targets and timeframes, whether projects must be located in-state, the application of cost caps, and the degree of oversight on how suppliers contract with solar projects. Only three of these states have more than two years of experience with solar or DG set-asides so far: Arizona, Nevada, and New Jersey. And yet, despite the embryonic stage of these policies, they have already begun to have a significant impact on the grid-connected PV market. From 2000-2006, 16% (or 48 MW) of grid-connected PV installations in the US occurred in states with such set-asides, a percentage that increases to 67% if one only considers PV additions outside of California. The importance of these programs is growing and will continue to expand. In fact, if one assumes (admittedly somewhat optimistically) that these policies will be fully achieved, then existing state solar or DG set-asides could result in 400 MW of solar capacity by 2010, 2,000 MW by 2015, and 6,500 MW by 2025. This equates to annual additions of roughly 100 MW through 2010, increasing to over 500 MW per year by 2015 and 700 MW per year by 2020. PV is not assured of all of this capacity, and will receive strong competition from solar-thermal electric facilities in the desert southwest. Nonetheless, set-asides in those states outside of the southwest will favor PV, and even some of the southwestern states have designed their RPS programs to ensure that PV fares well, relative to other forms of solar energy. Since 2000, Arizona and, more recently, New Jersey have represented the largest solar set-aside-driven PV markets. Even more-recent additions are coming from Colorado, Nevada, New York, and Pennsylvania. In the long-term, the largest markets for solar electricity are predicted to include New Jersey, Maryland,

Wiser, Ryan H; Wiser, Ryan H.

2007-11-20T23:59:59.000Z

459

Using RPS Policies to Grow the Solar Market in the United States  

DOE Green Energy (OSTI)

The market for photovoltaics in the United States remains small relative to the nation's solar resource potential. Nonetheless, annual grid-connected PV installations have grown from just 4 MW in 2000 to over 100 MW in 2006, fast enough to the catch the attention of the global solar industry. The state of California deserves much of the credit for this growth. The State's historical rebate programs resulted in roughly 75% of the nation's grid-connected PV additions from 2000 through 2006 being located in California, and the $3 billion California Solar Initiative will ensure that the State remains a mainstay of the US solar industry for years to come. But California is not the only market for solar in the US; other states have recently developed policies that may rival those of the western state in terms of future growth potential. In particular, 25 states, as well as Washington, D.C., have established renewables portfolio standards (RPS), sometimes called quota systems in Europe, requiring electricity suppliers in those states to source a minimum portion of their need from renewable electricity. (Because a national RPS is not yet in place, my focus here is on state policies). Under many of these state policies, solar is not expected to fare particularly well: PV installations simply cannot compete on cost or scale with large wind plants in the US, at least not yet. In response, an expanding list of states have established solar or distributed generation (DG) set-asides within their RPS policies, effectively requiring that some fraction of RPS-driven supply derive from solar energy. The popularity of set-asides for solar and/or DG has increased dramatically in recent years. Already, 11 states and D.C. have developed such RPS set-asides. These include states with outstanding solar resources, such as Nevada, Arizona, Colorado, and New Mexico, as well as areas where the solar resource is less robust, including North Carolina, Maryland, Pennsylvania, New Jersey, New York, New Hampshire, Delaware, and DC. Among those states with set-asides, two are restricted to PV applications, nine also allow solar-thermal electric to qualify, three allow solar heating and/or cooling to qualify, and three have broader renewable DG set-asides. The policies also differ in their targets and timeframes, whether projects must be located in-state, the application of cost caps, and the degree of oversight on how suppliers contract with solar projects. Only three of these states have more than two years of experience with solar or DG set-asides so far: Arizona, Nevada, and New Jersey. And yet, despite the embryonic stage of these policies, they have already begun to have a significant impact on the grid-connected PV market. From 2000-2006, 16% (or 48 MW) of grid-connected PV installations in the US occurred in states with such set-asides, a percentage that increases to 67% if one only considers PV additions outside of California. The importance of these programs is growing and will continue to expand. In fact, if one assumes (admittedly somewhat optimistically) that these policies will be fully achieved, then existing state solar or DG set-asides could result in 400 MW of solar capacity by 2010, 2,000 MW by 2015, and 6,500 MW by 2025. This equates to annual additions of roughly 100 MW through 2010, increasing to over 500 MW per year by 2015 and 700 MW per year by 2020. PV is not assured of all of this capacity, and will receive strong competition from solar-thermal electric facilities in the desert southwest. Nonetheless, set-asides in those states outside of the southwest will favor PV, and even some of the southwestern states have designed their RPS programs to ensure that PV fares well, relative to other forms of solar energy. Since 2000, Arizona and, more recently, New Jersey have represented the largest solar set-aside-driven PV markets. Even more-recent additions are coming from Colorado, Nevada, New York, and Pennsylvania. In the long-term, the largest markets for solar electricity are predicted to include New Jersey, Maryland, Arizona, and P

Wiser, Ryan H; Wiser, Ryan H.

2007-11-20T23:59:59.000Z

460

Solar heating and you  

SciTech Connect

This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar Webinar Presentation Slides  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Office of Indian Energy Webinar on solar renewable energy.

462

Solar Energy Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade...

463

SOLAR STILLS: INTRODUCTION  

E-Print Network (OSTI)

SOLAR STILLS: INTRODUCTION: Distillation of brackish or saline water is a good method to obtain, and are not feasible for large fresh water demands. Therefore, solar desalination is an attractive alternative because consumption. WORKING PRINCIPLE OF SOLAR DESALINATION: The solar still is an airtight basin, usually

Ramu, Palaniappan

464

SOLAR ENERGY Andrew Blakers  

E-Print Network (OSTI)

Thermal Power Plants: Simple and Compound Cycles 6. Large Scale Solar PV Plants 7. Solar Air conditioning Friday, June 22nd o Morning-PV Systems o Afternoon-Solar Toy and Battery Testing Monday, June 25th o Morning-Large Scale PV and Solar Thermal Plants o Afternoon-Test of a Combined Hot Water PV Panel

465

DOE Solar Decathlon: About Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

About Solar Decathlon About Solar Decathlon The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The first Solar Decathlon was held in 2002; the competition has since occurred biennially in 2005, 2007, 2009, 2011, and 2013. The next event will take place in 2015. Open to the public free of charge, the Solar Decathlon gives visitors the opportunity to tour solar-powered houses, gather ideas to use in their own homes, and learn how energy-saving features can help them save money today.

466

Passive solar workbook  

SciTech Connect

After a case is presented for the use of solar energy, principles of solar kinetics, solar radiation and weather, and heat flow are reviewed and active, passive and hybrid systems are briefly discussed. Site planning, orientation, and landscaping and solar access are covered, as are the design and components of passive solar systems. Calculation methods are presented for determining building heating load profile, auxiliary load profile, and thermal storage capacity. Construction details are given for foundation, wall, and storage insulation, Trombe walls, movable insulation, and shading devices. Passive solar cooling is also covered. Interior applications for passive solar design are discussed and financial considerations are presented. (LEW)

1981-08-01T23:59:59.000Z

467

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solar Solar Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. The tremendous growth in the U.S. solar industry is helping to pave the way to a cleaner, more sustainable energy future. Over the past few years, the cost of a solar energy system has dropped significantly -- helping to give more American families and business access to affordable, clean energy. Through a portfolio of R&D efforts, including the SunShot Initiative, the

468

DOE Solar Decathlon: News Blog Blog Archive Solar Decathlon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation to Main Content U.S. Department of Energy Solar Decathlon Solar Decathlon Home Blog Home Solar Decathlon Alumni Association Seeks Former Decathletes Wednesday,...

469

DOE Solar Decathlon: News Blog Solar Decathlon 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation to Main Content U.S. Department of Energy Solar Decathlon Solar Decathlon Home Blog Home Posts Tagged 'Solar Decathlon 2011' Clarity, Passion Score Communications...

470

Solar Easements & Local Option Solar Rights Laws | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain information...

471

DOE Solar Decathlon: 2005 Feature Article - Learn About the Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

house, the University of Maryland house is nicely framed. (Credit: Stefano Paltera, Solar Decathlon) Solar Decathlon 2005 Learn About the Solar Decathlon Technologies Some of...

472

Solar and Wind Easements & Rights Laws & Local Option Solar Rights...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law Eligibility Agricultural Commercial Fed....

473

National Solar Radiation Data Base

The National Solar Radiation...  

Open Energy Info (EERE)

National Solar Radiation Data Base (NSRDB) is the most comprehensive collection of solar data freely available. The 1991 - 2005 NSRDB contains hourly solar radiation (including...

474

Aerosols and solar energy  

DOE Green Energy (OSTI)

A brief description is presented of the involvement of the Solar Energy Research Institute (SERI) in atmospheric research, including aerosol characterization and modeling. The use of both rigorous and simple models for radiation transport is described. Modeled broadband solar irradiance data are shown to illustrate the important influence that aerosols have on the energy available to solar systems and the economics of solar systems design. Standard aerosol measurement methods for solar applications are discussed along with the need for improved instrumentation and methods.

Bird, R. E.; Hulstrom, R. L.

1979-01-01T23:59:59.000Z

475

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

476

Beginning-of-life neutronic analysis of a 3000-MW(t) HTGR  

SciTech Connect

The results of a study of safety-related neutronic characteristics for the beginning-of-life core of a 3000-MW(t) High-Temperature Gas-Cooled Reactor are presented. Emphasis was placed on the temperature-dependent reactivity effects of fuel, moderator, control poisons, and fission products. Other neutronic characteristics studied were gross and local power distributions, neutron kinetics parameters, control rod and other material worths and worth distributions, and the reactivity worth of a selected hypothetical perturbation in the core configuration. The study was performed for the most part using discrete-ordinates transport theory codes and neutron cross sections that were interpolated from a four-parameter nine-group library supplied by the HTGR vendor. A few comparison calculations were also performed using nine-group data generated with an independent cross-section processing code system. Results from the study generally agree well with results reported by the HTGR vendor. (auth)

Vigil, J.C.

1975-12-01T23:59:59.000Z

477

Detailed design of the 2MW Demonstration Plant. Topical report, Task 2  

DOE Green Energy (OSTI)

This document provides a summary of the design of the 2MW carbonate fuel cell power plant which will be built and tested under DOE cooperative agreement DE-FC2l-92MC29237. The report is divided into sections which describe the process and stack module design, and Appendices which provide additional design detail. Section 2.0 provides an overview of the program, including the project objectives, site location, and schedule. A description of the overall process is presented in Section 3.0. The design of the fuel cell stack Modules is described in Section 5.0, which discusses the design of the fuel cell stacks, multi-stack enclosures, and Stack Modules. Additional detail is provided in a report Appendix, the Final Design Criteria Summary. This is an abstract of the design criteria used in the design of the Submodules and Modules.

Not Available

1993-09-16T23:59:59.000Z

478

Experiences with titanium next-to-last LP blades in a 1300 MW turbine  

SciTech Connect

The use of titanium as a material for the end blades of LP turbines has already been investigated twenty years ago by Brown Boveri. Next-to-last LP blades in the past have several times been the cause of turbine damage, because these blades work in the zone of the first condensation and thus are subjected to mechanical stress in corrosive environment. Favorable corrosion properties of titanium provided a reason for developing and manufacturing two next-to-last titanium low pressure blade rows in 1980 and to use them in a 1300 MW plant. On the occasion of an overhaul, a visual check was carried out of the titanium blades and chemical analysis of the blade surface deposits were made. From the distribution of the deposits conclusions can be drawn, retroactively, as to why steel blades might have failed. The titanium blades are undergoing a further operation period.

Meyer, H.W.

1982-01-01T23:59:59.000Z

479

Recent Performance of the SNS H-Source for 1-MW Neutron Production  

Science Conference Proceedings (OSTI)

This paper describes the performance of the SNS ion source and LEBT as they continue to deliver ~50 mA H- beams at a 5.3% duty factor required for neutron production with a ~1MW proton beam since the fall of 2009. The source continues to deliver persistent H- beams for up to 6 weeks without adding Cs after an initial dose of ~4 mg, except when there are excessive plasma impurities. In one case the H- beam decayed due to an air leak, which is shown to be consistent with sputtering of the Cs layer, and which allows to bracket the plasma potential. In another case, the performance of two sources degraded progressively, which appears to be consistent with a progressive deterioration of the Cs covered Mo converter. These two and other recently discovered issues are discussed in detail.

Stockli, Martin P [ORNL; Han, Baoxi [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL

2013-01-01T23:59:59.000Z

480

A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.  

DOE Green Energy (OSTI)

We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "aka solar mw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Model Validation at the 204-MW New Mexico Wind Energy Center (Poster)  

Science Conference Proceedings (OSTI)

The objectives of this report are: (1) to investigate the impact of aggregation on a large wind farm; and (2) to explore the dynamic behaviors of the power system and the wind turbine. The methods used are: (1) use equivalencing method previously developed to simplify Taiban Mesa wind power plant; (2) use PSLF dynamic analysis to simulate the wind power plant with AWEA-proposed low voltage ride through (LVRT) used to test the systems; and (3) represent a 204-MW wind plant two ways, treat the entire wind farm feeding a large power system network as a single generator and treat each wind turbine within the wind farm as an individual generator (136 generators) feeding the large power system network.

Muljadi, E.; Butterfield, C. P.; Miller, N.; Delmerico, R.; Ellis, A.; Mechenbier, J.; Zavadil, R.; Smith, J. C.; Hochheimer, J.; Young, R.

2006-01-01T23:59:59.000Z

482

1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application  

SciTech Connect

The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10/sup 9/ m/sup 3/ (1000 x 10/sup 9/ bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region.

Rao, R.; McMain, A.T. Jr.

1981-05-01T23:59:59.000Z

483

FAST OXIDE BREEDER-REACTOR. PART I. PARAMETRIC STUDY OF 300(e) MW REACTOR CORE  

SciTech Connect

Physics scoping studies of a 300-Mw(e) PuO/sub 2/-UO/sub 2/-fueled fast- breeder reactor are reported. Physics design parameters that effect fuel costs, full conservation, and reactor safety were evaluated for use in the selection of parameters for a reference design. The total breeding ratio varied from 1.1 to 1.5 in the range of parameters corsidered. Plutonium core loading ranged from 500 to 1500 kg. Doubling time was found to be reduced by high-density fuel and low steel content. A compromise figure on fuel-rod range of sizes (about 100 mils) yields a 5 operating reactivity and a small, negative sodium temperature coefficient. (J.R.D.)

Greebler, P.; Aline, P.; Sueoka, J.

1959-11-15T23:59:59.000Z

484

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

485

Design and performance of the LAMPF 1-1/4 MW klystron modulator  

SciTech Connect

From 11th modulator symposium; New York, New York, USA (18 Sep 1973). A design for a very reliable single-triode modulator for a 11/4 MW modulating-anode klystron is presented. The operating voltage is 86 kV and the variable pulse length ranges from 200 4mmsec to 1.2 msec. The basic modulator circuit, which uses a novel Zener diode bias circuit, and several of the individual components are described in detail. Over 140,000 high-voltage hours have been accumulated on these modulators. The principal failure mechanism is grid emission from the triode. These failures can be anticipated and repaired during a normal maintenance period. The triode is then reprocessed and reused. Tube life data and a summary of the failures modes are presented. (auth)

Tallerico, P.J.; Cady, R.L.; Doss, J.D.

1974-04-30T23:59:59.000Z

486

The Los Alamos 600 MJ, 1500 MW inertial energy storage and pulsed power unit  

DOE Green Energy (OSTI)

A 1430 MVA synchronous generator from a cancelled nuclear power plant has been installed and commissioned at Los Alamos National Laboratory (LANL) to be used as the pulsed power generator for physics experiments. The generator is mounted on a spring foundation to prevent dynamic forces from being transmitted to the substructure and into the ground. A 6 MW load-commutated inverter drive accelerates the machine from standstill to the maximum operating speed of 1800 rpm and from 1260 rpm to 1800 rpm between load pulses. The generator cooling method has been changed from hydrogen to air cooling to facilitate operation. A current limiting fuse, with a fuse clearing current of 90 kA, will protect the generator output against short circuit currents. An overview of the installation is presented. The paper also addresses the overload capability of the generator for pulsed loads. 7 figs., 1 tab.

Boenig, H.J.

1991-01-01T23:59:59.000Z

487

Total cost of 46-Mw Borax cogen system put at $30M  

SciTech Connect

The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in less than 5 years of service.

de Biasi, V.

1983-03-01T23:59:59.000Z

488

Photovoltaic solar concentrator module  

DOE Patents (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

489

A Pion Production and Capture System for a 4 MW Target Station  

Science Conference Proceedings (OSTI)

A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

Ding, X.; Kirk, H.; Berg, J.S.

2010-06-01T23:59:59.000Z

490

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

SciTech Connect

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

2012-03-01T23:59:59.000Z

491

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

DOE Green Energy (OSTI)

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

Not Available

2012-03-01T23:59:59.000Z

492

Solar thermal electric power systems with line-focus collectors. Final report  

DOE Green Energy (OSTI)

Electric power generation by conventional Rankine cycle heat engines with heat supplied by line-focus solar collectors was investigated. The objectives of the study were: (1) determine which of four types of line-focus solar collectors coupled with turbine-generators of conventional design has the potential to produce low-cost electric power with thermal energy in 100 to 300/sup 0/C range; (2) develop performance and cost relationships for organic Rankine cycle engines for power generation capacities from 3 MW/sub e/ to 300 MW/sub e/; (3) develop conceptual storage units for organic fluid systems. Evaluation procedures and study results and conclusion are presented and discussed in detail. (WHK)

Duff, W.S.; Karaki, S.; Shaner, W.W.; Wilbur, P.J.; Somers, E.V.; Grimble, R.E.; Wilson, H.S.; Watt, A.D.

1978-12-01T23:59:59.000Z

493

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

investments. Thin Film PV Solar Heating & Cooling Projectused in the report. Solar water heating, space heating ande.g. , PV, CSP, solar water heating) Types of industry

Price, S.

2010-01-01T23:59:59.000Z

494

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

its first solar thermal power plant. Weekly IntelligenceReview for Solar Thermal Power Plant Projects. http://of proposed solar thermal power plant projects in the state

Price, S.

2010-01-01T23:59:59.000Z

495

Scaled Solar | Open Energy Information  

Open Energy Info (EERE)

Product Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References Scaled Solar1 LinkedIn...

496

Ameco Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place Signal Hill, California Zip 90755 Sector Solar Product Ameco is a licensed solar energy contractor operating principally in Los Angeles and Orange Counties. Ameco...

497

Dimas Solar | Open Energy Information  

Open Energy Info (EERE)

search Name Dimas Solar Place Argos, Greece Sector Solar Product Makes solar passive systems, particularly collectors and absorbers. Coordinates 41.23725, -86.245919...

498

Agrupacion Solar | Open Energy Information  

Open Energy Info (EERE)

Agrupacion Solar Jump to: navigation, search Name Agrupacion Solar Place Spain Product Spanish PV project developer, or finance arranger. References Agrupacion Solar1 LinkedIn...

499

Solar Impulsive Energetic Electron Events  

E-Print Network (OSTI)

coronal mass ejections and solar energetic proton events, J.Voyager observations of solar wind proton temperature:1- 10Howard (2004), Variability of solar eruptions during cycle

Wang, Linghua

2009-01-01T23:59:59.000Z

500

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...