National Library of Energy BETA

Sample records for aka deli solar

  1. Bazhou Deli Solar Energy Heating Co Ltd aka Deli Solar PRC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:Information Deli Solar Energy

  2. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  3. TrendSetter Solar Products Inc aka Trendsetter Industries formerly...

    Open Energy Info (EERE)

    TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

  4. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic...

  5. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

  6. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

  7. Jining Sunrich Solar Energy aka Huahan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania:Huayang Solar EnergyQingdaJingJining

  8. JA Solar Holdings Co aka Jingao | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,Jump to: navigation,rgJA Solar

  9. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania:Huayang Solar Energy

  10. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaicCorporation LtdTrackerSolarCAPOpen

  11. TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail CanyonsourceRiver Solar | Open Energy

  12. Solar Self Help Inc aka Light Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPC JumpSolar ResourcesSelf

  13. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology Co Ltd Jump to:Energy

  14. Yingli Green Energy Holding Co Ltd aka Tianwei Yingli New Energy...

    Open Energy Info (EERE)

    Green Energy Holding Co Ltd aka Tianwei Yingli New Energy Resources or Yingli Solar Jump to: navigation, search Name: Yingli Green Energy Holding Co Ltd (aka Tianwei Yingli New...

  15. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    Open Energy Info (EERE)

    Aerospace Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka...

  16. Strategeco Solar aka Eneovia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket Studies JumpSteinbineCycles Inc

  17. Luoyang Zhonggui High Technology Co Ltd aka Luoyang Polysilicon...

    Open Energy Info (EERE)

    Zhonggui High Technology Co Ltd aka Luoyang Polysilicon Company China Silicon High Tech Jump to: navigation, search Name: Luoyang Zhonggui High Technology Co Ltd (aka Luoyang...

  18. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  19. Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...

    Open Energy Info (EERE)

    Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

  20. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor...

    Open Energy Info (EERE)

    Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali Manufacturing Jump to: navigation, search Name: Jiangxi Ganzhong Chlorine & Caustic Company (aka China...

  1. Solar Environmental Technologies Tianjin Corp aka SETC Cenicom Solar Etc |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergy InformationDepot IncHomeSystemsOpen Energy

  2. China Solar Clean Energy Solutions Inc formerly Deli Solar USA Inc | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to: navigation, searchShoto Plc

  3. Tynsolar Corporation aka Tyntek Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,Fallon |West Virginia:Tynsolar

  4. GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co Ltd Jump to:GInc

  5. Solucar Energia SA aka Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc Jump to:SolergySolsil IncRenewableSolucar

  6. EnerGoSolar SA aka Heliogrid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin,Wind UK Jump to:Rotors Jump

  7. Sinocome Solar aka Perfect Field Investment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanpingSilveira de BarrosHuludao

  8. CHINT Solar Co Ltd aka Astronergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:EnergyCEEGObnovitelne

  9. Conserval aka SolarWall | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al.,Information

  10. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHEL JumpCMNACelt PowerWind PowerAntecedence |

  11. Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...

    Open Energy Info (EERE)

    Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name: Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited...

  12. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power...

  13. Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass...

    Open Energy Info (EERE)

    Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass Group Co Ltd Jump to: navigation, search Name: Weihai Blue Star Glass Holding Co Ltd (aka Shandong Lanxing Glass Group Co...

  14. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    E-Print Network [OSTI]

    Cappi, M; Giustini, M

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  15. Solasta aka The Eagle Axis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc Jump to: navigation,Solasta aka The Eagle

  16. Grupo Jema aka Jesus Maria Aguirre SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegalAlto AlegreConsiagInaldoJema aka

  17. NUE Pty Ltd aka NU Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN PartnersNUE Pty Ltd aka NU

  18. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems LLC | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:Power Company Jump to: navigation, search Name:

  19. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhong Silicon MaterialNew Material

  20. Millennium Electric TOU Ltd aka Millennium Solar EIG Solar | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to:Utah:Millard,Ohio:Communication

  1. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas: EnergyExport Partners Jump to:Co Ltd |

  2. China Solar Power CSP aka General Solar Power Yantai Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas: EnergyExport Partners

  3. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERESodaEconomic Values

  4. Solar Secure Schools: Strategies and Guidelines; October 2004--April 2005

    SciTech Connect (OSTI)

    Braun, G. W.; Varadi, P. F.

    2006-01-01

    This report explores the technical and economic aspects of installing solar power (photovoltaic aka PV) systems on schools to improve the schools' energy security and provide power during disasters.

  5. Photowatt Technologies aka Photowatt International SA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar Jump to:Information Photowatt

  6. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar Technology

  7. Zhicheng Champion aka Guangdong Cheshing Champion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey Wind GeneratingZhengzhouSolarZhicheng

  8. Array Technologies Inc aka Wattsun | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolarAeolis

  9. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to: navigation, searchShoto Plcor

  10. ReneSola Ltd aka Zhejiang Yuhui Solar Energy Source Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent contentSWandReliant

  11. Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergy ManagementGeorgia:Carlo Calculations

  12. Win Win Precision Technology Co aka Winergy Solar GmbH | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: Energy Resources

  13. T E C Center Inc aka TEC Incubator Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95Symerton,E C Center Inc aka TEC

  14. DAQO New Energy Co Ltd aka Chongqing Sailing New Energy Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumerLEDSEnergy Information aka Chongqing

  15. Non-Thermal Plasmas for NOx Treatment Y.N. Jaffre, T. Aka-Ngnui and A. Beroual

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Selective Catalytic Reduction (SCR) processes can be improved for NOx reduction by a Non- Thermal Plasma. European norm (standard specification) EURO 6 im- poses a reduction of 50% on automotive NOx emissionsNon-Thermal Plasmas for NOx Treatment Y.N. Jaffr´e, T. Aka-Ngnui and A. Beroual Ecole Centrale de

  16. Directions to UConn Storrs ~ Office of the General Counsel John J. Budds Building (a.k.a. "Budds Building")

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Directions to UConn Storrs ~ Office of the General Counsel John J. Budds Building (a.k.a. "Budds Building") 343 Mansfield Road, Storrs, CT 06268 ~ (860) 486-5796 Driving Directions: Directions the street from Budds Building. Go to the back row (3rd row of parking spaces) and park between the signs

  17. Belgium’s Ghent University Prepares their E-Cube for Solar Decathlon 2011

    Broader source: Energy.gov [DOE]

    The Ghent University 2011 Solar Decathlon Team -- aka Team Belgium -- is a unique two-story home that could very well be an international star at the competition due to the Belgium team’s innovative, ultra-efficient, passive home design.

  18. H2 Hydrogen Hungary Ltd aka Integral Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERCInformation 3.1 - Amendments to6E -

  19. Jiangsu Linyang Solarfun Co Ltd aka Solarfun Power Holdings | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills, Pennsylvania:Huayang Solar Energy Ltd Jump

  20. iCons 2 Renewable Energy [NatSci 290IH (2) aka i2e] Spring 2013 Syllabus i2e Faculty Guides

    E-Print Network [OSTI]

    Auerbach, Scott M.

    1 iCons 2 Renewable Energy [NatSci 290IH (2) aka i2e] ­ Spring 2013 Syllabus i2e Faculty Guides Objectives: Students learn to ... in the context of Renewable Energy problems. 1. ... write effectively Trip: Campus Heating and Power (CHP) Thursday Feb 9: Work on Energy Flow Diagram for UMass Amherst

  1. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  2. Value of Solar. Program Design and Implementation Considerations

    SciTech Connect (OSTI)

    Taylor, Mike; McLaren, Joyce; Cory, Karlynn; Davidovich, Ted; Sterling, John; Makhyoun, Miriam

    2015-03-01

    Here, we present an analysis that assesses the potential market type that might form in the United States under a VOS rate, given current national average solar costs and various incentive scenarios, for the most populous city in each state. Three hypothetical VOS tariffs were developed, based on assumptions of avoided fuel costs, avoided capacity, environmental benefits, and line losses, to represent a of range of possible VOS rates. The levelized cost of solar in 50 locations is calculated using NREL’s System Advisor Model (SAM) using input assumptions regarding system size, resource quality, avoided capacity (aka capacity factor) and a variety of incentives. Comparing the solar costs with the hypothetical VOS rates illustrates the various market types that may form under a VOS program, in different locations.

  3. Health assessment for Rhinehart (Aka Winchester) Tire Fire National Priorities List (NPL) Site, Frederick County, Virginia, Region 3. CERCLIS No. VAD980831796. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-04-17

    The Rhinehart (aka Winchester) Tire Fire Site is located near the town of Winchester in Frederick County, Virginia. In October 1983, a fire was started in the tires disposed of on the site. Hot oil was released from the melting and pyrolysis of the tires. This oil made its way to Massey Run, a nearby surface water body. The fire was brought under control within a few days, but continued to smolder for six months. The migration of the oil and the residue from the fire have contaminated the site. The site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse human health effects. Human exposure to heavy metals, polynuclear aromatic hydrocarbons and volatile organic compounds may occur via ingestion, inhalation and dermal absorption of contaminated groundwater, surface water, sediments and soils.

  4. Community Shared Solar with Solarize

    Office of Energy Efficiency and Renewable Energy (EERE)

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  5. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  6. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Solar Data a. SOLAR RADIATION Solar radiation data provide aAppendix C - Appendix 0 - Solar Radiation Glossary. Convers

  7. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  8. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  10. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  11. Solar Physics A Journal for Solar and Solar-Stellar

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    investigated in the build-up to one of the deepest solar minima expe- rienced in the past 100 years1 23 Solar Physics A Journal for Solar and Solar-Stellar Research and the Study of Solar-013-0335-3 Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum

  12. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    network approach of solar potential in Turkey,” Renewabledue to the high solar resource potential. However, the solar

  13. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  14. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    data records. 1, Solar Data Solar energy is a general termin obtaining reliable data for solar energy applications,data and analyzed the consequences of designing solar energy

  15. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    a characteristic solar potential is expected to prevail, Theso many sites of potential solar energy applications will besun creates a high potential for solar energy use. Solar-

  16. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  17. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values ...

  18. Solar Physics A Journal for Solar and Solar-

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article's request, provided it is not made publicly available until 12 months after publication. #12;Solar Phys

  19. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  20. Petrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION

    E-Print Network [OSTI]

    Petrovay, Kristóf

    where = T(P0/P) ad (potential temperature) #12;Petrovay: Solar physics Helioseismology Group velocity Helioseismology Global helioseismology: Determine set of nlm's infer global mean solar structure. LocalPetrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION Small departures from

  1. Solar | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar SHARE Solar ORNL's Solar Technologies program supports the U.S. Department of Energy (DOE) Solar Energy Technologies Office - SunShot Initiative goal to make solar energy...

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Techniques for Daily Solar Radiation Data. Proceedings ofa. SOLAR RADIATION Solar radiation data provide a measure ofMonthly Solar Data Latitude: Jan SOLAR RADIATION (kWhJm2 per

  3. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  4. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  5. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  6. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  7. Solar and Wind Easements & Rights Laws & Local Option Solar Rights...

    Broader source: Energy.gov (indexed) [DOE]

    Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  8. Solar Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Daylighting Solar Pool...

  9. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    will enable optimal solar cell efficiencies in multiple bandlow cost, high efficiency hybrid solar cells. 4.6 Conclusioncosts and improving efficiencies of solar photovoltaic

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  11. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the limits of solar photovoltaics (PV) in traditionalthe limits of solar photovoltaics (PV) in electric powertechnologies is that of solar photovoltaics due to the high

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  13. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and M. Cony, “Prediction of global solar irradiance based onand C. K. Chan, “Prediction of hourly solar radiation usingand K. C. Chee, “Prediction of hourly solar radiation using

  14. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

  15. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    of these errors on solar design is discussed. To facilitateone of the simplified solar design methods discussed inWisconsin Interactive Solar Heating Design Program, , , , c,

  16. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  18. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the cloud index,” Solar Energy, vol. 81, no. 2, pp. 280 –Cover Indices,” ASME Journal of Solar Energy Engineering (inHorizontal Irradiance,” submitted to Solar Energy, 2012.

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  20. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    nanocrystal-polymer solar cells The full potential of hybridto reach the full potential of polymer blend solar cells.solar cells described here offer several potential

  1. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)synthetic hourly radiation,” Solar Energy, vol. 49, pp. 67–for supplementing solar radiation network data,” Final

  3. RESTAURANTS Ella's Deli -A deli covered in toys. There's even a merry-go-round! It also includes a

    E-Print Network [OSTI]

    Litovsky, Ruth

    The Old Fashioned (Wisconsin food; 23 N Pinckney St) Brocach (Irish; 7 W Main St) Great Dane Pub & Brewing (Chinese) Great Dane Pub & Brewing Co. (Variety; also off of the capitol) #12;

  4. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    of solar- radiation data,” Solar Energy, vol. 19, no. 6, pp.16 independent data banks,” Solar Energy, vol. 80, no. 4,data,” Final Report of International Energy Agency Solar

  5. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Radiation in Canada. Solar Energy ~, p.153. Threlkeld, J.L.pool. As the use of solar energy becomes more widespread,a high potential for solar energy use. Solar-heated swimming

  6. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  7. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  8. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Beckman, Solar Energy Thermal Processes (John Wiley & Sons,New York. Solar Energy Thermal Processes. John Duncan, C,

  10. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and operation of solar power plants and the model- ing offor application to solar ther- mal power plants energy

  11. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops   

  12. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  13. SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

  14. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  15. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  16. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  17. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  18. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShaleEnergyValleySolar Access

  19. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

  20. San Francisco, California: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities,...

  1. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  2. SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE...

    Office of Scientific and Technical Information (OSTI)

    SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM Citation Details In-Document Search Title: SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR...

  3. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities,...

  4. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America...

  5. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  6. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  7. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Environmental Management (EM)

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  8. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities,...

  9. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L. (Cedar Crest, NM); Pace, Thomas L. (Albuquerque, NM)

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  10. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  11. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  12. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  13. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth BromeBuildings |Solar PoolU.S. Department

  14. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft0 Soils SoilSolar

  15. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, BySoft Solar Power

  16. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),layer,? Solar Energy Materials and Solar Cells, 2013, 113,thickness,? Solar Energy Materials and Solar Cells, 2013,

  17. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),thickness,? Solar Energy Materials and Solar Cells, 2013,analysis,? Solar Energy Materials and Solar Cells, [130] J.

  18. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info...

  19. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C. (Osprey La., Rumson, NJ 07760)

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  20. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  1. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    basic bilayer CdTe/CdSe solar cells described above. Figurecomplete CdTe/CdSe nanocrystal solar cell (B). gap variationlength for CdSe-P3HT hybrid solar cells. (b) Current-voltage

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    and William A. Beckman, Solar Energy Thermal Processes (JohnWiley, Inc" New York. Solar Energy Thermal Processes. John1977): SOLCOST, Solar Energy Design Program for Non-Thermal

  3. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Users in a zone with one solar measurement location shouldin California where solar data of one kind or another havelifetime of the solar heating system: one can expect to pay

  4. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recent

  5. Solar Energy Entrepreneurs

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

  6. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    to create low-cost solar cells with performance andachieving stable and low-cost solar energy conversion.of large-scale solar power at low costs (1). The most

  7. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    to be supplied by solar, A cost analysis is not included.predict the performance and cost of solar energy systems forthe performance and costs of solar energy systems for

  8. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    inorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish themThe organic donor-acceptor solar cell relies on a type II

  9. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  10. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  11. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirinorganic nanocrystal solar cells 5.1 Introduction In recentNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional

  12. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  16. Solar | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sources Renewables Solar Solar July 13, 2015 The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction...

  17. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  18. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  19. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  1. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  2. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    from industries or solar collectors 1.2.2 Multi-stage FlashWilliams Large area solar collector Desalination Process

  3. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  4. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre Søren Østergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

  5. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  7. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    Solar Energy Materials and Solar Cells 93(10): 1728-1723,Solar Energy Materials and Solar Cells 92(8) 39. Sima, C.Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (

  8. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    glass contact Solar Energy Materials and Solar Cells 93(10):cells. Solar Energy Materials and Solar Cells 92(8) 39.potential of these materials for solar energy conversion,

  9. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  10. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  11. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    Solar Energy Center USA, Blythe, CA Solar electric power plant,Solar Wind Total Northwest Imports Southwest Imports Total Energy System Table 1.18: Largest PV Power PlantsPlants……………………………………………………32 Table 1.19: Solar Desalination Systems…………………………………………………34 Table 1.20: Energy

  13. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    North Lexington Massachusetts Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc...

  14. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  15. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    colorants. Solar Energy Materials and Solar Cells, [30]materials. Solar Energy Materials and Solar Cells, [31] NRELmeasurements. Solar Energy Materials & Solar Cells, 89:319–

  16. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  17. Solar collector array

    DOE Patents [OSTI]

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  18. Ordred-Modification (1) SOLAR

    E-Print Network [OSTI]

    Banbara, Mutsunori

    C-7-2 SOL SOLAR 3 (1) SOLAR (2) (3) (1) SOL Ordred-Modification SOLAR CF SOLAR (2) BDD EM PRISM (3) CF SOLAR () (1) SOLAR SOLAR 2008 2011 20240016 Inference-based Hypothesis-finding and its Application to Systems Biology

  19. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  20. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  1. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    1999). Basic Research Needs for Solar Energy Utilization,Basic Energy Science Advisory Committe (BESAC), (2005),and M. A. Green, Solar Energy Materials and Solar Cells 94 (

  2. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  3. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    IRS 2009). 57 By funding amount, solar accounted for 21% orto 2008. In addition, funding to solar companies increasedfor solar installation technicians by providing funding to

  5. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    4.3 A “solar” model . . . . . . . . . . . . . . . . . . . .of the solar tachocline . . . . . . . . . . . . . . . .pro?le needed to recover the solar ? pro?le in our numerical

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  7. SOLAR OPTICAL PROPERTIES OF WINDOWS

    E-Print Network [OSTI]

    Rubin, Michael

    2014-01-01

    for Conservation and Solar Applications of the U.S.~ the Fifth National Passive Solar Conference, University ofInsulation- Proceedings the Solar Glazing Conference,

  8. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    which uses solar energy to generate electricity." Like otherwhich uses solar energy to generate electricity” qualifiesenergy technologies, solar PV creates the most jobs per unit of electricity

  9. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  11. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    Deduced from Impulsive Solar Flare Particles, Astrophys.the Propagation of Solar-Flare Electrons in Interplanetary,1995), The nature of solar flares associated with coronal

  12. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    coronal mass ejections and solar energetic proton events, J.Voyager observations of solar wind proton temperature:1- 10Howard (2004), Variability of solar eruptions during cycle

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    National Laboratories Solar Renewable Energy CertificateCSP Of all the renewable resources, solar is by far the mostal. New Jersey announced its Solar Renewable Energy Credit

  14. Homebuyer Solar Option and Solar Offset Program

    Broader source: Energy.gov [DOE]

    Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...

  15. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Environmental Management (EM)

    84: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV July 1, 2010...

  16. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  17. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

  18. SolarTech: Sun Sets on Yesterday's Solar Permitting Practices...

    Office of Environmental Management (EM)

    SolarTech: Sun Sets on Yesterday's Solar Permitting Practices SolarTech: Sun Sets on Yesterday's Solar Permitting Practices October 1, 2012 - 3:26pm Addthis Lengthy reviews, high...

  19. Could Solar Energy Storage be Key for Residential Solar? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage...

  20. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  1. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  2. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    Study of Solar Electron Events over one Solar Cycle …… 3.1occurrence vary over one solar cycle? How is the correlationevents measured over one solar cycle, to address the

  3. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar Power—Technology, Cost, and2009). “Concentrating solar power plants of the southwest

  4. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-in crystalline silicon solar cells," Renewable Energy, vol.

  5. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,

  6. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  7. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  8. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    output of 300 megawatts, though Solar Thermal Energy (STE).Solar Thermal Energy is solar it is expected to reach 550This class of solar thermal energy collection, known as a

  9. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    requisite, for solar energy conversion based on the donor-stable and low-cost solar energy conversion. Supplementalsolar cells blending organic semiconductors and inorganic semiconductor nanocrystals offer the potential to deliver efficient energy conversion

  10. Solar 2015 Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Solar Energy Society is hosting a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change...

  11. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  12. Junior Solar Sprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junior Solar Sprint Overview The Junior Solar Sprint (JSS) Car Competition is a classroom-based, hands-on educational program for 6th, 7th, and 8th grade students. Student teams...

  13. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The Solar 2015 Conference is a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change and industry innovation.

  14. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  15. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  16. Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  17. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  18. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  19. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  20. REAP Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  1. Solar Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on solar renewable energy.

  2. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    years (from NASA). Prediction of solar weather from theseyears (from NASA). Prediction of solar weather from these

  3. POSTDOCTORAL RESEARCHER Solar Physics

    E-Print Network [OSTI]

    to availability of funding. Candidates must have expertise in solar physics, in particular the interpretation andPOSTDOCTORAL RESEARCHER Solar Physics A fixed-term postdoctoral research position tenable/or modelling of small-scale solar transient features. Expertise in the use of data from different instruments

  4. Solar Policy Environment: Milwaukee

    Broader source: Energy.gov [DOE]

    The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

  5. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  6. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  7. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  8. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the US and the results are also displayed on maps. An example is included.

  9. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  10. Solar Policy Environment: Tucson

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

  11. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  12. Portable solar heater structure

    SciTech Connect (OSTI)

    Holley, D.; Holley, D.E.

    1981-09-08

    Portable solar heater structure is described. A substantially rectangular frame has a back with openings therethrough for permitting air to be drawn into the solar heater. A layer of insulating materials is in contact with the back. A plurality of cupshaped solar collectors open toward the front of the solar heater structure are positioned adjacent the insulating material. A cover is over the front of the solar heater having openings therein adjacent the top thereof through which air heated by the solar heater is passed. A passage is between the openings in the back and cover of the solar heater through which relatively cool air is drawn through the openings in the back over the collectors to be heated for subsequent withdrawal through the openings in the cover.

  13. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  15. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    colorants. Solar Energy Materials and Solar Cells, [30]materials. Solar Energy Materials and Solar Cells, [31] NRELof In press at Progress in Solar Energy April 28, 2010 R.

  16. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

  17. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  18. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Solar Energy Materials and Solar Cells, 2011, 95(5), 1339-heterojunction organic solar cells,? Solar Energy MaterialsSolar Energy Materials and Solar Cells, 2013, 113, 85-89. [

  19. Helioseismology and Solar Abundances

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2007-11-28

    Helioseismology has allowed us to study the structure of the Sun in unprecedented detail. One of the triumphs of the theory of stellar evolution was that helioseismic studies had shown that the structure of solar models is very similar to that of the Sun. However, this agreement has been spoiled by recent revisions of the solar heavy-element abundances. Heavy element abundances determine the opacity of the stellar material and hence, are an important input to stellar model calculations. The models with the new, low abundances do not satisfy helioseismic constraints. We review here how heavy-element abundances affect solar models, how these models are tested with helioseismology, and the impact of the new abundances on standard solar models. We also discuss the attempts made to improve the agreement of the low-abundance models with the Sun and discuss how helioseismology is being used to determine the solar heavy-element abundance. A review of current literature shows that attempts to improve agreement between solar models with low heavy-element abundances and seismic inference have been unsuccessful so far. The low-metallicity models that have the least disagreement with seismic data require changing all input physics to stellar models beyond their acceptable ranges. Seismic determinations of the solar heavy-element abundance yield results that are consistent with the older, higher values of the solar abundance, and hence, no major changes to the inputs to solar models are required to make higher-metallicity solar models consistent with helioseismic data.

  20. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    1 Introduction 1.1. Solar Photovoltaics Semiconductingmulti-junction photovoltaics, solar beamsplitting 1.Concentrator Photovoltaics Multijunction solar cells were

  1. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  2. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

  3. Petrovay: Solar physics The solar cycle ACTIVE REGIONS

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics The solar cycle ACTIVE REGIONS Large scale (up to 100 Mm) anomalies in the structure and radiation of the solar atmosphere. Photosphere : AR = cluster of strong magnetic flux tubes of facular points. Filamentary structure due to supergranulation. #12;Petrovay: Solar physics The solar cycle

  4. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

  5. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    fabrication of solar collector panels. adhesives and bondingdirectly to solar collector panels. the solar selectivefabrication of solar collector panels. However, the finish

  6. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  7. ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE

    E-Print Network [OSTI]

    Berdahl, P.

    2011-01-01

    OF DIRECT NORMAL SOLAR RADIATION AND TOTAL SOLAR RADIA- TIONSUMMARY OF USERS' NEEDS FOR SOLAR RADIATION DATA SUMMARY ANDCALIFORNIA SOURCES OF SOLAR RADIATION DATA CALI FORN IA

  8. The Solar Argon Abundance

    E-Print Network [OSTI]

    Katharina Lodders

    2007-10-24

    The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.

  9. Solar Chemical Peculiarities?

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2006-12-08

    Several investigations of FGK stars in the solar neighborhood have suggested that thin-disk stars with an iron abundance similar to the Sun appear to show higher abundances of other elements, such as silicon, titanium, or nickel. Offsets could arise if the samples contain stars with ages, mean galactocentric distances, or kinematics, that differ on average from the solar values. They could also arise due to systematic errors in the abundance determinations, if the samples contain stars that are different from the Sun regarding their atmospheric parameters. We re-examine this issue by studying a sample of 80 nearby stars with solar-like colors and luminosities. Among these solar "analogs", the objects with solar iron abundances exhibit solar abundances of carbon, silicon, calcium, titanium and nickel.

  10. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  11. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  12. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  13. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  14. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  15. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  16. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1986-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the United States and the results are also displayed on maps. The procedures are developed in an appendix, which gives the cost assumptions used and explains how to develop different guidelines for different costs.

  17. for doubling solar panel

    E-Print Network [OSTI]

    An outline for doubling solar panel efficiency C o l o ra do S c ho o l of M i ne s Ma g a z i ne Take a look at a solar panel on a sunny Colorado day and, if you're like most people, you won't see physics professor and solar energy researcher, who admits to checking out his panels and their energy

  18. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  19. Solar Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015:Solar6 Solar Success

  20. Pacific Northwest Solar Radiation Data

    E-Print Network [OSTI]

    Oregon, University of

    Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data can be obtained from the University of Oregon Solar Moni- toring Laboratory after obtaining permission

  1. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    solar data: NWS, Eppley lightbulb pyranorneter until 1974,interval: NWS, Eppley lightbulb pyranometer until 1974,data: BAAPCD, Eppley lightbulb pyranometer. Monthly Total

  3. Solar parabolic trough

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar parabolic trough section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. Solar dish engine

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  5. Solar Decathlon 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This brochure provides key information about Solar Decathlon 2009--the dates, the background of the competition and event, and where to go for more information.

  6. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  7. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the...

  8. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. Residential Solar Permit Requirements

    Broader source: Energy.gov [DOE]

    Washington's State Building Code sets requirements for the installation, inspection, maintenance and repair of solar photovoltaic (PV) energy systems. Local jurisdictions have the authority to is...

  10. Electromechanical solar tracking apparatus

    DOE Patents [OSTI]

    Stromberg, Robert P. (Albuquerque, NM)

    1981-01-01

    The invention relates to an electromechanical solar tracking device which tracks the position of the sun using paired, partially-shaded bimetallic elements.

  11. Deed Restrictions for Solar

    Broader source: Energy.gov [DOE]

    This report summarizes the efforts made to address Task 3 - Examples of Residential Deed Restrictions Allowing Solar. The focus of the study is on communities surrounding Houston, Texas.

  12. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  14. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    The law stipulates that associations must adopt an energy policy statement specifying details such as location, design, and architectural requirements of the solar energy systems within 120 days...

  15. Community Solar Scenario Tool: Planning for a Fruitful Solar Garden

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of a Do-It-Yourself Solar Market Analysis summer series, NREL's Solar Technical Assistance Team (STAT) is presenting a live webinar titled, "Community Solar Scenario Tool: Planning for a...

  16. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    properties,” Solar Energy Materials and Solar Cells, vol.G. Dhere, Solar Energy Materials and Solar Cells 2006 , 90,devices, Solar Energy Materials and Solar Cells (2012), doi:

  17. Petrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE 1951: First proposal of solar corpuscular radiation by Biermann, to explain slight deviation of comets' ion tails from radial (aberration effect). 1958: Parker's supersonic wind model 1962: Mariner-2 detects solar wind. v

  18. Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2007-01-01

    Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar We present a different back contact for CdTe solar cell by the application of only a transparent that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells

  19. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  20. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    W. , Dunlop, E.D. Solar Cell efficiency tables (version 38).Grätzel. A Low-Cost, High-Efficiency Solar Cell Based on Dyeand E.D. Dunlop. Solar Cell efficiency tables (version 38).

  2. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    2. Graztel, M. Solar Energy Conversion by Dye-Sensitized17. M. Grätzel, Solar Energy Conversion by Dye-Sensitizedas a low-cost solar energy conversion technology. 1.3.2

  3. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    www.eere.energy.gov/solar/photovoltaics_program.html DOEConcentrating Solar Power and Utility Scale Photovoltaics in1 year. 3.2.1. Solar Resource for PV Photovoltaics can take

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    generated by the Nevada Solar One plant is about $0.18/kWh (SEGS IX APS Saguaro Nevada Solar One Total Location Daggett,I - IX APS Saguaro Nevada Solar One PS10 Puertollano Plant

  5. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Industry Update. ” Solar Outlook. Issue SO2009-1. Palo Alto,Outlook.. 105 5.1 Private Investment in SolarOutlook This chapter provides information on trends in private investment in solar

  6. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    551, 2005. 2. Graztel, M. Solar Energy Conversion by Dye-Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (efficiency in dye-sensitized solar cells based on Tio2

  7. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

  8. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    potential as a low-cost solar energy conversion technology.Grätzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye1) reducing the cost of solar cells by depositing

  9. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    in the solar surface (right lower panel). The magnetic ?eldin the solar surface (right lower panel). The magnetic ?eldlower panel), and the ratio of angular velocity in the solar

  10. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, Basicseu_rpt_print.pdf. S. Pillai and M. A. Green, Solar EnergyMaterials and Solar Cells 94 (9), 1481-1486 (2010). M. J.

  11. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    en.wikipedia.org/wiki/File:Solar_two.jpg 18 • B erkeley SMolten Nitrate Salt for Solar Energy Storage. Retrieved fromK. (2008). More-Efficient Solar Cells. Retrieved from

  12. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    back—sizing the 2008 solar market. ” pp. 88–93. Bradford,Analysis of a future solar market, management summary. Bonn,Sherwood, L. (2009). U.S. Solar Market Trends 2008. Latham,

  15. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (in dye-sensitized solar cells based on Tio2 nanocrystal/R. J. ; Nozik, A. J. Schottky Solar Cells Based on Colloidal

  16. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    voltage . The cell output power is given by:solar cell. The solar cell’s power conversion efficiency, ?ratio of the solar cell output power to the incident light

  17. BEF- Solar 4R Schools

    Broader source: Energy.gov [DOE]

    The school agrees to: own and maintain the solar system, provide access to a network in order to transfer solar data and offer and implement an educational and/or public outreach strategy. Solar ...

  18. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    www.popularmechanics.com/science/energy/solar-wind/3-clever-Molten Nitrate Salt for Solar Energy Storage. Retrieved fromKrisch, J. (2014). 3 Clever New Ways to Store Solar Energy.

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    GW of cumulative installed solar capacity by 2025 (Wiser andon the aggregate capacity of solar installed in each utilitySolar Power . 1 1.1 Global Installed PV Capacity

  20. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Department of Energy. Solar Energy Technologies Program.U.S. DOE. (2009). DOE Solar Energy Technologies Program. FY2.6 References The American Solar Energy Society (ASES) and

  1. National Solar Jobs Census 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Foundation’s National Solar Jobs Census 2014 is the fifth annual update of current employment, trends, and projected growth in the U.S. solar industry. Data for Census 2014 is derived...

  2. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    Molten Nitrate Salt for Solar Energy Storage. Retrieved fromNew Ways to Store Solar Energy. Retrieved from http://new-ways-to-store-solar-energy-16407404 Lenert, Andrej,

  3. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    there is a great deal of interest in thin-film solar cells.Thin-film solar cells are made from a variety oflimitation in all thin-film solar cell technologies is that

  4. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    the harvesting potential of our solar cell and suggests thedye sensitized solar cell and the potential they can serveSchottky solar cells has demonstrated the potential of these

  5. Portable solar heater

    SciTech Connect (OSTI)

    Kilar, L.J.

    1981-08-18

    A portable solar heater combines a self-contained hot air and heat storage system having a collector area with adjustable reflectors in a unit that can be moved from room to room as needed. The heater has fans for circulation of the solar heater air and provides both direct and indirect heat transfer to the ambient room air.

  6. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  7. Solar Policy Environment: Portland

    Broader source: Energy.gov [DOE]

    City of Portland’s Solar Now! Program will pursue solar market transformation for Portland residents, businesses, and city operations. The program will work with other City bureaus to ease the regulatory process by streamlining city-level regulations for contractors, homeowners and businesses. The City will use its influence as a regulator, educator and motivator to reach the larger regional community.

  8. Solar Policy Environment: Berkeley

    Broader source: Energy.gov [DOE]

    The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

  9. Your Community With Solar

    E-Print Network [OSTI]

    contractors and partners · Conducting community outreach and education · Pricing and financing projects. Also for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large- scale adoption of solar electricity across the United States. Reaching this goal will re

  10. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  11. SOLAR ENERGY Andrew Blakers

    E-Print Network [OSTI]

    utilised by photovoltaics and solar heat is hundreds of times larger than all other energy resources quantities; and · has minimal environmental impact over unlimited time scales. No other energy source can (photovoltaics and solar heat) and indirect forms such as biomass, wind, hydro, ocean thermal and waves

  12. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Deployment . 96 4.3.1 Third-Party Power Purchase Agreementparty power purchase agreement financing, customer solarthird-party power purchase agreement (PPA), the solar lease,

  14. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

  15. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  16. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  17. Solar Easements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia Program Type SolarWind Access Policy Summary In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia...

  18. Solar Easements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    easement from another property owner for the purpose of ensuring adequate exposure of a solar-energy system to sunlight. A solar easement must include: The vertical and...

  19. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    absorbed light energy into output electricity. Solar cellselectricity. The remaining 70% of absorbed energy is turned into heat inside the solar

  20. Energy 101: Concentrating Solar Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity.

  1. Solar Blog | Department of Energy

    Office of Environmental Management (EM)

    Solar Bridges to Energy Security Despite great recent advances in lowering the cost of solar energy, this technology is not yet affordable for every segment of the population....

  2. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    dynamics in dye sensitized nanocrystalline solar cells using a polymer electrolytedynamics in dye sensitized nanocrystalline solar cells using a polymer electrolyte.

  3. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    prediction of the efficiency limitation of solar cell givenperfect solar cell absorber. [29] Following this prediction,

  4. Rooftop Solar PV & Firefighter Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  5. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    Solar Energy Materials and Solar Cells. 2005;86(2):197-205.in LEDs [18-20] and solar cells [ 20, 21]. What makes thesesolar cells, hybrid solar cells and dye-sensitized solar

  6. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  7. Petrovay: Solar physics Chromosphere and corona THE SOLAR CHROMOSPHERE

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics Chromosphere and corona THE SOLAR CHROMOSPHERE Visible in eclipses as red brightness temperature at 10.7 cm: Tb 10 000 K. #12;Petrovay: Solar physics Chromosphere and corona Mean temperature profile: VAL model atmosphere, based on lines #12;Petrovay: Solar physics Chromosphere and corona

  8. SOLAR PHYSICS AND TERRESTRIAL EFFECTS Solar-Terrestrial Interactions

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    SOLAR PHYSICS AND TERRESTRIAL EFFECTS Chapter 4 Chapter 4 Solar-Terrestrial Interactions from the charged particles that reach the planet steadily as part of the solar wind and the much it will be deflected into a circular or spiral path by the Lorentz Force. Most charged particles in the solar wind

  9. Solar energy at Forest Research Solar Power at Alice Holt

    E-Print Network [OSTI]

    - crystalline solar photovoltaic panels (175 watt panels with a total peak DC rating of 32.375 kilowatts). SolarSolar energy at Forest Research Solar Power at Alice Holt research station provides a renewable per annum. As part of a programme to improve energy efficiency and meet government targets on carbon

  10. Time to Go Solar with Solarize U Gain energy independence

    E-Print Network [OSTI]

    Royer, Dana

    #12;Time to Go Solar with Solarize U · Gain energy independence · Have more disposable income for solar, insulation or other measures · Home Energy Solutions (HES) program offered through UI for solar For information on programs and financing to help you reduce energy use and save money, please

  11. Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

  12. Solar Policy Environment: Madison

    Broader source: Energy.gov [DOE]

    The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

  13. Computing Solar Absolute Fluxes

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2007-09-14

    Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

  14. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  15. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  16. Solar Pricing Trends

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar FlareSolar Phoenix 2ReadySolarSB

  17. Sandia Energy - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEAR &SolarSolar GlareSolar

  18. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01

    Based Performance Analysis of a Solar Absorption Cooling andExperimental Investigation of a Solar Adsorption ChillerKreith, Jan F. Kreider. "Solar Cooling." Principles of Solar

  19. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Optimum tilt of a solar collector, Solar & Wind Technology,and orientation for solar collector in Brunei Darussalam,Optimum tilt angle for solar collectors. , Energy Sources,

  20. Solar for Mining Hugh Rudnick

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Solar for Mining Hugh Rudnick Professor Pontificia Universidad Católica de Chile #12;Solar Energy in Mining · Solar energy is becoming affordable · Attractive potential use for mining purposes · Must solve the storage requirement to increase its participation worldwide #12;Solar Energy in Mining · Electrical Energy

  1. The Economics of Solar Electricity

    E-Print Network [OSTI]

    Fowlie, Meredith

    increases in solar capacity, holding the rest of the power sys- tem fixed. Solar's variability adds value-run analyses consider the implications of nonincremental changes in solar capacity. The cost of each installation may fall through experience effects, but the cost of grid integration increases when solar

  2. Where, when and how much solar is available? A provincial-scale solar resource assessment for China

    E-Print Network [OSTI]

    He, G; Kammen, DM

    2016-01-01

    and optimization of solar and other complimentary resources, such as solar and wind, solar and storage, solar and hydro,

  3. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  5. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  6. Collaborative solar powered neighborhoods

    E-Print Network [OSTI]

    Cheimets, Anna

    2015-01-01

    Solar photovoltaic (PV) deployment has been steadily expanding over the past decade. While decreasing our reliance on fossil fuels will be beneficial for the environment, increasing our exposure to an intermittent renewable ...

  7. Solar Energy System Exemption

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "any device that uses the heat of the sun as its primary energy source and is used to heat or cool the interior of a structure or swimming pool, or to heat...

  8. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    data is as input to simpl; ed design methods to predict the performance and cost of solarsolar data had been used, This increased cost occurs regardless of whether the datadata, Suppose the solar system is designed to minimize costs (

  9. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  10. Energy 101: Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  11. Atrium House solar revitalization

    E-Print Network [OSTI]

    Malamuceanu, Dan Roland

    1984-01-01

    The idea behind the Atrium House Solar Revitalization project, may be briefly presented as: energy conserving, low rise, high density, related- to- the-sky residences. The proposed system consists of a reticulate grid - ...

  12. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Municipalities and counties in Arizona may no longer require a stamp from a professional engineer to approve a solar system installation, which can raise the cost of a permit, unless such a...

  13. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  14. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  15. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  16. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  17. Argonne tackles solar energy

    ScienceCinema (OSTI)

    George Crabtree

    2010-09-01

    At Argonne National Laboratory, scientists and engineers are working to improve the solar cell to allow us to capture more of the sun's energy. Read more: http://www.anl.gov/Media_Center/News/...

  18. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  19. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Solar Rights Law

    Broader source: Energy.gov [DOE]

    Although the wording of the legislation refers generally to "solar energy", the title of the bill references only photovoltaic (PV) systems as eligible for these protections. Only single-family...

  1. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  2. Value of Solar Tariff

    Broader source: Energy.gov [DOE]

     Note: This program is only available to customers of one of the state's investor-owned utilities (Alliant, Minnesota Power, Otter Tail Power Company, Xcel Energy) in the Community Solar Gardens...

  3. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    tracking and fixed in place. Generally these collectors consist of a solar absorbing surface facing the suntracking. The main difference is the concentrators and often the absorber move to track the sun

  4. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  5. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  6. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Two bills signed in 2012 place limits on the fees that cities, counties, cities and counties, and charter cities can charge for a solar permit. AB 1801 specifies that a local government cannot base...

  7. Solar Installation Labor Market Analysis

    SciTech Connect (OSTI)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  8. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  9. Solar Powered Classroom

    SciTech Connect (OSTI)

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  10. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    solar energy: Photovoltaic vs Solar Thermal. In: Planetaryexpectancy of a thermal solar energy development? A common

  11. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    expectancy of a thermal solar energy development? A commontowards solar energy: Photovoltaic vs Solar Thermal. In:

  12. Solar Energy Materials & Solar Cells 90 (2006) 34073415 High-efficiency flexible CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 3407­3415 High-efficiency flexible CdTe solar cells: Solar cells; Thin films; CdTe; Flexible solar cells; Space solar cells; Solar energy ARTICLE IN PRESS for Renewable Energy Systems and Technology), Department of Electronic and Electrical Engineering, Loughborough

  13. Solar energy collection system

    SciTech Connect (OSTI)

    Hummel, R.L.

    1982-04-06

    A solar energy collection system for a building is described. A solar energy collector is disposed at the exterior surface of the building and includes a solar energy absorbent body having a surface which is exposed to sunlight and from which solar energy can be transmitted as sensible heat. A panel which is transparent to sunlight is spaced from the said surface of the absorbent body so as to define therewith a passageway in which air contacts at least a substantial area of said surface so that air in said passageway absorbs heat transmitted from said surface when the collector is in use. The passageway has an inlet and an outlet and the absorbent body and panel are arranged with the outlet higher than the inlet so that heated air in the passageway tends to rise by convection towards the outlet. The building is provided with heating means including a circulation circuit for a heating fluid. Heat exchange means are coupled to said air passageway outlet of the solar energy collector for passage of heated air therethrough. The heat exchange means are also coupled to the circulation circuit of the building heating means and are arranged to permit heat transfer between said heated air and the heating fluid. A return air flow conduit is coupled between the heat exchange means and the inlet of the air passageway of the solar energy collector for returning heated air from the heat exchange means to the air passageway for recirculation.

  14. Overcoming Barriers to Solar Use 

    E-Print Network [OSTI]

    Halme, D. S.; Sicotte, J. R.

    1986-01-01

    in lowering of solar system costs in all sectors of the market. MICRO FLO solar domestic water heaters and MEGA collector systems offer the key to the future for all sizes of solar applications from residential water heaters to very large 10,000 m2... American Solar Industry. The opportunities provided through Government assistance programs have enabled the Industry to develop products, standards and the research capability to the edge of commercially realisable solar water heating systems...

  15. Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2007-01-01

    Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar Verona, Italy e Department of Electronic and Electrical Engineering, Centre for Renewable Energy Systems We present a different back contact for CdTe solar cell by the application of only a transparent

  16. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  17. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. EE580 Solar Cells Todd J. Kaiser

    E-Print Network [OSTI]

    Kaiser, Todd J.

    7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

  19. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  20. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):

  1. Analysis of the California Solar Resource--Volume 3: Appendices

    E-Print Network [OSTI]

    erdahl, P.

    2011-01-01

    own experience with solar energy data requirements. GENERALof Solar Energy Systems Summary of Solar Data MeasurementsOF SOLAR ENERGY SYSTEMS EFFECTS OF SOLAR DATA ACCURACY ON

  2. Solar Means Business: Top U.S. Corporate Solar Users

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  3. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    Best research solar cells efficiencies. [cited 2010; ChartHisikawa Y, Warta W. Solar cell efficiency tables (Versionusing organic solar cells, the efficiencies of these devices

  4. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01

    Igari, and W. Warta, “Solar Cell Efficiency Tables (Version56326 High efficiency, radiation-hard solar cells Finalprototype high efficiency multijunction (MJ) solar cells use

  5. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    of Photovoltaic Solar Energy Conversion, Brown University,technologies. Most solar energy conversion technologiesare obvious examples. solar energy conversion may accentuate

  6. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    from Concentrix Solar," in Concentrator Photovoltaics, A.L.Solar Concentrators: Using optics to boost photovoltaics,”Solar Concentrators: Using optics to boost photovoltaics,”

  7. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    8-12. Würfel P. Physics of solar cells : from principles toPhotocell for Converting Solar Radiation into Electricalgeneration photovoltaics: solar cells for 2020 and beyond.

  8. Solar Success Stories | Department of Energy

    Office of Environmental Management (EM)

    Solar Success Stories Solar Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing more efficient and less expensive solar energy...

  9. MODELING PASSIVE SOLAR BUILDINGS WITH HAND CALCULATIONS

    E-Print Network [OSTI]

    Goldstein, David B.

    2011-01-01

    Stromberg, and S.O. Woodall. "Passive Solar Buildings: ASome Analytic Models of Passive Solar Building Per­at the Third National Passive Solar Conference, San Jose,

  10. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    and G. Li, ?Polymer solar cells with enhanced open-circuittandem and triple-junction solar cells,? Materials, 2012, 5(high performance solar cells,” Advanced Energy Materials,

  11. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01

    2007a, “Evaluating the Limits of Solar Photovoltaics (PV) infor Short-Term Variability of Solar Power. Lawrence Berkeleyand Medium Term Operational Solar Radiation Forecasts in the

  12. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    solar energy are: Included solar thermal conversion to electricity,solar energy) which has been omitted is decommissioning of facilities. Transmission lines are common to all centralized electricity

  13. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    self-tracking solar concentration: design and materialsself- tracking solar concentration: design and materialsSolar Concentrators," in International Optical Design

  14. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Analysis and design of holographic solar concentrators,”reflection design may enable multiband solar power usingoptical geometry and design of a two band, solar splitting

  15. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Angeles Organic Tandem Solar Cells: Design and Formation AOrganic Tandem Solar Cells: Design and Formation by Chun-multi-junction tandem solar-cell design. Given this design,

  16. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    c) Cyrium multi-junction solar cell. (d) Faulhaber miniaturecan leverage expensive multi-junction solar cells to achievec) Cyrium multi-junction solar cell. ( d) Faulhaber

  17. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    silicon cells 2 . Multi-junction solar cells hope becomethe motivation for multi- junction solar cells which layerassociated with multi-junction solar cells. The superior

  18. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    performance of multi-junction solar cells combining III-VMulti-Junction Solar Cells .improvement: Multi-Junction Solar Cells 2.1 Loss mechanism

  19. Advancing Solar Through Photovoltaic Technology Innovations ...

    Broader source: Energy.gov (indexed) [DOE]

    At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL...

  20. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    L. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsIn particular, the Solar Energy and Energy Conservation Bankthermal sytems is the Solar Energy and En- ergy Conservation

  1. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  2. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    T. Recent Advances in Organic Solar Cells. Advances incharacterization of organic solar cells. Adv Funct Mater.Voltage Characteristics of Organic Solar Cells. [cited 2010;

  3. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Environmental Management (EM)

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...

  4. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    12] A.Rabl, Active Solar Collectors and Their Applications (23, A.Rabl, Active Solar Collectors and Their Applications (Rabl, A. , [Active Solar Collectors and Their Applications],

  5. PROJECT PROFILE: Vermont Energy Investment Corporation (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation (Solar Market Pathways) PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market Pathways) Title: Vermont Solar Development Plan...

  6. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    solar cells,” Advanced Energy Materials, 2011, 1(5), 771-collecting grids,? Solar Energy Materials and Solar Cells,laboratory stability studies,” Energy Technology, 2014. [

  7. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    is apparent that many solar and energy conservation programsL. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsto -103 (Supp. 1979). SOLAR ENERGY DEVELOPMENTS vegetation

  8. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Planar Micro-Optic Solar Collectors," Optics for Solarin planar micro-optic solar collectors,” Optics Express, (inin planar micro-optic solar collectors,” Optics Express (in

  9. ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE

    E-Print Network [OSTI]

    Berdahl, P.

    2011-01-01

    SUMMARY OF USERS' NEEDS FOR SOLAR RADIATION DATA SUMMARY ANDDETERMINED NEED FOR SOLAR RADIATION DATA - Made directinter- polation of solar radiation data (Section 4.3)

  10. Nanocrystal Solar Cells

    SciTech Connect (OSTI)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  11. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  12. Solar Utility Networks: Replicable Innovations in Solar Energy

    Broader source: Energy.gov [DOE]

    On October 2013, DOE announced nearly $7.8 million to fund eight projects under the Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) funding opportunity. These projects are...

  13. Solar America Cities Awards: Solar America Initiative Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    This fact sheet provides an overview of the Solar America Cities activities within the Solar America Initiative and lists the 25 cities that have received financial awards from the U.S. Department of Energy.

  14. Metasurface Broadband Solar Absorber

    E-Print Network [OSTI]

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  15. Solar neutrino detection

    E-Print Network [OSTI]

    Lino Miramonti

    2009-01-22

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  16. Solar Pumped Laser Microthruster

    SciTech Connect (OSTI)

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  17. Predicting solar cycle 24 with a solar dynamo model

    E-Print Network [OSTI]

    Arnab Rai Choudhuri; Piyali Chatterjee; Jie Jiang

    2007-01-18

    Whether the upcoming cycle 24 of solar activity will be strong or not is being hotly debated. The solar cycle is produced by a complex dynamo mechanism. We model the last few solar cycles by `feeding' observational data of the Sun's polar magnetic field into our solar dynamo model. Our results fit the observed sunspot numbers of cycles 21-23 extremely well and predict that cycle~24 will be about 35% weaker than cycle~23.

  18. Solar Decathlon 2013

    SciTech Connect (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  19. Solar Decathlon 2013

    ScienceCinema (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard;

    2014-01-10

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  20. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  1. Monolithic tandem solar cell

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  2. Solar radiation intensity calculations 

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01

    , radiation per unit area per unit time, on a flat-plate collector is given by: I = I cos B (2. 1a) where I is the solar constant. insolation received at one astro- nomical unit from the sun. Since clear sky conditions are assumed I o w i 1 1 b e a.... INSOLATION EQUATIONS TABLE OF CONTENTS Page III. RESULTS AND CONCLUSIONS REFERENCES APPENDIX VITA 25 47 48 52 Vi LIST OF TABLES TABLE I. Optimal Inclination for Ap=O, No Checks for Ip &0 and a Time Independent Solar Constant. II. Optimal...

  3. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  4. Passive solar applications

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Passive solar applications in buildings are described. The major emphasis of the research has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both various design parameters and the weather on system performance. Results from both test modules and monitored buildings are discussed. Simulation analysis, the development of simplified methods, and systems analysis are outlined. Passive solar potential in China is discussed.

  5. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-10-01

    Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  6. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. )

    1992-01-01

    Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  7. Solar reflection panels

    DOE Patents [OSTI]

    Diver, Jr., Richard B. (Albuquerque, NM); Grossman, James W. (Albuquerque, NM); Reshetnik, Michael (Boulder, CO)

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  8. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar Energy ResearchSolar Research

  9. Photovoltaics and Artificial Photosynthesis = Solar Electricity and Solar Fuel

    E-Print Network [OSTI]

    Saffman, Mark

    .4 TW US Electricity Consumption Electricity from the Sun is an ideal source of energy (fullyPhotovoltaics and Artificial Photosynthesis = Solar Electricity and Solar Fuel F.J. Himpsel, University of Wisconsin Madison #12;100100 km2 of solar cells could produce all the electricity for the US. 0

  10. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg in irradiance forecasting have been presented more than twenty years ago (Jensenius and Cotton, 1981), when or progress with respect to the development of solar irradiance forecasting methods. Heck and Takle (1987

  11. SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR

    E-Print Network [OSTI]

    solar thermal applications. As contact thermometry is often not appropriate in the presence of high;Introduction In high temperature solar thermal applications, where key components are driven near reflections1,2 . The distinction between the emitted thermal and the reflected solar radiation becomes

  12. Community Shared Solar: Expansions Underway in Solar America Communities

    Broader source: Energy.gov [DOE]

    Community shared solar is expanding rapidly as a model ownership structure for solar PV. By offering customers an option to purchase or lease part of a larger solar array instead of having to purchase the entire system, the model greatly expands participatory opportunities to a large new market segment of citizens and customers, with very low or no cost to local government.

  13. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    J. A. , and Beckman, W. A. , Solar Energy Thermal Processes,term solar energy are: Included solar thermal conversion toNew York, 1966. 8. Solar Sea Thermal Energy, Ninety-Third

  14. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    on site. 7) Climatology. Solar power plants of the centralCentral Reveiver Solar Thermal Power Plant Design Concepts,l ,2,3,4,5 A. Solar Thermal Power Solar thermal power

  15. Clark Public Utilities- Solar Energy Equipment Loan

    Broader source: Energy.gov [DOE]

    Solar water heater loans, solar pool heater loans and solar PV loans under $10,000 have a maximum term of 60 months. Solar PV loans over $10,000 have a maximum term of 84 months. All loans carry...

  16. Solar Swimming Pool Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly...

  17. Outdoor Solar Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install...

  18. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  19. Solar Career Map | Department of Energy

    Office of Environmental Management (EM)

    Solar Career Map Solar Career Map Solar Career Map Use the Solar Career Map to explore 40 Jobs across 4 industry sectors, and identify more than 60 routes to advancement between...

  20. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    Launched on January 2, 2007, the New Solar Homes Partnership (NSHP) is a 10-year, $400 million program to encourage solar in new homes by working with builders and developers to incorporate into ...

  1. Roseville Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric has implemented solar rebate programs in order to meet the three statewide goals in Senate Bill 1: to install 3,000 megawatts (MW) of distributed solar PV by the end of 2016, to...

  2. Lithium-6 from Solar Flares

    E-Print Network [OSTI]

    R. Ramaty; V. Tatischeff; J. P. Thibaud; B. Kozlovsky; N. Mandzhavidze

    2000-03-23

    By introducing a hitherto ignored Li-6 producing process, due to accelerated He-3 reactions with He-4, we show that accelerated particle interactions in solar flares produce much more Li-6 than Li-7. By normalizing our calculations to gamma-ray data we demonstrate that the Li-6 produced in solar flares, combined with photospheric Li-7, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  3. Parameterization of solar flare dose 

    E-Print Network [OSTI]

    Lamarche, Anne Helene

    1995-01-01

    A critical aspect of missions to the Moon or Mars is the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare ...

  4. The Texas Solar D House 

    E-Print Network [OSTI]

    Garrison, M.

    2004-01-01

    The Solar Decathlon provided a national forum for competition among fourteen university student teams, each of which designed, built, and operated a totally solar-powered home with a home office and their transportation ...

  5. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    in Albuquerque, New Mexico. Barclays. (2009). Solar Energysolar development on the public lands of six states (Arizona, California, Colorado, New Mexico,Solar Power. United States Senate Committee on Energy and Natural Resources Field Hearing in Albuquerque, New Mexico.

  7. Design of inflatable solar concentrator

    E-Print Network [OSTI]

    Carrasquillo, Omar (Omar Y. Carrasquillo De Armas)

    2013-01-01

    Solar concentrators improve the performance of solar collection systems by increasing the amount of usable energy available for a given collector size. Unfortunately, they are not known for their light weight and portability, ...

  8. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  9. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  10. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  11. Tampa Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides financial incentives to customers who install solar-energy systems on their homes and businesses. Customers who install eligible solar water heating systems may receive a ...

  12. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  13. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    2007-01-01

    efficiency of solar cell devices without using concentrators. r 2007 Elsevier B.V. All rights reserved) solar energy conversion systems (or solar cells) are the most widely used power systems. HoweverSolar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using

  14. Solar Flares and particle acceleration

    E-Print Network [OSTI]

    energy ~2 1032 ergs #12;"Standard" model of a solar flare/CME Solar corona T ~ 106 K => 0.1 keV per MeV Proton energies >100 MeV Large solar flare releases about 1032 ergs (about half energy-free emission) #12;X-ray spectrum of solar flares Thermal X-rays Non-thermal X-rays Gamma-ray lines Ramaty High

  15. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    cost data for grid-connected, customer-sited PV installations in the Unites States from a number of solar

  16. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  17. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  18. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    ENERGY DEVELOPMENTS solar hot water heater in which a remotethe use of solar hot water heaters in new construction, a

  19. The Access Almanac: Solar Parking Requirements

    E-Print Network [OSTI]

    Shoup, Donald

    2012-01-01

    the city. In California, one solar-covered parking space canway. (Covering one parking space with solar panels will

  20. ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE

    E-Print Network [OSTI]

    Berdahl, P.

    2011-01-01

    inputs required for solar design techniques (Section 2.3)of system design and economics to errors in solar data (

  1. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Energy Savers [EERE]

    Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium...

  2. Leakage pathway layer for solar cell

    DOE Patents [OSTI]

    Luan, Andy; Smith, David; Cousins, Peter; Sun, Sheng

    2015-12-01

    Leakage pathway layers for solar cells and methods of forming leakage pathway layers for solar cells are described.

  3. Funding Opportunity Announcement: Solar Training and Education...

    Energy Savers [EERE]

    Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP) Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP)...

  4. Solar Works in Seattle: Domestic Hot Water

    Office of Energy Efficiency and Renewable Energy (EERE)

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  5. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01

    efficiency multijunction (MJ) solar cells use componentsin current multijunction (MJ) solar cells (GaAs and GaInP)

  6. The Access Almanac: Solar Parking Requirements

    E-Print Network [OSTI]

    Shoup, Donald

    2012-01-01

    rich cities have great solar potential because the panelsper space. ) Because the solar potential of a parking lot

  7. Durability of solar matrials

    SciTech Connect (OSTI)

    Gilligan, J.E.

    1982-01-01

    The results of a program to determine the initial and long-term properties of many potential solar materials are described. Important background considerations, the properties measured, outdoor exposure characteristics and the materials data are given, along with several important caveats.

  8. Solar Policy Environment: Knoxville

    Broader source: Energy.gov [DOE]

    The City of Knoxville is “beginning at the beginning” of the transition to solar energy utilization. With limited public information and experience, it is important for Knoxville to focus extensively on public outreach and workforce development. The City will also commence a direct incentive and embark on a massive educational program.

  9. Solar Policy Environment: Orlando

    Broader source: Energy.gov [DOE]

    Through the Green Future Alliance, the City of Orlando will partner with the Orlando Public Utilities Commission and Orange County Government to develop a comprehensive, systematic approach to promoting solar market development which includes public outreach, training for stakeholders, meaningful incentives and new regulatory standards that can act as a model to encourage participation from surrounding local governments.

  10. Solar absorption surface panel

    DOE Patents [OSTI]

    Santala, Teuvo J. (Attleboro, MA)

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  11. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  12. 53119782000 Solar Energy Conversion

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    or degrade of the photocatalyst) The Challenges: Cost + Efficiency Earth ultimate recoverable resource of oil Solar Cells Work Operation of a PV cellThe effect of the electric field in a PV cell General schematic of a residential PV system with battery storage Basic structure of a generic silicon PV cell #12;-2 (photo courtesy

  13. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  14. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  15. Solar Cell Simulation

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students model the flow of energy from the sun as it enters a photovoltaic cell, moves along a wire and powers a load. The game-like atmosphere involves the younger students and helps them understand the continuous nature of the flow of energy. For a related lesson, please see the activity “Solar Powered System” (PDF 430 KB).

  16. Integrated solar collector

    DOE Patents [OSTI]

    Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  17. Solar thermal repowering

    SciTech Connect (OSTI)

    NONE

    1980-08-01

    Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

  18. Solar tracking apparatus

    DOE Patents [OSTI]

    Hammons, Burrell E. (Albuquerque, NM)

    1980-01-01

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  19. TJ Solar Cell

    SciTech Connect (OSTI)

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  20. Solar Panel Cleanerbot Robert Gabriel

    E-Print Network [OSTI]

    Solar Panel Cleanerbot Robert Gabriel Inquiry Statement: The Solar Panel Cleanerbot is an electrical engineering junior and senior design project. The objective is to build a robot that can clean the solar panels on the roof of Holmes Hall in order to maintain optimal efficiency. While it will first

  1. CRISSCROSS THROUGH OUR SOLAR SYSTEM

    E-Print Network [OSTI]

    Waliser, Duane E.

    CRISSCROSS THROUGH OUR SOLAR SYSTEM Dawn is the ninth Discovery mission scheduled for funding from Laboratory; German Space Center; Max Planck Institute for Solar System Research; and Italian Space Agency and other objects in outer space A rocky solar system object that is smaller than a planet and orbits

  2. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    ............................................................................................... 5 1. How to get reservation funding for a Housing Development with 6 or more units installing solarCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING

  3. Public Lecture Prospects for Solar

    E-Print Network [OSTI]

    Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

  4. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  5. Solar Ponds - What Are They? 

    E-Print Network [OSTI]

    Anderson, A. L.

    1980-01-01

    Solar ponds can provide low cost solar energy collection as well as low temperature heat storage. Currently there are two types of solar ponds in an advanced state of development in the U.S. Each system uses a different collection and energy storage...

  6. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  7. 2010 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  8. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible gauges, gas sensors. Light-emitting diodes (LED's) Power amplifiers for cell phones Indium Gallium #12

  9. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  10. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  11. The Solar Interior Paul Bushby (Newcastle University)

    E-Print Network [OSTI]

    Haase, Markus

    The Solar Interior Paul Bushby (Newcastle University) STFC Introductory Course in Solar System. Solar rotation and large-scale flows 3. The solar cycle 4. Solar dynamo theory 5. Open questions Sunday, 5 September 2010 #12;1. Basic properties of the Sun Right: A recent image from the Solar Dynamics

  12. EE580 Solar Cells Todd J. Kaiser

    E-Print Network [OSTI]

    Kaiser, Todd J.

    7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 08 · Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

  13. Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers

    E-Print Network [OSTI]

    Reusswig, Philip David

    2014-01-01

    The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

  14. Total Solar Irradiance Variability and the Solar Activity Cycle

    E-Print Network [OSTI]

    Probhas Raychaudhuri

    2006-05-06

    It is suggested that the solar variability is due to the perturbed nature of the solar core and this variability is provided by the variability of the solar neutrino flux from the solar neutrino detectors i.e., Homestake, Superkamiokande, SAGE and GALLEX-GNO. The solar neutrino flux in the standard solar model (SSM) was calculated on the assumption of L_nu (neutrino luminosity) = L_gamma (optical luminosity) which implies that if there is a change in optical luminosity then solar neutrino flux data will also be changed. An internal dynamo due to the cyclic variation of nuclear energy generation inside the core of the sun is responsible for the solar activity cycle was suggested and thus the internal magnetic field is also variable. Again the changes in the nuclear energy generation induce structural changes that result in variations of the global solar parameters i.e., luminosity, radius and temperatures etc. From the analysis of total solar irradiance (TSI) data during the year from 1970 to 2003 we have found five phases within the solar activity cycle. The first phase (I) starts before two years from the sunspot minimum. The second phase (II) starts at the time of sunspot minimum and phase (III) starts before 2/3 years from sunspot maximum whereas phase (IV) starts at sunspot maximum and fifth phase (V) starts at after 2-3 years from sunspot maximum.

  15. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  16. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  17. Implementing Solar Technologies at Airports

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  18. Solar Policy Environment: New Orleans

    Broader source: Energy.gov [DOE]

    To use unprecedented rebuilding of the city of New Orleans is an opportunity for the Office of Recovery Management and its partners to encourage solar in New Orleans’ energy marketplace. While all Solar Cities grantees are undertaking market transformation activities that will both remove barriers to the adoption of solar technologies and reduce the cost of solar technologies, the reconstruction process affords New Orleans a window of opportunity to structurally alter the ways in which solar technologies are regulated, incentivized, produced, and consumed in the Greater New Orleans area.

  19. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  20. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.