Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Climate, Conservation, and Community in Alaska and Northwest Canada  

Broader source: Energy.gov [DOE]

Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

2

Alaska Rural Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

3

E-Print Network 3.0 - anchorage alaska usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4101 University Drive, Anchorage, AK 99508, U.S.A... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in Alaska add up...

4

Alaska Rural Energy Conference  

Broader source: Energy.gov [DOE]

Organized and sponsored by the Alaska Energy Authority and the Alaska Center for Energy and Power, the Alaska Rural Energy Conference is a three-day event featuring a wide array of technical...

5

Alaska BIA Providers Conference  

Broader source: Energy.gov [DOE]

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

6

Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites  

SciTech Connect (OSTI)

Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

2013-09-11T23:59:59.000Z

7

The Outlier State: Alaska’s FY 2012 Budget  

E-Print Network [OSTI]

rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

McBeath, Jerry; Corbin, Tanya Buhler

2012-01-01T23:59:59.000Z

8

The Outlier State: Alaska’s FY 2012 Budget  

E-Print Network [OSTI]

State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

McBeath, Jerry; Corbin, Tanya Buhler

2012-01-01T23:59:59.000Z

9

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

McBeath, Jerry

2013-01-01T23:59:59.000Z

10

EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

11

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

12

Alaska Rural Energy Conference  

Broader source: Energy.gov [DOE]

The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

13

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

14

Alaska Forum on the Environment  

Broader source: Energy.gov [DOE]

The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

15

Renewable Energy in Alaska  

SciTech Connect (OSTI)

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

16

Alaska geothermal bibliography  

SciTech Connect (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

1987-05-01T23:59:59.000Z

17

What Recession? Alaska's FY 2011 Budget  

E-Print Network [OSTI]

Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

McBeath, Jerry

2011-01-01T23:59:59.000Z

18

Indicators of recent environmental change in Alaska  

SciTech Connect (OSTI)

Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

1997-12-31T23:59:59.000Z

19

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

20

Pilgrim Hot Springs, Alaska  

Broader source: Energy.gov [DOE]

Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Interconnection Guidelines (Alaska)  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

22

Alaska Workshop: Workforce Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

23

america project alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

24

Alaska: Alaska's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

Not Available

2013-03-01T23:59:59.000Z

25

Applications for Alaska Strategic Technical Assistance Response...  

Energy Savers [EERE]

Alaska START is aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

26

anchorage alaska installation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

27

alaska forest service: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

28

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

29

AMF Deployment, Oliktok, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia GangesAlaska

30

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA

31

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

McBeath, Jerry

2013-01-01T23:59:59.000Z

32

Planning Amid Abundance: Alaska’s FY 2013 Budget Process  

E-Print Network [OSTI]

on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

McBeath, Jerry

2013-01-01T23:59:59.000Z

33

Alaska Renewable Energy Fund Grants for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

34

Graduate Programs University of AlaskaFairbanks  

E-Print Network [OSTI]

Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

35

A Heart Health Alaska Natives  

E-Print Network [OSTI]

Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

Bandettini, Peter A.

36

Wind Generation Feasibility Study in Bethel, AK  

SciTech Connect (OSTI)

This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

2004-07-31T23:59:59.000Z

37

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

38

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

39

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM AKDT to April 1, 2015 5:00PM AKDT Juneau, Alaska University of Alaska...

40

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AKS systems and Lepage equivalent problems  

E-Print Network [OSTI]

The integrable systems known as "AKS systems" admit a natural formulation in terms of a Hamiltonian picture. The Lagrangian side of these systems are far less known; a version in these terms can be found in a work of Feher et al. The purpose of these notes in to provide a novel description of AKS systems in terms of a variational problem different from the usual in mechanics. Additionally, and using techniques borrowed from an article of M. Gotay, it was possible to build the Hamiltonian side of this variational problem, allowing us to establish the equivalence with the usual approach to these integrable systems.

Santiago Capriotti

2011-01-06T23:59:59.000Z

42

Federal Agencies Collaborate to Expedite Construction of Alaska...  

Broader source: Energy.gov (indexed) [DOE]

Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

43

DOE Alaska Native Village Renewable Energy Project Development...  

Energy Savers [EERE]

Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

44

Geothermal Exploration In Pilgrim, Alaska- First Results From...  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

45

Alaska Village Initiatives Rural Small Business Conference  

Broader source: Energy.gov [DOE]

The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

46

Alaska: a guide to geothermal energy development  

SciTech Connect (OSTI)

Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

47

Alaska START Round 3 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

opportunity aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

48

Alaska | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

49

E-Print Network 3.0 - alaska installation restoration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

role in the history of Alaska. Salmon, along with mining, timber, and furs, were the keystone... of residents and visitors to Alaska. Alaska native peoples and their heritage...

50

ak gadi gadi: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Noch ist unklar, wie sich Hamburg,.Universitt 72 A.K. Ghosh 2. recurrent 1998 1999 DARPA Computer Technologies and Information Sciences Websites Summary: . , , , . . . ,...

51

Recovery Act State Memos Alaska  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|Updated July 2010Alaska

52

Amchitka, Alaska, Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.

53

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

54

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

55

2013 Alaska Federation of Natives Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

56

Alaska Federation of Natives Annual Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

57

Alaska Native Village Energy Development Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

58

Alaska Village Initiatives Rural Business Conference  

Broader source: Energy.gov [DOE]

Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

59

DOE Alaska Native Village Renewable Energy Workshop  

Broader source: Energy.gov [DOE]

The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native...

60

Advancing Efforts to Energize Native Alaska (Brochure)  

SciTech Connect (OSTI)

This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

Not Available

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alaska Strategic Energy Plan and Planning Handbook  

Broader source: Energy.gov (indexed) [DOE]

AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

62

Southern Enclave Issue 51  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . Cypher@Alaska.net Cheree Cargill .............. FalconPrss@AOL.com Catherine Churko ............. RoyceCarl@AOL.com Judy Ebberley . . . . . . . . . . . . . .. TheChevin@AOL.com Marie Flanigan ............... Postjade@Yahoo.com Z. P. Florian...

1998-01-01T23:59:59.000Z

63

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

64

Alaska  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring

65

Alaska  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: Shale natural

66

Energy Department Moves Forward on Alaska Natural Gas Pipeline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

67

alaska north slope: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

68

Alaska Native Village Renewable Energy Project Development Workshop...  

Office of Environmental Management (EM)

Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015 8:00AM AKDT to March 27, 2015 5:00PM AKDT Dillingham, Alaska University...

69

Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia  

SciTech Connect (OSTI)

All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

1993-04-01T23:59:59.000Z

70

Microsoft Word - 10-004B NEA EA 05-05-10  

Broader source: Energy.gov (indexed) [DOE]

ADEC Alaska Department of Environmental Conservation ADF&G Alaska Department of Fish & Game ADNR Alaska Department of Natural Resources AES AK ASRC Energy Services Alaska,...

71

Thursday, December 27, 2012 Federal Processor Permit 1 of 4 NOAA Fisheries Service -Alaska Region  

E-Print Network [OSTI]

COLD STORAGE, INC. PETERSBURG, AK EINERSON, GREG L SHP 28721 COPPER RIVER SEAFOODS, INC. ANCHORAGE, AK AMERICA, LLC SHP 5335 HOONAH COLD STORAGE HOONAH, AK DIGNON, WILLIAM A SHP 32927 HOONAH COLD STORAGE ALYESKA SEAFOODS, INC. UNALASKA, AK ALYESKA SEAFOODS, INC. SHP 5394 ANNETTE ISLAND PACKING CO. COLD

72

Amchitka, Alaska Site Fact Sheet  

SciTech Connect (OSTI)

Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

None

2011-12-15T23:59:59.000Z

73

Chariot, Alaska Site Fact Sheet  

SciTech Connect (OSTI)

The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

None

2013-01-16T23:59:59.000Z

74

Evidence of Southern Health  

E-Print Network [OSTI]

POS Evidence of Coverage Southern Health Services, Inc. SH.POS.11-09 #12;Table of Contents SH................................................................................................10 Facts about Southern Health .....................................................................12 Members' Responsibilities to Know How and When to Seek Care ............................13 Section

Acton, Scott

75

Permian fusulinids from Pacific northwest and Alaska  

E-Print Network [OSTI]

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 23, 1966 Paper 4 PERMIAN FUSULINIDS FROM PACIFIC NORTHWEST AND ALASKA By JoHN W. SKINNER and GARNER L. WILDE Plumbic Oil & Rcfining Company, Midland, Texas CONTENTS PAGE Part 1 PERMIAN... varies Skinner & Wilde—Permian Fusulinids from Pacific Northwest and Alaska 5 FEET FEET FEET 800 1600 111) 7001500IV& 1.1 600 Nev - 9 1400 1111 nibORD NMI ENDMONS rub WINE M- amaimam wom.wen Imo%1111/10 Minh Nev -20 NNW=NM 200 MOD 1000NNW NIPMOM Nev...

Skinner, J. W.; Wilde, G. L.

1966-05-23T23:59:59.000Z

76

Depositional environments of the Kodiak Shelf, Alaska  

E-Print Network [OSTI]

'te ?eel i 9/I !, . jor S h!est; O? anoo! aphJ DEPOSITIONAL ENVIRONMENTS OF THE KODIAK SHELF, ALASKA A Thesis by STUART PETER BURBACH Approved as to sty1e and content by: (Chairman of Committee ( ead of Department) (Member) (Member) December 1977... -'DSTRRCT Depositional Environments of the Kodiak ', elf, Alaska. (December 1977) Stuart Peter Burbach, B. P, . , University of Ifisconsin at Iililv!aukee Chairman of Cidvfsory Committee: Dr. I!illiam B. Bryant Four depositional environments are defined...

Burbach, Stuart Peter

1977-01-01T23:59:59.000Z

77

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

78

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

79

Revamping AK-Ashland gas cleaning system  

SciTech Connect (OSTI)

AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

Brandes, H.; Koerbel, R. [Mannesmann Demag Corp., Coraopolis, PA (United States); Haberkamp, K. [Mannesmann Demag Huttentechnik, Duisburg (Germany); Keeton, S. [AK Steel Corp., Ashland, KY (United States)

1995-07-01T23:59:59.000Z

80

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY  

E-Print Network [OSTI]

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

Wagner, Diane

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

01240_NStransportation | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho...

82

E-Print Network 3.0 - alaska marine mammal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delphinapterus leucas, Distribution and Survey Effort in the Gulf of Alaska Summary: . Rugh are with the National Marine Mammal Laboratory, Alaska Fisheries Science Center,...

83

E-Print Network 3.0 - alaska power administration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and political power of migrants to Alaska... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in the...

84

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

85

Executive Order 13592: Improving American Indian and Alaska Native...  

Office of Environmental Management (EM)

America, I hereby order as follows: Section 1. Policy. The United States has a unique political and legal relation- ship with the federally recognized American Indian and Alaska...

86

,"Alaska Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

87

Title 11 Alaska Administrative Code 87 Geothermal Drilling and...  

Open Energy Info (EERE)

Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

88

alaska fairbanks fairbanks: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

89

Alaska Administrative Code - Title 17, Chapter 10, Section 12...  

Open Energy Info (EERE)

RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

90

Chemical Hygiene Planh UNIVERSITY OF AlASKA  

E-Print Network [OSTI]

Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

Hartman, Chris

91

Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge...  

Energy Savers [EERE]

Sharing April 16, 2015 - 11:11am Addthis Sherry Stout presents at the Native Village Renewable Energy Project Development workshop in Dillingham, Alaska. Photo by Sherry Stout,...

92

anwr northeastern alaska: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

93

alaska seafood processing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

94

Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...  

Office of Environmental Management (EM)

electric utility customers and the procurement costs incurred by the 184 isolated diesel microgrid utilities scattered across rural Alaska. Importing fossil fuels by barge or...

95

Alaska Natives Benefit from First-Ever Community Energy Development...  

Office of Environmental Management (EM)

village councils to regional housing authorities and Native corporations and nonprofits. "Rural Alaska is facing an energy crisis that makes rural community and regional economic...

96

DOE to Host Alaska Native Village Energy Development Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Alaska Native villages, the workshop agenda will cover topics such as: Strategic energy planning Clean energy project development and financing Technology updates Energy...

97

RAPID/Roadmap/3-AK-g | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g Utility Permit to

98

RAPID/Roadmap/3-AK-h | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a WellAK-g Utility Permit toh

99

Preserving Alaska's early Cold War legacy.  

SciTech Connect (OSTI)

The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

Hoffecker, J.; Whorton, M.

1999-03-08T23:59:59.000Z

100

Nuiqsut, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to: navigation,

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nulato, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:

102

Nulato, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:8.1030556°

103

Kodiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak, Alaska: Energy

104

Alaska Native Villages | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgency FinancialEnergy DevelopmentAlaska

105

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

106

Homer, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: Energy Resources Jump to: navigation,

107

Hope, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: EnergyHooker County, Nebraska:Hope

108

Akhiok, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAikenAkan, Wisconsin:Akhiok, Alaska:

109

Kachemak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLCKachemak, Alaska:

110

Alternative Fuels Data Center: Alaska Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNaturalAlaska Information to

111

Ruby, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°andRubidoux, California: EnergyRuby, AK)

112

KRNFYSIK AK FKF011 Nuclear Physics, Basic Course  

E-Print Network [OSTI]

K�RNFYSIK AK FKF011 Nuclear Physics, Basic Course Poäng: 3.0 Betygskala: TH Obligatorisk för: F3 Valfri för: E4 Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se Förkunskapskrav

113

KRNFYSIK AK FKF 011 Nuclear Physics, Basic Course  

E-Print Network [OSTI]

K�RNFYSIK AK FKF 011 Nuclear Physics, Basic Course Antal poäng: 3.0. Obligatorisk för: F3. Valfri för: E4. Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se Förkunskapskrav

114

Ak-Chin Indian Community Biomass Feasiiblity Study  

SciTech Connect (OSTI)

Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

2005-12-31T23:59:59.000Z

115

Alaska oil and gas: Energy wealth or vanishing opportunity  

SciTech Connect (OSTI)

The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

1991-01-01T23:59:59.000Z

116

Control Strategies for Late Blight in the Alaska Potato Crop  

E-Print Network [OSTI]

Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

Wagner, Diane

117

alaska native people: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

118

Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG  

Broader source: Energy.gov [DOE]

Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

119

ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co  

E-Print Network [OSTI]

Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

Wagner, Diane

120

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Categorical Exclusion Determinations: Alaska | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 CategoricalManufacturingAlaska

122

Cohoe, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda BatteryCohoe, Alaska: Energy

123

Alaska Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: ShaleAlaska

124

Nenana, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,Nellis AFB SolarNenana, Alaska:

125

Alaska Energy Authority | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump to:GasAlaska

126

Alatna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna, Alaska: Energy

127

Salamatof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaftEnergy Roadmap andSalamatof, Alaska:

128

Adak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation,DiagramAdak, Alaska: Energy Resources

129

Alaska Power Telephone Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska Power

130

Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

131

Financing Opportunities for Renewable Energy Development in Alaska  

SciTech Connect (OSTI)

This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

Ardani, K.; Hillman, D.; Busche, S.

2013-04-01T23:59:59.000Z

132

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

SciTech Connect (OSTI)

In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

133

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Conservation Block Grant Program AK-TRIBE-ALASKA INTER-TRIBAL COUNCIL Location: Tribe AK-TRIBE-ALASKA INTER-TRIBAL COUNCIL AK American Recovery and...

134

QER- Comment of Alaska Department of Natural Resources  

Broader source: Energy.gov [DOE]

To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

135

Mesoscale Eddies in the Gulf of Alaska: Observations and Implications  

E-Print Network [OSTI]

M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

Rovegno, Peter

2012-01-01T23:59:59.000Z

136

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

137

05663_AlaskaHeavyOil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

138

Alaska Prudhoe Bay Crude Oil Shut-in Report  

Reports and Publications (EIA)

Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

2006-01-01T23:59:59.000Z

139

Alaska LNG Project LLC- 14-96-LNG  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

140

Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska  

Office of Energy Efficiency and Renewable Energy (EERE)

The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alaska Native People Shaping Health Care 2011Malcolm Baldrige  

E-Print Network [OSTI]

Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

Magee, Joseph W.

142

alaska initiative fact: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

143

Alaska Workshop: Renewable Energy Technologies and Case Studies  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

144

Energy Ambassadors to Provide Front Line Support for Alaska Native...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

145

DOE to Host Three Alaska Native Village Renewable Energy Project...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

146

Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...  

Open Energy Info (EERE)

Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

147

Ecology of Zooplankton of the Cape Thompson Area Alaska  

E-Print Network [OSTI]

. Until recently (Ed- mondson 1955; Comita 1956), detailed studies of zooplankton in arctic Alaska had not been made. Most published works are short-term species sur- veys (Comita 1952; Johnson 1961; Juday and Muttkowski 1915; Marsh 1920; Reed 1962...-September and typically lasted until mid-May or early June. RESULTS During ice-free periods, physicoclhemical values found in aquatic habitats at Cape Thompson were simlilar to those recorded for other areas of Alaska (Comita and Edmondson 1953; Edmondson 1956...

Tash, Jerry C.; Armitage, Kenneth

1967-01-01T23:59:59.000Z

148

Understanding Energy Code Acceptance within the Alaska Building Community  

SciTech Connect (OSTI)

This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

Mapes, Terry S.

2012-02-14T23:59:59.000Z

149

Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska  

Broader source: Energy.gov [DOE]

Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

150

Southern Region Watershed Management Project  

E-Print Network [OSTI]

Coordinators and the organization, management and activities of the Southern Region Water Quality Planning1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal responding to water quality and conservation issues with educational assistance, technology development

151

igure 1. Map of N. Alaska and NW Canada Showing the Locations...  

Gasoline and Diesel Fuel Update (EIA)

1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

152

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

153

E-Print Network 3.0 - alaska river Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: alaska river Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: the production and harvest of beaver in the upper...

154

E-Print Network 3.0 - arctic alaska r4d Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: arctic alaska r4d Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: . 1966. The recreational potential of the Arctic...

155

E-Print Network 3.0 - alaska linking wildlife Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Sciences Summary: of the state and federal agencies in Alaska (e.g. U.S. Fish and Wildlife Service, Alaska Department of Fish... in FY08, close to 75 percent are...

156

Indigenous frameworks for observing and responding to climate change in Alaska  

E-Print Network [OSTI]

. Excluding the oil-rich North Slope, rural Alaska is the most extensive area of poverty in the United States

Ickert-Bond, Steffi

157

APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2012  

E-Print Network [OSTI]

41$ 10$ 51$ ALASKA PORT ALEXANDER 1-Jan 31-Dec 34$ 9$ 43$ ALASKA PORT ALSWORTH 1-Jan 31-Dec 70$ 18-Oct 14-May 70$ 18$ 88$ ALASKA UMIAT 1-Jan 31-Dec 51$ 13$ 64$ ALASKA VALDEZ 16-May 14-Sep 71$ 18$ 89 TELE AREA 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. DERUSSEY 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. SHAFTER

158

Tax policy can change the production path: A model of optimal oil extraction in Alaska  

E-Print Network [OSTI]

production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate approach was to simulate economically optimal production paths for units on the Alaska North Slope, compare production for the seven individual units on Alaska's North Slope: Prudhoe Bay, Kuparuk River, Milne Point

Lin, C.-Y. Cynthia

159

Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska  

E-Print Network [OSTI]

542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

160

Maps of Selected State Subdivisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RAPID/Roadmap/14-AK-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero-FD-b3 Land13-NV-a StateAK-a

162

RAPID/Roadmap/15-AK-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint Source4-TX-e14-UT-d 4015-AK-b

163

RAPID/Roadmap/18-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a Wild &7-OR-a88-AK-c

164

RAPID/Roadmap/19-AK-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a Water Access and

165

RAPID/Roadmap/19-AK-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a Water Access

166

RAPID/Roadmap/19-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a Nonpoint7-FD-a9-AK-a Water

167

RAPID/Roadmap/20-AK-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a Well Abandonment Process

168

RAPID/Roadmap/3-AK-d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakumNV-a20-AK-a Well

169

RAPID/Roadmap/4-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit 03UTGGrantOfAccessPermit.pdf Click to44-AK-c

170

RAPID/Roadmap/6-AK-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling and Well5-OR-a6AK-b Construction

171

RAPID/Roadmap/7-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling andNM-b6-UT-b Storm Water7-AK-c

172

RAPID/Roadmap/9-AK-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-a Drilling7-HI-ce < RAPID‎b <9-AK-a

173

RAPID/Roadmap/12-AK-a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a State Cultural1-TX-cb <c22-AK-a

174

RAPID/Roadmap/15-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ |1-TX-a13-ID-a4-NV-c14-OR-dd4-WA-cd5-AK-c

175

RAPID/Roadmap/18-AK-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎ | Roadmap Jump8-AK-b Hazardous

176

RAPID/Roadmap/3-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎gWA-c TransferNM-aAK-c State

177

RAPID/Roadmap/3-AK-e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a < RAPID‎gWA-c TransferNM-aAK-c

178

RAPID/Roadmap/4-AK-b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a <3-FD-d3-WA-b Land AccessWA-e4-AK-b

179

RAPID/Roadmap/6-AK-c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado <17-HI-a4-WA-a State Exploration Process5-NM-a6-AK-c

180

Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

Gangodagamage, Chandana; Wilson, Cathy; Rowland, Joel

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012  

SciTech Connect (OSTI)

The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

Gangodagamage, Chandana; Wilson, Cathy; Rowland, Joel

2013-12-08T23:59:59.000Z

182

A Compilation and Review of Alaska Energy Projects  

SciTech Connect (OSTI)

There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

Arlon Tussing; Steve Colt

2008-12-31T23:59:59.000Z

183

Southern Sky Redshift Survey  

SciTech Connect (OSTI)

The general characteristics of the space distribution of galaxies in the SSRS sample, covering the southern Galactic cap, are examined, and maps of the space distribution are presented. The sample consists of 2028 galaxies in an area of 1.75 sr with declination south of -17.5 deg and galactic latitude below -30 deg. The survey provides useful information on large-scale structure to a depth of 120/h Mpc. The galaxy distribution exhibits prominent filaments, sheets, and voids. Some large-scale structures are highly subclustered; others are much more diffuse. 21 references.

Da Costa, L.N.; Pellegrini, P.S.; Sargent, W.L.W.; Tonry, J.; Davis, M.

1988-04-01T23:59:59.000Z

184

AVI SOU PRATIK UNIVERSITY OF MIAMI HEALTH SYSTEM POU ITILIZASYON AK DIVILGASYON ENFMASYON PRIVE  

E-Print Network [OSTI]

Dat avi a anvigè: 1ye desanm 2007 AVI SA A DEKRI FASON NOU KAPAB ITILIZE AK DIVILGE ENF�MASYON MEDIKAL A APLIKE Avi sa a rezime pratik pou itilize an divilge enfòmasyon prive nan University of Miami Health ki anvigè nan moman an. FASON NOU KAPAB ITILIZE AK DIVILGE ENF�MASYON MEDIKAL YO Lè ou resevwa sèvis

Shyu, Mei-Ling

185

EIS-0186: Proposed Healy Clean Coal Project, Healy, AK  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

186

Rope Culture of the Kelp Laminaria groenlandica in Alaska  

E-Print Network [OSTI]

Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

187

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

188

Summer Internship Program for American Indian & Native Alaska College Students  

ScienceCinema (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2013-04-19T23:59:59.000Z

189

Alaska Native Community Energy Planning and Projects (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

Not Available

2013-06-01T23:59:59.000Z

190

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

191

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance  

E-Print Network [OSTI]

in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

Oregon, University of

192

ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services  

E-Print Network [OSTI]

Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

Ickert-Bond, Steffi

193

Summer Internship Program for American Indian & Native Alaska College Students  

ScienceCinema (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2010-09-01T23:59:59.000Z

194

NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

Bob Busey; Larry Hinzman

195

Status Review of Southeast Alaska Herring (Clupea pallasi)  

E-Print Network [OSTI]

of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

196

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

SciTech Connect (OSTI)

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

2014-11-06T23:59:59.000Z

197

Alaska Native Village Renewable Energy Project Development Workshop in Dillingham  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

198

Alaska Native Village Renewable Energy Project Development Workshop in Bethel  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

199

Alaska Native Village Renewable Energy Project Development Workshop in Juneau  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

200

ABC Allowable Biological Catch AFSC Alaska Fisheries Science Center  

E-Print Network [OSTI]

and Industrial Re- search Organization (Australia) DAS ­ Days At Sea EBM ­ Ecosystem-Based Management EBS GLOBEC ­ GLOBal ocean ECosystem dynamics GOA ­ Gulf of Alaska GOM ­ Gulf of Mexico HMS ­ Highly Migratory NMFS ­ National Marine Fisheries Service NOAA ­ National Oceanic and Atmospheric Administration NRC

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UniversityofHouston AlaskaUniversityTransportationCenter  

E-Print Network [OSTI]

UniversityofHouston AlaskaUniversityTransportationCenter Impact of Embedded Carbon Fiber Heating (LEAVE BLANK) 2. REPORT DATE December 2012 3. REPORT TYPE AND DATES COVERED Final Report (7/1/2011-12/31/2012 4. TITLE AND SUBTITLE Impact of Embedded Carbon Fiber Heating Panel on the Structural/ Mechanical

Hartman, Chris

202

SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)  

E-Print Network [OSTI]

, a modest increase in oil investment would create more state revenues under SB21 than ACES. ·New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

Pantaleone, Jim

203

Summer Internship Program for American Indian & Native Alaska College Students  

SciTech Connect (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

2010-03-05T23:59:59.000Z

204

Summer Internship Program for American Indian & Native Alaska College Students  

SciTech Connect (OSTI)

Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

None

2010-01-01T23:59:59.000Z

205

PERFORMANCE '13University of Alaska Anchorage TOM CASE, Chancellor  

E-Print Network [OSTI]

PERFORMANCE '13University of Alaska Anchorage #12;TOM CASE, Chancellor ELISHA ("BEAR") R. BAKER IV, Interim President (3/2012-4/2013) Jacob Ng, President (effective 7/2013) UNIVERSITY GOVERNANCE FACULTY on Diversity 28 Focus on Safety #12;ELISHA "BEAR" R. BAKER IV, Ph.D., was named provost and vice chancellor

Pantaleone, Jim

206

E-Print Network 3.0 - augustine volcano alaska Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

volcanic eruption on weather and climate Summary: for surface albedo impacted from ash fall data was established based on data provided by the Alaska Volcano... at elevated...

207

E-Print Network 3.0 - alaska native women Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 National Center for Education Statistics IPEDS Data Center Summary: Women Nonresident alien Black, non-Hispanic American IndianAlaska Native AsianPacific Islander... Total men...

208

Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

209

Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

210

E-Print Network 3.0 - alaska arm climate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Executive Assistant drparkerson@alaska.edu 6016 John Walsh President's Professor of Climate Change... UnitDepartment Name Title EMail Phone ... Source: Wagner, Diane -...

211

E-Print Network 3.0 - alaska natives gocadan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as food, sharing... for personal or family consumption as food, or for customary trade. Alaska Native Tribe means, for purposes... of the subsistence fishery for Pacific...

212

1983 annual report on Alaska's mineral resources. Geological Survey Circular 908  

SciTech Connect (OSTI)

This report describes activity during 1982 in Alaska relating to oil and gas, uranium, coal and peat, geothermal resources, and non-fuel, critical and strategic minerals. (ACR)

Not Available

1983-01-01T23:59:59.000Z

213

Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

Not Available

2014-04-01T23:59:59.000Z

214

Title 5 Alaska Administrative Code Section 95.011 Waters Important...  

Open Energy Info (EERE)

Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

215

Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada  

E-Print Network [OSTI]

, Alaska and Canada By Timothy P. Brabets, Bronwen Wang, and Robert H. Meade Editor L-L. Harris, Cartographic Technician For additional information: Copies of this report may

216

E-Print Network 3.0 - alaska pollack theragra Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(P Summary: and early larval stages of the Alaska pollack, Theragra chalcogramma (Pallas). Bull. Fac. Fish., Hokkaido... development of the fish, Theragra chalcogramma...

217

Conversion economics for Alaska North Slope natural gas  

SciTech Connect (OSTI)

For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

Thomas, C.P.; Robertson, E.P.

1995-07-01T23:59:59.000Z

218

North Pole, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole, Alaska: Energy Resources Jump

219

2014 Alaska Native Village Energy Development Workshop | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013Energy Alaska

220

Moose Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin: EnergyMoodyMoose Creek, Alaska:

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lowell Point, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy Resources Jump to: navigation,

222

MHK Projects/Alaska 17 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 -

223

MHK Projects/Alaska 25 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85

224

Fritz Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,IowaFriendshipAlaska: Energy

225

RAPID/BulkTransmission/Alaska | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County,Quogue isRAPID/BulkTransmission/Alaska

226

RAPID/Geothermal/Water Use/Alaska | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID RegulatoryRAPID/Geothermal/Water Use/Alaska < RAPID‎ |

227

City of Chefornak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) Jump to: navigation,Caliente,Locks,Chefornak, Alaska

228

City of Manokotak, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,Luverne Place:Madison,Manokotak, Alaska

229

City of Petersburg, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina, IowaPetersburg, Alaska

230

City of Seward, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg, Texas (UtilitySeward, Alaska (Utility

231

City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (Utility Company) JumpAlaska (Utility Company)

232

Alaska Oil and Gas Exploration, Development, and Permitting Project  

SciTech Connect (OSTI)

This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

Richard McMahon; Robert Crandall

2006-03-31T23:59:59.000Z

233

Port Clarence, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture,149.Pope County isPoquott,AK) Jump

234

The future of oil and gas in Northern Alaska  

SciTech Connect (OSTI)

The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

1995-04-01T23:59:59.000Z

235

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

236

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

237

POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA  

E-Print Network [OSTI]

1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geochemical data are used

Amato, Jeff

238

POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA  

E-Print Network [OSTI]

1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geo-chemical data are used

Toro, Jaime

239

Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations  

E-Print Network [OSTI]

Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden, University of Sheffield, Sheffield S10 2TN, UK, zAbisko Scientific Research Station, SE 981-07 Abisko, Sweden-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses

240

Alaska Community & Facility Scale Tribal Renewable Energy Project Development and Finance Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Alaska Native villages and Alaska Native corporations understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects.

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BIOLOGY GRADUATE STUDENT SOURCEBOOK GEORGIA SOUTHERN UNIVERSITY  

E-Print Network [OSTI]

1 BIOLOGY GRADUATE STUDENT SOURCEBOOK GEORGIA SOUTHERN UNIVERSITY GENERAL TABLE OF CONTENTS Chapter 1: Introduction to the Biology Department.............................................5 Chapter 2 #12;2 BIOLOGY GRADUATE STUDENT SOURCEBOOK GEORGIA SOUTHERN UNIVERSITY DETAILED TABLE OF CONTENTS

Hutcheon, James M.

242

Incorporation of PCI flow measurement/control at AK Steel Corporation  

SciTech Connect (OSTI)

A measurement and control system has been developed and implemented to improve the distribution of coal among the tuyere lines on AK Steel Corporation`s Amanda blast furnace at Ashland, Kentucky. This paper discusses the development and design of the system, and briefly reviews operating results achieved.

Dibert, W.A.; Keaton, D. [AK Steel Corp., Ashland, KY (United States)

1994-12-31T23:59:59.000Z

243

Phase-space explorations in time-dependent density functional theory A.K. Rajam a  

E-Print Network [OSTI]

Phase-space explorations in time-dependent density functional theory A.K. Rajam a , Paul Hessler b online xxxx Keywords: Time-dependent density functional theory Phase-space Momentum-distributions Density to phase-space densities, discuss some formal aspects of such a ``phase-space density functional theory

244

Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study  

E-Print Network [OSTI]

Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study Julian Deissa; accepted 6 February 2004 Abstract A set of peat column experiments was used to determine the transport-bearing stream 250 m from the site. Three pairs of peat columns were extracted from the rifle range for analysis

Walter, M.Todd

245

H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989  

SciTech Connect (OSTI)

The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

Not Available

1989-01-01T23:59:59.000Z

246

3211 Providence Drive, Gordon Hartlieb Hall, Room 111, Anchorage, AK 99508 P: 907.786.6475 | F: 907.786.6474 | www.uaa.alaska.edu/transportation  

E-Print Network [OSTI]

to cover the costs of the required student tuition, fees, books and equipment leading to the OEC. The state. Student qualification in each NDT method is based on general, specific and practical examinations & Technical College Advising Center at 907.786.6045 for information on qualification for MATH A105. Many

Pantaleone, Jim

247

Remote-site power generation opportunities for Alaska  

SciTech Connect (OSTI)

The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1997-03-01T23:59:59.000Z

248

Annual variation in primary moult parameters in Cape Weavers, Southern Masked Weavers and Southern Red  

E-Print Network [OSTI]

and Southern Red Bishops in the Western Cape, South Africa #12;160 #12;161 Annual variation in primary moult parameters in Cape Weavers, Southern Masked Weavers and Southern Red Bishops in the Western Cape, South Africa Abstract Duration of primary moult was similar in Cape Weavers and Southern Red Bishops (96 days

de Villiers, Marienne

249

Georgia Southern University Information Technology  

E-Print Network [OSTI]

Georgia Southern University Information Technology Organization Chart 2013-2014 FINAL: September 18, 2013 R\\Work\\Common:\\OrgCharts\\Rev2014\\ Information Technology \\CIO Produced: Strategic Research of the groups of units reporting there. President Vice President for Information Technology and Chief

Hutcheon, James M.

250

Plant community composition and vegetation height, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

251

Application of PDC bits in the Kuparuk River Field, Alaska  

SciTech Connect (OSTI)

In soft to medium hard clays and shales, PDC bits have proven to be economically successful in the Kuparuk River Field, Alaska. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved and the use of PDC bits has become routine. These bits are typically run with a standpipe pressure of 4000 psi, pump rate of 400 to 450 gpm, and a rotary speed of 150 to 200 rpm. Using these high operating parameters, a savings of about $50,000 per PDC bit is being achieved when compared to roller cone bits.

Balkenbush, R.J.; Onisko, J.E.

1983-10-01T23:59:59.000Z

252

Record of Decision for Amchitka Surface Closure, Alaska  

SciTech Connect (OSTI)

This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

None

2008-08-01T23:59:59.000Z

253

Alaska Electric Light&Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska Electric

254

Diamond Ridge, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska: Energy Resources Jump to:

255

Alaska Town Invests in Energy Efficiency | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of TS NOTMethaneBtuAlaska

256

CT Scans of Cores Metadata, Barrow, Alaska 2015  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

Katie McKnight; Tim Kneafsey; Craig Ulrich

257

Alaska Energy Champion: David Pelunis-Messier | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclearAdverseDepartmentAlaska Energy

258

Alaska Feature Articles and Blogs | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaska Feature Articles and Blogs Alaska

259

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North Slope of Alaska Arctic Winter

260

Energy Efficiency and Renewable Energy Technologies for Alaska  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERE Technologies for Alaska Day 1

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MHK Projects/Alaska 35 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects Jump

262

MHK Projects/Alaska 7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects

263

Port Graham, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture,149.Pope CountyGraham, Alaska:

264

Alaska Power and Telephone Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska

265

Alaska Public Participation in APDES Permitting Process | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska Public

266

Alaska Request for SHPO Section 106 Review | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska

267

Alaska Sample Special Area Permit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

268

Alaska Special Area Permit Application | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

269

City of Atka, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont CityKansas (UtilityAtka, Alaska

270

Alaska Forum on the Environment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| DepartmentBurden RFIAlan Yu About UsAlaska

271

City of Akutan, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATEEnergy LLC Place:Akutan, Alaska

272

Alaska - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy SupplyU.S. Offshore U.S.:Alaska

273

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL OFFICZ ,  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA DEPARTMENT OF

274

Plant community composition and vegetation height, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

2014-04-25T23:59:59.000Z

275

Simulation of Recent Southern Hemisphere Climate Change  

E-Print Network [OSTI]

Simulation of Recent Southern Hemisphere Climate Change Nathan P. Gillett1 * and David W. J. Thompson2 Recent observations indicate that climate change over the high latitudes of the Southern's surface as well. Recent climate change in the Southern Hemi- sphere (SH) is marked by a strengthening

276

Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994  

SciTech Connect (OSTI)

This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

NONE

1995-12-31T23:59:59.000Z

277

The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

2004-07-01T23:59:59.000Z

278

Migration and oil industry employment of north slope Alaska natives. Technical report (Final)  

SciTech Connect (OSTI)

This study has two purposes: To find out why people migrate to and within the North Slope; To find out if working for the oil industry at Prudhoe Bay or Kuparuk makes North Slope Natives more likely to migrate. This is the first study of Alaska Native migration based on interviews of Alaska North Slope Native migrants, of non-Native migrants, and of Alaska North Slope Natives who are oil industry employees. It has two major chapters: one on household migration and the other on oil industry employment. The report is based on interviews conducted in March 1992.

Marshall, D.

1993-01-01T23:59:59.000Z

279

AK Duisburg/ AK Oberhausen  

E-Print Network [OSTI]

Frankfurt Basel Venlo Antwerpen Eindhoven Amsterdam Arnheim Emmerich B 1 Duisburg Essen Gelsenkirchen

Gerwert, Klaus

280

Pick any region of the US from Alaska to Florida to New Mexico, and determine  

E-Print Network [OSTI]

Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

Auerbach, Scott M.

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - alaska science center Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science center Search Powered by Explorit Topic List Advanced Search Sample search results for: alaska science center Page: << < 1 2 3 4 5 > >> 1 UnitDepartment Name Title EMail...

282

Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development  

SciTech Connect (OSTI)

The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

Wiita, Joanne

2013-07-30T23:59:59.000Z

283

The Dropout/Graduation Crisis Among American Indian and Alaska Native Students  

E-Print Network [OSTI]

8th grader, state of Oklahoma 1st place in the 6 th - 8 thCarolina, North Dakota, Oklahoma, Oregon, South Dakota,Student Population Alaska Oklahoma Montana New Mexico South

Faircloth, Susan C.; Tippeconnic, John W. III

2010-01-01T23:59:59.000Z

284

Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms  

E-Print Network [OSTI]

Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

Kaba, Christina Marie

2004-01-01T23:59:59.000Z

285

E-Print Network 3.0 - alaska bering sea Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Figure 1. No groundfish resources erere alloca... -specific.r' Descriptions of other terms employed will be given in later sections. 12;2 ... Source: Alaska Fisheries Science...

286

Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment  

Broader source: Energy.gov [DOE]

Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental Justice Interagency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

287

Alaska: Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages  

Office of Energy Efficiency and Renewable Energy (EERE)

This project is benefiting tribal communities in Alaska with fuel savings, increased revenues to local utilities, reduced heating cost, as well as enabling utilities and customers to control costs.

288

Title 46 Alaska Statutes Section 03.380 Registration of Tanks...  

Open Energy Info (EERE)

Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.380...

289

Title 46 Alaska Statutes Section 03.385 Registration Fee for...  

Open Energy Info (EERE)

Registration Fee for Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska...

290

Weatherization Savings Peak in Alaska: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Alaska demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

291

Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results  

SciTech Connect (OSTI)

The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

None

2013-09-01T23:59:59.000Z

292

Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy  

SciTech Connect (OSTI)

The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

David O. Ogbe; Shirish L. Patil; Doug Reynolds

2005-06-30T23:59:59.000Z

293

Small Wind Electric Systems: An Alaska Consumer's Guide  

SciTech Connect (OSTI)

Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

294

Waveform Relocated Earthquake Catalog for Southern California...  

Open Energy Info (EERE)

in the southern California crust. Hypocenters in the new relocated catalogexhibit tighter spatial clustering of seismicity than does the routinely generated catalog,and the depth...

295

The rhetorical structure of the southern lady: an analysis of the myth of southern womanhood  

E-Print Network [OSTI]

The Rhetorical Structure of the Southern Lady: An Analysis of the Myth of Southern Womanhood. (December 1994) Vonda Ka Givens, B. A. , David Lipscomb University; Chair of Advisory Committee: Dr. Martin J. Medhurst Analysis of the rhetorical structure... These failures prompted southerners to start retreating from debate. As pressure from the North increased in the 1830s, 40s and 50s, southerners began to guard fiercely their position. Protecting their position meant putting a tight rein on education...

Givens, Vonda Ka

1994-01-01T23:59:59.000Z

296

Dear Fellow Columbian, Join alumni and friends in Alaska from June 24-July 1, 2013 on an 8-day exploration of  

E-Print Network [OSTI]

and stunning Sandhill Cranes. · The emergence of Alaska's beautiful wildflowers, such as lupine and fireweed history. After tonight's welcome dinner, we'll visit the famous Alaska Pipeline. Overnight at Pike

Lazar, Aurel A.

297

ASSOCIATE DEAN Southern Saskatchewan Campus and  

E-Print Network [OSTI]

1 ASSOCIATE DEAN Southern Saskatchewan Campus and Advancement of Global Health Strategies POSITION of Nursing, the Associate Dean Southern Saskatchewan Campus and Advancement of Global Health Strategies geographical region of Saskatchewan, the Associate Dean will act as the Dean's designate in operational

Saskatchewan, University of

298

An Alaska fur seal family on St. Paul Island, Pribilof Group, Alaska . (Photo: V.B . Scheffe SEC. STANS REPORTS FAVORABLY ON  

E-Print Network [OSTI]

Pribilof Isl ands off Alaska in the Bering iea on July 8 and 9. He went to observe fur-seal management, I onservation practices, and to review har- esting methods because of recent criticisms. He consulted with 6 CLUSIO S liAs a result of my meetings and my per- sonal review of the situation, II he said, "I can

299

High Tonnage Forest Biomass Production Systems from Southern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This...

300

DOE's Studies of Weekday/Weekend Ozone Pollution in Southern...  

Energy Savers [EERE]

DOE's Studies of WeekdayWeekend Ozone Pollution in Southern California DOE's Studies of WeekdayWeekend Ozone Pollution in Southern California 2002 DEER Conference Presentation:...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville...  

Broader source: Energy.gov (indexed) [DOE]

Southern Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville, AL Case study of the first manufactured home built to the DOE Zero Energy...

302

Alternate Fuel Cell Membranes at the University of Southern Mississipp...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternate Fuel Cell Membranes at the University of Southern Mississippi Alternate Fuel Cell Membranes at the University of Southern Mississippi April 16, 2013 - 12:00am Addthis...

303

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect (OSTI)

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

304

Southern Energy Efficiency Center (SEEC)  

SciTech Connect (OSTI)

The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

2009-09-30T23:59:59.000Z

305

Coccidia (Apicomplexa: Eimeriidae) Infecting Cricetid Rodents from Alaska, U.S.A., and Northeastern Siberia, Russia, and Description of a  

E-Print Network [OSTI]

Siberia, Russia, and Description of a New Eimeria Species from Myodes rutilus, the Northern Red, and 16 species of rodents in Alaska, U.S.A. (NÂĽ1,711), and Siberia, Russia (NÂĽ239) were examined, all from Alaska, 0/5 Erethizon dorsatum had oocysts when examined. In the Muridae, all from Russia, 0

306

Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003  

E-Print Network [OSTI]

Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

Jones, Ian L.

307

401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge  

E-Print Network [OSTI]

Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

Wagner, Diane

308

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network [OSTI]

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

Massachusetts at Amherst, University of

309

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect (OSTI)

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R{sub o} ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally {open_quotes}cool{close_quotes} basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally {open_quotes}cool{close_quotes} basin.

Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1996-12-31T23:59:59.000Z

310

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect (OSTI)

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R[sub o] ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally [open quotes]cool[close quotes] basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally [open quotes]cool[close quotes] basin.

Stricker, G.D.; Flores, R.M. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

311

Biomass District Heat System for Interior Rural Alaska Villages  

SciTech Connect (OSTI)

Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

Wall, William A.; Parker, Charles R.

2014-09-01T23:59:59.000Z

312

A Step Towards Conservation for Interior Alaska Tribes  

SciTech Connect (OSTI)

This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

Kimberly Carlo

2012-07-07T23:59:59.000Z

313

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect (OSTI)

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

314

Options for gas-to-liquids technology in Alaska  

SciTech Connect (OSTI)

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

315

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator Aug 2013 Center for Economic Analysis and Forecasting (CEAF), California  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator Aug 2013 © Center for Economic Analysis and Forecasting (CEAF), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

316

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2013 Center for Economic Analysis and Forecasting (CEAF), Calif  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2013 © Center for Economic Analysis and Forecasting (CEAF), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

317

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2010 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2010 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

318

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2012 Institute for Economic and Environmental Studies (IEES), Califo  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

319

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2012 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

320

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2011 Institute for Economic and Environmental Studies (IEES), Califo  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2011 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

322

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2014 Center for Economic Analysis and Forecasting (CEAF), California  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2014 © Center for Economic Analysis and Forecasting (CEAF), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

323

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2012 Institute for Economic and Environmental Studies (IEES), Cal  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

324

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2011 Institute for Economic and Environmental Studies (IEES), Cal  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

325

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator February 2014 Center for Economic Analysis and Forecasting (CEAF), Calif  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator February 2014 © Center for Economic Analysis and Forecasting (CEAF), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

326

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2014 Center for Economic Analysis and Forecasting (CEAF), Califor  

E-Print Network [OSTI]

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2014 © Center for Economic Analysis and Forecasting (CEAF), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

327

Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)  

Reports and Publications (EIA)

At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

2009-01-01T23:59:59.000Z

328

Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.  

SciTech Connect (OSTI)

The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

1994-04-01T23:59:59.000Z

329

Fall 2012 FUPWG Meeting Welcome: Southern Company  

Broader source: Energy.gov [DOE]

Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Southern Company's retail service territory, financials, customers and sales, power generation, U.S. military projects, and more.

330

The genetic prehistory of southern Africa  

E-Print Network [OSTI]

Southern and eastern African populations that speak non-Bantu languages with click consonants are known to harbour some of the most ancient genetic lineages in humans, but their relationships are poorly understood. Here, ...

Pickrell, Joseph K.

331

Antarctic ice sheet fertilises the Southern Ocean  

E-Print Network [OSTI]

Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial ...

Death, R.

332

The Southern Pacific, 1901-1985  

E-Print Network [OSTI]

and Hawley in Iowa 3 8 San Diego & Arizona Railway 59 Portland, Eugene & Eastern Railway 63 Southern Pacific Company, Pacific System, ca. 1922 85 Inside Gateway 9 Modoc Line 6 El Paso & Southwestern's South western Route 101 Southern Pacific's Arizona... representative date, Espee's steam and electric lines, truck and bus operations, plus its maritime system sprawled across a wide domain from Portland, San Francisco, and Los Angeles on the west, to New Orleans on the south, to Saint Louis in the Heartlands...

Hofsommer, Don L.

2008-10-21T23:59:59.000Z

333

Economics of Alaska North Slope gas utilization options  

SciTech Connect (OSTI)

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

334

Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment  

E-Print Network [OSTI]

This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

Leeftink, Gerrit J.

2001-01-01T23:59:59.000Z

335

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya; Graham, David

336

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya; Graham, David

2013-12-08T23:59:59.000Z

337

Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

Chowdhury, Taniya

2014-03-24T23:59:59.000Z

338

Akiak School 2009 We are a small school in Western Alaska.  

E-Print Network [OSTI]

Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

Pantaleone, Jim

339

Foraging behavior of juvenile steller sea lions in the Gulf of Alaska  

E-Print Network [OSTI]

and locations in the Gulf of Alaska via satellite telemetry. Twelve of the 17 had experienced 1-3 months of temporary captivity. Effects of temporary captivity on endurance, habitat use and development of diving and ranging behavior were tested. Diving...

Schrader, Wendy Jane

2007-09-17T23:59:59.000Z

340

Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska  

E-Print Network [OSTI]

Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel the effects of offshore gravel-island based oil development on the marine environment. As part effects on marine plant life, due to decreased light transmission through the water column. In order

Wood, Stephen L.

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska  

E-Print Network [OSTI]

stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

IngĂłlfsson, Ă?lafur

342

Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora  

E-Print Network [OSTI]

36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

Lummerzheim, Dirk

343

Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000  

E-Print Network [OSTI]

Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

Sites, James R.

344

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska  

Broader source: Energy.gov [DOE]

DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

345

Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell  

E-Print Network [OSTI]

-Gould National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 email: ian, and particulates. To address these issues, Alaska energy representatives are looking to renewable energy technologies to reduce the costs of power production in rural areas, the dependence on imported fuels

Massachusetts at Amherst, University of

346

Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska  

E-Print Network [OSTI]

with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

Bui, Thang Dinh

2005-11-01T23:59:59.000Z

347

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network [OSTI]

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

348

Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

Wilson, Cathy; Newman, Brent; Heikoop, Jeff

349

The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation  

SciTech Connect (OSTI)

An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facility to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.

Dibert, W.A.; Duncan, J.H.; Keaton, D.E.; Smith, M.D. [AK Steel Corp., Middletown, OH (United States)

1994-12-31T23:59:59.000Z

350

SECTION 340 WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA  

E-Print Network [OSTI]

SECTION 340 ­ WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA MODEL AGREEMENT FOR DESIGN ASSISTANCE-Federal interests in southern West Virginia pursuant to Section 340 of the Water Resources Development Act of 1992

US Army Corps of Engineers

351

SECTION 340 WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA  

E-Print Network [OSTI]

SECTION 340 ­ WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA MODEL AGREEMENT FOR DESIGN ASSISTANCE for providing environmental assistance to non-Federal interests in southern West Virginia pursuant to Section

US Army Corps of Engineers

352

SECTION 340 WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA  

E-Print Network [OSTI]

SECTION 340 ­ WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA MODEL AGREEMENT FOR DESIGN-Federal interests in southern West Virginia pursuant to Section 340 of the Water Resources Development Act of 1992

US Army Corps of Engineers

353

SECTION 340 WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA  

E-Print Network [OSTI]

SECTION 340 ­ WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA MODEL AGREEMENT FOR DESIGN to be developed for providing environmental assistance to non-Federal interests in southern West Virginia pursuant

US Army Corps of Engineers

354

SECTION 531 WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY  

E-Print Network [OSTI]

SECTION 531 ­ WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY MODEL AGREEMENT FOR DESIGN in southern and eastern Kentucky pursuant to Section 531 of the Water Resources Development Act of 1996

US Army Corps of Engineers

355

SECTION 531 WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY  

E-Print Network [OSTI]

SECTION 531 ­ WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY MODEL AGREEMENT FOR CONSTRUCTION to be developed for providing environmental assistance to non-Federal interests in southern and eastern Kentucky

US Army Corps of Engineers

356

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

357

Juvenile Largemouth Bass Photo by E. Oberdrster, Southern Methodist University  

E-Print Network [OSTI]

PhytoplanP Juvenile Largemouth Bass Photo by E. Oberdörster, Southern Methodist University...................................................................................................... 20 Small-fish Sampling

358

Southern California Trial Plantings of Eucalyptus1  

E-Print Network [OSTI]

Southern California Trial Plantings of Eucalyptus1 Paul W. Moore2 Following the Arab oil embargo to the Oregon border on the north. E. camaldulensis and its closely allied species E. teretecornis dominated times with 9 trees planted 3 X 3. Spacing was 10' X 10'. Soil San Emigdio Loam. One percent slope

Standiford, Richard B.

359

Georgia Southern University Business and Finance  

E-Print Network [OSTI]

Georgia Southern University Business and Finance Organization Chart 2013-2014 FINAL: September 18, 2013 R:\\Work\\Common\\Org Charts\\Rev2014\\ Business & Finance Produced: Strategic Research & Analysis/KBM President Vice President for Business and Finance Associate Vice President for Finance Associate Vice

Hutcheon, James M.

360

Temperature Change in the Southern Sarah Gille  

E-Print Network [OSTI]

on Impact #12;Southern Ocean data (900 m depth) #12;Autonomous Floats: ALACE and PALACE in the 1990s #12 in the coordinates of the flow #12;Profiling Autonomous Floats: PALACE, and ARGO #12;Stratification changes (from of ACC. Temperature change at 900 m in 50 years: > 2 C. Gille, JPO, 2003 #12;Mechanisms: Changes in wind

Gille, Sarah T.

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Southern Region Water Quality Coordination Project  

E-Print Network [OSTI]

an existing collaborative process through which new and existing technologies and management systems Committee (SRWQPC) promotes the development and delivery of effective management systems that can be adaptedSouthern Region Water Quality Coordination Project September 14, 2004 to June 1, 2005 Progress

362

Determination of marine migratory behavior and its relationship to selected physical traits for least cisco (Coregonus sardinella) of the western Arctic coastal plain, Alaska.  

E-Print Network [OSTI]

??With increased resource development on the western Arctic coastal plain of Alaska (especially within the oil extraction industry) it is important to understand the basic… (more)

Seigle, John C.

2003-01-01T23:59:59.000Z

363

Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten the work season in northern regions. Add  

E-Print Network [OSTI]

Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten and innovative solutions in engineering, construction and operations in cold regions. The partnership between

US Army Corps of Engineers

364

Ornithological surveys in Serrania de 10s Churumbelos, southern Colombia  

E-Print Network [OSTI]

Ornithological surveys in Serrania de 10s Churumbelos, southern Colombia Paul G. W. Salaman, Thomas resultadosindicanfuertementequela Serrania de10sChurumbelosdebeser una prioridadpara la conservaci6n en Colombia, en tanto que. Figure I: Map of Serrania de 10s Churumbelos, southern Colombia. ~ h " eChurumbelos massif of southern

Cuervo, Andrés

365

Three new species of shallow water, yellow zoanthids (Hexacorallia: Zoanthidea: Epizoanthidae) from southern California, USA, and southern Australia  

E-Print Network [OSTI]

In southern California and southern Australia, several species of hexacorals that are common at diving depths have been referred to as “Yellow Zoanthids.” We describe three new species of them in the genus Epizoanthus because all have a macrocnemic...

Phillipp, Nicholas A.; Fautin, Daphne G.

2009-03-30T23:59:59.000Z

366

RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. The DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.

Most, W. A.; Kehrman, R.; Gist, C.; Biedscheid, J.; Devarakonda, J.; Whitworth, J.

2002-02-26T23:59:59.000Z

367

Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 Wind turbines installed in Kwigillingok, Alaska, as part of the Chaninik Wind Group...

368

New southern galaxies with active nuclei  

SciTech Connect (OSTI)

A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

1987-03-01T23:59:59.000Z

369

Southern Pine Based on Biorefinery Center  

SciTech Connect (OSTI)

This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

Ragauskas, Arthur J; Singh, Preet

2014-01-10T23:59:59.000Z

370

Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau and V2612 Oph  

E-Print Network [OSTI]

We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10 and 20%, and in absolute radii between 5 and 10%. All four systems are W UMa type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O-C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

Caliskan, S; Djurasevic, G; Ozavci, I; Basturk, O; Cseki, A; Senavci, H V; Kilicoglu, T; Yilmaz, M; Selam, S O

2014-01-01T23:59:59.000Z

371

Rev. of The Great Lake States and Alaska and Hawaii in Literature, by David Harkness  

E-Print Network [OSTI]

These two pamphlets are part of a series published by the University of Tennessee. Other titles are Literary Profiles of the Southern States, The Southwest and West Coast in Literature, Literary New England, and Literary Mideast ...

Levine, Stuart

1960-01-01T23:59:59.000Z

372

The Potential for Biomass District Energy Production in Port Graham, Alaska  

SciTech Connect (OSTI)

This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

373

Water conservation reserve program alternatives for the southern Ogallala aquifer.  

E-Print Network [OSTI]

??The Ogallala Aquifer is a vast resource underlying parts of eight states. The southern portion of the Ogallala Aquifer is considered to be an exhaustible… (more)

Wheeler, Erin Alexis

2008-01-01T23:59:59.000Z

374

High Tonnage Forest Biomass Production Systems from Southern...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

375

Loess Hills and Southern Iowa Development and Conservation (Iowa)  

Broader source: Energy.gov [DOE]

The Loess Hills Development and Conservation Authority, the Loess Hills Alliance, and the Southern Iowa Development and Conservation Authority are regional organizations with representatives from...

376

Southern Regional Center for Lightweight Innovative Design (SRCLID...  

Broader source: Energy.gov (indexed) [DOE]

Review and Peer Evaluation lm037horstemeyer2011o.pdf More Documents & Publications Magnesium Projects Southern Regional Center for Lightweight Innovative Design (SRCLID) 2011...

377

Southern Regional Center for Lightweight Innovative Design (SRCLID...  

Broader source: Energy.gov (indexed) [DOE]

Peer Evaluation Meeting lm037horstemeyer2012o.pdf More Documents & Publications Magnesium Projects Southern Regional Center for Lightweight Innovative Design (SRCLID) 2011...

378

Comments of the Southern Environmental Law Center and the American...  

Broader source: Energy.gov (indexed) [DOE]

Emergency Order and allow federal and state regulators the discretion to enforce binding air pollution control laws. Comments of the Southern Environmental Law Center and the...

379

EA-1616: National Carbon Research Center Project at Southern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama EA-1616: National Carbon Research Center...

380

Southern Oregon University Highlighted by U.S. Energy Department...  

Office of Environmental Management (EM)

by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting residents and...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Southern Coal finds value in the met market  

SciTech Connect (OSTI)

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

382

Columbus Southern Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)Columbus Electric Coop, Inc Place: NewSouthern

383

ARM - Lesson Plans: Southern Great Plains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid Rain OutreachMovingReason forSouthern

384

Southern Company - Kemper County | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarksonSunShotSouthAprilSouthern

385

Sandia National Laboratories: Southern California Edison Co.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMoltenTowerResearch ChallengeSouthern

386

Sandia National Laboratories: Texas Southern University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCES Sandia Researchers WinTVATest FacilitiesSouthern

387

Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

388

Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1  

SciTech Connect (OSTI)

This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

2014-01-10T23:59:59.000Z

389

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174per ThousandperperAlaska Natural

390

2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCoveredAir ConditionersLamps;40901W WeALASKA

391

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information Alaska

392

20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14Information 20 AAC 25 Alaska Oil

393

Analysis of Cleanup Alternatives and Supplemental Characterization Data, Amchitka Island, Alaska  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.~

394

ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT  

SciTech Connect (OSTI)

The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the community’s rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

POLLIS, REBECCA

2014-10-17T23:59:59.000Z

395

Published by the Arctic Research Consortium of the United States 3535 College Road Suite 101 Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia  

E-Print Network [OSTI]

· Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia Establishedin1994 Columbia Prince George Campus 3333 University Way Prince George, BC V2N 4Z9 Canada 250-960-5555 sderywithconsiderablepublicendorsementandenthusiasm,theUniver- sity of Northern British Columbia (UNBC) has grown into one of Canada's premier

Dery, Stephen

396

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

SciTech Connect (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

397

CANADA-SOUTHERN AFRICA MIGRATION SURVEY INFORMATION What is SAMP?  

E-Print Network [OSTI]

1 CANADA-SOUTHERN AFRICA MIGRATION SURVEY INFORMATION What is SAMP? SAMP is the Southern African people in Canada and in Africa? SAMP recently launched a new migration project, The Diaspora Project come to Canada and do they ever think of going back? What kind of education individuals have obtained

Abolmaesumi, Purang

398

DDT AND ITS METABOLITES IN THE SEDIMENTS OFF SOUTHERN CALIFORNIA  

E-Print Network [OSTI]

DDT AND ITS METABOLITES IN THE SEDIMENTS OFF SOUTHERN CALIFORNIA JOHN S. MACGREGOR1 ABSTRACT To assess the degree of DDT contamination in the marine sediments off Los Angeles, 103 stations in the Pacific Ocean off southern California were sampled in July and August 1971 for DDT and its metabolites

399

aamli southern norway: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aamli southern norway First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Seep mounds on the Southern Vring...

400

Alfalfa Production Guide for the Southern Great Plains  

E-Print Network [OSTI]

Alfalfa Production Guide for the Southern Great Plains Foreward Table of Contents Acknowledgment This circular, Alfalfa Production Guide for the Southern Great Plains (E-826), is available online in PDF of Agricultural Sciences and Natural Resources Oklahoma State University Stillwater, Oklahoma #12;Alfalfa

Mukhtar, Saqib

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

University of Southern California 1 M. Pedram Nov 1997  

E-Print Network [OSTI]

1 University of Southern California 1 © M. Pedram Nov 1997 M. PedramUSC Massoud Pedram University Nov 1997 M. PedramUSC Opportunities for Power Savings System Behavioral RT-Level Logic Physical 5 Minute Speed Error Jan 1998 #12;3 University of Southern California 3 © M. Pedram Nov 1997 M. Pedram

Pedram, Massoud

402

Ordovician chitinozoans and acritarchs from southern and southeastern Turkey  

E-Print Network [OSTI]

Ordovician chitinozoans and acritarchs from southern and southeastern Turkey Chitinozoaires et'Orléans, 45067 Orléans cedex, France d TPAO, Exploration Group, M. Kemal Mah. 06520 Ankara, Turkey e EOST CNRS in southern and southeastern Turkey led to a re-evaluation of the age assignments of formations identified

Paris-Sud XI, Université de

403

ORIGINAL PAPER Chinook salmon invade southern South America  

E-Print Network [OSTI]

ORIGINAL PAPER Chinook salmon invade southern South America Cristia´n Correa � Mart R. Gross We document the invasion of Chinook salmon (Oncorhynchus tshawytscha) to southern South America. This is the first anadromous salmon species to have invaded such a large range in South America, and it raises many

Gross, Mart

404

A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska  

E-Print Network [OSTI]

(Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement Program contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study

Jakob, Christian

405

Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,  

E-Print Network [OSTI]

Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

406

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775-6340  

E-Print Network [OSTI]

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775 AGREEMENT for the Review of Infrastructure, Sustainability and Energy Board Between the Associated Students of Sustainability, Faculty Senate, and Staff Council March 2011 Preamble In order to promote investment in energy

Ickert-Bond, Steffi

407

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

408

E-Print Network 3.0 - altai southern siberia Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Altai Summary: in the southern part of the Altai Republic (south-west Siberia, Russia). The research area represents a complete... in the southern Altai grasslands and are...

409

Indigenous climate knowledge in southern Uganda: the multiple components of a dynamic regional system  

E-Print Network [OSTI]

knowledge in southern Uganda: the multiple components of aAbstract Farmers in southern Uganda seek information toMakerere University, Kampala, Uganda A. Majugu Department of

Orlove, Ben; Roncoli, Carla; Kabugo, Merit; Majugu, Abushen

2010-01-01T23:59:59.000Z

410

E-Print Network 3.0 - activityin southern brazil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 32 Dr. David Kemp Australian Minister of Summary: - Southern StatesThailand - sustainable industry development - Southern StatesBrazil - clean coal power......

411

Mitigating the Social and Environmental Impacts of Multimodal Freight Corridor Operations at Southern California Ports  

E-Print Network [OSTI]

at Southern California Ports. ” Presented at the 11 th WorldFreeway approaching the ports Figure 2. Overviews of Studyat Southern California Ports ABSTRACT The San Pedro Bay

Recker, Will W

2008-01-01T23:59:59.000Z

412

Appraisal Seattle, Renton and Southern Railway Company  

E-Print Network [OSTI]

a i l as 30# , 3 5 # t 5 0 # , 55# , 56# , 6 0 # , 72# and 80# , w h i l e some s p e c i a l work i s 90# . T h e r e may be no 55# r a i l a t a l l and t h e r e may be some 40# r a i l . I f a l l o f t h e 55# were cha r g ed t o 5 6 # , o n... Libraries’ Center for Digital Scholarship. http://kuscholarworks.ku.edu A Civil Engineering thesis of the University of Kansas APPRAISAL BEUTLE REHTON M D SOUTHERN RAILWAY COMPANY i l O C ^ I I N D E X L e t t e r o f T r a n s m i t t a l , H i s t o...

Fletcher, John H.

1913-01-01T23:59:59.000Z

413

A high resolution geophysical investigation of spatial sedimentary processes in a paraglacial turbid outwash fjord: Simpson Bay, Prince William Sound, Alaska  

E-Print Network [OSTI]

Simpson Bay is a turbid, outwash fjord located in northeastern Prince William Sound, Alaska. A high ratio of watershead:basin surface area combined with high precipitation and an easily erodable catchment create high sediment inputs. Fresh water...

Noll, Christian John, IV

2006-04-12T23:59:59.000Z

414

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities  

SciTech Connect (OSTI)

The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

Warwick, William M.

2010-09-30T23:59:59.000Z

415

Distribution of galaxies in the Southern Galactic Cap  

SciTech Connect (OSTI)

Observations in the southern galactic hemisphere in the declination range between -17.5 and 2.5 degrees are combined with other available observation. The data set is used to study the spatial distribution of galaxies of a contiguous area of 3.13 sr of the Southern Galactic Cap. An approximately homogeneous magnitude-limited sample of galaxies in the Southern Galactic Cap is constructed from different catalogs. The resulting large scale structure is similar to that of previous surveys in which bright galaxies are distributed on surfaces which intersect at sharp corners and nearly surround voids that are almost empty of galaxies. 29 refs.

Pellegrini, P.S.; Da Costa, L.N.; Willmer, C.N.A.; Huchra, J.P.; Latham, D.W. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil) Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))

1990-03-01T23:59:59.000Z

416

Jets, mixing, and topography in the Southern Ocean  

E-Print Network [OSTI]

.3 The Southern Ocean in models The Southern Ocean has been represented in models with a range of complexities, from full Earth system models to simple 2D quasi-geostrophic models to 1D flux models. Due to computational restrictions, modern global circulation... models and earth system models are eddy-permitting, rather than eddy-resolving. This requires some parametrisation of eddy activity, as previously mentioned. Lee and Coward (2003) studied the Southern Ocean in the OCCAM model at 1/4? (eddy permitting...

Boland, Emma Joan Douglas

2013-11-12T23:59:59.000Z

417

Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska  

SciTech Connect (OSTI)

Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

2005-09-30T23:59:59.000Z

418

Uranium hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

Results of a hydrogeochemical and stream sediment reconnaissance of the Chandalar NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, may field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

Not Available

1981-09-01T23:59:59.000Z

419

Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska  

SciTech Connect (OSTI)

Secondary porosity caused by chert dissolution is common in the hydrocarbon-producing fluvial facies of the Ivishak Formation (Triassic), North Slope, Alaska. Petrographic observations suggest that macroporosity caused by chert dissolution tends to increase toward the Neocomian unconformity. In the Prudhoe Bay field, a lateral increase in core porosity (from 15% at about 30 km from the unconformity to 30% near the unconformity) and in permeability (from 50 md at about 30 km from the unconformity to 800 md near the unconformity) is evident toward the unconformity. This increase occurs within the fluvial facies (zone 4) of nearly uniform grain size and framework composition (chert litharenite). Major chert dissolution probably took place during the Neocomian uplift when the Ivishak Formation was exposed to acidic meteoric waters in the near-surface environment. 16 figures, 3 tables.

Shanmugam, G.; Higgins, J.B.

1988-05-01T23:59:59.000Z

420

Coal occurrence, quality and resource assessment, National Petroleum Reserve in Alaska  

SciTech Connect (OSTI)

Field studies of the Cretaceous Torok, Kukpowruk, and Corwin Formations in the western portion of the NPRA (National Petroleum Reserve in Alaska) and Cretaceos Torok, Tuktu, Grandstand, and Chandler Formations in the eastern portion of NPRA indicate that two major delta systems are responsible for most of the coal accumulation in this area. The Corwin delta in the western portion was an early Albian to Cenomanian, north and east prograding system, whereas the slightly younger mid-Albian to Cenomanian Umiat delta system prograded north and northeast in the eastern portion. Investigations of the lightologies, fossils, and primary depositional structures of these formations indicate that the Corwin system was deposited as a large, high-constructional, shaped delta on which thick and numerous coals developed on splay and interdistributary bay platforms away from the influence of the Cretaceous epicontinental sea. The Umiat delta started out as a high-constructional system but in time became wave dominated, and its shape changed to lobate.

Stricker, G.D.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Evaluation of water source heat pumps for the Juneau, Alaska Area  

SciTech Connect (OSTI)

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

422

A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska  

SciTech Connect (OSTI)

The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

Fambrough, J.D.; Lane, R.H.; Braden, J.C.

1995-11-01T23:59:59.000Z

423

Uraniam hydrogeochemical and stream sediment reconnaissance of the Wiseman NTMS Quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wiseman NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (198a) into stream sediment samples.

Not Available

1981-09-01T23:59:59.000Z

424

Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

425

Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields  

SciTech Connect (OSTI)

The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

1993-05-01T23:59:59.000Z

426

Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)  

SciTech Connect (OSTI)

Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

2006-06-30T23:59:59.000Z

427

Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska  

SciTech Connect (OSTI)

This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e disposal of contaminated waste. The results of this evaluation will be presented in a subsequent corrective action decision document.

DOE /NV

2001-03-12T23:59:59.000Z

428

(Photograph by Jan Curtis; taken at Fairbanks, Alaska) Prepared by: a good Ph-223 student  

E-Print Network [OSTI]

a magnetosphere. While at the same moment the earth's strongest magnetic area (the North and South pole) attracts, it generates electrical energy. This energy is produced when the magnetic field of the solar wind's charged that appear in the upper and southern region of the Earth's poles. Auroras that appears in the North Pole

La Rosa, Andres H.

429

Southern Hemisphere Additional Ozonesondes (SHADOZ) 19982000 tropical ozone climatology  

E-Print Network [OSTI]

ozone record from Paramaribo, Surinam (6°N, 55°W) (also in SHADOZ) shows a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone (ITCZ). A more

Thompson, Anne

430

Community-dependent Positive Interactions in Southern California Coastal Ecosystems  

E-Print Network [OSTI]

and Coevolution in a kelp canopy community in southernHaxo. 1963. Studies On Giant Kelp, Macrocystis.1. Growth OfNorth Atlantic: effects of kelp substrate. Aquatic Biology

Bryson, Sarah

2012-01-01T23:59:59.000Z

431

Production and analysis of a Southern Ocean state estimate  

E-Print Network [OSTI]

A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence toward the state estimate solution is carried ...

Mazloff, Matthew R

2006-01-01T23:59:59.000Z

432

The biogeochemistry and residual mean circulation of the southern ocean  

E-Print Network [OSTI]

I develop conceptual models of the biogeochemistry and physical circulation of the Southern Ocean in order to study the air-sea fluxes of trace gases and biological productivity and their potential changes over ...

Ito, Takamitsu, 1976-

2005-01-01T23:59:59.000Z

433

High Biomass Low Export Regimes in the Southern Ocean  

E-Print Network [OSTI]

of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

Lam, Phoebe J.; Bishop, James K.B.

2006-01-01T23:59:59.000Z

434

Characterization of maize testing locations in eastern and southern Africa  

E-Print Network [OSTI]

???????..?...?.??. 15 RESULTS AND DISCUSSION ??????????..??. 26 SUMMARY????????????????????... 52 III PHENOTYPIC AND GENETIC ANALYSIS OF MAIZE TESTING EVALUATIONS IN EASTERN AND SOUTHERN AFRICA????????????.?..................................... 94... INTRODUCTION????????????.???..??? 94 REVIEW OF LITERATURE????????..???.??.. 96 MATERIALS AND METHODS???????..?...?.??.. 98 RESULTS AND DISCUSSION ???........................................ 100 SUMMARY??????????????????????. 158 IV...

Maideni, Francis W.

2006-08-16T23:59:59.000Z

435

CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS  

E-Print Network [OSTI]

This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

Baker, Ralph C.

2011-01-11T23:59:59.000Z

436

Observations on the capability of the Criner fault, southern Oklahoma  

E-Print Network [OSTI]

Results of previous investigations have indicated the possibility that recent deformation has occurred on the Criner fault of southern Oklahoma. The Criner fault is located in Carter and Love Counties, Oklahoma, approximately 100 kilometers...

Williamson, Shawn Collin

2012-06-07T23:59:59.000Z

437

auger southern observatory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auger Collaboration intends to extend the energy range of its southern observatory in Argentina for high quality data from 0.1 to 3 EeV. The extensions, described in accompanying...

438

Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon  

E-Print Network [OSTI]

Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon Douglas C ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps

Camara, Gilberto

439

SECTION 340 WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA  

E-Print Network [OSTI]

SECTION 340 ­ WRDA 1992, AS AMENDED SOUTHERN WEST VIRGINIA MODEL AGREEMENT FOR CONSTRUCTION West Virginia pursuant to Section 340 of the Water Resources Development Act of 1992, Public Law 102

US Army Corps of Engineers

440

Southern Power District- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who...

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

University of Southern California Viterbi School of Engineering Cooperative Education  

E-Print Network [OSTI]

University of Southern California Viterbi School of Engineering Cooperative Education Program department will review the co-op report and determine if technical elective credit should be given. Be sure

Wang, Hai

442

SECTION 531 WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY  

E-Print Network [OSTI]

SECTION 531 ­ WRDA 1996, AS AMENDED SOUTHERN AND EASTERN KENTUCKY MODEL AGREEMENT FOR DESIGN and eastern Kentucky pursuant to Section 531 of the Water Resources Development Act of 1996, Public Law 104

US Army Corps of Engineers

443

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

444

Southern Regional Center for Lightweight Innovative Design  

SciTech Connect (OSTI)

The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

None

2012-08-24T23:59:59.000Z

445

Hydrothermal system in Southern Grass Valley, Pershing County, Nevada  

SciTech Connect (OSTI)

Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

1981-01-01T23:59:59.000Z

446

El Nińo Southern Oscillation Variability from 1871-2008  

E-Print Network [OSTI]

EL NI?O SOUTHERN OSCILLATION VARIABILITY FROM 1871-2008 A Dissertation by SULAGNA RAY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR..., Ping Chang Achim Stoessel Ramalingam Saravanan Head of Department, Piers Chapman December 2011 Major Subject: Oceanography iii ABSTRACT El Ni?o Southern Oscillation Variability from 1871-2008. (December 2011) Sulagna Ray, B.S.; M...

Ray, Sulagna

2012-02-14T23:59:59.000Z

447

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-01-01T23:59:59.000Z

448

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-06-01T23:59:59.000Z

449

Southern Nevada Alternative Fuels Demonstration Project  

SciTech Connect (OSTI)

The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this project were related to the economy and the budget cutbacks required during the project duration, which resulted in fewer bus drivers than expected the ultimate shut down of the City’s downtown bus operations.

Hyde, Dan; Fast, Matthew

2009-12-31T23:59:59.000Z

450

Uranium hydrogeochemical and stream sediment reconnaissance of the Survey Pass NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Survey Pass NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

1981-09-01T23:59:59.000Z

451

Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis  

SciTech Connect (OSTI)

This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

Miller, N.S.

1993-01-01T23:59:59.000Z

452

Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska  

SciTech Connect (OSTI)

A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D A; Weaver, C L

1981-01-01T23:59:59.000Z

453

Uranium hydrogeochemical and stream sediment reconnaissance of the Table Mountain NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Table Mountain NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.) [comps.

1981-09-01T23:59:59.000Z

454

Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement  

SciTech Connect (OSTI)

This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

Not Available

1994-09-01T23:59:59.000Z

455

Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

456

Post-Cleanup Communication and Records Plan for Project Chariot, Alaska  

SciTech Connect (OSTI)

The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

None

2005-01-01T23:59:59.000Z

457

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

458

Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

459

Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

460

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities  

SciTech Connect (OSTI)

This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

U.S. Department of Energy, Nevada Operations Office

1999-01-22T23:59:59.000Z

462

Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

1981-09-01T23:59:59.000Z

463

Recurrent Shocks, Poverty Traps and the Degradation of the Social Capital Base of Pastoralism: A Case Study from Southern Ethiopia  

E-Print Network [OSTI]

A Case Study from Southern Ethiopia. Wassie Berhanu AddisCase Study from Southern Ethiopia. CEGA Working Paper SeriesA Case Study from Southern Ethiopia. Journal of Development

Berhanu, Wassie

2009-01-01T23:59:59.000Z

464

Performing Place: Race and Gender in Contemporary Southern U.S. Commemoration  

E-Print Network [OSTI]

"Performing Place: Race and Gender in Contemporary Southern U.S. Commemoration" examines three commemorative events held in the southern U.S. for the ways in which participants enact desired racialized and gendered identities ...

Hopkins, Chandra Owenby

2012-05-31T23:59:59.000Z

465

E-Print Network 3.0 - affected zone southern Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toll Free 1-800-33-NC SUN SOLAR CENTER INFORMATION Summary: through the southern sky, passive solar homes are designed to maxi- mize southern exposure. The house can... it is...

466

E-Print Network 3.0 - abattoir southern ethiopia Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

birds: Spottiswoode Scattered... imminent extinction: without immediate conservation intervention, southern Ethiopia's Liben Lark... of Arero. Until recently, the pantheon of...

467

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

468

Page 1 of 5 Water Governance in Southern Africa  

E-Print Network [OSTI]

Darling Basin, rural water trading, water demand, urban water pricing and management, optimal water allocation Page 1 of 5 Water Governance in Southern Africa: UNESCO Chair in Water Economics and Transboundary Water Governance The ANUUNESCO Chair in Water Economics and Transboundary Water Governance

Botea, Adi

469

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Khosro Godazi Associate Director, Center for Transportation Training and Research, and SWUTC Associate Director for Transportation.S. in City Planning. He is Director of 4-week Texas Summer Transportation Institute that has been held

470

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Lei Yu, Ph.D., P.E. Professor of Transportation and Dean College of Science and Technology, and SWUTC Executive Committee Member and Technology, Industrial Technol- ogy, Mathematics, Physics, and Transportation Studies. He also oversees

471

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Carol Lewis, Ph.D. Director, Center for Transportation Training and Research, and SWUTC Executive Committee Member Texas is an Associate Professor in Transportation Studies and Direc- tor of the Center for Transportation Training

472

Preliminary assessment of hydrocarbon potential in southern Illinois  

SciTech Connect (OSTI)

Hydrocarbon exploration has been sparse south of the Cottage Grove fault system in southern Illinois. Over 240,000 ac in this area are within the Shawnee National Forest (SNF). Upcoming review of mineral exploration policy on SNF land and a recent amendment to the Mineral Leasing Act (1987) will result in release of portions of the SNF for competitive and potentially noncompetitive bidding for mineral exploration tracts in the near future. Preliminary assessment of hydrocarbon potential has been carried out in southern Illinois. Numerous oil shows occur in Paleozoic strata south of the Cottage Grove fault system, which, at present, describes the southern boundary of most oil production in Illinois. Only Mitchellsville oil field in southern Saline County lies south of the Cottage Grove fault system. The Upper Devonian New Albany Shale, though to be the primary source rock for Illinois basin hydrocarbons, underlies most of the area. Older potential source rocks may be present. Depositional trends of prolific oil-productive Mississippian strata in Illinois continue southward through the area. Few drill holes have tested strata older than Mississippian in the area. Complex faulting in the Rough Creek-Shawneetown fault system may have improved the potential for hydrocarbon emplacement and entrapment in this region. Preliminary assessment of hydrocarbon potential indicates that this wildcat region deserves further tests.

Crockett, J.E.; Oltz, D.F. (Illinois State Geological Survey, Champaign (USA))

1989-08-01T23:59:59.000Z

473

Dung survey bias and elephant population estimates in southern Mozambique  

E-Print Network [OSTI]

Dung survey bias and elephant population estimates in southern Mozambique Pieter I. Olivier, Sam M and extracted an age structure from boli diameters for the elephants living in the Maputo Elephant Reserve. Our,672 dung piles encountered on 204 line-transects. The reserve had at least 311 (95% CI: 198­490) elephants

Pretoria, University of

474

INTRODUCTION The massive sulfide deposits of southern Spain  

E-Print Network [OSTI]

INTRODUCTION The massive sulfide deposits of southern Spain and Portugal were formed about 300 Ma). Spain became a Roman province, and mining of the rich deposits of the Iberian pyrite belt for copper, California 94025 A. Palanques Instituto de Ciencias del Mar, 08039 Barcelona, Spain ABSTRACT A metal

van Geen, Alexander

475

Antarctic and Southern Ocean influences on Late Pliocene global cooling  

E-Print Network [OSTI]

, followed by a coastal sea surface temperature cooling of 2.5 °C, a stepwise expansion of sea ice as a 4 °C cooling in deep ocean temperature (3) with 80 m of sea level equivalent ice volumeAntarctic and Southern Ocean influences on Late Pliocene global cooling Robert McKaya,1 , Tim

476

High wind evaluation in the Southern Ocean Xiaojun Yuan  

E-Print Network [OSTI]

1 High wind evaluation in the Southern Ocean Xiaojun Yuan Lamont-Doherty of Earth Observatory based scatterometer instruments provide crucial surface wind measurements with high resolution over winds at high wind bands because these regions host the strongest wind fields at the ocean surface

Khatiwala, Samar

477

Motion and evolution of the Chaochou Fault, Southern Taiwan  

E-Print Network [OSTI]

has been called the Chuchi Transfer Fault Zone (Lacombe et al., 2001). This boundary represents a major change in the character of seismicity in Taiwan. Although the nature of this boundary is not known, it may represent the southern extent of direct...

Hassler, Lauren E.

2005-11-01T23:59:59.000Z

478

Decadal-Scale Temperature Variability in the Southern Ocean  

E-Print Network [OSTI]

Mechanisms · Speculation on Impact #12;Southern Ocean data (900 m depth) #12;Autonomous Floats: ALACE, 2002 #12;Trends in the coordinates of the flow #12;Profiling Autonomous Floats: PALACE, and ARGO #12 fluxes? Hsiung, JPO, 1985 #12;Mechanisms: Changes in wind (NCEP) Zonal mean u #12;Temperature change

Gille, Sarah T.

479

ELECTRONIC ATTACKS Thomas M. Chen, Southern Methodist University  

E-Print Network [OSTI]

1 Chapter 74 ELECTRONIC ATTACKS Thomas M. Chen, Southern Methodist University Matthew C. Elder An understanding of electronic attacks is an essential prerequisite to building strong cyber defenses. This chapter gives an overview of the major electronic attacks encountered today, proceeding through the basic steps

Chen, Thomas M.

480

Diseases of plantation forestry trees in eastern and southern Africa  

E-Print Network [OSTI]

Diseases of plantation forestry trees in eastern and southern Africa J. Roux a*, G. Meke b , B are being allocated to the training of forestry staff andtreeimprovement.Theseefforts,aimedatstrengtheningthe forestry business, also embrace research on pests and diseases that might significantly reduce the value

Note: This page contains sample records for the topic "ak southern alaska" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Landscape wildfire interactions in Southern Europe: implications for landscape management.  

E-Print Network [OSTI]

, Mediterranean, fire regime, climate change. 1. Introduction Every year about 45000 forest fires occur in southern Europe, causing large ecological and socio-economic impacts. Climate and land use changes, snc - 01100 Viterbo, Italy h National Agricultural Research Foundation, Institute of Mediterranean

Boyer, Edmond

482

Professor Sheldon M. Ross1 University of Southern California  

E-Print Network [OSTI]

of the journal Probability in the Engineering and Informational Sciences, a fellow of the Institute Engineering at the University of Southern California. He received his Ph.D. in statistics at Stanford, Simulation, A First Course in Probability, Probability Models for Computer Science and many more titles

Lin, Xiaodong

483

Diagenesis of Miocene arkoses of the southern San Joaquin Valley  

E-Print Network [OSTI]

been described as a submarine-fan complex (Uacpherson, 1978). Ir. the past five or six years, intensi' e hy&!rocaroon exploration has led to the discovery of channelized turbi- dites on tne southern margin of the basin. Upper lL'ocene sands ano...

Brasher, James Everett

1982-01-01T23:59:59.000Z

484

Southern California Clean Energy Technology Acceleration Program Educational Webinars  

E-Print Network [OSTI]

Southern California Clean Energy Technology Acceleration Program Educational Webinars OUR FIRST WEBINAR IS IN ONE WEEK! As a part of the Technology Acceleration Program, applicants will be provided the commercialization of their technologies. These workshops will be presented as Webinars that will, at initial

Talley, Lynne D.

485

Moisture Control in Insulated Raised Floor Systems in Southern Louisiana  

E-Print Network [OSTI]

polyisocyanurate foam, open-cell sprayed polyurethane foams of vary- ing vapor permeance, closed-cell sprayed polyurethane foam, and kraft-faced fiberglass batt insulation. Expected Outcomes This research will result Association Southern Forest Products Association Contact Information Samuel V. Glass USDA Forest Service

486

CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

Margaret Torn

487

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

2001-07-23T23:59:59.000Z

488

The Holocene 13,4 (2003) pp. 581591 Holocene palaeoclimates of southern  

E-Print Network [OSTI]

The Holocene 13,4 (2003) pp. 581­591 Holocene palaeoclimates of southern Patagonia: limnological-age sediment cores from the margin of Lago Cardiel, a 76 m deep, closed-basin lake in southern Patagonia fronts to bring easterly moisture to southern Patagonia, whereas during the late Holocene the stormtracks

Gilli, Adrian

489

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa  

E-Print Network [OSTI]

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

Highwood, Ellie

490

Sodety ofPetroleumEfl@lom I Perhxmance Evaluation of Waterflood Project in Southern  

E-Print Network [OSTI]

, U.S.A., Talex 1S3245 SPEUT. ABSTRACT Granny Creek oil field is located in Southern West Virginia location of Granny Creek oil field in Southern West Virginia. This field is producing from Big Injun OF A WATERFLOOD PROJECT IN SOUTHERN WEST VIRGINIA SPE26937 Layer A is the shallowest of the three

Mohaghegh, Shahab

491

Literature and information related to the natural resources of the North Aleutian Basin of Alaska.  

SciTech Connect (OSTI)

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

2008-01-31T23:59:59.000Z

492

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

493

Uranium hydrogeochemical and stream-sediment reconnaissance of the Wainwright NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Wainwright NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Langfeldt, S.L.; Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr. (comps.)

1982-04-01T23:59:59.000Z

494

Coal in National Petroleum Reserve in Alaska (NPRA): framework geology and resources  

SciTech Connect (OSTI)

The North Slope of Alaska contains huge resources of coal, much of which lies within NPRA. The main coal-bearing units, the Corwin and Chandler Formations of the Nanushuk Group (Lower and Upper Cretaceous), underlie about 20,000 mi/sup 2/ (51,800 km/sup 2/) of NPRA. They contain low-sulfur, low-ash, and probable coking-quality coal in gently dipping beds as thick as 20 ft (6.1 m) within stratigraphic intervals as thick as 4500 ft (1370 m). Lesser coal potential occurs in other Upper Cretaceous units and in Lower Mississippian and Tertiary strata. The river-dominated Corwin and Umiat deltas controlled the distribution of Nanushuk Group coal-forming environments. Most organic deposits formed on delta plains; fewer formed in alluvial plain or delta-front environments. Most NPRA coal beds are expected to be lenticular and irregular, as they probably accumulated in interdistributary basins, infilled bays, or inland flood basins, whereas some blanket beds may have formed on broad, slowly sinking, delta lobes. The major controls of coal rank and degree of deformation were depth of burial and subsequent tectonism. Nanushuk Group coal resources in NPRA are estimated to be as much as 2.75 trillion short tons. This value is the sum of 1.42 trillion short tons of near-surface (< 500 ft or 150 m of overburden) bituminous coal, 1.25 trillion short tons of near-surface subbituminous coal, and 0.08 trillion shorts tons of more deeply buried subbituminous coal. These estimates indicate that the North Slope may contain as much as one-third of the United States coal potential.

Sable, E.G.; Stricker, G.D.

1985-04-01T23:59:59.000Z

495

Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

1982-04-01T23:59:59.000Z

496

Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C. (comps.)

1982-02-01T23:59:59.000Z

497

Uranium hydrogeochemical and stream-sediment reconnaissance of the Chandler Lake NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Chandler Lake NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Hardy, L.C.; D& #x27; Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.)

1982-03-01T23:59:59.000Z

498

Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}  

SciTech Connect (OSTI)

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

2013-03-15T23:59:59.000Z

499

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

260--Addictions: Intervention and Treatment................2 RHS F275--Introduction to Mental Health for Alaska behavioral health care workers. The occupational endorse- ment program directly parallels

Ickert-Bond, Steffi

500

SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES  

SciTech Connect (OSTI)

A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

David O. Ogbe; Tao Zhu

2004-01-01T23:59:59.000Z