National Library of Energy BETA

Sample records for ak mi gom

  1. 2005-gom-jip | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005 GOM JIP The primary objective of the Gulf of Mexico Hydrates Joint Industry Project (JIP) was to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. Other objectives of this project were to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates

  2. 2009-gom-jip | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 GOM JIP DOE-Sponsored Expedition Confirms Resource-Quality Gas Hydrate in the Gulf of Mexico Leg II Initial Scientific Reports Now Available Photo of semi-submersible Helix Project Background Participants The LWD Program Site Summaries Walker Ridge-Block 313 Green Canyon-Block 955 Alaminos Canyon block 21 and East Breaks block 992 Leg II Initial Scientific Reports On May 6, 2009, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL)in collaboration with the U.S.

  3. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi; Ryou, Albert S

    2012-06-01

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  4. Ak Chin Indian Community- 2004 Project

    Broader source: Energy.gov [DOE]

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  5. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  6. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  7. US ENC MI Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on central air conditioning for cooling. 0% 20% 40% 60% 80% 100% US ENC MI OtherNone Propane Electricity Natural Gas MAIN HEATING FUEL USED COOLING EQUIPMENT USED DIVISION:...

  8. AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 20, 2004 2004 L. S. Gold & Associates, Inc. Page 2 October 20, 2004 AK-CHIN ... AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY Project Team * Leonard S. Gold of L. S. ...

  9. Ak-Chin Indian Community - Biomass Feasibiltiy Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 19, 2005 2005 L. S. Gold & Associates, Inc. Page 2 October 19, 2005 AK-CHIN ... * Technical Contact: Leonard Gold, Manager Ak-Chin Energy Services L.S. Gold ...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  20. Project Reports for Ak Chin Indian Community- 2004 Project

    Broader source: Energy.gov [DOE]

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  1. Real-time sub-<mi>>ngstrom...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub-<mi>>ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Kisielowski, Christian; Wang,...

  2. Mi GmbH | Open Energy Information

    Open Energy Info (EERE)

    Mi GmbH Jump to: navigation, search Name: Mi GmbH Place: Switzerland Zip: CH-6340 Sector: Solar Product: Baar-based manufacturer and distributor of fruit juices. The firm is also...

  3. miRNAs in brain development

    SciTech Connect (OSTI)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  4. RAPID/Roadmap/18-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-AK-a) 18AKA - StorageTankRegistration (1).pdf Error creating...

  5. RAPID/Roadmap/14-AK-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-AK-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  6. RAPID/Roadmap/3-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  7. RAPID/Roadmap/17-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap17-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  8. RAPID/Roadmap/8-AK-c | Open Energy Information

    Open Energy Info (EERE)

    8-AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  9. RAPID/Roadmap/3-AK-c | Open Energy Information

    Open Energy Info (EERE)

    AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  10. RAPID/Roadmap/14-AK-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-AK-c) 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not...

  11. RAPID/Roadmap/6-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-AK-b) From DEC...

  12. RAPID/Roadmap/14-AK-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-AK-d) In accordance...

  13. RAPID/Roadmap/15-AK-c | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Title V Operating Permit (15-AK-c) One of the major initiatives...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  16. RAPID/Roadmap/18-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Hazardous Waste Permit (18-AK-b) The Alaska Department of Environmental Conservation defers to the...

  17. DOE - Office of Legacy Management -- Michigan Velsicol Chemical Corp - MI

    Office of Legacy Management (LM)

    03 Michigan Velsicol Chemical Corp - MI 03 FUSRAP Considered Sites Site: MICHIGAN [VELSICOL] CHEMICAL CORP. (MI.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Velsicol Chemical Corp. MI.03-1 Location: St. Louis , Michigan MI.03-2 Evaluation Year: Circa 1987 MI.03-3 Site Operations: Rare earth processing facility. MI.03-2 Site Disposition: Eliminated - No Authority - NRC survey MI.03-3 Radioactive Materials Handled: Yes Primary Radioactive

  18. DOE - Office of Legacy Management -- Star Cutter Corp - MI 15

    Office of Legacy Management (LM)

    Star Cutter Corp - MI 15 FUSRAP Considered Sites Site: STAR CUTTER CORP. (MI.15) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Farmington , Michigan MI.15-1 Evaluation Year: 1991 MI.15-2 Site Operations: Performed a one time uranium slug drilling operation test in 1956. MI.15-3 MI.15-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited scope and quantity of materials handled MI.15-2 Radioactive

  19. Really Off the Grid: Hooper Bay, AK

    Energy Savers [EERE]

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  20. DOE - Office of Legacy Management -- University of Michigan - MI 08

    Office of Legacy Management (LM)

    Michigan - MI 08 FUSRAP Considered Sites Site: UNIVERSITY OF MICHIGAN (MI.08) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Ann Arbor , Michigan MI.08-1 Evaluation Year: 1987 MI.08-2 Site Operations: Conducted research with a supersonic reflectroscope to detect flaws within a metal slug and developed methods for testing the adequacy of coatings which are applied to pieces of uranium metal. MI.08-1 MI.08-3 Site Disposition:

  1. DOE - Office of Legacy Management -- Wolverine Tube Division - MI 05

    Office of Legacy Management (LM)

    Wolverine Tube Division - MI 05 FUSRAP Considered Sites Site: Wolverine Tube Division (MI.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Wolverine Tube Division of Calumet & Hecla Consolidated Copper Co. Star Tool Hermes Automotive Manufacturing Corporation MI.05-1 MI.05-2 Location: 1411 Central Avenue , Detroit , Michigan MI.05-3 Evaluation Year: 1990 MI.05-2 Site Operations: 1943 - Conducted research and development of methods for spinning

  2. DOE - Office of Legacy Management -- Adrian - MI 01

    Office of Legacy Management (LM)

    Adrian - MI 01 FUSRAP Considered Sites Adrian, MI Alternate Name(s): Bridgeport Brass Co. Special Metals Extrusion Plant Bridgeport Brass Company General Motors General Motors Company, Adrian MI.01-1 Location: 1450 East Beecher Street, Adrian, Michigan MI.01-3 Historical Operations: Performed uranium extrusion research and development and metal fabrication work for the AEC using uranium, thorium, and plutonium. MI.01-2 Eligibility Determination: Eligible MI.01-1 Radiological Survey(s):

  3. DOE - Office of Legacy Management -- Carboloy Co - MI 12

    Office of Legacy Management (LM)

    Carboloy Co - MI 12 FUSRAP Considered Sites Site: Carboloy Co. (MI.12 ) Eliminated from further consideration under FUSRAP - AEC licensed facility Designated Name: Not Designated Alternate Name: General Electric MI.12-1 Location: 11177 E. Eight Mile Road , Detroit , Michigan MI.12-1 MI.12-2 Evaluation Year: 1987-1991 MI.12-3 MI.12-4 MI.12-6 Site Operations: Turned-down the outer diameter of uranium metal slugs and conducted pilot plant scale operations for hot pressing uranium dioxide pellets

  4. RAPID/Roadmap/12-AK-a | Open Energy Information

    Open Energy Info (EERE)

    12-AK-a.1 - Will the Project Affect Streams or Other Bodies of Water? The Anadromous Fish Act (AS 16.05.871-.901) requires that an individual or government agency provide prior...

  5. RAPID/Roadmap/6-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of a load upon a highway. Examples of such vehicles are self-propelled cranes, pump trucks, off-road construction equipment or other road maintenance equipment. 6-AK-a.3 -...

  6. RAPID/Roadmap/7-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Us Power Plant Siting Process (7-AK-a) Add text. 07AKAPowerPlantSitingConstruction.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  7. RAPID/Roadmap/3-AK-h | Open Energy Information

    Open Energy Info (EERE)

    Settlement Lands Leasing (3-AK-h) 03AKHAlaskaNativeClaimsSettlementLandsLeasing.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  8. RAPID/Roadmap/13-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-AK-a) 13AKALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  9. RAPID/Roadmap/15-AK-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Assessment Process (15-AK-a) The Clean Air Act is the law that defines the...

  10. RAPID/Roadmap/15-AK-b | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Minor Permit (15-AK-b) The mission of the Air Permit Program is to...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  13. DOE - Office of Legacy Management -- Oliver Corp - MI 11

    Office of Legacy Management (LM)

    Oliver Corp - MI 11 FUSRAP Considered Sites Site: OLIVER CORP. (MI.11 ) Eliminated from further consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: Behnke Warehousing Incorporated MI.11-1 Location: 433 East Michigan Avenue , Battle Creek , Michigan MI.11-1 Evaluation Year: 1986 MI.11-4 Site Operations: Conducted production scale briquetting of green salt and magnesium blend under AEC license Nos. SNM-591, SUB-579, and C-3725. MI.11-1 MI.11-3 Site

  14. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  15. DOE - Office of Legacy Management -- Westinghouse Naval Ordnance - MI 02

    Office of Legacy Management (LM)

    Naval Ordnance - MI 02 FUSRAP Considered Sites Site: WESTINGHOUSE NAVAL ORDNANCE (MI.02 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Detroit , Michigan MI.02-1 Evaluation Year: 1987 MI.02-2 Site Operations: Worked under contract with the Albuquerque Operations Office. No indication that radioactive material was involved under the contract. MI.02-2 Site Disposition: Eliminated - No indication radioactive

  16. DOE - Office of Legacy Management -- Detrex Corp - MI 10

    Office of Legacy Management (LM)

    Detrex Corp - MI 10 FUSRAP Considered Sites Site: Detrex Corp. (MI.10 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Detroit , Michigan MI.10-1 Evaluation Year: 1987 MI.10-2 Site Operations: Conducted experimental runs relative to pickling/degreasing of one handful of uranium turnings MI.10-1 Site Disposition: Eliminated - Potential for contamination considered remote due to small quantity of material handled - There is no

  17. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- <mi>Tmi>c> superconductors

    SciTech Connect (OSTI)

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recently it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the <mi>d>-wave nodal lines (nodal gap) contrasts the common understanding of the <mi>d>-wave pairing symmetry, which challenges the present theories for the high-<mi>Tmi><mi>c>superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-<mi>Tmi><mi>c>superconductors.

  18. Microsoft Word - CCP-AK-LANL-006-Revision 13

    Office of Environmental Management (EM)

    P2010-3583 CCP-AK-LANL-006 Central Characterization Program Acceptable Knowledge Summary Report For LOS ALAMOS NATIONAL LABORATORY TA-55 MIXED TRANSURANIC WASTE WASTE STREAMS: LA-MHD01.001 LA-CIN01.001 LA-MIN02-V.001 LA-MIN04-S.001 Revision 13 February 10, 2014 Mike Ramirez Printed Name APPROVED FOR USE INFORMATION ONLY CCP-AK-LANL-006, Rev. 13 Effective Date: 02/10/2014 CCP Acceptable Knowledge Summary Report Page 2 of 229 RECORD OF REVISION Revision Number Date Approved Description of Revision

  19. Ak-Chin Indian Community Biomass Feasiiblity Study

    SciTech Connect (OSTI)

    Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

    2005-12-31

    Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

  20. Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

  1. DOE - Office of Legacy Management -- Dow Chemical Co - Midland - MI 06

    Office of Legacy Management (LM)

    Midland - MI 06 FUSRAP Considered Sites Site: Dow Chemical Co. - Midland (MI.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Midland , Michigan MI.06-1 Evaluation Year: Circa 1987 MI.06-2 Site Operations: Conducted development work for production of magnesium-thorium alloys. MI.06-1 Site Disposition: Eliminated - AEC licensed site MI.06-1 MI.06-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled:

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions, such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico (GOM) and the offshore Arctic. Development in these areas poses unique technical and operational challenges, as well as distinct environmental and societal concerns. At present, of fshore domestic

  3. DOE - Office of Legacy Management -- General Motors Co - Flint - MI 07

    Office of Legacy Management (LM)

    Motors Co - Flint - MI 07 FUSRAP Considered Sites Site: GENERAL MOTORS CO. (MI.07 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: A.C. Spark Plug Dort Highway Plant MI.07-1 MI.07-2 Location: Flint , Michigan MI.07-1 Evaluation Year: 1987 MI.07-3 Site Operations: Processed thorium oxide, uranium oxide, and beryllium oxide into crucibles for the Chicago Area. MI.07-3 MI.07-4 MI.07-5 Site Disposition: Eliminated - Potential for contamination

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Act (NEPA) process is complete. * Approximately 32 sq. mi. of 3-D, 9- component surface seismic has been shot in the injection region and the data has been...

  5. The Office of Minority Economic Impact (MI) was established in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 ... PART 3 - - MINORITY ECONOMIC IMPACT SEC. 641. MINORITY ECONOMIC IMPACT. "(a) Establishment ...

  6. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  7. MINOS Experiment and NuMI Beam Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuMI-MINOS Neutrino Logo NuMI Beamline and MINOS Experiment Neutrino Logo The MINOS Experiment and NuMI Beamline Fermilab Logo MINOS Experiment Links ◊ MINOS for the Public ◊ Scientific Results ◊ MINOS at Work ◊ NuMI at Work ◊ MINOS+ Experiment Fermilab Neutrino Links ◊ Neutrino FAQ ◊ MINOS Underground Areas at Fermilab ◊ PPD Intensity Frontier Dept Back to - - - ◊ Fermilab at Work ◊ Fermilab Home the MINOS Far Detector in the Soudan Mine MINOS collaborators assembling the

  8. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  9. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect (OSTI)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.

  10. miR-92a family and their target genes in tumorigenesis and metastasis

    SciTech Connect (OSTI)

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  11. Detroit, MI Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  12. Detroit, MI Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  13. DOE - Office of Legacy Management -- Revere Copper and Brass Co - MI 04

    Office of Legacy Management (LM)

    Revere Copper and Brass Co - MI 04 FUSRAP Considered Sites Site: REVERE COPPER AND BRASS CO. ( MI.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Revere Copper and Brass MI.04-1 Location: 5851 West Jefferson Street , Detroit , Michigan MI.04-1 Evaluation Year: 1990 MI.04-2 Site Operations: Extrusion of tuballoy rods, myrnalloy rods and beryllium shapes in the 1940s. MI.04-3 MI.04-4 Site Disposition: Eliminated - Radiation levels below criteria

  14. DOE - Office of Legacy Management -- Baker-Perkins Co - MI 13

    Office of Legacy Management (LM)

    Baker-Perkins Co - MI 13 FUSRAP Considered Sites Site: Baker-Perkins Co (MI 13) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Saginaw , Michigan MI.13-1 Evaluation Year: 1991 MI.13-1 MI.13-2 Site Operations: Small scale oxide mixing demonstrations and testing in May, 1956. MI.13-2 Site Disposition: Eliminated - Potential for contamination remote based on limited scope of activities at the site MI.13-3 Radioactive Materials Handled: Yes

  15. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    Cogen","Petroleum",49092,1984,263 1990,"AK","Industrial Non-Cogen","All ... 1991,"OK","IPP NAICS-22 Cogen","Coal",1984516,4744,7324 1991,"OK","IPP NAICS-22 ...

  16. File:NREL-ak-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search File Edit with form History File:NREL-ak-50m.pdf Jump to: navigation, search File File history File usage Alaska Mainland...

  17. File:NREL-ak2-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    File Edit with form History File:NREL-ak2-50m.pdf Jump to: navigation, search File File history File usage Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Size of...

  18. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center DRAFT DEPARTMENT OF ENERGY 1998 DRILL SITE CHARACTERIZATION REPORT AMCHITKA ISLAND, ALASKA Draft Long-Term

  19. DOE - Office of Legacy Management -- Mitts-Merrel Co - MI 14

    Office of Legacy Management (LM)

    Mitts-Merrel Co - MI 14 FUSRAP Considered Sites Site: MITTS-MERREL CO. (MI.14 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mitts & Merrell Co. MI.14-1 Location: Saginaw , Michigan MI.14-1 Evaluation Year: 1993 MI.14-2 Site Operations: Reduced thorium metal chunks into particle sized pieces on a small test scale during the mid-1950s. MI.14-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantity of

  20. DOE - Office of Legacy Management -- Naval Ordnance Plant - MI 0-03

    Office of Legacy Management (LM)

    Plant - MI 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE PLANT (MI.0-03) Eliminated from further consideration under FUSRAP - Referred to DoD for action Designated Name: Not Designated Alternate Name: None Location: Centerline , Michigan MI.0-03-1 Evaluation Year: 1987 MI.0-03-1 Site Operations: Assembled bomb components. MI.0-03-1 Site Disposition: Eliminated - No Authority - Referred to DoD MI.0-03-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None

  1. DOE - Office of Legacy Management -- Dow-Detroit Edison Project - MI 0-02

    Office of Legacy Management (LM)

    Dow-Detroit Edison Project - MI 0-02 FUSRAP Considered Sites Site: Dow-Detroit Edison Project (MI.0-02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Detroit , Michigan MI.0-02-1 Evaluation Year: 1987 MI.0-02-1 Site Operations: Performed reference design work for a special fast breeder type reactor. MI.0-02-1 Site Disposition: Eliminated - No radioactive material handled at the site MI.0-02-1 Radioactive Materials Handled: No

  2. miRNA-205 affects infiltration and metastasis of breast cancer

    SciTech Connect (OSTI)

    Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xian 710300 ; Liao, Hehe; Deng, Zhiping; Yang, Po; Du, Ning; Zhanng, Yunfeng; Ren, Hong

    2013-11-08

    Highlights: We detected expression of miR-205 in breast cancer cell lines and tissue samples. We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. We suggest the lower expression of miR-205 play a role in breast cancer onset. These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expression level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3? untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.

  3. Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI LNG Exports to All Countries

  4. DOE - Office of Legacy Management -- Amex Specialty Metal Corp - MI 0-01

    Office of Legacy Management (LM)

    Amex Specialty Metal Corp - MI 0-01 FUSRAP Considered Sites Site: Amex Specialty Metal Corp (MI.0-01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Coldwater , Michigan MI.0-01-1 Evaluation Year: 1987 MI.0-01-1 Site Operations: No indication that AMEX performed work for MED or AEC activities. Originally included on FUSRAP list due to fact that AMEX purchased milling equipment from a company that had done uranium milling.

  5. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect (OSTI)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  6. Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.12 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Price

  7. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2

    SciTech Connect (OSTI)

    Fu, Jing; Xu, Xiaojie; Kang, Lei; Zhou, Liying; Wang, Shibin; Lu, Juming; Cheng, Long; Fan, Zhongyi; Yuan, Bin; Tian, Peirong; Zheng, Xiaofei; Yu, Chengze; Ye, Qinong; Lv, Zhaohui

    2014-03-07

    Highlights: miR-30a represses Eya2 expression by binding to the 3?-untranslated region of Eya2. The miR-30a/EYA2 axis regulates breast cancer cell proliferation and migration. The miR-30a/EYA2 axis modulates G1/S cell cycle progression. The miR-30a/EYA2 axis is dysregulated in breast cancer patients. - Abstract: Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3?-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.

  8. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    SciTech Connect (OSTI)

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  9. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1

    SciTech Connect (OSTI)

    Lerner, Mikael; Harada, Masako; Loven, Jakob; Castro, Juan; Davis, Zadie; Oscier, David; Henriksson, Marie; Sangfelt, Olle; Grander, Dan; Corcoran, Martin M.

    2009-10-15

    The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs. Mature miR-15a/miR-16-1 are produced in a Drosha-dependent process from DLEU2 and binding of the Myc oncoprotein to two alterative DLEU2 promoters represses both the host gene transcript and levels of mature miR-15a/miR-16-1. In line with a functional role for DLEU2 in the expression of the microRNAs, the miR-15a/miR-16-1 locus is retained in four CLL cases that delete both promoters of this gene and expression analysis indicates that this leads to functional loss of mature miR-15a/16-1. We additionally show that DLEU2 negatively regulates the G1 Cyclins E1 and D1 through miR-15a/miR-16-1 and provide evidence that these oncoproteins are subject to miR-15a/miR-16-1-mediated repression under normal conditions. We also demonstrate that DLEU2 overexpression blocks cellular proliferation and inhibits the colony-forming ability of tumor cell lines in a miR-15a/miR-16-1-dependent way. Together the data illuminate how inactivation of DLEU2 promotes cell proliferation and tumor progression through functional loss of miR-15a/miR-16-1.

  10. Microfluidic Molecular Assay Platform for the Detection of miRNAs...

    Office of Scientific and Technical Information (OSTI)

    Article: Microfluidic Molecular Assay Platform for the Detection of miRNAs, mRNAs, Proteins, and Post-translational Modifications at Single-cell Resolution. Citation Details...

  11. Groundwater protection for the NuMI project

    SciTech Connect (OSTI)

    Wehmann, A.; Smart, W.; Menary, S.; Hylen, J.; Childress, S.

    1997-10-01

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included.

  12. Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S.

  13. HUD, State of Alaska & AK Regional Housing Authorities: An Energy Efficiency Partnership Success Story

    Office of Environmental Management (EM)

    HUD, STATE OF ALASKA & AK REGIONAL HOUSING AUTHORITIES |AN ENERGY EFFICIENCY PARTNERSHIP SUCCESS STORY April 29, 2014 Presented by: Dan Duame, Executive Director Aleutian Housing Authority 14 RHA's Created in the early 1970's under Title 18 of Alaska Statues Alaska Native Regional Housing Authority Overview Alaska Native Regional Housing Authority Overview Major conduit for federal, state & private affordable housing funding & services 51 NAHASDA Recipients 14 Regional Housing

  14. Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells

    SciTech Connect (OSTI)

    Kim, Byeong-Moo; Choi, Michael Y.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generate mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.

  15. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma

    SciTech Connect (OSTI)

    Zhu, Hongling; Fang, Jin; Zhang, Jichen; Zhao, Zefei; Liu, Lianyong; Wang, Jingnan; Xi, Qian; Gu, Mingjun

    2014-07-18

    Highlights: miR-182 and CHL1 expression patterns are negatively correlated. CHL1 is a direct target of miR-182 in PTC cells. miR-182 suppression inhibits PTC cell growth and invasion. CHL1 is involved in miR-182-mediated cell behavior. - Abstract: In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting of the 3?-untranslated region (3?-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.

  16. miR-128 and its target genes in tumorigenesis and metastasis

    SciTech Connect (OSTI)

    Li, Molin, E-mail: molin_li@hotmail.com [Dalian Medical University, Dalian 116044 (China); Fu, Weiming [Center for Food Safety and Environmental Technology, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458 (China); Wo, Lulu; Shu, Xiaohong [Dalian Medical University, Dalian 116044 (China); Liu, Fang [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China)

    2013-12-10

    MicroRNAs (miRNAs) are a class of endogenous, non-coding, 1824 nucleotide length single-strand RNAs that could modulate gene expression at post-transcriptional level. Previous studies have shown that miR-128 enriched in the brain plays an important role in the development of nervous system and the maintenance of normal physical functions. Aberrant expression of miR-128 has been detected in many types of human tumors and its validated target genes are involved in cancer-related biological processes such as cell proliferation, differentiation and apoptosis. In this review, we will summarize the roles of miR-128 and its target genes in tumorigenesis and metastasis. - Highlights: Aberrant expression of miR-128 can be observed in many kinds of malignant tumors. The molecular mechanisms regulating miR-128 expression are elucidated. Roles of miR-128 and its target genes in tumorigenesis and metastasis are summarized.

  17. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI |

    Energy Savers [EERE]

    Department of Energy Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy efficiency demonstration model while performance testing was conducted. The 2-story, 2,745-ft2 home has 2.5 inches of closed-cell spray foam in the 2x4 wall cavities, plus 1-inch of rigid exterior foam; a

  18. File:USDA-CE-Production-GIFmaps-MI.pdf | Open Energy Information

    Open Energy Info (EERE)

    MI.pdf Jump to: navigation, search File File history File usage Michigan Ethanol Plant Locations Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Full...

  19. 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    .I Y. ,J,.- i - 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNESSEE 37631 July 20, 1984 Ms. Gale P. Turi Division of Remedial Action Projects Office of Nuclear Energy U.S. Department of Energy MS - NE24 Washington, D.C. 20545 Dear Ms. Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to determine if there

  20. Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sault Ste. Marie Tribe of Chippewa Indians, MI Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI The Sault Ste. Marie Tribe of Chippewa Indians is a 44,000-strong federally recognized Indian tribe that is an economic, social and cultural force in its community across the eastern Upper Peninsula counties of Chippewa, Luce, Mackinac, Schoolcraft, Alger, Delta and Marquette, with housing and tribal centers, casinos, and other enterprises that employ

  1. 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09

    U.S. Energy Information Administration (EIA) Indexed Site

    State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",,3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial

  2. 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9

    U.S. Energy Information Administration (EIA) Indexed Site

    "Planned Year","State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9 2014,"AK","Total Electric Power Industry","Hydroelectric",2,1,4.8,4.8 2014,"AK","Total Electric Power

  3. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    SciTech Connect (OSTI)

    Zhang, Jie; Zheng, Fangxia; Yu, Gang; Yin, Yanhua; Lu, Qingyang

    2013-11-01

    Highlights: miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. miR-196a expression elevated proliferation and migration of cervical cancer cells. miR-196a inhibited NTN4 expression by binding 3?-UTR region of NTN4 mRNA. NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 23 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3?-untranslated region (3?-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the functional role of miR-196a in cervical carcinogenesis and suggested a potential use of miR-196a for clinical diagnosis and as a therapeutic target.

  4. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    SciTech Connect (OSTI)

    Chen, Liang; Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 ; Tang, Yanping; Wang, Jian; Yan, Zhongjie; Xu, Ruxiang

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  5. Ionizing RadiationInducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    SciTech Connect (OSTI)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga

    2014-09-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor? (ER?) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ER? was overexpressed in those 2cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ER? in miR-27b expression and the contribution of miR-27b to leukemogenesis. ?-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ER?-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPAR?, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that ?-estradiol/ER? signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor suppressor that inhibits cell proliferation by targeting cyclin A2.

  6. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway

    SciTech Connect (OSTI)

    Zhang, Yu; Wei, Guangkuan; Di, Zhiyong; Zhao, Qingjie

    2014-09-26

    Graphical abstract: - Highlights: • Alcohol upregulates miR-339-5p expression. • miR-339-5p inhibits the NF-kB pathway. • miR-339-5p interacts with and blocks activity of IKK-beat and IKK-epsilon. • miR-339-5p modulates IL-1β, IL-6 and TNF-α. - Abstract: Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitro techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity.

  7. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lambert.pdf More Documents & Publications Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

  8. Port Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Canada (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI Natural Gas Exports to Canad

  9. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy efficiency demonstration...

  10. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    SciTech Connect (OSTI)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. Neogenin was identified as the target gene of miR-18a. Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  11. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer

    SciTech Connect (OSTI)

    Li, Qiaoyan; Zhu, Fufan; Chen, Puxiang

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Both miR-7 and miR-218 down-regulates HoxB3 expression by targeting the 3 Prime -UTR of HoxB3 mRNA. Black-Right-Pointing-Pointer A reverse correlation between the levels of endogenous miR-7, miR218 and HoxB3 expression. Black-Right-Pointing-Pointer Epigenetic changes involve in the reactivation of HoxB3. Black-Right-Pointing-Pointer Both miRNAs inhibits the cell cycle and clone formation of breast cancer cells. -- Abstract: Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.

  12. Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau, and V2612 Oph

    SciTech Connect (OSTI)

    al??kan, ?.; zavc?, ?.; Ba?trk, .; ?enavc?, H. V.; K?l?o?lu, T.; Y?lmaz, M.; Selam, S. O.; Latkovi?, O.; Djuraevi?, G.; Cski, A. E-mail: ozavci@science.ankara.edu.tr E-mail: hvsenavci@ankara.edu.tr E-mail: mesutyilmaz@ankara.edu.tr E-mail: olivia@aob.rs E-mail: attila@aob.rs

    2014-12-01

    We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau, and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10% and 20%, and the precision in absolute radii is between 5% and 10%. All four systems are W UMa-type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

  13. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect (OSTI)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  14. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro

    SciTech Connect (OSTI)

    Deng, Jun; Lei, Wan; Fu, Jian-Chun; Zhang, Ling; Li, Jun-He; Xiong, Jian-Ping

    2014-01-17

    Highlight: MiR-21 plays a significant role in 5-FU resistance. This role might be attributed to targeting of hMSH2 as well as TP and DPD via miR-21 targeted hMSH2. Indirectly targeted TP and DPD to influence 5-FU chemotherapy sensitivity. -- Abstract: 5-Fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for colorectal cancer treatment, but colorectal cancer cells are often resistant to primary or acquired 5-FU therapy. Several studies have shown that miR-21 is significantly elevated in colorectal cancer. This suggests that this miRNA might play a role in this resistance. In this study, we investigated this possibility and the possible mechanism underlying this role. We showed that forced expression of miR-21 significantly inhibited apoptosis, enhanced cell proliferation, invasion, and colony formation ability, promoted G1/S cell cycle transition and increased the resistance of tumor cells to 5-FU and X radiation in HT-29 colon cancer cells. Furthermore, knockdown of miR-21 reversed these effects on HT-29 cells and increased the sensitivity of HT-29/5-FU to 5-FU chemotherapy. Finally, we showed that miR-21 targeted the human mutS homolog2 (hMSH2), and indirectly regulated the expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). These results demonstrate that miR-21 may play an important role in the 5-FU resistance of colon cancer cells.

  15. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    SciTech Connect (OSTI)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young; Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870; BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 ; Lee, Sun Young; Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 ; Bae, Yong Chan; Jung, Jin Sup

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  16. ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION

    Office of Legacy Management (LM)

    t\i,;;; il.,. (' . d ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION August 1,200l Robert Atkin U.S. Department of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, TN 3783 1 SUBJECT: CONTRACT NO. DE-AC05000R22750 FINAL REPORT-VERIFICATION SURVEY OF THE NEW BRUNSWICK LABORATORY SITE, NEW BRUNSWICK, NEW JERSEY Dear Mr. Atkin: The Environmental Survey and Site Assessment Program (ESSAP) of the Oak Ridge Institute for Science and Education (ORISE) conducted verification

  17. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1

    SciTech Connect (OSTI)

    Wu, Huijuan; Xiao, ZhengHua; Wang, Ke; Liu, Wenxin; Hao, Quan

    2013-11-29

    Highlights: MiR-145 is downregulated in human ovarian cancer. MiR-145 targets p70S6K1 and MUC1. p70S6K1 and MUC1 are involved in miR-145 mediated tumor cell growth and cell invasion, respectively. -- Abstract: MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3?UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer.

  18. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect (OSTI)

    Auty, David John

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the precision of {Delta}{bar m}{sub 32}{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23}. Furthermore, it describes a study to determine the gains of the PMTs via the single-photoelectron spectrum. The results were used as a crosscheck of the gains determined at higher intensities by an LED-based light-injection system.

  19. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model Home, Midland, MI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cobblestone Homes 2014 Model Home Midland, MI DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  20. AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT MI54 I See Block 16C I

    National Nuclear Security Administration (NNSA)

    MI54 I See Block 16C I REQ. NO. Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 2. AMENDMENTIMODIFICATION NO. 1 3. EFFECTIVE DATE 1 4. REQUlSlTlONlPURCHASE 1 5. PROJECT NO. (If a ~ ~ l i c a b l e ) l.CoNTRACTIDCODE ~ . . U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 I I 9B. DATED (SEE ITEM 1 1 ) PAGE 1 OF 2 PAGES 6. ISSUED BY CODE 1 7.

  1. ORNL/TM-2012/221 Performance Evaluation of HYCOM-GOM for Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Larsen JC (1991). Transport measurements from in-service undersea telephone cables, J. of Oceanic Eng., 16(4): 313-318. O C E A N C U R R E N T V A L I D A T I O N N E A R Y E T ....

  2. Gas Hydrate Characterization in the GoM using Marine EM Methods

    SciTech Connect (OSTI)

    Steven Constable

    2012-03-31

    In spite of the importance of gas hydrate as a low-carbon fuel, a possible contributor to rapid climate change, and a significant natural hazard, our current understanding about the amount and distribution of submarine gas hydrate is somewhat poor; estimates of total volume vary by at least an order of magnitude, and commercially useful concentrations of hydrate have remained an elusive target. This is largely because conventional geophysical tools have intrinsic limitations in their ability to quantitatively image hydrate. It has long been known from well logs that gas hydrate is resistive compared to the host sediments, and electrical and electromagnetic methods have been proposed and occasionally used to image hydrates. This project seeks to expand our capabilities to use electromagnetic methods to explore for gas hydrate in the marine environment. An important basic science aspect of our work was to quantify the resistivity of pure gas hydrate as a function of temperature at seafloor pressures. We designed, constructed, and tested a highpressure cell in which hydrate could be synthesized and then subjected to electrical conductivity measurements. Impedance spectroscopy at frequencies between 20 Hz and 2 MHz was used to separate the effect of the blocking electrodes from the intrinsic conductivity of the hydrate. We obtained very reproducible results that showed that pure methane hydrate was several times more resistive than the water ice that seeded the synthesis, 20,000 {Ohm}m at 0{degrees}#14;C, and that the activation energy is 30.6 kJ/mol over the temperature range of -15 to 15{degrees}#14;C. Adding silica sand to the hydrate, however, showed that the addition of the extra phase caused the conductivity of the assemblage to increase in a counterintuitive way. The fact that the increased conductivity collapsed after a percolation threshold was reached, and that the addition of glass beads does not produce a similar increase in conductivity, together suggest that while the surface of the gas hydrate grains are not intrinsically conductive, the presence of sand does increase their conductivity. In the field component of this project, we carried out an 18day cruise on the R.V. Roger Revelle in the Gulf of Mexico from 7th-??26th October 2008 to collect controlled-source electromagnetic (CSEM) data over four hydrate prospects; blocks AC 818, WR 313, GC 955, and MC 118. During these surveys we deployed 30 ocean bottom electromagnetic (OBEM) recorders a total of 94 times at four survey areas and towed the Scripps Undersea Electromagnetic Source Instrument (SUESI) a total of 103 hours. SUESI transmission was 200 A on a 50 m dipole antenna at heights of 70-100 m above the seafloor. We also towed a neutrally buoyant 3-axis electric field recorder behind the SUESI antenna at a constant offset of 300 m. The use of a towed receiver that is "flown" above the seafloor allowed us to operate in areas where seafloor infrastructure such as wellheads, pipelines, and installed scientific equipment existed. We reduced the data to apparent resistivity psuedosections. The most compelling results come from the hydrate observatory at MC 118, where a localized resistivity anomaly is clearly identified under the southeast crater in an otherwise uniform 1 {Ohm}m background. The data from MC 118 also show that authigenic carbonate does not necessarily express itself as a confounding resistor, as was feared at the start of this project. While the results from the other prospects are much more complicated, the data are well correlated with known geology, and line to line agreement is good. Although these data are not amenable to 1D inversion as was initially hoped, we expect to use a newly developed 2D CSEM inversion code to continue to get useful information from this rich data set.

  3. ORNL/TM-2012/221 Performance Evaluation of HYCOM-GOM for Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HYCOM simulations of historical ocean currents over a given period of record generate a spatially distributed three-dimensional representation of daily averaged horizontal current ...

  4. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    SciTech Connect (OSTI)

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  5. miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2

    SciTech Connect (OSTI)

    Zhou, Jing; Tian, Ye; Li, Juan; Lu, Binbin; Sun, Ming; Zou, Yanfen; Kong, Rong; Luo, Yanhong; Shi, Yongguo; Wang, Keming; Ji, Guozhong

    2013-04-05

    Highlights: ? miR-206 was downexpressed in tumor samples compared with matched normal samples. ? Enhanced expression of miR-206 could inhibit breast cancer growth in vitro. ? Luciferase confirmed miR-206 functions as an anti-oncogene by targeting cyclinD2. ? A reverse correlation between miR-206 and cyclinD2 in breast cancer was found. -- Abstract: MicroRNAs act as important gene regulators in human genomes, and their aberrant expression is linked to many malignancies. Aberrant expression of miR-206 has been frequently reported in cancer studies; however, the role and mechanism of its function in breast cancer remains unclear. Quantitative real-time PCR was performed to detect the relative expression levels of miR-206 in breast cancer and normal breast tissues. Lower expression of miR-206 in breast cancer tissues was associated with larger tumour size and a more advanced clinical stage. Further in vitro observations showed that the enforced expression of miR-206 in MCF-7 breast cancer cells inhibited cell growth by blocking the G1/S transition and suppressed cell proliferation and colony formation, implying that miR-206 functions as a tumour suppressor in the progression of breast cancer. Interestingly, Luciferase assays first revealed that miR-206 inhibited cyclinD2 expression by targeting two binding sites in the 3?-untranslated region of cyclinD2 mRNA. qRT-PCR and Western blot assays verified that miR-206 reduced cyclinD2 expression at both the mRNA and protein levels. A reverse correlation between miR-206 and cyclinD2 expression was noted in breast cancer tissues. Altogether, our results identify a crucial tumour suppressive role of miR-206 in the progression of breast cancer, at least partly via up-regulation of the expression of cyclinD2, and suggest that miR-206 might be a candidate prognostic predictor or an anticancer therapeutic target for breast cancer patients.

  6. Validation of the MCNPX-PoliMi Code to Design a Fast-Neutron Multiplicity Counter

    SciTech Connect (OSTI)

    J. L. Dolan; A. C. Kaplan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2012-07-01

    Many safeguards measurement systems used at nuclear facilities, both domestically and internationally, rely on He-3 detectors and well established mathematical equations to interpret coincidence and multiplicity-type measurements for verifying quantities of special nuclear material. Due to resource shortages alternatives to these existing He-3 based systems are being sought. Work is also underway to broaden the capabilities of these types of measurement systems in order to improve current multiplicity analysis techniques. As a part of a Material Protection, Accounting, and Control Technology (MPACT) project within the U.S. Department of Energy's Fuel Cycle Technology Program we are designing a fast-neutron multiplicity counter with organic liquid scintillators to quantify important quantities such as plutonium mass. We are also examining the potential benefits of using fast-neutron detectors for multiplicity analysis of advanced fuels in comparison with He-3 detectors and testing the performance of such designs. The designs are being developed and optimized using the MCNPX-PoliMi transport code to study detector response. In the full paper, we will discuss validation measurements used to justify the use of the MCNPX-PoliMi code paired with the MPPost multiplicity routine to design a fast neutron multiplicity counter with liquid scintillators. This multiplicity counter will be designed with the end goal of safeguarding advanced nuclear fuels. With improved timing qualities associated with liquid scintillation detectors, we can design a system that is less limited by nuclear materials of high activities. Initial testing of the designed system with nuclear fuels will take place at Idaho National Laboratory in a later stage of this collaboration.

  7. T-1025 IU SciBath-768 detector tests in MI-12

    SciTech Connect (OSTI)

    Tayloe, Rex; Cooper, R.; Garrison, L.; Thornton, T.; Rebenitsch, L.; DeJongh, Fritz; Loer, Benjamin; Ramberg, Erik; Yoo, Jonghee; /Fermilab

    2012-02-11

    This is a memorandum of understanding between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Department of Physics and Center for Exploration of Energy and Matter, Indiana University, who have committed to participate in detector tests to be carried out during the 2012 Fermilab Neutrino program. The memorandum is intended solely for the purpose of recording expectations for budget estimates and work allocations for Fermilab, the funding agencies and the participating institutions. it reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this memorandum to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. The experimenters propsoe to test their prototype 'SciBat-768' detector in the MI-12 building for 3 months (February-April) in Spring 2012. The major goal of this effort is to measure or limit the flux of beam-induced neutrons in a far-off-axis (> 45{sup o}) location of the Booster Neutrino Beamline (BNB). This flux is of interest for a proposed coherent neutral-current neutrino-argon elastic scattering experiment. A second goal is to collect more test data for the SciBath-768 to enable better understanding and calibration of the device. The SciBath-768 detector successfully ran for 3 months in the MINOS Underground Area in Fall 2011 as testbeam experiment T-1014 and is currently running above ground in the MINOS service building. For the run proposed here, the experiments are requesting: space in MI-12 in which to run the SciBath detector during February-April 2012 while the BNB is operating; technical support to help with moving the equipment on site; access to power, internet, and accelerator signals; and a small office space from which to run and monitor the experiment.

  8. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    SciTech Connect (OSTI)

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to schedule delays, inefficiencies, and corrective actions. The Working Group discussions emphasized that early planning and up-front appreciation of the problems ahead are very important for minimizing the cost and for the greatest success of any such project. Perhaps part of the project approval process should re-enforce this need. The cost of all this up-front work is now reflected in the DOE cost of any project we do. If we are being held to an upper limit on the project cost, the only thing available for compromise is the eventual project scope.

  9. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)

  11. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    SciTech Connect (OSTI)

    Gomez de Castro, Ana Ines; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  12. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Tremblay, Julien [DOE JGI

    2013-01-25

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  13. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L.; et al

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstratemore » reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.« less

  14. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    SciTech Connect (OSTI)

    El Tayebi, H.M.; Omar, K.; Hegy, S.; El Maghrabi, M.; El Brolosy, M.; Hosny, K.A.; Esmat, G.; Abdelaziz, A.I.

    2013-05-10

    Highlights: The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In this study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.

  15. Resonances in Coupled <mimi><mi>Kmi>-<mi>ηK> Scattering from Quantum Chromodynamics

    SciTech Connect (OSTI)

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  16. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    SciTech Connect (OSTI)

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.

  17. Microfluidic Molecular Assay Platform for the Detection of miRNAs, mRNAs, Proteins, and Posttranslational Modifications at Single-Cell Resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    Cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, andmoreflow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cells physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.less

  18. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less

  19. Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

    SciTech Connect (OSTI)

    James Wood; William Quinlan

    2008-09-30

    The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.

  20. 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0

    U.S. Energy Information Administration (EIA) Indexed Site

    STATE_CODE","UTILITY_ID","UTILNAME","RESIDENTIAL_GPREVENUES","COMMERCIAL_GPREVENUES","INDUSTRIAL_GPREVENUES","TRANS_GPREVENUES","TOTAL_GPREVENUES","RESIDENTIAL_GPGENERATION","COMMERCIAL_GPGENERATION","INDUSTRIAL_GPGENERATION","TRANS_GPGENERATION","TOTAL_GPGENERATION","RESIDENTIAL_GPCUSTOMERS","COMMERCIAL_GPCUSTOMERS","INDUSTRIAL_GPCUSTOMERS","TRANS_GPCUSTOMERS","TOTAL_GPCUSTOMERS" 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0 2013,1,"AL",195,"Alabama Power Co",2.507,0.063,,,2.57,55.7,1.4,,,57.1,628,12,,,640 2013,1,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,1,"AL",6422,"City of Florence - (AL)",0.368,0,0,0,0.368,13.8,0,0,0,13.8,50,0,0,0,50 2013,1,"AL",9094,"City of Huntsville - (AL)",8.632,1.64,0,0,10.272,323.7,61.5,0,0,385.2,1022,4,0,0,1026 2013,1,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,1,"AR",14063,"Oklahoma Gas & Electric Co",0.314,0.222,0.029,0,0.565,86.294,63.454,8.333,0,158.081,88,1,1,0,90 2013,1,"AZ",803,"Arizona Public Service Co",8.198,35.475,,,43.673,2049.62,8868.77,,,10918.39,2739,85,,,2824 2013,1,"AZ",16572,"Salt River Project",,5.429,,,5.429,,502,,,502,,8,,,8 2013,1,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,1,"AZ",19728,"UNS Electric, Inc",1.471,0.077,,,1.548,44.83,2.74,,,47.57,248,7,,,255 2013,1,"AZ",24211,"Tucson Electric Power Co",18.123,2.247,0.399,,20.769,657.86,173.23,5.3,,836.39,2619,62,2,,2683 2013,1,"CA",11208,"Los Angeles Department of Water & Power",64.746,109.462,0.47,,174.678,2158.218,3648.722,15.676,,5822.616,16536,614,28,,17178 2013,1,"CA",12745,"Modesto Irrigation District",0.122,,,,0.122,0.639,,,,0.639,1,,,,1 2013,1,"CA",14328,"Pacific Gas & Electric Co",0,0,0,0,0,0,0,0,0,0,0,0,0,,0 2013,1,"CA",14354,"PacifiCorp",5.272,0.451,0.016,0,5.739,274.699,23.147,0.8,0,298.646,1223,38,2,0,1263 2013,1,"CA",14534,"City of Pasadena - (CA)",16.888,14.845,0,0,31.733,675.458,593.795,0,0,1269.253,1043,53,0,0,1096 2013,1,"CA",16534,"Sacramento Municipal Util Dist",219.094,7.646,63.401,,290.141,33465.982,771.746,7565.049,,41802.777,53171,1423,646,,55240 2013,1,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"CA",18260,"Surprise Valley Electrificatio",0.045,0,0,0,0.045,1.8,0,0,0,1.8,9,0,0,0,9 2013,1,"CA",19281,"Turlock Irrigation District",0.015,,0.122,,0.137,2.99,,24.36,,27.35,6,,1,,7 2013,1,"CO",3989,"City of Colorado Springs - (CO)",2.513,0.654,,,3.167,235.6,33.8,,,269.4,743,16,,,759 2013,1,"CO",6604,"City of Fort Collins - (CO)",19.565,9.057,11.83,0,40.452,858.504,397.43,587.373,0,1843.307,1257,95,3,0,1355 2013,1,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,29,,,,29,43,,,,43 2013,1,"CO",12866,"Moon Lake Electric Assn Inc",0.036,,,,0.036,1.92,,,,1.92,4,,,,4 2013,1,"CO",15257,"Poudre Valley R E A, Inc",0.436,0.036,1.399,0,1.871,484.511,40.533,1554.178,0,2079.222,636,17,1,0,654 2013,1,"CO",15466,"Public Service Co of Colorado",277.472,142.981,,,420.453,12851.359,6623.167,,,19474.526,29441,788,,,30229 2013,1,"CO",16603,"San Luis Valley R E C, Inc",0.3,0.06,0.604,,0.964,75.1,15,151,,241.1,175,5,2,,182 2013,1,"CO",19499,"United Power, Inc",0.47,0.05,1.43,,1.95,527,50.4,1586.8,,2164.2,357,6,8,,371 2013,1,"CT",4176,"Connecticut Light & Power Co",181.909,23.844,0.747,0,206.5,19710.744,2410.9,75.421,0,22197.065,21408,371,7,0,21786 2013,1,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,1,"CT",19497,"United Illuminating Co",41.54,,,,41.54,4237.62,,,,4237.62,5933,,,,5933 2013,1,"CT",20038,"Town of Wallingford - (CT)",1.688,0.113,0,0,1.801,153.447,10.274,0,0,163.721,230,4,0,0,234 2013,1,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,1,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,1,"FL",18454,"Tampa Electric Co",13.23,2.89,0,0,16.12,529.2,115.6,0,0,644.8,2215,28,0,0,2243 2013,1,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"GA",3916,"Cobb Electric Membership Corp",1.029,0.026,0.443,,1.498,30.881,0.765,13.3,,44.946,151,3,1,,155 2013,1,"GA",7140,"Georgia Power Co",27.42,16.46,22.46,,66.34,670,1430,2346,,4446,4107,44,6,,4157 2013,1,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.646,0,3.003,76.05,3,25.84,0,104.89,507,2,2,0,511 2013,1,"IA",9417,"Interstate Power and Light Co",45.4,2.9,,,48.3,5570.9,144.7,,,5715.6,6107,568,,,6675 2013,1,"ID",9191,"Idaho Power Co",10.229,5.453,0.017,,15.699,1203,642,2,,1847,2034,67,2,,2103 2013,1,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.006,,,,9.006,23,,,,23 2013,1,"ID",14354,"PacifiCorp",4.106,0.431,0.002,0,4.539,211.627,23.68,0.1,0,235.407,1167,27,1,0,1195 2013,1,"ID",20169,"Avista Corp",3.747,0.748,0,0,4.495,1124.1,224.4,0,0,1348.5,965,40,0,0,1005 2013,1,"IN",9273,"Indianapolis Power & Light Co",6.442,0.571,14.835,,21.848,4294.886,380.52,9890.167,,14565.573,4170,129,24,,4323 2013,1,"IN",15470,"Duke Energy Indiana Inc",8.128,,,,8.128,406.5,,,,406.5,1309,,,,1309 2013,1,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,35,,,,35 2013,1,"KS",22500,"Westar Energy Inc",0.12,0.022,1.1,0,1.242,12,2.2,110,,124.2,37,1,1,,39 2013,1,"KY",10171,"Kentucky Utilities Co",2.69,0.085,0.004,0,2.779,795,25,1,0,821,536,18,1,0,555 2013,1,"KY",11249,"Louisville Gas & Electric Co",4.55,0.12,0,0,4.67,1330,38,0,0,1368,926,11,0,0,937 2013,1,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,1,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,,,0.542,19.6,0.1,,,19.7,172,1,,,173 2013,1,"KY",19446,"Duke Energy Kentucky",0.507,,,,0.507,47.6,,,,47.6,116,,,,116 2013,1,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,1,"MA",11804,"Massachusetts Electric Co",74.761,2.618,0.018,0,77.397,3332.112,103.699,0.717,0,3436.528,5179,199,3,0,5381 2013,1,"MA",13206,"Nantucket Electric Co",0.342,0.243,0,0,0.585,13.526,9.159,0,0,22.685,31,8,0,0,39 2013,1,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.858,,,,10.858,36,,,,36 2013,1,"MI",4254,"Consumers Energy Co",41,14,7,,62,41,1817,88,,1946,14389,114,3,,14506 2013,1,"MI",5109,"The DTE Electric Company",97,5,18,0,120,4283,225,887,0,5395,23341,113,25,0,23479 2013,1,"MI",10704,"City of Lansing - (MI)",2.922,0.818,0.007,0,3.747,97.5,27.25,0.25,0,125,390,109,1,0,500 2013,1,"MI",13780,"Northern States Power Co",0.091,,,,0.091,7.595,,,,7.595,15,,,,15 2013,1,"MI",19578,"Upper Peninsula Power Co",0.613,0,0,0,0.613,25.55,0,0,0,25.55,119,0,0,0,119 2013,1,"MI",20847,"Wisconsin Electric Power Co",2.14,0.091,0,0,2.231,71,3,0,0,74,275,5,0,0,280 2013,1,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,0,0,0.078,4.7,0.3,0,0,5,17,1,0,0,18 2013,1,"MN",689,"Connexus Energy",1.807,0.092,5.968,0,7.867,371.7,15,978.296,0,1364.996,471,3,1,0,475 2013,1,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,1,"MN",9417,"Interstate Power and Light Co",4.2,0.1,,,4.3,556.5,5.3,,,561.8,549,55,,,604 2013,1,"MN",12647,"Minnesota Power Inc",2.843,0.608,,,3.451,113.7,22.3,,,136,618,16,,,634 2013,1,"MN",13781,"Northern States Power Co - Minnesota",299.015,244.218,,,543.233,8470.68,6918.365,,,15389.045,20885,240,,,21125 2013,1,"MN",14232,"Otter Tail Power Co",0.767,1.078,0,0,1.845,59,82.9,0,0,141.9,263,32,0,0,295 2013,1,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.042,18.417,0,0,65.459,66,1,0,0,67 2013,1,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,8.149,,,8.483,33.4,814.9,,,848.3,79,1,,,80 2013,1,"MN",25177,"Dakota Electric Association",2.238,0.059,1.557,,3.854,559.5,14.8,389.2,,963.5,1365,82,22,,1469 2013,1,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,,,0.978,37.7,1.4,,,39.1,142,2,,,144 2013,1,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",17833,"City Utilities of Springfield - (MO)",0.842,0.13,0,0,0.972,35.7,7.9,0,0,43.6,149,8,0,0,157 2013,1,"MO",19436,"Union Electric Co - (MO)",71.2,,,,71.2,4748,,,,4748,6868,,,,6868 2013,1,"MS",6641,"4-County Electric Power Assn",0.204,0,0,0,0.204,7.65,0,0,0,7.65,25,0,0,0,25 2013,1,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,1,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,1,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,1,"MT",12825,"NorthWestern Energy LLC - (MT)",1.952,3.266,0,0,5.218,97.6,163.3,0,0,260.9,307,19,0,0,326 2013,1,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,1,"NC",3046,"Progress Energy Carolinas Inc",19.469,0.904,0.096,,20.469,486.729,36.16,3.84,,526.729,3298,83,2,,3383 2013,1,"NC",5416,"Duke Energy Carolinas, LLC",32.928,8.54,,,41.468,823.2,213.5,,,1036.7,5901,179,,,6080 2013,1,"NC",6235,"Public Works Comm-City of Fayetteville",0.308,0,0,0,0.308,7.7,0,0,0,7.7,57,0,0,0,57 2013,1,"NC",9837,"Jones-Onslow Elec Member Corp",0.196,,,,0.196,4.9,,,,4.9,49,,,,49 2013,1,"NC",16496,"Rutherford Elec Member Corp",0.14,,,,0.14,3.5,,,,3.5,24,,,,24 2013,1,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,1,"ND",12087,"McKenzie Electric Coop Inc",0.001,,,,0.001,0.1,,,,0.1,1,,,,1 2013,1,"ND",14232,"Otter Tail Power Co",0.511,0.12,0,0,0.631,39.321,9.2,0,0,48.521,195,14,0,0,209 2013,1,"NH",13441,"New Hampshire Elec Coop Inc",1.689,0.057,0,0,1.746,56.3,1.9,0,0,58.2,236,7,0,0,243 2013,1,"NH",15472,"Public Service Co of NH",2.406,0.47,0.105,0,2.981,101.332,46.972,3.798,0,152.102,158,9,2,0,169 2013,1,"NH",24590,"Unitil Energy Systems",0.463,0.004,0,0,0.467,14.438,0.065,0,0,14.503,25,1,0,0,26 2013,1,"NH",26510,"Granite State Electric Co",1.135,0.074,,,1.209,29.382,2.324,,,31.706,103,7,,,110 2013,1,"NJ",963,"Atlantic City Electric Co",6.266,1.458,0,0,7.724,477.501,79.252,0,0,556.753,771,12,0,0,783 2013,1,"NJ",16213,"Rockland Electric Co",1.784,0.006,0,0,1.79,131.281,0.667,0,0,131.948,119,1,0,0,120 2013,1,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,62,15,0,0,77 2013,1,"NM",6204,"City of Farmington - (NM)",0.035,0,0,0,0.035,1.9,0,0,0,1.9,6,0,0,0,6 2013,1,"NM",11204,"Los Alamos County",0.885,0.052,,,0.937,157.6,11.039,,,168.639,3333,10,,,3343 2013,1,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,0,27.759,5172.37,1166.87,269.91,0,6609.15,12248,464,3,0,12715 2013,1,"NM",17718,"Southwestern Public Service Co",12.153,1.439,,,13.592,405.088,47.982,,,453.07,827,91,,,918 2013,1,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,1,"NY",11171,"Long Island Power Authority",11.169,1.617,,,12.786,409,587,,,996,540,140,,,680 2013,1,"NY",13511,"New York State Elec & Gas Corp",100.211,4.478,1.008,,105.697,4048,213,47,,4308,14873,255,6,,15134 2013,1,"NY",13573,"Niagara Mohawk Power Corp.",103.04,2.12,1.06,0,106.22,5970,123,62,0,6155,8045,166,83,0,8294 2013,1,"NY",16183,"Rochester Gas & Electric Corp",37.822,0.735,,,38.557,1535.1,40.692,,,1575.792,5567,73,,,5640 2013,1,"OH",3542,"Duke Energy Ohio Inc",2.756,,,,2.756,275.6,,,,275.6,634,,,,634 2013,1,"OH",14006,"Ohio Power Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OK",7490,"Grand River Dam Authority",0,0,54.776,,54.776,0,0,13694,,13694,0,0,1,,1 2013,1,"OK",13734,"Northeast Oklahoma Electric Co",0.218,0.004,0,0,0.222,26.6,0.5,0,0,27.1,152,3,0,0,155 2013,1,"OK",14062,"Oklahoma Electric Coop Inc",0.824,0,0,0,0.824,164.9,0,0,0,164.9,1649,0,0,0,1649 2013,1,"OK",14063,"Oklahoma Gas & Electric Co",171.747,317.054,16.633,0,505.434,7733.377,19106.41,1935.612,0,28775.399,9681,837,38,0,10556 2013,1,"OK",15474,"Public Service Co of Oklahoma",15.434,0.336,0,0,15.77,457.587,9.634,0,0,467.221,673,8,0,0,681 2013,1,"OR",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OR",6022,"City of Eugene - (OR)",23.141,12.428,0,0,35.569,2226,1153,0,0,3379,2443,246,0,0,2689 2013,1,"OR",9191,"Idaho Power Co",0.093,,,,0.093,11,,,,11,18,,,,18 2013,1,"OR",14354,"PacifiCorp",408.297,81.386,27.237,0,516.92,35002.862,8816.17,3558.931,0,47377.963,41305,1371,65,0,42741 2013,1,"OR",15248,"Portland General Electric Co",806.261,27.751,101.307,0,935.319,76384.997,2622.585,5959.253,0,84966.835,85894,1947,145,0,87986 2013,1,"OR",40437,"Emerald People's Utility Dist",12.284,6.469,0,0,18.753,1535.477,808.62,0,0,2344.097,34,34,0,0,68 2013,1,"PA",14715,"PPL Electric Utilities Corp",2.59,,,,2.59,103.7,,,,103.7,335,,,,335 2013,1,"PA",14940,"PECO Energy Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"RI",13214,"The Narragansett Electric Co",60.105,1.484,0.044,0,61.633,2596.708,58.236,1.626,0,2656.57,4021,102,1,0,4124 2013,1,"SC",1613,"Berkeley Electric Coop Inc",1.317,0.03,0,0,1.347,43.9,0.439,0,0,44.339,333,4,,,337 2013,1,"SC",3046,"Progress Energy Carolinas Inc",0.229,0.028,,,0.257,5.723,1.12,,,6.843,47,2,,,49 2013,1,"SC",5416,"Duke Energy Carolinas, LLC",0.596,0.004,,,0.6,14.9,0.1,,,15,110,1,,,111 2013,1,"SC",14398,"Palmetto Electric Coop Inc",2.034,2.411,2.454,0,6.899,67.8,105.317,81.8,0,254.917,458,30,3,0,491 2013,1,"SC",17539,"South Carolina Electric&Gas Co",1.037,0,226.131,0,227.168,25.925,0,8228.212,0,8254.137,192,0,2,0,194 2013,1,"SC",17543,"South Carolina Public Service Authority",9.441,26.736,0.287,0,36.464,298.9,891.2,9.583,0,1199.683,1600,396,1,0,1997 2013,1,"SD",14232,"Otter Tail Power Co",0.315,0.23,0,0,0.545,8.2,6,0,0,14.2,41,5,0,0,46 2013,1,"SD",20401,"West River Electric Assn Inc",0.034,,,,0.034,17.1,,,,17.1,80,,,,80 2013,1,"TN",727,"Appalachian Electric Coop",0.292,0.1,0,0,0.392,10.95,3.75,0,0,14.7,36,1,0,0,37 2013,1,"TN",2247,"City of Bristol - (TN)",0.192,0.012,0,0,0.204,7.2,0.45,0,0,7.65,18,3,0,0,21 2013,1,"TN",3408,"City of Chattanooga - (TN)",5.912,6.292,0,0,12.204,221.7,235.95,0,0,457.65,816,29,0,0,845 2013,1,"TN",3704,"City of Clarksville - (TN)",0.696,1.74,0,0,2.436,26.1,65.25,0,0,91.35,91,5,0,0,96 2013,1,"TN",3758,"City of Cleveland - (TN)",0.208,0,0,0,0.208,7.8,0,0,0,7.8,34,0,0,0,34 2013,1,"TN",3812,"City of Clinton - (TN)",0.408,0.344,0,0,0.752,15.3,12.9,0,0,28.2,57,5,0,0,62 2013,1,"TN",4624,"Cumberland Elec Member Corp",1.152,0.152,0,0,1.304,43.2,5.7,0,0,48.9,165,7,0,0,172 2013,1,"TN",5399,"Duck River Elec Member Corp",1.324,2.296,0,0,3.62,49.65,86.1,0,0,135.75,175,8,0,0,183 2013,1,"TN",7174,"Gibson Electric Members Corp",0.2,0.1,0,0,0.3,7.5,3.75,0,0,11.25,39,1,0,0,40 2013,1,"TN",7625,"City of Greeneville - (TN)",0.052,0.1,0,0,0.152,1.95,3.75,0,0,5.7,10,1,0,0,11 2013,1,"TN",9777,"Johnson City - (TN)",2.552,0.472,0,0,3.024,95.7,17.7,0,0,113.4,335,8,0,0,343 2013,1,"TN",10421,"Knoxville Utilities Board",19.256,26.664,0,0,45.92,700.5,1262.4,0,0,1962.9,2245,69,0,0,2314 2013,1,"TN",10906,"City of Lenoir - (TN)",3.588,0.212,0,0,3.8,115.35,7.05,0,0,122.4,362,9,0,0,371 2013,1,"TN",12293,"City of Memphis - (TN)",17.07,1.986,4.812,0,23.868,426.75,49.65,120.3,0,596.7,1308,21,3,0,1332 2013,1,"TN",12470,"Middle Tennessee E M C",4.836,0.872,0,0,5.708,181.35,32.7,0,0,214.05,550,13,0,0,563 2013,1,"TN",13216,"Nashville Electric Service",21.372,7.504,0,0,28.876,801.45,281.4,0,0,1082.85,2429,63,0,0,2492 2013,1,"TN",17694,"Southwest Tennessee E M C",0.196,0.02,0,0,0.216,7.35,0.75,0,0,8.1,18,1,0,0,19 2013,1,"TN",19574,"Upper Cumberland E M C",0.392,0.048,0,0,0.44,14.7,1.8,0,0,16.5,29,3,0,0,32 2013,1,"TN",19898,"Volunteer Electric Coop",0.8,0.388,0,0,1.188,30,14.55,0,0,44.55,93,7,0,0,100 2013,1,"TX",5701,"El Paso Electric Co",2.823,0.088,0,0,2.911,79.9,2.5,0,0,82.4,370,6,0,0,376 2013,1,"TX",16604,"City of San Antonio - (TX)",48.654,51.084,0.384,0,100.122,4425.609,5090.967,38.376,0,9554.952,6462,557,1,0,7020 2013,1,"UT",12866,"Moon Lake Electric Assn Inc",0.148,0.022,,,0.17,7.99,1.212,,,9.202,17,1,,,18 2013,1,"UT",13073,"Mt Wheeler Power, Inc",0.021,,,,0.021,1.1,,,,1.1,2,,,,2 2013,1,"UT",14354,"PacifiCorp",158.394,33.901,9.139,0,201.434,8152.211,2846.716,1173.5,0,12172.427,35413,807,25,0,36245 2013,1,"UT",17874,"City of St George",0.084,0,0,0,0.084,2.84,0,0,0,2.84,8,0,0,0,8 2013,1,"VA",733,"Appalachian Power Co",0.221,,,,0.221,14.76,,,,14.76,11,,,,11 2013,1,"VA",17066,"Shenandoah Valley Elec Coop",0.213,0,0,0,0.213,14.246,0,0,0,14.246,12,0,0,0,12 2013,1,"VA",19876,"Virginia Electric & Power Co",166.416,14.353,0.762,0,181.531,12801.234,3064.185,58.615,0,15924.034,15248,226,1,0,15475 2013,1,"VT",7601,"Green Mountain Power Corp",39.65,10.83,0,0,50.48,1068,276,0,0,1344,3998,216,0,0,4214 2013,1,"WA",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"WA",14354,"PacifiCorp",10.666,3.788,0.006,0,14.46,547.74,316.508,0.3,0,864.548,2669,112,3,0,2784 2013,1,"WA",15500,"Puget Sound Energy Inc",334.185,64.655,0,0,398.84,26734.802,9103.828,0,0,35838.63,34030,959,0,0,34989 2013,1,"WA",17470,"Snohomish County PUD No 1",,2.091,,,2.091,,243.95,,,243.95,,16,,,16 2013,1,"WA",18429,"City of Tacoma - (WA)",6.11,2.57,0,0,8.68,509,214,0,0,723,1161,21,0,0,1182 2013,1,"WA",20169,"Avista Corp",9.34,5.835,0.144,0,15.319,2802,1750.5,43.2,0,4595.7,2374,64,2,0,2440 2013,1,"WI",5574,"East Central Energy",0.109,0,0,0,0.109,27.3,0,0,0,27.3,88,0,0,0,88 2013,1,"WI",11479,"Madison Gas & Electric Co",158,111,1,,270,5110,5939,29,,11078,12045,951,9,,13005 2013,1,"WI",13780,"Northern States Power Co",8.698,4.609,,,13.307,634.884,336.445,,,971.329,1277,55,,,1332 2013,1,"WI",20847,"Wisconsin Electric Power Co",166.97,40.3,44.391,0,251.661,9264,2329,3139,0,14732,18251,601,23,0,18875 2013,1,"WI",20856,"Wisconsin Power & Light Co",72.336,8.4,,,80.736,5682.6,417.2,,,6099.8,7122,971,,,8093 2013,1,"WI",20860,"Wisconsin Public Service Corp",13.098,8.448,0,0,21.546,545.77,352,0,0,897.77,1838,56,0,0,1894 2013,1,"WV",733,"Appalachian Power Co",0.011,,,,0.011,0.7,,,,0.7,2,,,,2 2013,1,"WY",3461,"Cheyenne Light Fuel & Power Co",0.291,0.581,,,0.872,8.314,16.6,,,24.914,28,7,,,35 2013,1,"WY",7222,"City of Gillette - (WY)",0.45,0.492,0,0,0.942,30,32.8,0,0,62.8,39,6,0,0,45 2013,1,"WY",11273,"Lower Valley Energy Inc",12.326,4.929,9.552,,26.807,1059.429,504.749,1138.606,,2702.784,1126,387,33,,1546 2013,1,"WY",14354,"PacifiCorp",15.753,0.84,0.903,0,17.496,814.892,43.2,110.8,0,968.892,3839,105,3,0,3947 2013,1,"WY",19156,"Powder River Energy Corp",0.032,0.028,,,0.06,16.2,13.8,,,30,24,2,,,26 2013,1,,99999,"National Total",4792.148,1589.407,655.869,0,7037.424,350819.302,108835.977,66013.422,0,525668.701,603911,18477,1249,0,623637 2013,2,"AL",195,"Alabama Power Co",2.558,0.072,,,2.63,56.85,1.6,,,58.45,634,12,,,646 2013,2,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,2,"AL",6422,"City of Florence - (AL)",0.36,0,0,0,0.36,13.5,0,0,0,13.5,49,0,0,0,49 2013,2,"AL",9094,"City of Huntsville - (AL)",8.544,1.64,0,0,10.184,320.4,61.5,0,0,381.9,1013,4,0,0,1017 2013,2,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,2,"AR",14063,"Oklahoma Gas & Electric Co",0.279,0.235,0.029,0,0.543,76.151,67.134,8.333,0,151.618,85,2,1,0,88 2013,2,"AZ",803,"Arizona Public Service Co",7.164,40.617,,,47.781,1791.018,10154.21,,,11945.228,2714,84,,,2798 2013,2,"AZ",16572,"Salt River Project",,5.044,,,5.044,,466,,,466,,8,,,8 2013,2,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,2,"AZ",19728,"UNS Electric, Inc",1.387,0.077,,,1.464,43.63,2.74,,,46.37,236,7,,,243 2013,2,"AZ",24211,"Tucson Electric Power Co",15.866,2.383,0.399,,18.648,575.93,180.79,5.3,,762.02,2533,60,2,,2595 2013,2,"CA",11208,"Los Angeles Department of Water & Power",67.077,105.929,0.395,,173.401,2235.918,3530.96,13.174,,5780.052,16512,627,17,,17156 2013,2,"CA",12745,"Modesto Irrigation District",0.116,,,,0.116,0.605,,,,0.605,1,,,,1 2013,2,"CA",14354,"PacifiCorp",5.193,0.449,0.016,0,5.658,267.638,23.03,0.8,0,291.468,1220,38,2,0,1260 2013,2,"CA",14534,"City of Pasadena - (CA)",9.243,6.621,,,15.864,369.68,264.838,,,634.518,567,23,,,590 2013,2,"CA",16534,"Sacramento Municipal Util Dist",194.815,6.859,60.348,,262.022,26474.29,693.025,6049.057,,33216.372,53268,1414,645,,55327 2013,2,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"CA",18260,"Surprise Valley Electrificatio",0.03,0,0,0,0.03,1.2,0,0,0,1.2,6,0,0,0,6 2013,2,"CA",19281,"Turlock Irrigation District",0.015,,0.147,,0.162,2.995,,29.36,,32.355,6,,1,,7 2013,2,"CO",3989,"City of Colorado Springs - (CO)",5.488,0.512,10.578,,16.578,532.7,38.8,269.5,,841,1116,13,3,,1132 2013,2,"CO",6604,"City of Fort Collins - (CO)",16.784,10.696,0.557,0,28.037,659.762,420.421,21.875,0,1102.058,1185,92,2,0,1279 2013,2,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,30,,,,30,44,,,,44 2013,2,"CO",12866,"Moon Lake Electric Assn Inc",0.066,,,,0.066,3.58,,,,3.58,4,,,,4 2013,2,"CO",15257,"Poudre Valley R E A, Inc",0.421,0.036,1.316,,1.773,467.667,40.533,1462.156,,1970.356,635,17,1,,653 2013,2,"CO",15466,"Public Service Co of Colorado",218.716,126.556,,,345.272,10129.88,5862.309,,,15992.189,29402,784,,,30186 2013,2,"CO",16603,"San Luis Valley R E C, Inc",0.296,0.065,0.604,,0.965,73.9,16.2,151,,241.1,168,12,2,,182 2013,2,"CO",19499,"United Power, Inc",0.47,0.05,2.16,,2.68,520.4,50.5,2401,,2971.9,355,6,8,,369 2013,2,"CT",4176,"Connecticut Light & Power Co",174.364,22.601,0.693,0,197.658,18933.921,2287.732,69.942,0,21291.595,21539,368,10,0,21917 2013,2,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,2,"CT",19497,"United Illuminating Co",42.21,,,,42.21,4305.87,,,,4305.87,5935,,,,5935 2013,2,"CT",20038,"Town of Wallingford - (CT)",1.547,0.121,0,0,1.668,140.6,11.027,0,0,151.627,228,4,0,0,232 2013,2,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,2,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,2,"FL",18454,"Tampa Electric Co",13.18,2.88,0,0,16.06,527.2,115.2,0,0,642.4,2206,26,0,0,2232 2013,2,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"GA",3916,"Cobb Electric Membership Corp",0.907,0.023,0.4,,1.33,27.202,0.69,12.013,,39.905,151,3,1,,155 2013,2,"GA",7140,"Georgia Power Co",27.53,17,22.46,,66.99,672,1431,2346,,4449,4122,42,6,,4170 2013,2,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.544,0,2.901,76.05,3,21.768,0,100.818,507,2,2,0,511 2013,2,"IA",9417,"Interstate Power and Light Co",39.3,2.9,,,42.2,4816,143.8,,,4959.8,6097,563,,,6660 2013,2,"ID",9191,"Idaho Power Co",10.104,5.557,0.017,0,15.678,1189,654,2,0,1845,2018,66,2,0,2086 2013,2,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.076,,,,9.076,23,,,,23 2013,2,"ID",14354,"PacifiCorp",4.172,0.401,0.002,0,4.575,213.241,23.797,0.1,0,237.138,1161,27,1,0,1189 2013,2,"ID",20169,"Avista Corp",3.735,0.748,0,0,4.483,1120.5,224.4,0,0,1344.9,968,40,0,0,1008 2013,2,"IN",9273,"Indianapolis Power & Light Co",4.498,0.444,8.201,,13.143,2998.883,293.547,5469.37,,8761.8,4188,128,25,,4341 2013,2,"IN",15470,"Duke Energy Indiana Inc",7.967,,,,7.967,796.7,,,,796.7,1304,,,,1304 2013,2,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,34,,,,34 2013,2,"KS",22500,"Westar Energy Inc",0.117,0.022,1,,1.139,11.7,2.2,100,,113.9,36,1,1,,38 2013,2,"KY",10171,"Kentucky Utilities Co",6.795,0.212,0.009,0,7.016,3808,119,5,0,3932,536,18,1,0,555 2013,2,"KY",11249,"Louisville Gas & Electric Co",10.98,0.243,0.067,0,11.29,6149,137,38,0,6324,914,11,1,0,926 2013,2,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,2,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,0,0,0.542,19.6,0.1,0,0,19.7,172,1,0,0,173 2013,2,"KY",19446,"Duke Energy Kentucky",0.521,,,,0.521,49,,,,49,118,,,,118 2013,2,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,2,"MA",11804,"Massachusetts Electric Co",69.404,2.75,0.014,0,72.168,3070.386,106.677,0.559,0,3177.622,5183,208,3,0,5394 2013,2,"MA",13206,"Nantucket Electric Co",0.336,0.245,0,0,0.581,13.056,9.301,0,0,22.357,32,7,0,0,39 2013,2,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.87,,,,10.87,34,,,,34 2013,2,"MI",4254,"Consumers Energy Co",40,13,1,,54,4013,1809,88,,5910,18636,95,2,,18733 2013,2,"MI",5109,"The DTE Electric Company",87,4,16,0,107,3785,177,799,0,4761,21658,109,25,0,21792 2013,2,"MI",10704,"City of Lansing - (MI)",2.874,0.818,0.008,0,3.7,95.75,27.25,0.25,0,123.25,383,109,1,0,493 2013,2,"MI",13780,"Northern States Power Co",0.079,,,,0.079,6.56,,,,6.56,15,,,,15 2013,2,"MI",19578,"Upper Peninsula Power Co",0.607,,,,0.607,25.3,,,,25.3,118,,,,118 2013,2,"MI",20847,"Wisconsin Electric Power Co",1.549,0.086,,,1.635,51,3,,,54,269,5,,,274 2013,2,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,,,0.078,4.7,0.3,,,5,17,1,,,18 2013,2,"MN",689,"Connexus Energy",1.837,0.092,6.024,0,7.953,376.7,15,987.58,0,1379.28,471,3,1,0,475 2013,2,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,2,"MN",9417,"Interstate Power and Light Co",3.6,0.1,,,3.7,472.9,5.3,,,478.2,549,55,,,604 2013,2,"MN",12647,"Minnesota Power Inc",2.819,0.508,,,3.327,112.3,20.3,,,132.6,582,15,,,597 2013,2,"MN",13781,"Northern States Power Co - Minnesota",242.939,158.251,,,401.19,6882.134,4483.034,,,11365.168,20895,240,,,21135 2013,2,"MN",14232,"Otter Tail Power Co",0.672,1.063,0,0,1.735,51.724,81.8,0,0,133.524,245,30,0,0,275 2013,2,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.043,18.417,0,0,65.46,66,1,0,0,67 2013,2,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,9.596,,,9.93,33.4,959.6,,,993,79,1,,,80 2013,2,"MN",25177,"Dakota Electric Association",2.241,0.059,1.075,,3.375,560.2,14.8,268.7,,843.7,1363,82,22,,1467 2013,2,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,0,0,0.978,37.7,1.4,0,0,39.1,142,2,0,0,144 2013,2,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",17833,"City Utilities of Springfield - (MO)",0.84,0.13,,,0.97,35.7,7.9,,,43.6,148,8,,,156 2013,2,"MO",19436,"Union Electric Co - (MO)",79.1,,,,79.1,5274,,,,5274,6871,,,,6871 2013,2,"MS",6641,"4-County Electric Power Assn",0.212,0,0,0,0.212,7.95,0,0,0,7.95,25,0,0,0,25 2013,2,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,2,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,2,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,2,"MT",12825,"NorthWestern Energy LLC - (MT)",1.954,3.266,0,0,5.22,97.7,163.3,0,0,261,307,19,0,0,326 2013,2,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,2,"NC",3046,"Progress Energy Carolinas Inc",18.236,1.419,0.096,,19.751,455.892,56.772,3.84,,516.504,3285,84,2,,3371 2013,2,"NC",5416,"Duke Energy Carolinas, LLC",32.852,8.536,,,41.388,821.3,213.4,,,1034.7,5890,178,,,6068 2013,2,"NC",6235,"Public Works Comm-City of Fayetteville",0.34,0,0,0,0.34,8.5,0,0,0,8.5,57,0,0,0,57 2013,2,"NC",9837,"Jones-Onslow Elec Member Corp",0.188,0,0,0,0.188,4.7,0,0,0,4.7,47,0,0,0,47 2013,2,"NC",16496,"Rutherford Elec Member Corp",0.144,,,,0.144,3.6,,,,3.6,25,,,,25 2013,2,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,2,"ND",12087,"McKenzie Electric Coop Inc",0.001,0,0,0,0.001,0.1,0,0,0,0.1,1,0,0,0,1 2013,2,"ND",14232,"Otter Tail Power Co",0.458,0.118,0,0,0.576,35.209,9.1,0,0,44.309,184,13,0,0,197 2013,2,"NH",13441,"New Hampshire Elec Coop Inc",1.683,0.057,0,0,1.74,56.1,1.9,0,0,58,236,7,0,0,243 2013,2,"NH",15472,"Public Service Co of NH",2.299,0.521,0.114,0,2.934,98.317,52.529,4.062,0,154.908,154,10,2,0,166 2013,2,"NH",24590,"Unitil Energy Systems",0.461,0.003,0,0,0.464,14.017,0.061,0,0,14.078,25,1,0,0,26 2013,2,"NH",26510,"Granite State Electric Co",1.135,0.074,0,0,1.209,29.382,2.324,0,0,31.706,103,7,0,0,110 2013,2,"NJ",963,"Atlantic City Electric Co",7.184,1.321,0,0,8.505,454.968,72.472,0,0,527.44,762,12,0,0,774 2013,2,"NJ",16213,"Rockland Electric Co",1.535,0.005,0,0,1.54,103.4,0.56,0,0,103.96,119,1,0,0,120 2013,2,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,61,15,0,0,76 2013,2,"NM",6204,"City of Farmington - (NM)",0.032,0,0,0,0.032,1.9,0,0,0,1.9,6,0,0,0,6 2013,2,"NM",11204,"Los Alamos County",0.682,0.097,,,0.779,118.828,17.435,,,136.263,293,11,,,304 2013,2,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,,27.759,5172.37,1166.87,269.91,,6609.15,12244,453,3,,12700 2013,2,"NM",17718,"Southwestern Public Service Co",8.89,1.962,,,10.852,296.337,65.408,,,361.745,820,91,,,911 2013,2,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,2,"NY",11171,"Long Island Power Authority",11.9,9.1,,,21,387,517,,,904,720,123,,,843 2013,2,"NY",13511,"New York State Elec & Gas Corp",100.014,4.473,1.008,0,105.495,4035,212,48,0,4295,14802,254,6,0,15062 2013,2,"NY",13573,"Niagara Mohawk Power Corp.",103.4,2.12,1.06,0,106.58,5970,123,62,0,6155,8045,166,83,0,8294 2013,2,"

  1. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect (OSTI)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: Arsenite evokes IL-6 secretion. IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. Inflammation is involved in arsenite-induced EMT.

  2. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    SciTech Connect (OSTI)

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  3. The Office of Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 Title V1, Part 3 of the National Energy Conservation Policy Act (Public Law 95-619), dated November 9, 1978

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 Title V1, Part 3 of the National Energy Conservation Policy Act (Public Law 95- 619), dated November 9, 1978. The following is MI's legislative mandate. PART 3 - - MINORITY ECONOMIC IMPACT SEC. 641. MINORITY ECONOMIC IMPACT. "(a) Establishment of Office of Minority Economic Impact -- Title II of the Department of Energy Organization Act (42 U.S.C. 7131 - - 7139) is amended by adding at the end thereof

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  5. WDR-PK-AK-018

    SciTech Connect (OSTI)

    Hollister, R

    2009-08-26

    Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysis Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the methane hydrate projects (which are described ... form and Trans Alaska Pipeline System (TAPS) Oil production from known ... depend on world oil prices and operating costs, ...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... concerns: (1) Pipeline Inspection and Repair Technologies, (2) Novel Sensors and Controls, and (3) Advanced Pipeline Materials. There are no on-going projects is this element. ...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Project objectives are: * Reduce the risk of large scale demonstration projects * Improve scientific exploration and strengthen a working relationship in CCS between China and the ...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in the injection zone(s); (3) improving efficiency of storage operations; and (4) ... construct cross sections and structure contour and isopach maps in order to characterize ...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to prepare a...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Act (ARRA) of 2009, to conduct geologic sequestration training and support funda- mental research projects for graduate and undergraduate students throughout the United...

  16. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  17. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  18. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fractures have been alleged in some situations to induce seismic activity that may cause a public nuisance or property damage. While the recent NAS report on...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l , optical, magnetic, and or catalytic properties. Efforts will also focus on assessing graphene for high temperature sensor applications. The novel control system research...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results in decreased ultrasonic P- and S-wave velocities and increased porosity and permeability. Initial measurements on carbonate samples reveal as much as 30% decrease in...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content; proportion of soft, deformable mineral grains to rigid grains; cementation; organic matter content; carbonate content; PROJECT DURATION Start Date 12012009 End Date...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to measure subtle surface displacements), seismology, and geochemistry in a straightforward series of procedures and algorithms, and assess the cost and efficacy of these...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Recent courses provided by the PTTC included a two-hour mini short course on the business model behind carbon capture and CO2 flooding, an overview of understanding...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field located in Mobile County, Alabama, to determine the diagenetic (physical, chemical, and biological) alteration of reservoir rock and formation fluid properties due...

  14. Photoelectron imaging and theoretical study on the structure and chemical binding of the mixed-ligand M(I) complexes, [HMSH]{sup ?} (M = Cu, Ag, and Au)

    SciTech Connect (OSTI)

    Qin, Zhengbo; Liu, Zhiling; Cong, Ran; Xie, Hua; Tang, Zichao, E-mail: zctang@dicp.ac.cn, E-mail: fanhj@dicp.ac.cn; Fan, Hongjun, E-mail: zctang@dicp.ac.cn, E-mail: fanhj@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-03-21

    We have reported a combined photoelectron imaging and theoretical study on gaseous mixed-ligand M(I) complexes of [HMSH]{sup ?} (M = Cu, Ag, and Au). With the aid of Franck-Condon simulations, vibrationally resolved photoelectron spectra yield accurate electron affinities of 3.269(6), 3.669(10), and 3.591(6) eV for [HCuSH], [HAgSH], and [HAuSH], respectively. And low-frequency modes are observed: 368(12) cm{sup ?1} for [HCuSH], 286(12) cm{sup ?1} for [HAgSH], and 327(12) cm{sup ?1} for [HAuSH], respectively. Extensive theoretical calculations are performed to aid in the spectral assignments and the calculated values agree well with the experimental observations. Although the S and H atoms have little discrepancy in electronegativity (2.20 for H and 2.54 for S), distinct bonding properties are demonstrated between HM and MS bond. It is revealed that there exists significant ionic bonding between MS in [HMSH]{sup ?} (M = Cu, Ag, and Au), while a gradual transition from ionic behavior between HCu in [HCuSH]{sup ?} to quite strong covalent bonding between HAu in [HAuSH]{sup ?}, supported by a variety of chemical bonding analyses.

  15. Improved Measurement of the <mi>?>?<mi mathvariant='normal'>emi>?> Branching Ratio

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.; Aoki, M.; Blecher, M.; Britton, D. I.; Bryman, D. A.; vom Bruch, D.; Chen, S.; Comfort, J.; Ding, M.; Doria, L.; Cuen-Rochin, S.; Gumplinger, P.; Hussein, A.; Igarashi, Y.; Ito, S.; Kettell, S. H.; Kurchaninov, L.; Littenberg, L. S.; Malbrunot, C.; Mischke, R. E.; Numao, T.; Protopopescu, D.; Sher, A.; Sullivan, T.; Vavilov, D.; Yamada, K.

    2015-08-01

    A new measurement of the branching ratio Re/?=?(?+ ? e+? + ?+ ? e+??)/?(?+ ? ?+? + ?+??+??) resulted in Rexpe/?=[1.23440.0023(stat)0.0019(syst)] x 10-4. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.

  16. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  17. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.; Smith, Richard D.; Richardson, Ruth E.

    2016-02-19

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfatemore » (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  18. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect (OSTI)

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  19. Resonant <mi>?+?>?<mi>?+?>0 amplitude from Quantum Chromodynamics

    SciTech Connect (OSTI)

    Briceo, Ral A.; Dudek, Jozef J.; Edwards, Robert G.; Shultz, Christian J.; Thomas, Christopher E.; Wilson, David J.

    2015-12-08

    We present the first ab initio calculation of a radiative transition of a hadronic resonance within Quantum Chromodynamics (QCD). We compute the amplitude for $\\pi\\pi \\to \\pi\\gamma^\\star$, as a function of the energy of the $\\pi\\pi$ pair and the virtuality of the photon, in the kinematic regime where $\\pi\\pi$ couples strongly to the unstable $\\rho$ resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to $m_\\pi \\approx 400$ MeV. As a result, we obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue to the $\\rho$ pole and identify from its residue the $\\rho \\to \\pi\\gamma^\\star$ form-factor.

  20. MI_07-5.pdf

    Office of Legacy Management (LM)

  1. F-1 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH...

  2. Lattice dynamics of <mi>BaFe>2<mi>X>3(<mi>X= mathvariant='normal'>Smi>,<mi>Se>) compounds

    SciTech Connect (OSTI)

    Popovi?, Z. V.; ?epanovi?, M.; Lazarevi?, N.; Opa?i?, M.; Radonji?, M. M.; Tanaskovi?, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe?X? (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe?S? (BaFe?Se?) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe?S(Se)? is supported by the lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe?Se? below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.

  3. Search for proton decay via <mi>p>?<mi>?K>+ using 260 <mi>kilotonyear> data of Super-Kamiokande

    SciTech Connect (OSTI)

    Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Wendell, R.?A.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Yokozawa, T.; Kaji, H.; Kajita, T.; Kaneyuki, K.; Lee, K.?P.; Okumura, K.; McLachlan, T.; Labarga, L.; Kearns, E.; Raaf, J.?L.; Stone, J.?L.; Sulak, L.?R.; Goldhaber, M.; Bays, K.; Carminati, G.; Kropp, W.?R.; Mine, S.; Renshaw, A.; Smy, M.?B.; Sobel, H.?W.; Ganezer, K.?S.; Hill, J.; Keig, W.?E.; Jang, J.?S.; Kim, J.?Y.; Lim, I.?T.; Albert, J.?B.; Scholberg, K.; Walter, C.?W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Learned, J.?G.; Matsuno, S.; Smith, S.?N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A.?T.; Takeuchi, Y.; Ieki, K.; Ikeda, M.; Kubo, H.; Minamino, A.; Murakami, A.; Nakaya, T.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Miyake, M.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C.?K.; Taylor, I.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Takeuchi, J.; Kuno, Y.; Kim, S.?B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Obayashi, Y.; Vagins, M.?R.; Chen, S.; Sui, H.; Yang, Z.; Zhang, H.; Connolly, K.; Dziomba, M.; Wilkes, R.?J.

    2014-10-14

    We have searched for proton decay via p??K+ using Super-Kamiokande data from April 1996 to February 2013, 260 kilotonyear exposure in total. No evidence for this proton decay mode is found. A lower limit of the proton lifetime is set to ?/B(p??K+)>5.91033 years at 90% confidence level.

  4. Superconducting and magnetic properties of <mi>Sr>3<mi>Ir>4<mi>Sn>13

    SciTech Connect (OSTI)

    Biswas, P. K.; Amato, A.; Khasanov, R.; Luetkens, H.; Wang, Kefeng; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (SR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field SR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field SR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ?? with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.

  5. Two nucleon systems at <mi>mmi><mi>π>~450<mi>MeV> from lattice QCD

    SciTech Connect (OSTI)

    Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Beane, Silas R.; Chang, Emmanuel; Detmold, William

    2015-12-23

    Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of $m_\\pi\\sim 450~{\\rm MeV}$ in three spatial volumes using $n_f=2+1$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$, while the dineutron is bound by $B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.

  6. Coupled <mi>ππ>, <mi>K><mi>K>¯ scattering in <mi>P>-wave and the <mi>ρ> resonance from lattice QCD

    SciTech Connect (OSTI)

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-11-02

    In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering in $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $m_\\pi = 236$ MeV in a cubic volume of $\\sim (4 \\,\\mathrm{fm})^3$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $\\pi\\pi$, $K\\overline{K}$ and $q\\bar{q}$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $\\pi\\pi$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $\\rho$ resonance, and we extend the analysis into the coupled-channel $K\\overline{K}$ region for the first time, finding a small coupling between the channels.

  7. Observation of <mi>D>0 meson nuclear modifications in <mi>Au+Au> collisions at <mi>smi><mi>NN>=200 <mi>GeV>

    SciTech Connect (OSTI)

    Adamczyk, L.; Adkins, J.?K.; Agakishiev, G.; Aggarwal, M.?M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.?D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.?C.; Averichev, G.?S.; Banerjee, A.; Beavis, D.?R.; Bellwied, R.; Bhasin, A.; Bhati, A.?K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.?C.; Bordyuzhin, I.?G.; Borowski, W.; Bouchet, J.; Brandin, A.?V.; Brovko, S.?G.; Bltmann, S.; Bunzarov, I.; Burton, T.?P.; Butterworth, J.; Caines, H.; Caldern de la Barca Snchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M.?C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H.?F.; Chen, J.?H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M.?J.?M.; Contin, G.; Cramer, J.?G.; Crawford, H.?J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L.?C.; Debbe, R.?R.; Dedovich, T.?G.; Deng, J.; Derevschikov, A.?A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J.?L.; Draper, J.?E.; Du, C.?M.; Dunkelberger, L.?E.; Dunlop, J.?C.; Efimov, L.?G.; Engelage, J.; Engle, K.?S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C.?E.; Gagliardi, C.?A.; Gangadharan, D.?R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D.?S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J.?W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G.?W.; Hofman, D.?J.; Horvat, S.; Huang, B.; Huang, H.?Z.; Huang, X.; Huck, P.; Humanic, T.?J.; Igo, G.; Jacobs, W.?W.; Jang, H.; Judd, E.?G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H.?W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z.?H.; Kikola, D.?P.; Kisel, I.; Kisiel, A.; Koetke, D.?D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A.?F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R.?A.; Lamont, M.?A.?C.; Landgraf, J.?M.; Landry, K.?D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J.?H.; LeVine, M.?J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z.?M.; Lisa, M.?A.; Liu, F.; Ljubicic, T.; Llope, W.?J.; Lomnitz, M.; Longacre, R.?S.; Luo, X.; Ma, G.?L.; Ma, Y.?G.; Madagodagettige Don, D.?M.?M.?D.; Mahapatra, D.?P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.?S.; McDonald, D.; McShane, T.?S.; Minaev, N.?G.; Mioduszewski, S.; Mohanty, B.; Mondal, M.?M.; Morozov, D.?A.; Mustafa, M.?K.; Nandi, B.?K.; Nasim, Md.; Nayak, T.?K.; Nelson, J.?M.; Nigmatkulov, G.; Nogach, L.?V.; Noh, S.?Y.; Novak, J.; Nurushev, S.?B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E.?W.; Olvitt, D.?L.; Pachr, M.; Page, B.?S.; Pal, S.?K.; Pan, Y.?X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A.?M.; Pruthi, N.?K.; Przybycien, M.; Pujahari, P.?R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R.?L.; Riley, C.?K.; Ritter, H.?G.; Roberts, J.?B.; Rogachevskiy, O.?V.; Romero, J.?L.; Ross, J.?F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N.?R.; Sahu, P.?K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R.?P.; Schmah, A.?M.; Schmidke, W.?B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P.?V.; Shao, M.; Sharma, B.; Shen, W.?Q.; Shi, S.?S.; Shou, Q.?Y.; Sichtermann, E.?P.; Singaraju, R.?N.; Skoby, M.?J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H.?M.; Srivastava, B.; Stanislaus, T.?D.?S.; Stevens, J.?R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X.?M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D.?N.; Symons, T.?J.?M.; Szelezniak, M.?A.; Takahashi, J.; Tang, A.?H.; Tang, Z.; Tarnowsky, T.; Thomas, J.?H.; Timmins, A.?R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R.?E.; Tribedy, P.; Trzeciak, B.?A.; Tsai, O.?D.; Turnau, J.; Ullrich, T.; Underwood, D.?G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J.?A.; Varma, R.; Vasconcelos, G.?M.?S.; Vasiliev, A.?N.; Vertesi, R.; Videbk, F.; Viyogi, Y.?P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.?S.; Wang, X.?L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J.?C.; Westfall, G.?D.; Wieman, H.; Wissink, S.?W.; Witt, R.; Wu, Y.?F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0?K-+?+) in Au+Au collisions at ?sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  8. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic <mi mathvariant='normal'>Hmi>2 ( <mi>e>, <mi>emi>'<mi>ps> ) <mi>X> scattering with CLAS

    SciTech Connect (OSTI)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bltmann, S.; Christy, M. E.; Dutta, D.; Ent, R.; Fenker, H.; Griffioen, K. A.; Ispiryan, M.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.

    2014-04-24

    In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  9. Measurement of the Effective Weak Mixing Angle in<mi>p><mi>p>?<mi>Zmi>/?>*?<mi>emi>+<mi>e>-Events

    SciTech Connect (OSTI)

    Abazov, V.? M.; Abbott, B.; Acharya, B.? S.; Adams, M.; Adams, T.; Agnew, J.? P.; Alexeev, G.? D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. ?V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. ?F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S.? B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bhat, P.? C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E.? E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. ?B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C.? P.; Camacho-Prez, E.; Casey, B.? C.?K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K.? M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S.? W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. ?E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. ?J.; De La Cruz-Burelo, E.; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S.? P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H.? T.; Diesburg, M.; Ding, P. ?F.; Dominguez, A.; Dubey, A.; Dudko, L.? V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. ?D.; Enari, Y.; Evans, H.; Evdokimov, V.? N.; Faur, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H.? E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. ?H.; Garcia-Bellido, A.; Garca-Gonzlez, J. ?A.; Gavrilov, V.; Geng, W.; Gerber, C.? E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. ?D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M.? W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J.? M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. ?P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M.? D.; Hirosky, R.; Hoang, T.; Hobbs, J. ?D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J.? L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A.? S.; Jabeen, S.; Jaffr, M.; Jayasinghe, A.; Jeong, M.? S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A.? W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. ?N.; Kiselevich, I.; Kohli, J.? M.; Kozelov, A.? V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. ?A.; Lammers, S.; Lebrun, P.; Lee, H.? S.; Lee, S.? W.; Lee, W. ?M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q.? Z.; Lim, J.? K.; Lincoln, D.; Linnemann, J.; Lipaev, V.? V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A.? L.; Maciel, A. ?K.?A.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V.? L.; Mansour, J.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. ?L.; Meijer, M.? M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. ?G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N.? K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H.? A.; Negret, J.? P.; Neustroev, P.; Nguyen, H.? T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. ?K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Pleier, M. -A.; Podstavkov, V. ?M.; Popov, A.? V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P.? N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Snchez-Hernndez, A.; Sanders, M.? P.; Santos, A. ?S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. ?D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. ?A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G.? R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D.? A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V.? V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W.? M.; Varelas, N.; Varnes, E.? W.; Vasilyev, I.? A.; Verkheev, A. ?Y.; Vertogradov, L. ?S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.

    2015-07-22

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin2??eff which determines the relative strength of weak and electromagnetic interactions, in pp?Z/?*?e+e- events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin2??eff=0.231470.00047 is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.

  10. Marysville, MI Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013...

  11. Marysville, MI Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,925 22,198 41,964 42,866 35,273 24,583 1996-2014 Pipeline Prices 4.85 4.87 4.48 3.18 3.98 5.45 1996...

  12. Comprehensive amplitude analysis of <mi>γγ><mimi>+<mimi>-,<mi>π>0<mi>π>0 and <mi>K>¯<mi>K> below 1.5 GeV

    SciTech Connect (OSTI)

    Dai, Ling-Yun; Pennington, Michael R.

    2014-08-15

    In this paper we perform an amplitude analysis of essentially all published pion and kaon pair production data from two photon collisions below 1.5 GeV. This includes all the high statistics results from Belle, as well as older data from Mark II at SLAC, CELLO at DESY, Crystal Ball at SLAC. The purpose of this analysis is to provide as close to a model-independent determination of the γγ to meson pair amplitudes as possible. Having data with limited angular coverage, typically |cosθ| < 0.6-0.8, and no polarization information for reactions in which spin is an essential complication, the determination of the underlying amplitudes might appear an intractable problem. However, imposing the basic constraints required by analyticity, unitarity, and crossing-symmetry makes up for the experimentally missing information. Above 1.5 GeV multi-meson production channels become important and we have too little information to resolve the amplitudes. Nevertheless, below 1.5 GeV the two photon production of hadron pairs serves as a paradigm for the application of S-matrix techniques. Final state interactions among the meson pairs is critical to this analysis. To fix these, we include the latest ππ → ππ, K⁻K scattering amplitudes given by dispersive analyses, supplemented in the K⁻K threshold region by the recent precision Dalitz plot analysis from BaBar. With these hadronic amplitudes built into unitarity, we can constrain the overall description of γγ → ππ and K⁻K datasets, both integrated and differential cross-sections, including the high statistics charged and neutral pion data from Belle. A region of solutions is found for the γγ → ππ partial waves with both isospin 0 and 2. Since this analysis invokes coupled hadronic channels, even the relatively poor integrated cross-section data on γγ → K⁻K narrows the patch of solutions to essentially a single form. For this we present the complete partial wave amplitudes, show how well they fit all the available data, and give the two photon couplings of scalar and tensor resonances that appear.

  13. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent Halides<mi>AB>2<mi mathvariant='normal'>Imi>5:<mi>Eu>2+(<mi>Ami>=<mi>Limi>Cs>;<mi>B=Sr>, Ba)

    SciTech Connect (OSTI)

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.

  14. Comprehensive description of <mi>J/?> production in proton-proton collisions at collider energies

    SciTech Connect (OSTI)

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/? production at low p? in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p? distributions. Similar agreement is obtained for ?' production. We observe an overlap region in p? where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  15. Detroit, MI Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 21 79 19 0 165 188 1996-2014 Pipeline Prices 4.53 8.37 5.17 -- 4.44 5.26 1996-2014

  16. Detroit, MI Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    275 43,690 50,347 50,439 46,981 37,528 1996-2015 Pipeline Prices 4.69 4.26 3.10 4.04 5.36 2.91

  17. Evidence for a new excitation at the interface between a high-<mi>Tc> superconductor and a topological insulator

    SciTech Connect (OSTI)

    Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; Kreshchuk, Michael; Lee, Yong Kiat; Reijnders, Anjan A.; Jain, Achint; Xu, Zhijun; Liu, T. S.; Gu, G. D.; Jia, Shuang; Cava, Robert J.; Burch, Kenneth S.

    2014-12-09

    In this research, high-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and novel particles. In pursuit of this possibility, we fabricated high critical-temperature (Tc ~ 85 K) superconductor/topological insulator (Bi?Sr?CaCu?O???/Bi?Te?Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can still be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP.

  18. Microsoft Word - MI.01-8.doc

    Office of Legacy Management (LM)

    ORNL/RASA-96/7 Independent Radiological Verification Survey Results for the Remedial Action Performed at the Former Bridgeport Brass Company Facility, Adrian, Michigan (AD001V) M. E. Murray S. P. McKenzie R. F. Carrier C. A. Johnson ORNL/RASA-96/7 LIFE SCIENCES DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Certification Documentation Review, Investigation, and Completion: Internal Activity No. 14B477101) Independent Radiological Verification Survey Results for the

  19. GUT-inspired supersymmetric model for <mi>h> ? <mi>?> <mi>?> and the muon <mi>g> - 2

    SciTech Connect (OSTI)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-06

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h??? decay channel. In order to accommodate these observations and mh?125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to R???1.1 is 100 GeV?m??200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted to lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg?4.5 TeV and mt??3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.

  20. Impact of individual nuclear masses on <mi>r>-process abundances

    SciTech Connect (OSTI)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundance predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.

  1. Pressure-enhanced superconductivity in <mi>Eu>3<mi>Bi>2<mi mathvariant='normal'>Smi>4<mi mathvariant='normal'>Fmi>4

    SciTech Connect (OSTI)

    Luo, Yongkang; Zhai, Hui -Fei; Zhang, Pan; Xu, Zhu -An; Cao, Guang -Han; Thompson, J. D.

    2014-12-17

    The pressure effect on the newly discovered charge-transferred BiS2-based superconductor, Eu3Bi2S4F4, with a Tc of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ~10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher Tc emerges and dominates at high pressures. In the broad pressure window of 0.68GPa?p?2.00 GPa, the high-Tc phase coexists with the low-Tc phase. Hall effect measurements reveal a significant difference in electronic structures between the two superconducting phases. As a result, our work devotes the effort to establish the commonality of pressure effect on the BiS2-based superconductors, and also uncovers the importance of electron carrier density in the high-Tc phase.

  2. https://mi3.ncdc.noaa.gov/mi3report/MISC/asos-stations.txt

    National Nuclear Security Administration (NNSA)

    NCDCID WBAN COOPID CALL NAME ALT_NAME COUNTRY ST COUNTY LAT LO -------- ----- ------ ---- ------------------------------ ------------------------------ -------------------- -- ------------------------------ 20028647 15908 YRL RED LAKE RED LAKE CANADA ON 51.06667 20030346 41415 914226 GUM GUAM INTL AP GUAM NWSO TIYAN GUAM GU GUAM 13.48361 14 20030369 41418 914855 GSN SAIPAN INTL AP SAIPAN INTL AP NORTHERN MARIANA ISL MP SAIPAN 15.11889 14 20022040 26451 500280 ANC ANCHORAGE INTL AP ANCHORAGE INTL

  3. Spin-liquid ground state in the frustrated <mi>J>1-<mi>J>2 zigzag chain system <mi>BaTb>2<mi mathvariant='normal'>Omi>4

    SciTech Connect (OSTI)

    Aczel, A. A.; Li, L.; Garlea, V. O.; Yan, J. -Q.; Weickert, F.; Zapf, V. S.; Movshovich, R.; Jaime, M.; Baker, P. J.; Keppens, V.; Mandrus, D.

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  4. Further investigation of <mi>g> factors for the lead monofluoride ground state

    SciTech Connect (OSTI)

    Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.; Mawhorter, R. J.; Baum, A. L.; Sears, T. J.; Grabow, J. -U.

    2015-09-15

    We report the results of our theoretical study and analysis of earlier experimental data for the g-factor tensor components of the ground 2II1/2 state of the free PbF radical. These values obtained both within the relativistic coupled-cluster method combined with the generalized relativistic effective core potential approach and with our fit of the experimental data from [R. J. Mawhorter, B. S. Murphy, A. L. Baum, T. J. Sears, T. Yang, P. M. Rupasinghe, C. P. McRaven, N. E. Shafer-Ray, L. D. Alphei, and J.-U. Grabow, Phys. Rev. A 84, 022508 (2011); A. L. Baum, B.A. thesis, Pomona College, 2011]. The obtained results agree very well with each other but contradict the previous fit performed in the cited works. Our final prediction for g factors is G?=0.081(5),G?=0.27(1).

  5. Observation of a new charged charmoniumlike state in<mi>B>0?<mi>Jmi>/<mi>?mi><mi>Kmi>-<mi>?mi>+decays

    SciTech Connect (OSTI)

    Chilikin, K.; Mizuk, R.; Adachi, I.; Aihara, H.; Al Said, S.; Arinstein, K.; Asner, D.?M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Aziz, T.; Bakich, A.?M.; Bansal, V.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bra?ko, M.; Browder, T.?E.; ?ervenkov, D.; Chekelian, V.; Chen, A.; Cheon, B.?G.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Danilov, M.; Doleal, Z.; Drsal, Z.; Drutskoy, A.; Dutta, K.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J.?E.; Ferber, T.; Frost, O.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y.?M.; Golob, B.; Grzymkowska, O.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; He, X.?H.; Hou, W.-S.; Huschle, M.; Hyun, H.?J.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Joo, K.?K.; Julius, T.; Kawasaki, T.; Kiesling, C.; Kim, D.?Y.; Kim, H.?J.; Kim, J.?H.; Kim, M.?J.; Kim, Y.?J.; Kinoshita, K.; Ko, B.?R.; Korpar, S.; Krian, P.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J.?S.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Lukin, P.; Miyabayashi, K.; Miyata, H.; Mohanty, G.?B.; Moll, A.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nedelkovska, E.; Nisar, N.?K.; Nishida, S.; Ogawa, S.; Okuno, S.; Olsen, S.?L.; Pakhlov, P.; Pakhlova, G.; Park, C.?W.; Park, H.; Pedlar, T.?K.; Petri?, M.; Piilonen, L.?E.; Ribel, E.; Ritter, M.; Rostomyan, A.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seon, O.; Shebalin, V.; Shen, C.?P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stari?, M.; Steder, M.; Sumisawa, K.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Thorne, F.; Trabelsi, K.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Wagner, M.?N.; Wang, C.?H.; Wang, M.-Z.; Wang, P.; Wang, X.?L.; Watanabe, Y.; Wehle, S.; Williams, K.?M.; Won, E.; Yamaoka, J.; Yashchenko, S.; Zhang, Z.?P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-12-16

    We present the results of an amplitude analysis of B0?J/?K-?+ decays. A new charged charmoniumlike state Zc(4200)+ decaying to J/??+ is observed with a significance of 6.2?. The mass and width of the Zc(4200)+ are 4196+31-29+17-13 MeV/c2 and 370+70-70+70-132 MeV, respectively; the preferred assignment of the quantum numbers is JP=1+. In addition, we find evidence for Zc(4430)+?J/??+. The analysis is based on a 711 fb-1 data sample collected by the Belle detector at the asymmetric-energy e+e- collider KEKB.

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials and fuels in rocket propulsion systems. NETL Supercomputer DoD Supercomputing Resource Centers Visualization & Molecular Design Computational Chemistry Beowulf Clusters

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Each technology has its own advantages and disadvantages. Integrated technology development takes materials from molecular design through fabrication to commercialization. R&D173, ...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security....

  10. RAPID/Roadmap/20-AK-a | Open Energy Information

    Open Energy Info (EERE)

    to confirm location; however, surface pressure may not subject the casing to a hoop stress that will exceed 70 percent of the minimum yield strength of the casing. At least 24...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on only the most promising materials. Substances designed using fundamental approaches are synthesized and characterized in NETL-ORD's fully equipped synthetic...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods, limited variability is available in the final cathode structures. New approaches focus on generation of advanced microstructures that are more conducive to...

  13. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins by completing the online submission form where users can describe attributes, characteristics, and keywords of the submission. This information serves as the building...

  14. RAPID/Roadmap/1-AK-a | Open Energy Information

    Open Energy Info (EERE)

    for state lands within the planning area. Two types of state land use plans might govern geothermal development on state-owned land: an area plan or a management plan. These plans...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately CO 2 capture cost. The NETL-ORD is also conducting system and economic studies to R& D FAC T S Carbon Capture OFFICE OF RESEARCH AND DEVELOPMENT David Alman...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower heat capacity, and reduced heat of reaction. The result is a lower overall cost for CO 2 capture and separation. Many different types of solid materials have been...

  18. RAPID/Roadmap/7-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

  20. Electrical Resistance Tomographic Profile L2, Site 0, Barrow AK

    SciTech Connect (OSTI)

    Hubbard, Susan; Dafflon, Baptiste

    2013-12-08

    Figure 7a in http://esd.lbl.gov/files/about/staff/susanhubbard/PUBLISHED_-_Hubbard-Hydrogeology-2012_with_Gangodagamage_et_al.pdf

  1. RAPID/Roadmap/5-AK-a | Open Energy Information

    Open Energy Info (EERE)

    agency overseeing regulation of geothermal drilling and well development is the Alaska Oil and Gas Conservation Commission. The developer must have acquired a lease prior to this...

  2. RAPID/Roadmap/4-AK-b | Open Energy Information

    Open Energy Info (EERE)

    These studies help to identify geological structures with potential accumulations of oil or gas. These permits are a type of land use permit and are sometimes called Seismic...

  3. RAPID/Roadmap/4-AK-a | Open Energy Information

    Open Energy Info (EERE)

    (including both geophysical or seismic and shallow hole testing). The Alaska Division of Oil and Gas regulates the drilling and exploratory activities within the state and a...

  4. RAPID/Roadmap/4-AK-c | Open Energy Information

    Open Energy Info (EERE)

    87.030 - 87.050 cover this permit's requirements. Within ADNR, the Alaska Division of Oil and Gas handles all exploration activities and permitting under this chapter. Note: the...

  5. EIS-0186: Proposed Healy Clean Coal Project, Healy, AK

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in prior-year appro- priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. ...

  7. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  8. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  9. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil and gas exploration and production. These R&D portfolios include research conducted by NETL-ORD as well as extra-mural projects awarded through competitive solicitations. ...

  12. RAPID/Roadmap/3-AK-d | Open Energy Information

    Open Energy Info (EERE)

    permit when there is little interest in the initial call for applications by DO&G. In either process, the surface owner (if other than the state) will have a preference...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Darrell Paul Program Manager Battelle Memorial Institute 505 King Avenue Columbus, OH 43201...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fire Protection-Sacramento, CA California Department of Water Resources California Division of Oil, Gas and Geothermal Resources California Energy Commission California ...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology (EPAct...

  19. RAPID/Roadmap/6-AK-c | Open Energy Information

    Open Energy Info (EERE)

    system staff; and an explanation of how the proposed system will establish and maintain effective communications and relationships between the public water system management, its...

  20. RAPID/Roadmap/14-AK-a | Open Energy Information

    Open Energy Info (EERE)

    by the proposed project. Restoration of an affected waterbody is accomplished through the development and implementation of either a TMDL document or a Waterbody Recovery Plan....

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  2. RAPID/Roadmap/18-AK-c | Open Energy Information

    Open Energy Info (EERE)

    basis. General permits are appropriate for activities that are similar enough in nature that multiple individual permits are unnecessary. Geothermal drilling wastes are...

  3. RAPID/Roadmap/11-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of private persons: Before any construction, alteration, or improvement of any nature is undertaken on a privately owned, officially designated state monument or historic...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  6. RAPID/Roadmap/3-AK-e | Open Energy Information

    Open Energy Info (EERE)

    if the parties cannot agree on what constitutes reasonable concurrent use. As provided in 11 AAC 96.020, some uses and activities are generally allowed on state land...

  7. RAPID/Roadmap/19-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Use of Water Request for Water Right Permit Extension Statement of Beneficial Water Use Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  8. RAPID/Roadmap/19-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Water Fact Sheets: Water Rights in Alaska Application for Temporary Use of Water Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  9. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly evolving technology, capabilities, and approaches to information sharing, big data, and computational resources, both public and private, for the benefit of NETL...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as those associated with long-term liabilities. Operational issues include the management of reservoir pressure and stress to avoid conditions that might induce seismic...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities to test and evaluate technologies; validate and couple geomechanical and flow reservoir models to provide accurate and reliable simulations in fractured reservoirs...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Project locations for the two PCOR Partnership Development Phase Projects and risk management programs of appropriate size for a commercial-scale injection of CO2. The...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consistent with gas clean-up technology. Sensors and Controls - Designing advanced sensory materials, optical sensors, and platforms for high temperature sensors, as well as...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical...

  16. RAPID/Roadmap/3-AK-g | Open Energy Information

    Open Energy Info (EERE)

    receiver, that owns, operates, manages, or controls any line, plant, pipeline, or system for furnishing, producing, generating, transmitting, or distributing power,...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  18. Ak-Chin Electric Utility Authority | Open Energy Information

    Open Energy Info (EERE)

    82 2.653 68 45 144.753 1,889 417 2009-02 18.064 209 290 111.749 1,405 82 2.659 42 45 132.472 1,656 417 2009-01 20.158 239 290 117.553 1,516 82 2.017 22 45 139.728 1,777 417...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources of drinking water. Induced seismicity is when earthquakes occur due to human activity changing the stress field in the subsurface. Most induced seismic events are small...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of naturally occurring major, minor, and trace elements as indicators of sub-surface activity provides an understanding at the mineral and chemical levels of the larger processes...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed program reviews, systems analyses, review of emerging technologies, R&D activity, and discussions with stakeholders at all levels. This diverse research plan includes...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The facility was originally used to study the fate of CO 2 in the deep ocean, released ... Goals and Objectives The goal of the current research is to obtain fundamental, ...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a burner) is coupled to heat exchangers and a turbine in order to evaluate the dynamics of a fully integrated system. R& D FAC T S Energy Systems Dynamics OFFICE OF...

  4. RAPID/Roadmap/3-AK-b | Open Energy Information

    Open Energy Info (EERE)

    to AS 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  5. RAPID/Roadmap/9-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Stat. ch. 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and model data on high performance computers with pre-loaded software, such as ArcGIS, Petra, EarthVision, GoldSim, MATLAB, and other advanced analytical, statistical and...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their datasets using top-of-the-line research computers with key software, such as ArcGIS, Petra, GoldSim, and Earthvision, among other advanced geostatistical and analytical...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Conversion Model allows for the transfer of elements from the JetPlume and Transport models, taking care to best amalgamate the two contrasting approaches in each, while...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  10. RAPID/Roadmap/19-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most existing reservoir simulators are designed for flow through inter-granular permeability within intact rock, perhaps with the addition of regular grids of fractures. These...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are cheap and easy to process but are limited by an inherent tradeoff between permeability and selectivity - polymeric membranes can have high permeability or high...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanner allows evaluation of microscopic structure and pore surfaces. Porosity, permeability, fracture roughness and aperture, overall structure, and composition can all be...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Baltrus Acting Division Director Molecular Science Division 412-386-4570 john.baltrus@netl.doe.gov Paul Turner Division Director Materials Characterization Division...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... via thermal desorption) to measure volatile organic compounds (VOCs); * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * R.M. Young and Davis Instruments ...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (a GC-FID with sample introduction via thermal desorption) to measure VOC's; * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * A Davis Instruments ...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to industry for commercial implementation. The instrument provides state-of-the- art improvements of reduced size and increased sensitivity and sample rate to facilitate...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can be then used in an inexpensive "breathalyzer" to test for and monitor diabetes. The NETLSC has also greatly accelerated progress on the development of...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling consistent with Biot's poroelastic theory was developed and imple- mented in FLAC and TOUGH2. * H-M models for fractured porous rocks were developed and implemented in a...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exploration and production of deepwater and ultra-deepwater resources. Adequate definition of materials performance and properties is critical to this effort. The outcome...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from each SECARB-Ed participating organization was created to provide direction for the business model and to guide the development of high quality training materials and an...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  5. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 3.08 2000's 4.31 4.39 4.07 4.47 4.94 5.77 6.00 5.97 7.69 8.59 2010's 12.19 13.05 15.71 --...

  6. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.82 12.82 13.40 9.59 11.62 11.62 15.00 17.42 2012 16.15 17.59 15.18 13.13 2014 15.81 16.03 16.03 15.76 15.12 2015 8.08...

  7. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 15.81 16.03 16.03 15.76 15.12 2015 7.50 7.80 8.08 7.90 7.16 6.51...

  8. Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 2,755 - No Data Reported; -- Not Applicable; NA Not...

  9. Kenai, AK Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 1,886 2,809 2,846 2,886 2,884 2015 2,748 2,754 2,753 2,753 2,755 2,755 - No...

  10. EIA-814, Monthly Imports Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AK 2829 OLEUM CA 3103 SKAG WAY AK 2506 OTAY MESA STATION CA 3181 ST PAUL AIRPORT AK 2828 PITTSBURG CA 3196 UPS, ANCHORAGE AK 2830 PORT COSTA CA 3107 VALDEZ AK 2713 PORT HUENEME CA...

  11. Role of <mi>Ce>4+ in the scintillation mechanism of codoped <mi>Gd>3<mi>Ga>3<mi>Al>2<mi mathvariant='normal'>Omi>12:<mi>Ce>

    SciTech Connect (OSTI)

    Wu, Yuntao; Meng, Fang; Li, Qi; Koschan, Merry; Melcher, Charles L.

    2014-10-17

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce4+, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce4+ is still lacking. The aim of this work is to clarify the role of Ce4+ in scintillators by studying Ca2+ codoped Gd3Ga3Al2O12?Ce?(GGAG?Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca2+codoping content and the Ce4+ fraction is seen. The energy-level diagrams of Ce3+ and Ce4+ in the Gd3Ga3Al2O12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d1 state of Ce4+ in the forbidden gap in comparison to that of Ce3+. Underlying reasons for the decay-time acceleration resulting from Ca2+ codoping are revealed, and the physical processes of the Ce4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.

  12. Study of <mi mathvariant='normal'>emi>+ mathvariant='normal'>emi>-?<mi mathvariant='normal'>pmi><mi mathvariant='normal'>pmi><mi>?>0 in the vicinity of the <mi>?>(3770)

    SciTech Connect (OSTI)

    Ablikim, M.; Achasov, M. ?N.; Ai, X.? C.; Albayrak, O.; Albrecht, M.; Ambrose, D. ?J.; An, F. ?F.; An, Q.; Bai, J. ?Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, J.? V.; Bertani, M.; Bian, J.? M.; Boger, E.; Bondarenko, O.; Boyko, I.; Braun, S.; Briere, R.? A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G.? F.; Cetin, S.? A.; Chang, J.? F.; Chelkov, G.; Chen, G.; Chen, H.? S.; Chen, J.? C.; Chen, M.? L.; Chen, S.? J.; Chen, X.; Chen, X.? R.; Chen, Y.? B.; Cheng, H.? P.; Chu, X.? K.; Chu, Y.? P.; Cronin-Hennessy, D.; Dai, H.? L.; Dai, J.? P.; Dedovich, D.; Deng, Z.? Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W.? M.; Ding, Y.; Dong, C.; Dong, J.; Dong, L.? Y.; Dong, M. ?Y.; Du, S.? X.; Fan, J.? Z.; Fang, J.; Fang, S. ?S.; Fang, Y.; Fava, L.; Feng, C. ?Q.; Fu, C. ?D.; Fuks, O.; Gao, Q.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W.? X.; Gradl, W.; Greco, M.; Gu, M. ?H.; Gu, Y.? T.; Guan, Y.? H.; Guo, A.? Q.; Guo, L.? B.; Guo, T.; Guo, Y.? P.; Han, Y.? L.; Harris, F.? A.; He, K.? L.; He, M.; He, Z.? Y.; Held, T.; Heng, Y.? K.; Hou, Z.? L.; Hu, C.; Hu, H.? M.; Hu, J. ?F.; Hu, T.; Huang, G.? M.; Huang, G. ?S.; Huang, H.? P.; Huang, J.? S.; Huang, L.; Huang, X. ?T.; Huang, Y.; Hussain, T.; Ji, C. ?S.; Ji, Q.; Ji, Q.? P.; Ji, X. ?B.; Ji, X.? L.; Jiang, L. ?L.; Jiang, L.? W.; Jiang, X.? S.; Jiao, J.? B.; Jiao, Z.; Jin, D.? P.; Jin, S.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. ?L.; Kang, X.? S.; Kavatsyuk, M.; Kloss, B.; Kopf, B.; Kornicer, M.; Khn, W.; Kupsc, A.; Lai, W.; Lange, J.? S.; Lara, M.; Larin, P.; Leyhe, M.; Li, C.? H.; Li, Cheng; Li, Cui; Li, D.; Li, D.? M.; Li, F.; Li, G.; Li, H.? B.; Li, J.? C.; Li, K.; Li, K.; Li, Lei; Li, P. ?R.; Li, Q.? J.; Li, T.; Li, W.? D.; Li, W.? G.; Li, X.? L.; Li, X.? N.; Li, X.? Q.; Li, Z.? B.; Liang, H.; Liang, Y.? F.; Liang, Y.? T.; Lin, D.? X.; Liu, B.? J.; Liu, C. ?L.; Liu, C.? X.; Liu, F.? H.; Liu, Fang; Liu, Feng; Liu, H. ?B.; Liu, H.? H.; Liu, H.? M.; Liu, J.; Liu, J.? P.; Liu, K.; Liu, K.? Y.; Liu, P.? L.; Liu, Q.; Liu, S.? B.; Liu, X.; Liu, Y.? B.; Liu, Z.? A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X.? C.; Lu, G.? R.; Lu, H.? J.; Lu, H.? L.; Lu, J.? G.; Lu, X.? R.; Lu, Y.; Lu, Y.? P.; Luo, C.? L.; Luo, M.? X.; Luo, T.; Luo, X.? L.; Lv, M.; Ma, F.? C.; Ma, H. ?L.; Ma, Q.? M.; Ma, S.; Ma, T.; Ma, X. ?Y.; Maas, F. ?E.; Maggiora, M.; Malik, Q.? A.; Mao, Y.? J.; Mao, Z.? P.; Messchendorp, J.? G.; Min, J.; Min, T.? J.; Mitchell, R.? E.; Mo, X.? H.; Mo, Y.? J.; Moeini, H.; Morales Morales, C.; Moriya, K.; Muchnoi, N.? Yu.; Muramatsu, H.; Nefedov, Y.; Nikolaev, I. ?B.; Ning, Z.; Nisar, S.; Niu, X.? Y.; Olsen, S.? L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peng, H.? P.; Peters, K.; Ping, J.? L.; Ping, R.? G.; Poling, R.; Q., N.; Qi, M.; Qian, S.; Qiao, C.? F.; Qin, L.? Q.; Qin, X.? S.; Qin, Y.; Qin, Z. ?H.; Qiu, J. ?F.; Rashid, K.? H.; Redmer, C.? F.; Ripka, M.; Rong, G.; Ruan, X.? D.; Sarantsev, A.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C.? P.; Shen, X.? Y.; Sheng, H.? Y.; Shepherd, M.? R.; Song, W.? M.; Song, X. ?Y.; Spataro, S.; Spruck, B.; Sun, G.? X.; Sun, J. ?F.; Sun, S.? S.; Sun, Y.? J.; Sun, Y. ?Z.; Sun, Z. ?J.; Sun, Z.? T.; Tang, C.? J.; Tang, X.; Tapan, I.; Thorndike, E.? H.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G.? S.; Wang, B.; Wang, D.; Wang, D.? Y.; Wang, K.; Wang, L.? L.; Wang, L. ?S.; Wang, M.; Wang, P.; Wang, P.? L.; Wang, Q.? J.; Wang, S.? G.; Wang, W.; Wang, X.? F.; Wang, Y.? D.; Wang, Y.? F.; Wang, Y.? Q.; Wang, Z.; Wang, Z. ?G.; Wang, Z.? H.; Wang, Z.? Y.; Wei, D.? H.; Wei, J.? B.; Weidenkaff, P.; Wen, S. ?P.; Werner, M.; Wiedner, U.; Wolke, M.; Wu, L.? H.; Wu, N.; Wu, Z.; Xia, L.? G.; Xia, Y.; Xiao, D.; Xiao, Z.? J.; Xie, Y.? G.; Xiu, Q.? L.; Xu, G.? F.; Xu, L.; Xu, Q. ?J.; Xu, Q.? N.; Xu, X.? P.; Xue, Z.; Yan, L.; Yan, W.? B.; Yan, W.? C.; Yan, Y.? H.; Yang, H.? X.; Yang, L.; Yang, Y.; Yang, Y.? X.; Ye, H.; Ye, M.; Ye, M.? H.; Yu, B. ?X.; Yu, C. ?X.; Yu, H.? W.; Yu, J.? S.; Yu, S.? P.; Yuan, C. ?Z.; Yuan, W.? L.; Yuan, Y.; Yuncu, A.; Zafar, A. ?A.; Zallo, A.; Zang, S.? L.; Zeng, Y.; Zhang, B. ?X.; Zhang, B.? Y.; Zhang, C.; Zhang, C. ?B.; Zhang, C.? C.; Zhang, D.? H.; Zhang, H.? H.; Zhang, H.? Y.; Zhang, J.? J.; Zhang, J.? Q.; Zhang, J.? W.; Zhang, J.? Y.; Zhang, J. ?Z.; Zhang, S.? H.; Zhang, X. ?J.; Zhang, X.? Y.; Zhang, Y.; Zhang, Y.? H.; Zhang, Z.? H.; Zhang, Z.? P.; Zhang, Z.? Y.; Zhao, G.

    2014-08-22

    The process e+e-?pp?0 has been studied by analyzing data collected at ?s=3.773 GeV, at s?=3.650 GeV, and during a ?(3770) line shape scan with the BESIII detector at the BEPCII collider. The Born cross section of pp?0 in the vicinity of the ?(3770) is measured, and the Born cross section of ?(3770)?pp?0 is extracted considering interference between resonant and continuum production amplitudes. Two solutions with the same probability and a significance of 1.5? are found. The solutions for the Born cross section of ?(3770)?pp?0 are 33.81.82.1 pb and 0.06+0.10-0.04+0.01-0.01 pb (<0.22 pb at a 90% confidence level). Using the estimated cross section and a constant decay amplitude approximation, the cross section ?(pp??(3770)?0) is calculated for the kinematic situation of the planned PANDA experiment. The maximum cross section corresponding to the two solutions is expected to be less than 0.79 nb at 90% confidence level and 12210 nb at a center-of-mass energy of 5.26 GeV.

  13. St. Clair, MI Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    612,369 650,590 781,058 754,494 582,509 478,645 1996-2014 Pipeline Prices 4.62 4.86 4.45 3.11 4.07 6.39 1996...

  14. Marysville, MI Natural Gas Pipeline Imports From Canada (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,408 2,674 212 579 179 606 34 642 270 1,367 826 1,150 2012 326 264 147 899 1,654 1,086 217 801 1,053 1,472 121 61 2013...

  15. St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 123 237 33 91 238 1,469 571 38 1,605 552 270 2012 51 42 2,029 475 370 52 45 69 221 177 2013 884 1,562 1,422 2 26 151 211...

  16. Marysville, MI Natural Gas Pipeline Exports to Canada (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,338 5,323 4,952 3,361 3,295 2,761 2,838 2,182 2,061 2,644 3,085 5,122 2012 6,067 6,721 3,354 3,404 2,923 1,986 2,475...

  17. St. Clair, MI Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6,544 5,591 5,228 3,531 6,019 16,409 1996-2014 Pipeline Prices 5.10 4.97 4.29 2.64 3.96 8.80 1996...

  18. Strangeness suppression of <mi>q><mi>q> creation observed in exclusive reactions

    SciTech Connect (OSTI)

    Mestayer, M. D.; Park, K.; Adhikari, K. P.; Aghasyan, M.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; DAngelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabati, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Simonyan, A.; Sokhan, D.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2014-10-10

    In this study, we measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ?K+, p?0, and n?+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

  19. Two-leg <mi>SU>(2<mi>n>) spin ladder: A low-energy effective field theory approach

    SciTech Connect (OSTI)

    Lecheminant, P.; Tsvelik, A. M.

    2015-05-07

    We present a field-theory analysis of a model of two SU(2n)-invariant magnetic chains coupled by a generic interaction preserving time reversal and inversion symmetry. Contrary to the SU(2)-invariant case the zero-temperature phase diagram of such two-leg spin ladder does not contain topological phases. Thus, only generalized Valence Bond Solid phases are stabilized when n > 1 with different wave vectors and ground-state degeneracies. In particular, we find a phase which is made of a cluster of 2n spins put in an SU(2n) singlet state. For n = 3, this cluster phase is relevant to ?Yb ultracold atoms, with an emergent SU(6) symmetry, loaded in a double-well optical lattice.

  20. Search for Long-Lived Particles in<mi>emi>+<mi>emi>-Collisions

    SciTech Connect (OSTI)

    Lees, J.?P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.?N.; Kerth, L.?T.; Kolomensky, Yu.?G.; Lee, M.?J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T.?S.; McKenna, J.?A.; So, R.?Y.; Khan, A.; Blinov, V.?E.; Buzykaev, A.?R.; Druzhinin, V.?P.; Golubev, V.?B.; Kravchenko, E.?A.; Onuchin, A.?P.; Serednyakov, S.?I.; Skovpen, Yu.?I.; Solodov, E.?P.; Todyshev, K.?Yu.; Lankford, A.?J.; Dey, B.; Gary, J.?W.; Long, O.; Campagnari, C.; Franco Sevilla, M.; Hong, T.?M.; Kovalskyi, D.; Richman, J.?D.; West, C.?A.; Eisner, A.?M.; Lockman, W.?S.; Panduro Vazquez, W.; Schumm, B.?A.; Seiden, A.; Chao, D.?S.; Cheng, C.?H.; Echenard, B.; Flood, K.?T.; Hitlin, D.?G.; Miyashita, T.?S.; Ongmongkolkul, P.; Porter, F.?C.; Rhrken, M.; Andreassen, R.; Huard, Z.; Meadows, B.?T.; Pushpawela, B.?G.; Sokoloff, M.?D.; Sun, L.; Bloom, P.?C.; Ford, W.?T.; Gaz, A.; Smith, J.?G.; Wagner, S.?R.; Ayad, R.; Toki, W.?H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I.?M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Lo Vetere, M.; Monge, M.?R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H.?M.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A.?V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A.?M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D.?J.; Wright, D.?M.; Coleman, J.?P.; Fry, J.?R.; Gabathuler, E.; Hutchcroft, D.?E.; Payne, D.?J.; Touramanis, C.; Bevan, A.?J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Brown, D.?N.; Davis, C.?L.; Denig, A.?G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K.?R.; Barlow, R.?J.; Lafferty, G.?D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D.?A.; Cowan, R.; Sciolla, G.; Cheaib, R.; Patel, P.?M.; Robertson, S.?H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D.?J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C.?P.; LoSecco, J.?M.; Honscheid, K.; Kass, R.; Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G.?R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M.?A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J.?J.; Lopes Pegna, D.; Olsen, J.; Smith, A.?J.?S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Pilloni, A.; Piredda, G.; Bnger, C.; Dittrich, S.; Grnberg, O.; Hess, M.; Leddig, T.; Vo, C.; Waldi, R.; Adye, T.; Olaiya, E.?O.; Wilson, F.?F.; Emery, S.; Vasseur, G.; Aston, D.; Bard, D.?J.; Cartaro, C.; Convery, M.?R.; Dorfan, J.; Dubois-Felsmann, G.?P.; Dunwoodie, W.; Ebert, M.; Field, R.?C.; Fulsom, B.?G.; Graham, M.?T.; Hast, C.; Innes, W.?R.; Kim, P.; Leith, D.?W.?G.?S.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H.?L.; MacFarlane, D.?B.; Muller, D.?R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B.?N.; Roodman, A.; Salnikov, A.?A.; Schindler, R.?H.; Snyder, A.; Su, D.; Sullivan, M.?K.; Vavra, J.; Wisniewski, W.?J.; Wulsin, H.?W.; Purohit, M.?V.; White, R.?M.; Wilson, J.?R.; Randle-Conde, A.; Sekula, S.?J.; Bellis, M.; Burchat, P.?R.; Puccio, E.?M.?T.; Alam, M.?S.; Ernst, J.?A.; Gorodeisky, R.; Guttman, N.; Peimer, D.?R.; Soffer, A.; Spanier, S.?M.; Ritchie, J.?L.; Schwitters, R.?F.; Wray, B.?C.; Izen, J.?M.; Lou, X.?C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F.?U.; Choi, H.?H.?F.; King, G.?J.; Kowalewski, R.; Lewczuk, M.?J.; Lueck, T.; Nugent, I.?M.; Roney, J.?M.; Sobie, R.?J.; Tasneem, N.; Gershon, T.?J.; Harrison, P.?F.; Latham, T.?E.; Band, H.?R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S.?L.

    2015-04-29

    We present a search for a neutral, long-lived particle L that is produced in e+e- collisions and decays at a significant distance from the e+e- interaction point into various flavor combinations of two oppositely charged tracks. The analysis uses an e+e- data sample with a luminosity of 489.1 fb-1 collected by the BABAR detector at the ? (4S), ? (3S), and ? (2S) resonances and just below the ? (4S). Fitting the two-track mass distribution in search of a signal peak, we do not observe a significant signal, and set 90% confidence level upper limits on the product of the L production cross section, branching fraction, and reconstruction efficiency for six possible two-body L decay modes as a function of the L mass. The efficiency is given for each final state as a function of the mass, lifetime, and transverse momentum of the candidate, allowing application of the upper limits to any production model. In addition, upper limits are provided on the branching fraction B(B?XsL), where Xs is a strange hadronic system.

  1. Pressure-induced collapsed-tetragonal phase in <mi>SrCo>2<mi>As>2

    SciTech Connect (OSTI)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-12-08

    We present high-energy x-ray diffraction data under applied pressures up to p = 29GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ? 5.9 GPa and T ? 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ? 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a ca ratio of 2.54. As a result, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  2. Phase transition in bulk single crystals and thin films of <mi mathvariant='normal'>Vmi> mathvariant='normal'>Omi>2 by nanoscale infrared spectroscopy and imaging

    SciTech Connect (OSTI)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; Abreu, Elsa; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang -Xin; Lu, Jiwei; Bechtel, Hans A.; Martin, Michael C.; Raschke, Markus B.; Averitt, Richard D.; Wolf, Stuart A.; Kim, Hyun -Tak; Canfield, Paul C.; Basov, D. N.

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.

  3. New lifetime measurements in <mi>Pd>109 and the onset of deformation at <mi>N>=60

    SciTech Connect (OSTI)

    Bucher, B.; Mach, H.; Aprahamian, A.; Simpson, G. S.; Rissanen, J.; Ghiţă, D. G.; Olaizola, B.; Kurcewicz, W.; Äystö, J.; Bentley, I.; Eronen, T.; Fraile, L. M.; Jokinen, A.; Karvonen, P.; Moore, I. D.; Penttilä, H.; Reponen, M.; Ruchowska, E.; Saastamoinen, A.; Smith, M. K.; Weber, C.

    2015-12-14

    We measured several new subnanosecond lifetimes in 109Pd using the fast-timing βγ γ (t ) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility. We obtained lifetimes for excited states in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. Finally, the available nuclear data indicate a sudden increase in deformation at N = 60 which is related to the strong p-n interaction between πg9/2 and νg7/2 valence nucleons expected in this region.

  4. Sault St. Marie, MI Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,044 4,011 9,555 24,913 16,288 4,457 1999-2014 Pipeline Prices 5.04 5.27 4.23 3.20 4.04 6.01 1999...

  5. First MINOS results from the NuMI beam

    SciTech Connect (OSTI)

    Tagg, Nathaniel

    2006-05-01

    As of December 2005, the MINOS long-baseline neutrino oscillation experiment collected data with an exposure of 0.93 x 10{sup 20} protons on target. Preliminary analysis of these data reveals a result inconsistent with a no-oscillation hypothesis at level of 5.8 sigma. The data are consistent with neutrino oscillations reported by Super-Kamiokande and K2K, with best fit parameters of {Delta}m{sub 23}{sup 2} = 3.05{sub -0.55}{sup +0.60} x 10{sup -3} and sin{sup 2} 2{theta}{sub 23} = 0.88{sub -0.15}{sup +0.12}.

  6. Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.48 2.17 2.06 2000's NA NA 3.95 -- 7.80 -- 7.07 7.59 8.59 3.80 2010's 4.44 4.42 2.99 4.15 6.86 2.7

  7. Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.85 4.76 4.36 4.62 4.73 4.70 4.74 4.75 4.21 3.83 3.85 3.79 2012 3.29 3.05 2.61 2.35 2.68 2.64 3.07 3.16 3.14 3.60 3.93 4.22 2013 3.63 3.65 4.57 4.70 4.22 4.17 3.79 4.78 2014 5.52 23.30 24.73 4.80 4.99 4.06 4.09 3.92 4.51 4.03 2015 3.74 2.89 3.07 2.86 2.94 3.05 3.11 2.63 2.29 2.0

  8. Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10 1,827 135 2000's NA NA 74 0 303 0 24 876 2,252 5,651 2010's 5,694 9,946 8,099 2,337 4,650 1,961

  9. Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,408 2,674 212 579 179 606 34 642 270 1,367 826 1,150 2012 326 264 147 899 1,654 1,086 217 801 1,053 1,472 121 61 2013 693 176 1,080 14 21 194 114 19 2014 247 117 453 994 5 653 569 574 791 246 2015 23 136 223 142 151 484 57 61 501 182

  10. MHK Technologies/Mi2 | Open Energy Information

    Open Energy Info (EERE)

    Dimensions Device Testing Scale Test *Extensive technology development through computer modeling and prototype testing at the National Research Council towing tank facility...

  11. REC Silicon formerly ASiMI | Open Energy Information

    Open Energy Info (EERE)

    ,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":47.838435,"lon":-100.665669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""...

  12. Nonuniversal gaugino masses and muon<mi>g>-2

    SciTech Connect (OSTI)

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; n, Cem Salih

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale MGUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at MGUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at MGUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125126 GeV Higgs boson mass and the WMAP dark matter bounds.

  13. High-<mi>Tmi>c> superconductivity at the interface between the <mi>CaCuO>2 and <mi>SrTiO>3 insulating oxides

    SciTech Connect (OSTI)

    Di Castro, D.; Cantoni, C.; Ridolfi, F.; Aruta, C.; Tebano, A.; Yang, N.; Balestrino, G.

    2015-09-28

    At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low Tc. We report the occurrence of high Tc superconductivity in the bilayer CaCuO2/SrTiO3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO2/SrTiO3 interface must be realized between the Ca plane of CaCuO2 and the TiO2 plane of SrTiO3. Only in this case can oxygen ions be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO2 planes. In addition, a detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 12 CaCuO2 unit cells close to the interface with SrTiO3. The results obtained for the CaCuO2/SrTiO3 interface can be extended to multilayered high Tc cuprates, contributing to explaining the dependence of Tc on the number of CuO2 planes in these systems.

  14. Separated response functions in exclusive, forward <mi>?> electroproduction on deuterium

    SciTech Connect (OSTI)

    Huber, G. M.; Blok, H. P.; Butuceanu, C.; Gaskell, D.; Horn, T.; Mack, D. J.; Abbott, D.; Aniol, K.; Anklin, H.; Armstrong, C.; Arrington, J.; Assamagan, K.; Avery, S.; Baker, O. K.; Barrett, B.; Beise, E. J.; Bochna, C.; Boeglin, W.; Brash, E. J.; Breuer, H.; Chang, C. C.; Chant, N.; Christy, M. E.; Dunne, J.; Eden, T.; Ent, R.; Fenker, H.; Gibson, E. F.; Gilman, R.; Gustafsson, K.; Hinton, W.; Holt, R. J.; Jackson, H.; Jin, S.; Jones, M. K.; Keppel, C. E.; Kim, P. H.; Kim, W.; King, P. M.; Klein, A.; Koltenuk, D.; Kovaltchouk, V.; Liang, M.; Liu, J.; Lolos, G. J.; Lung, A.; Margaziotis, D. J.; Markowitz, P.; Matsumura, A.; McKee, D.; Meekins, D.; Mitchell, J.; Miyoshi, T.; Mkrtchyan, H.; Mueller, B.; Niculescu, G.; Niculescu, I.; Okayasu, Y.; Pentchev, L.; Perdrisat, C.; Pitz, D.; Potterveld, D.; Punjabi, V.; Qin, L. M.; Reimer, P. E.; Reinhold, J.; Roche, J.; Roos, P. G.; Sarty, A.; Shin, I. K.; Smith, G. R.; Stepanyan, S.; Tang, L. G.; Tadevosyan, V.; Tvaskis, V.; van der Meer, R. L. J.; Vansyoc, K.; Van Westrum, D.; Vidakovic, S.; Volmer, J.; Vulcan, W.; Warren, G.; Wood, S. A.; Xu, C.; Yan, C.; Zhao, W. -X.; Zheng, X.; Zihlmann, B.

    2015-01-07

    Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, Q2, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in ?? and ?? electroproduction are particularly informative. Ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Method: Data were acquired with 2.6-5.2 GeV electron beams and the HMS+SOS spectrometers in Jefferson Lab Hall C, at central Q2 values of 0.6, 1.0, 1.6 GeV2 at W=1.95 GeV, and Q2=2.45 GeV2 at W=2.22 GeV. There was significant coverage in ? And ?, which allowed separation of ?L,T,LT,TT. Results: ?L shows a clear signature of the pion pole, with a sharp rise at small -t. In contrast, ?T is much flatter versus t. The longitudinal/transverse ratios evolve with Q2 and t, and at the highest Q2=2.45 GeV2 show a slight enhancement for ?? Production compared to ??. The ??/??+ ratio for transverse photons exhibits only a small Q2-dependence, following a nearly universal curve with t, with a steep transition to a value of about 0.25, consistent with s-channel quark knockout. The ?TT/?T ratio also drops rapidly with Q2, qualitatively consistent with s-channel helicity conservation. The ??/?? ratio for longitudinal photons indicates a small isoscalar contamination at W=1.95 GeV, consistent with what was observed in our earlier determination of the pion form factor at these kinematics.

  15. Levels in <mi mathvariant='normal'>Nmi>12 via the <mi mathvariant='normal'>Nmi>14 (<mi>pmi>,t>) reaction using the JENSA gas-jet target

    SciTech Connect (OSTI)

    Chipps, K. A.; Pain, S. D.; Greife, U.; Kozub, R. L.; Bardayan, D. W.; Blackmon, J. C.; Kontos, A.; Linhardt, L. E.; Matos, M.; Pittman, S. T.; Sachs, A.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Thompson, P.

    2015-09-25

    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics gas-jet target for enabling next-generation transfer reaction studies, the ?N (p, t)N reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of N. A new level at 4.561-MeV excitation energy in N was found.

  16. Surface state reconstruction in ion-damaged <mi>SmB>6

    SciTech Connect (OSTI)

    Wakeham, N.; Wang, Y. Q.; Fisk, Z.; Ronning, F.; Thompson, J. D.

    2015-02-12

    We have used ion-irradiation to damage the (001) surfaces of SmB? single crystals to varying depths, and have measured the resistivity as a function of temperature for each depth of damage. We observe a reduction in the residual resistivity with increasing depth of damage. Our data are consistent with a model in which the surface state is not destroyed by the ion-irradiation, however instead the damaged layer is poorly conducting and the initial surface state is reconstructed below the damage. This behavior is consistent with a surface state that is topologically protected.

  17. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed <mi>Yb>2<mi>Ti>2<mi mathvariant='normal'>Omi>7

    SciTech Connect (OSTI)

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti4+ sites are occupied by excess Yb3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb2+xTi2–xO7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of mJ = ±1/2, as expected. However, stuffing at low temperatures in Yb2+xTi2–xO7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb2+xTi2–xO7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.

  18. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor <mi mathvariant='normal'>ErNimi>2<mi mathvariant='normal'>Bmi>2<mi mathvariant='normal'>Cmi>

    SciTech Connect (OSTI)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth ? and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.

  19. Measurements of dielectron production in Au + Au collisions at <mi>smi><mi>Nmi>N>=200 GeV from the STAR experiment

    SciTech Connect (OSTI)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Jung, K.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I. -K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-08-24

    We report on measurements of dielectron (e⁺e⁻) production in Au+Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum (pT) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region (Mee < 1GeV/c2). This enhancement cannot be reproduced by the ρ-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 – 0.76GeV/c², integrated over the full pT acceptance, the enhancement factor is 1.76±0.06(stat.)±0.26(sys.)±0.29(cocktail). The enhancement factor exhibits weak centrality and pT dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44±0.10. Models that assume an in-medium broadening of the ρ-meson spectral function consistently describe the observed excess in these measurements. In addition, we report on measurements of ω- and Φ-meson production through their e⁺e⁻ decay channel. These measurements show good agreement with Tsallis blast-wave model predictions, as well as, in the case of the Φ meson, results through its K⁺K⁻ decay channel. In the intermediate invariant-mass region (1.1 < Mee < 3GeV/c²), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.

  20. ? and 2<mi>p>2<mi>n> emission in fast neutron-induced reactions on <mi>Ni>60

    SciTech Connect (OSTI)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'?) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  1. Print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 5k 0 < 50k < 100k < 250k < 500k < 1M > 1M > 5M > 10M DE MD DC MA RI NJ AZ UT WY ID OR WA CA TX OK KS CO NE SD ND MN WI IL IA MO AR LA MS AL FL GA TN KY IN OH MI ME NH CT VT NY PA WV VA NC SC MT AK HI NV NM Princeton Plasma Physics Laboratory Procured Materials and Services 2015 (> $35M) Small business procurements in US: $14.73M

  2. padd map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FL PADD 4: Rocky Mountain PADD 5: West Coast PADD 2: Midwest PADD 1: East Coast PADD 3: Gulf Coast PADD1A: New England PADD1B: Central Atlantic PADD1C: Lower Atlantic Petroleum Administration for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI

  3. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells Webinar December 14, 2010 2 Examples of DOE-funded Partners and Locations - Fuel Cell Technologies Program TX NM AZ NC AR CA CO HI WA IL KY MA MN MO MS AL NV TN UT WV ID FL MI ND OR OH IN MT WY IO NE KS OK AK LA GA WI SC VA PA DE MD DC NJ NY RI CT VT NH ME SD Source: US DOE 12/2010 2 3 Fuel Cells: Addressing Energy Challenges 4

  4. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning

  5. fe0023919-uta | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through the planning and conduct of drilling, coring, logging, testing, and ... Previous drilling in the GOM has verified the presence of methane hydrate filled sand ...

  6. FinalTechnicalReport_15U5O2I-11_RPSEA.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depth in the GOM: 1. Paired Column (PC) semi-submersible developed by Houston Offshore Engineering (HOE) 2. Deepwater Dry Tree Semi-submersible (DWDTS) developed by Kvaerner...

  7. Balancing act: Evidence for a strong subdominant <mi>d>-wave pairing channel in <mi>Ba>0.6<mi mathvariant='normal'>Kmi>0.4<mi>Fe>2<mi>As>2

    SciTech Connect (OSTI)

    Bhm, T.; Kemper, A. F.; Moritz, B.; Kretzschmar, F.; Muschler, B.; Eiter, H. -M.; Hackl, R.; Devereaux, T. P.; Scalapino, D. J.; Wen, Hai -Hu

    2014-12-18

    We present detailed measurements of the temperature-dependent Raman spectra of optimally doped Ba0.6K0.4Fe2As2 and analyze the low-temperature spectra based on local-density-approximation band-structure calculations and the subsequent estimation of effective Raman vertices. Experimentally, a narrow, emergent mode appears in the B1g (dx2-y2) Raman spectra only below Tc, well into the superconducting state and at an energy below twice the energy gap on the electron Fermi-surface sheets. The Raman spectra can be reproduced quantitatively with estimates for the magnitude and momentum-space structure of an A1g (s-wave) pairing gap on different Fermi-surface sheets, as well as the identification of the emergent sharp feature as a Bardasis-Schrieffer exciton. Formed as a Cooper-pair bound state in a subdominant dx2-y2 channel, the binding energy of the exciton relative to the gap edge shows that the coupling strength in the subdominant channel is as strong as 60% of that in the dominant s-wave channel. This result suggests that dx2-y2 may be the dominant pairing symmetry in Fe-based superconductors that lack central hole bands.

  8. Obama Administration Announces Additional $13,969,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 41,700 AK Native Village of Minto 42,400 AK Native Village of Nanwalek (aka English Bay) 40,100 AK Native Village of Napaimute 34,500 AK Native Village of Napakiak ...

  9. EIA Report 11/22/05 - Hurricane Impacts on U.S. Oil & Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shut-in Oil (bbld) % of Total Federal GOM Shut-in Gas (mmcfd) % of Total Federal GOM 11222005 621,233 39.4% 3,219 31.9% 11212005 633,064 40.2% 3,269 32.4% 11182005...

  10. Measurement of the target-normal single-spin asymmetry in quasielastic scattering from the reaction <mi>He>3?(<mi>emi>,<mi>emi>')

    SciTech Connect (OSTI)

    Zhang, Y. -W.; Long, E.; Mihovilovi?, M.; Jin, G.; Allada, K.; Anderson, B.; Annand, J. R. M.; Averett, T.; Ayerbe-Gayoso, C.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J. P.; Chudakov, E.; De Leo, R.; Deng, X.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; John, J. St.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H. -J.; Luo, W.; Markowitz, P.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Qiu, X.; Riordan, S.; Ron, G.; Saha, A.; Sawatzky, B.; Schiavilla, R.; Schoenrock, B.; Shabestari, M.; Shahinyan, A.; irca, S.; Subedi, R.; Sulkosky, V.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.

    2015-10-22

    We report the first measurement of the target single-spin asymmetry, Ay, in quasi-elastic scattering from the inclusive reaction 3He? (e,e') on a 3He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero Ay can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q2= 0.13, 0.46 and 0.97 GeV2. These measurements demonstrate, for the first time, that the 3He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)?. Using measured proton-to-3He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q2 is related to moments of the Generalized Parton Distributions (GPDs). Our measured neutron asymmetry at Q2=0.97 GeV2 agrees well with a prediction based on two-photon exchange using a GPD model and in addition provides a new independent constraint on these distributions.

  11. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    SciTech Connect (OSTI)

    POLLIS, REBECCA

    2014-10-17

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  12. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2012-05-14

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  13. File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    GAS.pdf Jump to: navigation, search File File history File usage National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Size of...

  14. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  15. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  16. File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  17. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  18. Measurement of Fukushima Aerosol Debris in Sequim and Richland, WA and Ketchikan, AK

    SciTech Connect (OSTI)

    Miley, Harry S.; Bowyer, Ted W.; Engelmann, Mark D.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Keillor, Martin E.; Kiddy, Robert A.; Kirkham, Randy R.; Landen, Jonathan W.; Lepel, Elwood A.; Lidey, Lance S.; Litke, Kevin E.; Morris, Scott J.; Olsen, Khris B.; Thompson, Robert C.; Valenzuela, Blandina R.; Woods, Vincent T.; Biegalski, Steven R.

    2013-05-01

    Aerosol collections were initiated at several locations by PNNL shortly after the Great East Japan Earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.

  19. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-10-05

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  20. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  1. File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  2. File:EIA-AK-NPRA-ANWR-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  3. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  4. File:EIA-AK-NPRA-ANWR-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  5. File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  6. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-08-11

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William W. Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6569 william.aljoe@netl.doe.gov Teresa L. Nealon Principal Investigator University of Wyoming 1000 E. University Avenue P.O. Box 3011 Laramie, Wyoming 82071-3006 307-766-3029 tnealon@uwyo.edu PARTNERS None P R OJ E C T FAC T S Carbon Storage - Training Center Wyoming Carbon Capture and Sequestration Technology Institute; Workforce Training, Technology

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center Development and Implementation of the Midwest Geological Sequestration Consortium Sequestration Training and Education Program (STEP) Background Carbon capture utilization and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5534 bruce.brown@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the energy consumed in the United States. Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally complex

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-ORD Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Office of Research and Development (ORD) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic frame- work of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P R O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov Bruce Brown Project Manager National EnergyTechnology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5534 bruce.brown@netl.doe.gov Kenneth Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources Alabama Oil & Gas Board Alawest Alpha Natural Resources American Coalition for Clean Coal Energy American Electric Power Amvest Gas

  19. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Kelly Rose Principal Investigator Research Physical Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Cynthia Powell Acting Focus Area Lead 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM ORISE Oregon State University Pacific Northwest National Laboratory Spatio-Temporal Tools & Geostatistical Approaches for Engineered-Natural Systems Risk Reduction

  20. File:08-AK-c - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    this file. Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from...

  1. US Fish and Wildlife Service biomonitoring operations manual, Appendices A--K

    SciTech Connect (OSTI)

    Gianotto, D.F.; Rope, R.C.; Mondecar, M.; Breckenridge, R.P.; Wiersma, G.B.; Staley, C.S.; Moser, R.S.; Sherwood, R.; Brown, K.W.

    1993-04-01

    Volume 2 contains Appendices and Summary Sheets for the following areas: A-Legislative Background and Key to Relevant Legislation, B- Biomonitoring Operations Workbook, C-Air Monitoring, D-Introduction to the Flora and Fauna for Biomonitoring, E-Decontamination Guidance Reference Field Methods, F-Documentation Guidance, Sample Handling, and Quality Assurance/Quality Control Standard Operating Procedures, G-Field Instrument Measurements Reference Field Methods, H-Ground Water Sampling Reference Field Methods, I-Sediment Sampling Reference Field Methods, J-Soil Sampling Reference Field Methods, K-Surface Water Reference Field Methods. Appendix B explains how to set up strategy to enter information on the ``disk workbook``. Appendix B is enhanced by DE97006389, an on-line workbook for users to be able to make revisions to their own biomonitoring data.

  2. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12.88 15.71 -- 15.74 7.49

  3. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.61 -- -- --

  4. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10.61

  5. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.49

  6. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -- -- -- -- 7.50 7.80 -- -- 7.16 -- -- --

  7. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.49

  8. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 7.50 7.80 7.16

  9. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  10. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  11. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    SciTech Connect (OSTI)

    McCoy, Renata; Xie, Shaocheng

    2013-12-26

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  12. Kondo interactions from band reconstruction in <mi>YbInCu>4

    SciTech Connect (OSTI)

    Jarrige, I.; Kotani, A.; Yamaoka, H.; Tsujii, N.; Ishii, K.; Upton, M.; Casa, D.; Kim, J.; Gog, T.; Hancock, J. N.

    2015-03-27

    We combine resonant inelastic X-ray scattering (RIXS) and model calculations in the Kondo lattice compound YbInCu?, a system characterized by a dramatic increase in Kondo temperature and associated valence fluctuations below a first-order valence transition at T?42 K. In this study, the bulk-sensitive, element-specific, and valence-projected charge excitation spectra reveal an unusual quasi-gap in the Yb-derived state density which drives an instability of the electronic structure and renormalizes the low-energy effective Hamiltonian at the transition. Our results provide long-sought experimental evidence for a link between temperature-driven changes in the low-energy Kondo scale and the higher-energy electronic structure of this system.

  13. Electronic structure basis for the extraordinary magnetoresistance in <mi>WTe>2

    SciTech Connect (OSTI)

    Pletikosi?, I.; Ali, Mazhar N.; Fedorov, A. V.; Cava, R. J.; Valla, T.

    2014-11-19

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior of the magnetoresistance in WTe? was identified.

  14. Measurement of Double-Polarization Asymmetries in the Quasielastic <mi>He>?3(<mi mathvariant='normal'>emi>?,<mi>emi>'<mi>d>) Process

    SciTech Connect (OSTI)

    Mihovilovic, M.; Jin, G.; Long, E.; Zhang, Y. -W.; Allada, K.; Anderson, B.; Annand, J. R.M.; Averett, T.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J. P.; Chudakov, E.; De Leo, R.; Deng, X.; Deltuva, A.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golak, J.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; Kievsky, A.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H. -J.; Luo, W.; Marcucci, L. E.; Markowitz, P.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J.R.; Qian, X.; Qiang, Y.; Qui, X.; Riordan, S.; Saha, A.; Sauer, P. U.; Sawatzky, B.; Schiavilla, R.; Schoenrock, B.; Shabestari, M.; Shahinyan, A.; Sirca, S.; Skibinski, R.; St John, J.; Subedi, R.; Sulkosky, V.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Viviani, M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Witala, H.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.

    2014-12-05

    We present a precise measurement of double-polarization asymmetries in the 3He(e,e'd) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 270MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on pm and omega, but are systematically offset. Beyond the region of the quasi-elastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two- and/or three-body dynamics is required.

  15. <mi mathvariant='normal'>Cmi>60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer

    SciTech Connect (OSTI)

    Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.

    2015-12-03

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate of ~5 Pb atoms per C60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.

  16. Thermal conductivity in large-<mi>J> two-dimensional antiferromagnets: Role of phonon scattering

    SciTech Connect (OSTI)

    Chernyshev, A. L.; Brenig, Wolfram

    2015-08-05

    Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates.

    It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ?D?T<< J.

  17. Direct observation of quark-hadron duality in the free neutron <mi>F>2 structure function

    SciTech Connect (OSTI)

    Niculescu, I.; Niculescu, G.; Melnitchouk, W.; Arrington, J.; Christy, M. E.; Ent, R.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Kuhn, S.; Tkachenko, S.; Zhang, J.

    2015-05-21

    Using data from the recent BONuS experiment at Jefferson Lab, which utilized a novel spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F2 structure function. In addition, the data are used to reconstruct the lowest few (N = 2, 4 and 6) moments of F2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark--hadron duality holds locally for the neutron in the second and third resonance regions down to Q2 ≈ 1 GeV2, with violations possibly up to 20% observed in the first resonance region.

  18. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Broader source: Energy.gov (indexed) [DOE]

    73 mi (99 MPGe); 62-138 mi (Nissan) 3 13 mi 38 mi (98 MPGe) 2 Prius Hybrid 514850 MPG 1 354037 MPG 1 (Gas only) Electric Operation 382 mi total range 595 mi range Gasoline...

  19. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:06 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  20. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:07 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  1. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Prices Table 18. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1983 ..................... 26.19 28.00 28.32 28.19 28.28 27.27 29.17 29.12 29.06 28.45 28.60 28.93 28.58 1984 ..................... 25.88 27.59 27.76 27.70 27.71 26.90 28.62 28.76 28.72 27.99 28.24 28.54 27.83 1985 ..................... 24.09 25.74 25.88 25.19 25.05 24.35 25.94

  2. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1983 ..................... 26.19 28.00 28.32 28.19 28.28 27.27 29.17 29.12 29.06 28.45 28.60 28.93 28.58 1984 ..................... 25.88 27.59 27.76 27.70 27.71 26.90 28.62 28.76 28.72 27.99 28.24 28.54 27.83 1985 ..................... 24.09 25.74 25.88 25.19 25.05 24.35 25.94 26.90 26.82 25.33 26.20

  3. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    8 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita 14 U.S. Energy Information Administration / Annual Energy Review 2011 TX CA FL LA IL OH PA NY GA IN MI NC VA NJ TN WA KY AL MO MN WI SC OK CO IA MD AZ MA MS KS AR OR NE UT CT WV NM NV AK WY ID ND ME MT SD NH HI DE RI DC VT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2 4 6 8 10

  5. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Prices U.S. Energy Information Administration | Petroleum Marketing Monthly Table 18. Domes c crude oil fi rst purchase prices dollars per barrel Year month U.S. Average PAD District 1 PAD District 2 U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1990 20.03 21.57 22.06 23.32 23.00 22.16 22.88 23.36 23.46 23.21 23.20 22.92 21.94 1991 16.54 18.16 19.01 19.67 19.48 W 19.58 20.19 20.20 19.84 19.84 19.88 18.78 1992 15.99 17.38 18.52 19.05 19.01 18.09 18.63 19.26 19.27

  6. U.S. Liquefied Natural Gas Exports by Point of Exit

    U.S. Energy Information Administration (EIA) Indexed Site

    ,771 2,763 2,767 2,769 2,969 3,172 1997-2015 To Brazil 2010-2015 Freeport, TX 2011-2015 Sabine Pass, LA 2011-2011 To Canada 5 2 1 2007-2015 Port Huron, MI 2013-2015 Crosby, ND 1 2015-2015 Portal, ND 2 2015-2015 Babb, MT 2015-2015 Buffalo, NY 1 2015-2015 Sweetgrass, MT 4 2012-2015 To Chile 2011-2011 Sabine Pass, LA 2011-2011 To China 1973-2011 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To Egypt 2,947 2015-2015 Freeport, TX 2,947 2015-2015 To India 2010-2012 Freeport, TX 2011-2012 Sabine Pass,

  7. U.S. Price of Liquefied Natural Gas Exports by Point of Exit

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 8.10 7.91 7.17 6.53 16.67 15.95 1997-2015 To Brazil 2010-2015 Freeport, TX 2011-2015 Sabine Pass, LA 2011-2011 To Canada 13.39 10.18 6.81 2007-2015 Port Huron, MI 2013-2015 Crosby, ND 6.81 2015-2015 Portal, ND 10.18 2015-2015 Babb, MT 2015-2015 Buffalo, NY 7.75 2015-2015 Sweetgrass, MT 14.56 2012-2015 To Chile 2011-2011 Sabine Pass, LA 2011-2011 To China 1973-2011 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To Egypt 16.71

  8. HuMiChip: Development of a Functional Gene Array for the Study...

    Office of Scientific and Technical Information (OSTI)

    the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts. less Authors: Tu, Q. ; Deng, Ye ; Lin, Lu ; Hemme, Chris L. ;...

  9. Temperature and composition phase diagram in the iron-based ladder compounds Ba 1 - <mi>x> Cs <mi>x> Fe 2 Se 3

    SciTech Connect (OSTI)

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.

    2015-05-28

    We investigated the iron-based ladder compounds (Ba,Cs)Fe?Se?. Their parent compounds BaFe?Se? and CsFe?Se? have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe?Se? is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe?Se? is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe?Se?, but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures.

  10. St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 74,025 68,809 83,796 62,851 68,731 59,044 56,015 56,094 66,775 52,380 65,815 66,723 2012 62,390 62,442 72,035 61,364 66,456 54,973 52,240 66,101 67,443 61,205 62,762 65,084 2013 56,510 52,567 58,126 43,917 56,075 54,114 42,609 45,524 47,795 43,767 34,054 45,093 2014 52,731 57,817 68,448 44,792 24,659 31,385 28,556 21,997 28,757 27,488 40,820 51,194 2015 50,905 58,264 66,483 34,226 25,282 24,830 20,051 22,111 37,442 34,246 30,513 27,579

  11. EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Charged-to-neutral correlation at forward rapidity in Au+Au collisions at <mi>s mathvariant='italic'>NNmi>=200 GeV

    SciTech Connect (OSTI)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bltmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Caldern de la Barca Snchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2015-03-20

    Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at ?sNN=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. Thus, we find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (< 1%) deviation is observed.

  13. HuMiChip: Development of a Functional Gene Array for the Study...

    Office of Scientific and Technical Information (OSTI)

    was constructed with 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design....

  14. Systematic approach for simultaneously correcting the band-gap and<mi>pmi>-d>separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    SciTech Connect (OSTI)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.

  15. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  16. Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 453 278 308 68 87 1,115 1,010 1,125 1,019 1,026 1,107 1,960 2012 2,630 2,246 2,518 2,102 1,445 1,633 1,910 1,763 1,489...

  17. Precision Measurement of the(<mi>emi>++<mi>e>-)Flux in Primary Cosmic Rays from 0.5GeV to 1TeV with the Alpha Magnetic Spectrometer on the International Space Station

    SciTech Connect (OSTI)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M.?J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X.?D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M.?J.; Chang, Y.?H.; Chen, A.?I.; Chen, H.; Cheng, G.?M.; Chen, H.?S.; Cheng, L.; Chikanian, A.; Chou, H.?Y.; Choumilov, E.; Choutko, V.; Chung, C.?H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Crispoltoni, M.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirkz, M.?B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Daz, C.; von Doetinchem, P.; Donnini, F.; Du, W.?J.; Duranti, M.; DUrso, D.; Eline, A.; Eppling, F.?J.; Eronen, T.; Fan, Y.?Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; Garca, B.; Garca-Lpez, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K.?H.; Habiby, M.; Haino, S.; Han, K.?C.; He, Z.?H.; Heil, M.; Hoffman, J.; Hsieh, T.?H.; Huang, Z.?C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W.?Y.; Jinchi, H.; Kanishev, K.; Kim, G.?N.; Kim, K.?S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M.?S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H.?T.; Lee, S.?C.; Leluc, C.; Li, H.?L.; Li, J.?Q.; Li, Q.; Li, Q.; Li, T.?X.; Li, W.; Li, Y.; Li, Z.?H.; Li, Z.?Y.; Lim, S.; Lin, C.?H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M.?J.; Lu, Y.?S.; Luebelsmeyer, K.; Luo, F.; Luo, J.?Z.; Lv, S.?S.; Majka, R.; Malinin, A.; Ma, C.; Marn, J.; Martin, T.; Martnez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D.?C.; Morescalchi, L.; Mott, P.; Mller, M.; Ni, J.?Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X.?M.; Rih, T.; Rancoita, P.?G.; Rapin, D.; Ricol, J.?S.; Rodrguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S.?M.; Schuckardt, D.; Schulz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.?S.; Shan, B.?S.; Shan, Y.?H.; Shi, J.?Y.; Shi, X.?Y.; Shi, Y.?M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W.?H.; Tacconi, M.; Tang, C.?P.; Tang, X.?W.; Tang, Z.?C.; Tao, L.; Tescaro, D.; Ting, Samuel C.?C.; Ting, S.?M.; Tomassetti, N.; Torsti, J.; Trko?lu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J.?P.; Wang, L.?Q.; Wang, Q.?L.; Wang, R.?S.; Wang, X.; Wang, Z.?X.; Weng, Z.?L.; Whitman, K.; Wienkenhver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R.?Q.; Xin, G.?M.; Xu, N.?S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q.?H.; Yi, H.; Yu, Y.?J.; Yu, Z.?Q.; Zeissler, S.; Zhang, J.?H.; Zhang, M.?T.; Zhang, X.?B.; Zhang, Z.; Zheng, Z.?M.; Zhuang, H.?L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index ?= -3.170 0.008(stat+syst) 0.008(energy scale).

  18. Search for a Dark Photon in<mi>emi>+<mi>emi>-Collisions atBaBar

    SciTech Connect (OSTI)

    Lees, J.?P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.?N.; Feng, M.; Kerth, L.?T.; Kolomensky, Yu.?G.; Lee, M.?J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T.?S.; McKenna, J.?A.; So, R.?Y.; Khan, A.; Blinov, V.?E.; Buzykaev, A.?R.; Druzhinin, V.?P.; Golubev, V.?B.; Kravchenko, E.?A.; Onuchin, A.?P.; Serednyakov, S.?I.; Skovpen, Yu.?I.; Solodov, E.?P.; Todyshev, K.?Yu.; Lankford, A.?J.; Mandelkern, M.; Dey, B.; Gary, J.?W.; Long, O.; Campagnari, C.; Franco Sevilla, M.; Hong, T.?M.; Kovalskyi, D.; Richman, J.?D.; West, C.?A.; Eisner, A.?M.; Lockman, W.?S.; Panduro Vazquez, W.; Schumm, B.?A.; Seiden, A.; Chao, D.?S.; Cheng, C.?H.; Echenard, B.; Flood, K.?T.; Hitlin, D.?G.; Miyashita, T.?S.; Ongmongkolkul, P.; Porter, F.?C.; Andreassen, R.; Huard, Z.; Meadows, B.?T.; Pushpawela, B.?G.; Sokoloff, M.?D.; Sun, L.; Bloom, P.?C.; Ford, W.?T.; Gaz, A.; Smith, J.?G.; Wagner, S.?R.; Ayad, R.; Toki, W.?H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I.?M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Lo Vetere, M.; Monge, M.?R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H.?M.; Dauncey, P.?D.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A.?V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A.?M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D.?J.; Wright, D.?M.; Coleman, J.?P.; Fry, J.?R.; Gabathuler, E.; Hutchcroft, D.?E.; Payne, D.?J.; Touramanis, C.; Bevan, A.?J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Bougher, J.; Brown, D.?N.; Davis, C.?L.; Denig, A.?G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K.?R.; Barlow, R.?J.; Lafferty, G.?D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D.?A.; Cowan, R.; Sciolla, G.; Cheaib, R.; Patel, P.?M.; Robertson, S.?H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D.?J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C.?P.; LoSecco, J.?M.; Honscheid, K.; Kass, R.; Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G.?R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M.?A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J.?J.; Lopes Pegna, D.; Olsen, J.; Smith, A.?J.?S.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Pilloni, A.; Piredda, G.; Bnger, C.; Dittrich, S.; Grnberg, O.; Hartmann, T.; Hess, M.; Leddig, T.; Vo, C.; Waldi, R.; Adye, T.; Olaiya, E.?O.; Wilson, F.?F.; Emery, S.; Vasseur, G.; Anulli, F.; Aston, D.; Bard, D.?J.; Cartaro, C.; Convery, M.?R.; Dorfan, J.; Dubois-Felsmann, G.?P.; Dunwoodie, W.; Ebert, M.; Field, R.?C.; Fulsom, B.?G.; Graham, M.?T.; Hast, C.; Innes, W.?R.; Kim, P.; Leith, D.?W.?G.?S.; Lewis, P.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H.?L.; MacFarlane, D.?B.; Muller, D.?R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B.?N.; Roodman, A.; Salnikov, A.?A.; Schindler, R.?H.; Snyder, A.; Su, D.; Sullivan, M.?K.; Vavra, J.; Wisniewski, W.?J.; Wulsin, H.?W.; Purohit, M.?V.; White, R.?M.; Wilson, J.?R.; Randle-Conde, A.; Sekula, S.?J.; Bellis, M.; Burchat, P.?R.; Puccio, E.?M.?T.; Alam, M.?S.; Ernst, J.?A.; Gorodeisky, R.; Guttman, N.; Peimer, D.?R.; Soffer, A.; Spanier, S.?M.; Ritchie, J.?L.; Ruland, A.?M.; Schwitters, R.?F.; Wray, B.?C.; Izen, J.?M.; Lou, X.?C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F.?U.; Choi, H.?H.?F.; King, G.?J.; Kowalewski, R.; Lewczuk, M.?J.; Lueck, T.; Nugent, I.?M.; Roney, J.?M.; Sobie, R.?J.; Tasneem, N.; Gershon, T.?J.; Harrison, P.?F.; Latham, T.?E.; Band, H.?R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S.?L.

    2014-11-10

    Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A'), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e+e-??A', A'?e+e-, ?+?- using 514 fb-1 of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of10-4-10-3 for dark photon masses in the range 0.0210.2 GeV We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.

  19. Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,465 2,693 3,676 3,988 3,357 3,437 765 3,916 4,318 4,473 4,851 4,752 2012 5,562 5,372 5,253 3,745 3,354 2,811 2,935 3,822 4,015 4,113 4,636 4,728 2013 4,791 4,331 4,801 3,571 4,430 3,769 3,933 4,131 3,885 2,862 3,886 4,945 2014 4,042 4,259 4,171 3,540 3,852 4,008 3,643 3,461 3,414 4,013 3,800 4,779 2015 3,753 2,420 4,176 2,416 2,035 1,911 2,624 2,674 4,755 4,944 3,048 2,773

  20. Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.97 2.36 2.17 2.47 2000's 2.91 3.92 NA 5.06 6.83 7.92 7.36 7.77 7.48 4.85 2010's 4.87 4.48 3.18 3.98 5.45 3.55

  1. Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.71 4.55 4.42 4.87 4.86 4.93 4.77 4.76 4.38 4.25 3.90 3.76 2012 3.32 2.95 2.71 2.49 2.42 2.74 3.14 3.24 3.03 3.42 3.93 4.03 2013 3.69 3.62 3.91 4.48 4.58 4.35 3.93 3.65 3.88 3.85 3.84 4.44 2014 5.50 8.11 11.25 4.99 4.79 4.90 4.31 4.06 4.08 3.93 4.63 3.77 2015 3.15 4.22 3.68 2.87 2.87 2.96 3.05 3.10 2.67 2.27 2.09

  2. Marysville, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 638 5,286 3,377 691 2000's 5,320 3,651 NA 811 4,455 5,222 3,483 9,158 8,756 14,925 2010's 22,198 41,964 42,866 35,273 24,583 7,208

  3. Marysville, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,338 5,323 4,952 3,361 3,295 2,761 2,838 2,182 2,061 2,644 3,085 5,122 2012 6,067 6,721 3,354 3,404 2,923 1,986 2,475 2,217 2,574 1,273 4,365 5,506 2013 4,648 4,807 5,273 2,983 1,470 995 1,856 1,524 1,400 2,511 2,980 4,827 2014 5,707 3,266 1,088 1,030 1,210 2,186 3,940 2,133 1,526 1,272 798 427 2015 998 2,425 2,055 93 8 11 411 96 722 315 77

  4. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 9.48 10.16 9.66

  5. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 9.48 2014 10.66 10.66 9.74 10.09 9.74 9.85 9.85 9.85 10.86 10.99 2015 10.25 10.00 9.63 9.63 8.77

  6. Price of Port Huron, MI Liquefied Natural Gas Exports to Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 9.48 10.16 9.66

  7. Price of Port Huron, MI Liquefied Natural Gas Exports to Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 9.48 2014 10.66 10.66 9.74 10.09 9.74 9.85 9.85 9.85 10.86 10.99 2015 10.25 10.00 9.63 9.63 8.77

  8. Sault St Marie, MI Natural Gas Pipeline Exports (Price) Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.94 6.38 8.13 8.11 7.13 8.75 5.04 2010's 5.27 4.23 3.20 4.04 6.01 3.47

  9. Sault St Marie, MI Natural Gas Pipeline Exports (Price) Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.73 4.36 4.18 4.50 4.50 4.60 4.76 4.53 4.13 4.00 3.96 3.76 2012 3.32 3.11 2.69 2.41 2.48 2.70 3.14 3.24 3.10 3.57 4.11 3.92 2013 3.74 3.68 4.20 4.46 4.51 4.36 4.09 3.98 4.05 3.96 3.83 4.49 2014 5.47 11.53 10.62 5.16 5.18 5.06 4.87 5.09 4.25 2015 3.59 4.45 3.53 2.87 3.08 2.85

  10. Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 605 6,666 5,537 5,070 4,389 3,122 2,044 2010's 4,011 9,555 24,913 16,288 4,457 6,188

  11. Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 453 278 308 68 87 1,115 1,010 1,125 1,019 1,026 1,107 1,960 2012 2,630 2,246 2,518 2,102 1,445 1,633 1,910 1,763 1,489 1,996 2,591 2,590 2013 2,802 2,569 2,054 1,531 1,171 935 1,231 849 911 896 705 542 2014 572 461 333 632 74 23 119 1,114 1,131 2015 1,322 1,189 1,120 1,074 690 793

  12. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.13 2.51 2.23 2.51 2000's 3.73 3.82 3.42 6.13 6.56 7.77 7.39 7.24 8.96 4.62 2010's 4.86 4.45 3.11 4.07 6.39 3.2

  13. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.84 4.64 4.44 4.67 4.73 4.83 4.72 4.60 4.26 4.03 3.93 3.70 2012 3.34 3.00 2.64 2.30 2.54 2.67 3.11 3.18 3.09 3.55 4.06 3.90 2013 3.71 3.65 4.00 4.49 4.46 4.31 4.05 3.86 3.97 3.97 3.93 4.51 2014 6.09 11.64 10.44 5.05 4.87 4.93 4.56 4.16 4.17 4.07 4.50 4.18 2015 3.43 4.15 3.56 2.92 2.97 3.07 3.15 3.21 3.10 2.81 2.35 2.3

  14. St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,315 20,080 11,397 11,258 2000's 29,654 122,293 164,084 238,444 317,797 286,804 286,582 418,765 492,235 612,369 2010's 650,590 781,058 754,494 582,509 478,645 431,933

  15. St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 74,025 68,809 83,796 62,851 68,731 59,044 56,015 56,094 66,775 52,380 65,815 66,723 2012 62,390 62,442 72,035 61,364 66,456 54,973 52,240 66,101 67,443 61,205 62,762 65,084 2013 56,510 52,567 58,126 43,917 56,075 54,114 42,609 45,524 47,795 43,767 34,054 45,093 2014 52,731 57,817 68,448 44,792 24,659 31,385 28,556 21,997 28,757 27,488 40,820 51,194 2015 50,905 58,264 66,483 34,226 25,282 24,830 20,051 22,111 37,442 34,246 30,513 27,579

  16. St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.04 3.16 2.07 2.62 2000's 4.45 4.54 3.19 5.84 6.50 9.93 7.44 6.97 10.03 5.10 2010's 4.97 4.29 2.64 3.96 8.80 2.91

  17. St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.56 4.61 4.11 4.74 4.67 4.64 4.68 4.30 3.91 3.91 3.73 2012 2.90 2.78 2.34 2.63 2.52 3.03 3.08 3.24 4.02 3.97 2013 3.75 3.67 4.09 4.41 4.35 3.96 4.06 4.02 4.16 4.71 2014 9.34 21.59 27.70 5.03 4.88 4.97 4.31 4.12 4.10 3.99 4.58 4.08 2015 3.35 3.39 3.46 2.84 2.96 2.88 2.94 3.06 3.06 2.67 2.48 2.46

  18. St. Clair, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14,132 11,855 34,592 33,388 2000's 17,198 21,747 28,441 5,202 22,853 18,281 10,410 9,633 9,104 6,544 2010's 5,591 5,228 3,531 6,019 16,409 9,02

  19. St. Clair, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 123 237 33 91 238 1,469 571 38 1,605 552 270 2012 51 42 2,029 475 370 52 45 69 221 177 2013 884 1,562 1,422 2 26 151 211 1,168 130 463 2014 1,492 2,934 650 37 385 1,445 1,489 3,629 1,397 1,172 1,640 138 2015 1,137 182 616 254 966 719 981 539 404 1,394 498 1,33

  20. Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.36 2.55 2.26 2.30 2000's 3.74 4.57 3.03 5.47 6.47 8.12 7.61 6.88 8.37 4.01 2010's 4.69 4.26 3.10 4.04 5.36 2.91

  1. Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.72 4.58 4.22 4.51 4.66 4.73 4.55 4.45 4.19 3.92 3.79 3.60 2012 3.14 2.95 2.61 2.33 2.50 2.62 3.08 3.12 2.99 3.41 4.13 3.90 2013 4.04 3.67 3.96 4.42 4.42 4.26 4.02 3.84 3.90 3.89 3.79 4.34 2014 5.67 10.21 7.89 4.89 4.93 4.86 4.44 4.06 4.14 4.11 4.20 4.16 2015 3.38 3.80 3.19 2.77 2.78 2.94 2.97 3.07 2.91 2.71 2.22 2.24

  2. Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 30,410 31,080 24,908 25,049 2000's 36,007 35,644 7,431 19,737 40,030 40,255 22,156 22,904 27,220 43,980 2010's 44,275 43,690 50,347 50,439 46,981 37,528

  3. Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,465 2,693 3,676 3,988 3,357 3,437 765 3,916 4,318 4,473 4,851 4,752 2012 5,562 5,372 5,253 3,745 3,354 2,811 2,935 3,822 4,015 4,113 4,636 4,728 2013 4,791 4,331 4,801 3,571 4,430 3,769 3,933 4,131 3,885 2,862 3,886 4,945 2014 4,042 4,259 4,171 3,540 3,852 4,008 3,643 3,461 3,414 4,013 3,800 4,779 2015 3,753 2,420 4,176 2,416 2,035 1,911 2,624 2,674 4,755 4,944 3,048 2,773

  4. Detroit, MI Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.75 2.51 2.43 2.51 2000's 3.82 9.34 3.56 5.96 6.27 -- -- 8.28 6.58 4.53 2010's 8.37 5.17 -- 4.4

  5. Detroit, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14,901 11,501 10,925 7,671 2000's 6,171 405 1,948 2,514 1,117 0 0 81 753 21 2010's 79 19 0 165

  6. Detroit, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8 11 2013 16 140 24 10 2014

  7. DOE Zero Energy Ready Home Case Study: Cobblestone Homes 2014 Model Home, Midland, MI

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  8. AVTA: 2012 Mitsubishi i-MiEV All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  9. UCRL-MI-224010 ARM-06-012 ARM's Support for GCM Improvement:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE should invest in the "super-parameterization" modeling approach. Tom Ackerman, Bill Collins, Steve Ghan, Jean-Jacques Morcrette, and Hualu Pan are thanked for their input. 7...

  10. Radiative return capabilities of a high-energy, high-luminosity<mi>emi>+<mi>emi>-collider

    SciTech Connect (OSTI)

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  11. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  12. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    ultra-deepwater production and its role in the overall supply mix. The ultra-deepwater (water depth of at least 5,000 feet) portion of the Gulf of Mexico Federal Offshore (GOM Fed)...

  13. Mozambique-Accrediation of NIE | Open Energy Information

    Open Energy Info (EERE)

    Knowledge Network1 CDKN is providing support to the Government of Mozambique (GoM) to work towards the accreditation of the Fundo do Ambiente (FUNAB) as an NIE. If successful...

  14. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Supply | Storage In the News: Natural gas drilling activity in the U.S. Gulf of Mexico (GOM) generally increased over the past year, despite a drop in natural gas prices...

  15. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a smaller portion of total U.S. production today than 5 to 10 years ago due to the dual effect of waning GOM production and increasing onshore production. The graph to the...

  16. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in the offshore IAM for the GOM Dataset Data Source URL(s) Open Ocean Hydrodynamic Data (i.e. Current Data) Navy Coastal Ocean Model (NCOM) including IASNFS and AmSeas ...

  17. 2014 Utility Bundled Retail Sales- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 96 132,889 12,514.0 9.42 Chugach Electric Assn Inc AK Cooperative 7 57,198 6,718.0 11.75 City & Borough of Sitka - (AK) AK Municipal 21 21,003 785.0 3.74 City of Seward - (AK) AK Municipal 125 31,961 5,927.0 18.54 City of Unalaska - (AK) AK Municipal

  18. Determination of the direct double- <mi>β> -decay <mi>Q> value of <mi mathvariant="normal">Zrmi> 96 and atomic masses of <mi mathvariant="normal">Zrmi> 90 - 92 , 94 , 96 and <mi mathvariant="normal">Momi> 92 , 94 - 98 , 100

    SciTech Connect (OSTI)

    Gulyuz, K.; Ariche, J.; Bollen, G.; Bustabad, S.; Eibach, M.; Izzo, C.; Novario, S. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2015-05-06

    Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the ⁹⁶Zr double-β decay Q value: Qββ=3355.85(15) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluation [M. Wang et al., Chin. Phys. C 36, 1603 (2012)] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the ⁹⁶Zr atomic mass: m(⁹⁶Zr)=95.90827735(17) u. Using the new Q value, the 2νββ-decay matrix element, |M|, is calculated. Improved determinations of the atomic masses of all other zirconium (90-92,94,96Zr) and molybdenum (92,94-98,100Mo) isotopes using both ¹²C₈ and ⁸⁷Rb as references are also reported.

  19. Superfund record of decision (EPA region 10): Eielson Air Force Base, Fairbanks-North Star Borough, AK, September 30, 1996

    SciTech Connect (OSTI)

    1997-10-01

    The decision document presents the final remedial action selected for Eielson Air Force Base (AFB), Alaska. The sitewide investigation at Eielson AFB evaluated basewide contamination that is not confined or attributable to specific source areas identified and addressed in the FFA as well as cumulative risks to human health and the environment posed by contamination on a sitewide basis. Garrison Slough is the only one that poses an unacceptable risk to human health and the environment. Polychlorinated biphenyls (PCBs) were found in the fish tissue and sediments of Garrison Slough. Soils in a trench adjacent to Garrison Slough were contaminated with PCBs and appear to be the source of contamination to slough sediments via surface water runoff. The major components of the selected remedy include: Fishing restrictions in Garrison Slough; Fish control device near the downstream edge of Eielson AFB; Excavation of contaminated soils and sediments with concentrations greater than 10 mg/kg PCBs; Onsite disposal of material with PCB concentrations less than 50 mg/kg; Offsite disposal or treatment of materials with PCB concentrations greater than 50 mg/kg in accordance with the Toxic Substances Control Act (TSCA), 40 CFR part 761; and Environmental monitoring of soils, sediments, surface water, fish, and groundwater.

  20. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,"AK",599,"Anchorage Municipal Light and

  1. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,"AK",219,"Alaska Power and Telephone

  2. Category:EIA Map Files | Open Energy Information

    Open Energy Info (EERE)

    The following 113 files are in this category, out of 113 total. EIA-AK-CookInlet-BOE.pdf EIA-AK-CookInlet-BOE.pdf 10.19 MB EIA-AK-CookInlet-Gas.pdf EIA-AK-CookInlet-Gas.pdf...

  3. Heavy surface state in a possible topological Kondo insulator: Magnetothermoelectric transport on the (011) plane of <mi mathvariant='normal'>SmBmi>6

    SciTech Connect (OSTI)

    Luo, Yongkang; Chen, Hua; Dai, Jianhui; Xu, Zhu -an; Thompson, J. D.

    2015-02-25

    Motivated by the high sensitivity to Fermi surface topology and scattering mechanisms in magnetothermoelectric transport, we have measured the thermopower and Nernst effect on the (011) plane of the proposed topological Kondo insulator SmB6. These experiments, together with electrical resistivity and Hall effect measurements, suggest that the (011) plane also harbors a metallic surface with an effective mass on the order of 10102 m0. The surface and bulk conductances are well distinguished in these measurements and are categorized into metallic and nondegenerate semiconducting regimes, respectively. As a result, electronic correlations play an important role in enhancing scattering and also contribute to the heavy surface state.

  4. Precise determination of the deuteron spin structure at low to moderate <mi>Q>2 with CLAS and extraction of the neutron contribution

    SciTech Connect (OSTI)

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Brooks, W. K.; Bltmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; Mayer, M.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 < Q2 < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.

  5. Microbial Protein-Protein Interactions (MiPPI) Data from the Genomics: GTL Center for Molecular and Cellular Systems (CMCS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Genomic Science Center for Molecular and Cellular Systems (CMCS), established in 2002, seeks to identify and characterize the complete set of protein complexes within a cell to provide a mechanistic basis for the understanding of biochemical functions. The CMCS is anchored at ORNL and PNNL. CMCS initially focused on the identification and characterization of protein complexes in two microbial systems,Rhodopseudomonas palustris (R. palustris) and Shewanella oneidensis (S. oneidensis). These two organisms have also been the focus of major DOE Genomic Science/Microbial Cell Program (MCP) projects. To develop an approach for identifying the diverse types of complexes present in microbial organisms, CMCS incorporates a number of molecular biology, microbiology, analytical and computational tools in an integrated pipeline.

  6. Rotary engine design: Analysis and developments; Proceedings of the International Congress and Exposition, Detroit, MI, Feb. 27-Mar. 3, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The present conference on the development status of Wankel cycle rotary engine design discusses stratified-charge rotary engine features, techniques for noise and vibration reduction in rotary engines, testing methods for insulated rotary engine components, cyclic combustion variation in rotary engines, and a combustion model for homogeneous charge natural gas rotary engines. Also discussed are fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine, the 'rotary-vee' engine design concept, strain measurements in a rotary engine housing, and a comparison of computed and measured pressure in a premixed-charge natural gas-fueled rotary engine.

  7. Electronic structure of the heavy-fermion caged compound Ce3Pd20<mi>X>6(<mi>X>=Si,Ge) studied by density functional theory and photoelectron spectroscopy

    SciTech Connect (OSTI)

    Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; Taniguchi, Masaki; Kitazawa, Hideaki

    2015-03-30

    The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹ (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.

  8. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves

  9. Phase diagram of Josephson junction between

    Office of Scientific and Technical Information (OSTI)

    diagram of Josephson junction between<mi>s>and<mi>s>superconductors in the dirty limit...

  10. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Phase diagram of Josephson junction between<mi>s>and<mi>s>superconductors in the dirty...

  11. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Phase diagram of Josephson junction between math display inline mi s mi math and math display inline msub mi s mi mo mo msub math superconductors in the dirty limit Koshelev A E...

  12. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  13. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  14. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  15. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  16. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stfl)et. county, Slolo ond ZIP Codo) AK RIDGE ASSOCIATED UNIVERSITIES, o P o INC. .0. BOX 117 AK RIDGE TN 37830-6218 CODE...

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., streltt, county, Statlt and ZIP Codo) AK RIDGE ASSOCIATED UNIVERSITIES, .0. BOX 117 o P o AK RIDGE TN 37830-6218 INC. 11....

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Next Release Date:","1302015" ,"Excel File Name:","n9020ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9020ak2m.htm" ,"Source:","Energy Information...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Next Release Date:","1302015" ,"Excel File Name:","n9012ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9012ak2m.htm" ,"Source:","Energy Information...

  20. CORAL Fact Sheet__FINAL AS ISSUED_UPDATED

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact S heet: Collaboration o f O ak R idge, A rgonne, a nd L ivermore ( CORAL) The C ollaboration o f O ak R idge, A rgonne, a nd L ivermore ( CORAL) i s a j oint p rocurement ...

  1. EA-1743: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Air Products And Chemicals, Inc. Waste Energy Project at the AK Steel Corporation Middletown Works, Middletown, Ohio

  2. Petroleum Marketing Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Domes c crude oil fi rst purchase prices dollars per barrel Year month U.S. Average PAD District 1 PAD District 2 U.S. Average Less AK North Slope Average NY PA WV Average IL IN KS KY MI NE 1990 20.03 21.57 22.06 23.32 23.00 22.16 22.88 23.36 23.46 23.21 23.20 22.92 21.94 1991 16.54 18.16 19.01 19.67 19.48 W 19.58 20.19 20.20 19.84 19.84 19.88 18.78 1992 15.99 17.38 18.52 19.05 19.01 18.09 18.63 19.26 19.27 18.50 18.75 18.99 17.51 1993 14.25 15.31 17.28 17.20 17.53 16.76 16.27 16.97 16.97 15.95

  3. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    AL 23,640 AZ 29,780 AR 15,320 CA 157,320 CO 21,340 CT 20,750 DE 4,890 FL 107,000 GA 40,480 ID 7,220 IL 63,890 IN 33,020 IA 17,260 KS 13,550 KY 24,240 LA 20,950 ME 8,650 MD 27,700 MA 36,040 MN 25,080 MS 14,330 MO 31,160 MT 5,570 NE 9,230 NV 12,230 NH 7,810 NJ 48,100 NM 9,210 NY 103,340 NC 45,120 ND 3,300 OH 64,450 OK 18,670 OR 20,750 PA 75,260 RI 5,970 SC 23,240 SD 4,220 TN 33,070 TX 101,120 UT 9,970 VT 3,720 VA 36,410 WA 34,500 WV 10,610 WI 29,610 WY 2,540 DC 2,760 HI 6,670 AK 2,860 MI 55,660 PR

  4. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2011-02-07

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  5. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  6. CX-007493: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    GoM Miocene Carbon Dioxide Site Characterization Mega Transect: High-Resolution 3-dimensional Seismic Acquisition Survey CX(s) Applied: B3.1 Date: 12/06/2011 Location(s): Texas Offices(s): National Energy Technology Laboratory

  7. Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico

    SciTech Connect (OSTI)

    Hughes, Jamie D.

    2012-05-30

    The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)located at the Export Lanes of the Port of Lazaro Cardenas, Mexicoto the Government of Mexico (GOM).

  8. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  9. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan

    2003-01-01

    Presented in this quarterly report is the Case History and Well Summary for the Vernon Field demonstration project in Isabella County, Michigan. This new case history and well summary format organizes and presents the technical and historical details of the Vernon Field demonstration, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion. Planning for the annual project meeting in Tampa, Florida has begun. This meeting will be held March 7-9, 2003 at the same site as the last three meetings. The goals of this project were to: (1) test the use of multi-lateral wells to recover bypassed hydrocarbons and (2) to access the potential of using surface geochemistry to reduce drilling risk. Two new demonstration wells, the State-Smock and the Bowers 4-25, were drilled to test the Dundee Formation at Vernon Field for bypassed oil. Neither well was commercial, although both produced hydrocarbon shows. An extensive geochemical survey in the vicinity of Vernon Field, covering much of Isabella County, has produced a base map for interpretation of anomalies in Michigan. Several potential new anomalies were discovered that could be further investigated.

  10. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect (OSTI)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2002-01-01

    In this reporting period, we extended the fault study to include more faults and developed new techniques to visualize the faults. We now have used data from the Dundee Formation to document 11 major faults in the Michigan Basin and are in the process of reviewing data from other horizons. These faults appear to control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new laboratory is now functional and has been fully staffed as of December. The annual project review has been set for March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer.

  11. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect (OSTI)

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  12. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan

    2003-04-01

    The principal objective of the study was to test a new analytical technique, Solid-Phase Microextraction (SPME), for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. This involved measuring the effectiveness of SPME to extract hydrocarbons under controlled conditions in the laboratory. As part of the study, a field demonstration was undertaken to assess the validity and usefulness of the laboratory results. Presented in this quarterly report is the condensed version of the Case History and Well Summary for the Bear Lake area in Manistee County, Michigan. The full version will be in the annual report. The condensed case history presents the important technical details regarding the geochemistry and horizontal lateral for Bear Lake, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion.

  13. LBNL: Architecture 2030 District Program and Small Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley City of San Jose - San Jose, CA - Arizona State University - Phoenix, AZ - Emerging 2030 Districts - Ann Arbor, MI; Detroit, MI; San Antonio, TX; Ithaca, ...

  14. Category:Utility Rate Impacts on PV Economics By Location | Open...

    Open Energy Info (EERE)

    MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE...

  15. Band structure engineering and thermoelectric properties ofcharge...

    Office of Scientific and Technical Information (OSTI)

    WA (United States) General Motors R&D Center, Warren, MI (United States) General Motor Global Design, Engineering and Product Programs, Warren, MI (United States)...

  16. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Real time sub math display inline mi mi math ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Kisielowski Christian Wang Lin Wang...

  17. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub-<mi>>ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene","Kisielowski, Christian;...

  18. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010 ...

  19. Aleutian Pribilof Islands Weatherization Project

    Office of Environmental Management (EM)

    Aleutian Pribilof islands Weatherization project Presented by: ken Selby, Community services director Annotated by: Moses Tcheripanoff, MEDIA COORIDNATOR "Birthplace of the winds" Project overview  Weatherization  Energy conservation education  Home energy & safety review on-site review Native Village of Atka, AK Native Village of Nikolski, AK Native Village of Sand Point, AK Focus Communities Unanagx (Aleut) Communities ^ Tribal & community descriptions Bering Sea

  20. Energy Efficiency and Conservation Block Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-NANWALEK (AKA ENGLISH BAY) Location: Tribe AK-TRIBE- NANWALEK (AKA ENGLISH BAY) AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Nanwalek IRA Council proposes to explore the feasibility of wind generation capacity specifically for the purpose of determining if wind generation is a viable