National Library of Energy BETA

Sample records for ak eastman kodak

  1. DOE - Office of Legacy Management -- Eastman Kodak Laboratory - NY 0-09

    Office of Legacy Management (LM)

    Eastman Kodak Laboratory - NY 0-09 FUSRAP Considered Sites Site: Eastman Kodak Laboratory (NY.0-09 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Eastman Kodak Rochester Lab NY.0-09-1 Location: Rochester , New York NY.0-09-1 Evaluation Year: 1987 NY.0-09-1 NY.0-09-2 Site Operations: Research and development with natural uranium solutions in 1943. NY.0-09-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-09-2 Radioactive

  2. Source characterization and control technology assessment of methylene chloride emissions from Eastman Kodak Company, Rochester, NY. Final report, July 1988-April 1989

    SciTech Connect (OSTI)

    Walata, S.A.; Rehm, R.M.

    1989-07-01

    This report gives results of an assessment of potential control technologies for methylene chloride (also known as dichloromethane or DCM) emission sources at Eastman Kodak Company's Kodak Park facility in Rochester, NY. DCM is a solvent used by Kodak in the manufacture of cellulose triacetate film support. Work has involved: a plant visit where major DCM emission sources were inspected, and evaluation of current and potential control technologies for the DCM emission sources. The report contains information gathered during the plant visit to the Kodak Park facility. Included are emission estimates determined by Kodak of all emission points greater than 8000 lb (3600 kg)/yr DCM, as well as a description of each point observed during the visit. Also included are results of an evaluation of control technologies that might be applied to the major emission sources. A cost analysis of different add-on control devices is provided for four of the uncontrolled emission points.

  3. Eastern Kodak Company

    SciTech Connect (OSTI)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.

  4. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  5. Subkilovolt response of Kodak T max XUV film

    SciTech Connect (OSTI)

    Dittmore, C.; Stoering, J.P. ); Gullikson, E. )

    1990-02-08

    A calibration of Kodak T max 100 XUV film at six x-ray energies ranging from 0.27 keV to 1.49 keV has been concluded. The primary purpose was to compare the sensitivity of this film to that of Kodak type 101-07 XUV film in order to appraise the feasibility of replacing the type 101-07 film with the type T max 100 film. In addition to being considerably less expensive, the T max 100 film is less disposed to abrasion from handling. A secondary objective was to provide a base for further response measurements should the T max 100 film prove to be an acceptable substitute for the type 101-07 film. 10 figs., 2 tabs.

  6. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect (OSTI)

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  7. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  8. Calibration of bremsstrahlung prefogged Kodak RAR 2492 film

    SciTech Connect (OSTI)

    Gorzen, D.F.; Armentrout, C.; Burek, A.; Bird, R.; Geddes, J.; Gerber, G. ); Rockett, P.D. )

    1990-10-01

    High-energy background radiation from PBFA II at Sandia National Laboratory introduces uncertainty regarding the effect of background fogging on the sensitivity of the x-ray film at soft x-ray energies. We have performed a calibration to determine how the sensitivity of the Kodak RAR 2492 film is affected by high-energy background radiation. To simulate the background radiation the film was fogged to various densities using a 10 keV bremsstrahlung spectrum. The film was then exposed to soft x-ray emission lines of Al {ital K}{alpha} and Ti {ital K}{alpha} selected by Bragg reflection from an electron bombardment source. The intensity of the x-ray flux was continuously monitored with a Si(Li) detector to eliminate error due to drift of the x-ray source's intensity. A microdensitometer with matched objectives was used to find the specular density of the exposed film. The results of the calibration are presented in the form of {ital D} vs log {ital l} for the various densities of the bremmstrahlung prefog exposures.

  9. Company's cogeneration effort conserves fuel, cuts power costs

    SciTech Connect (OSTI)

    Kingston, W.J.

    1983-05-01

    Kodak Park is Eastman Kodak Company's largest manufacturing complex. As temperatures drop here, steam - created as a by-product in producing electricity - will heat some 200 buildings.

  10. Study for the replacement of Kodak Royal-X Pan film

    SciTech Connect (OSTI)

    Bunker, F.J.

    1989-08-01

    Kodak Royal-X Pan (RXP) film has been the prime film for oscilloscope camera recording at the Nevada Test Site (NTS) since 1962. Kodak discontinued making this film in 1987, however, so it became necessary to find a substitute that had as many of the photographic characteristics of RXP as possible --- spectral sensitivity, image quality, recording speed, base plus fog background density, and processing parameters. (RXP and Kodak 857 developer will continue being used at NTS until the film supply is exhausted.) RXP 2{1/4} {times} 3{1/4}-inch film has been the film of choice for oscillography at NTS because of its sensitivity to the blue radiation from P-11 phosphor, which constitutes the coating of oscilloscope tubes, and its ability to record fast transient occurrences, such as oscilloscope traces, in or near nanosecond exposure times. 1 ref., 40 figs., 4 tabs.

  11. Picosecond pulses produced by mode locking a Nd:glass laser with Kodak dye number26

    SciTech Connect (OSTI)

    Schiller, N.H.; Foresti, M.; Alfano, R.R.

    1985-05-01

    Kodak dye number26 was used to generate picosecond laser pulses by mode locking a Nd:glass laser. The intensity profiles and characteristics of the pulses were compared with those of pulses emitted using dyes number5 and number9860.

  12. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  13. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  14. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  15. Response Model for Kodak Biomax-MS Film to X Rays

    SciTech Connect (OSTI)

    Knauer, J.P.; Marshall, F.J.; Yaakobi, B.; Anderson, D.; Schmitt, B.A.; Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.

    2007-01-24

    X-raysensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. New film becomes available as older films are phased out of production. Biomax-MS is a T-grain class of film that is proposed as a replacement for Kodak DEF film. A model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, SEM micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain type film.

  16. Response model for Kodak Biomax-MS film to x rays

    SciTech Connect (OSTI)

    Knauer, J. P.; Marshall, F. J.; Yaakobi, B.; Anderson, D.; Schmitt, B. A.; Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.

    2006-10-15

    X-ray-sensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. Replacement film must be found as older films are phased out of production. Biomax-MS is a 'T-grain' class of film that is proposed as a replacement for Kodak DEF and a model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, scanning electron microscopy micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain-type film.

  17. Advance Patent Waiver W(A)2006-027

    Broader source: Energy.gov [DOE]

    This is a request by EASTMAN KODAK COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42864

  18. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  19. Advance Patent Waiver W(A)2007-001

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a request by EASTMAN KODAK CO. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42933

  20. Ak Chin Indian Community- 2004 Project

    Broader source: Energy.gov [DOE]

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  1. The curvature of sensitometric curves for Kodak XV-2 film irradiated with photon and electron beams

    SciTech Connect (OSTI)

    Battum, L. J. van; Huizenga, H.

    2006-07-15

    Sensitometric curves of Kodak XV-2 film, obtained in a time period of ten years with various types of equipment, have been analyzed both for photon and electron beams. The sensitometric slope in the dataset varies more than a factor of 2, which is attributed mainly to variations in developer conditions. In the literature, the single hit equation has been proposed as a model for the sensitometric curve, as with the parameters of the sensitivity and maximum optical density. In this work, the single hit equation has been translated into a polynomial like function as with the parameters of the sensitometric slope and curvature. The model has been applied to fit the sensitometric data. If the dataset is fitted for each single sensitometric curve separately, a large variation is observed for both fit parameters. When sensitometric curves are fitted simultaneously it appears that all curves can be fitted adequately with a sensitometric curvature that is related to the sensitometric slope. When fitting each curve separately, apparently measurement uncertainty hides this relation. This relation appears to be dependent only on the type of densitometer used. No significant differences between beam energies or beam modalities are observed. Using the intrinsic relation between slope and curvature in fitting sensitometric data, e.g., for pretreatment verification of intensity-modulated radiotherapy, will increase the accuracy of the sensitometric curve. A calibration at a single dose point, together with a predetermined densitometer-dependent parameter OD{sub max} will be adequate to find the actual relation between optical density and dose.

  2. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  3. Comparison of the spectral response of a thinned, backside illuminated CCD with a CsI coated MCP system and Kodak 101 film

    SciTech Connect (OSTI)

    Li Yuelin; Crespo Lopex-Urrutia, J. R.; Tsakiris, G. D.; Sigel, R.; Volk, R.; Pina, L.

    1995-05-01

    A thinned backside illuminated CCD chip was calibrated by self consistently determining the thickness of its dead layer. Its spectral response and sensitivity were then compared with those of the calibrated Kodak 101 photographic plates and of a CsI coated microchannel plate detection system.

  4. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect (OSTI)

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  5. Details of the response of Kodak high resolution plate to x-irradiation for the characterization of ICF targets and components

    SciTech Connect (OSTI)

    Martin, A.J.; Simms, R.J.

    1985-01-01

    Radiographic images are used in the characterization of Internal Confinement Fusion targets and target components. The use of this technique involves consideration of: (1) the continuum and line emission source spectra produced by a tungsten anode, (2) the attenuation of the source spectrum by material in the x-ray path, and (3) the response of the x-ray detector, a Kodak HRP (High Resolution Plate), to the incident x-ray flux. 5 refs., 4 figs.

  6. AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 20, 2004 2004 L. S. Gold & Associates, Inc. Page 2 October 20, 2004 AK-CHIN ... AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY Project Team * Leonard S. Gold of L. S. ...

  7. Ak-Chin Indian Community - Biomass Feasibiltiy Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 19, 2005 2005 L. S. Gold & Associates, Inc. Page 2 October 19, 2005 AK-CHIN ... * Technical Contact: Leonard Gold, Manager Ak-Chin Energy Services L.S. Gold ...

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  9. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  18. Project Reports for Ak Chin Indian Community- 2004 Project

    Broader source: Energy.gov [DOE]

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  19. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification

    SciTech Connect (OSTI)

    Sankar, A. . E-mail: asankar_phy@yahoo.co.in; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Gopalakrishna Kurup, P.G.; Murali, V.; Enke, Charles A.; Velmurugan, J.

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  20. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    SciTech Connect (OSTI)

    Lanier, N.E.; Cowan, J.S.; Workman, J.

    2006-04-15

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  1. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect (OSTI)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  2. RAPID/Roadmap/18-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-AK-a) 18AKA - StorageTankRegistration (1).pdf Error creating...

  3. RAPID/Roadmap/14-AK-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-AK-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  4. RAPID/Roadmap/3-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  5. RAPID/Roadmap/17-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap17-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  6. RAPID/Roadmap/8-AK-c | Open Energy Information

    Open Energy Info (EERE)

    8-AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  7. RAPID/Roadmap/3-AK-c | Open Energy Information

    Open Energy Info (EERE)

    AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  8. RAPID/Roadmap/14-AK-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-AK-c) 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not...

  9. RAPID/Roadmap/6-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-AK-b) From DEC...

  10. RAPID/Roadmap/14-AK-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-AK-d) In accordance...

  11. RAPID/Roadmap/15-AK-c | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Title V Operating Permit (15-AK-c) One of the major initiatives...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  14. RAPID/Roadmap/18-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Hazardous Waste Permit (18-AK-b) The Alaska Department of Environmental Conservation defers to the...

  15. Really Off the Grid: Hooper Bay, AK

    Energy Savers [EERE]

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  16. RAPID/Roadmap/12-AK-a | Open Energy Information

    Open Energy Info (EERE)

    12-AK-a.1 - Will the Project Affect Streams or Other Bodies of Water? The Anadromous Fish Act (AS 16.05.871-.901) requires that an individual or government agency provide prior...

  17. RAPID/Roadmap/6-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of a load upon a highway. Examples of such vehicles are self-propelled cranes, pump trucks, off-road construction equipment or other road maintenance equipment. 6-AK-a.3 -...

  18. RAPID/Roadmap/7-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Us Power Plant Siting Process (7-AK-a) Add text. 07AKAPowerPlantSitingConstruction.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  19. RAPID/Roadmap/3-AK-h | Open Energy Information

    Open Energy Info (EERE)

    Settlement Lands Leasing (3-AK-h) 03AKHAlaskaNativeClaimsSettlementLandsLeasing.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  20. RAPID/Roadmap/13-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-AK-a) 13AKALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  1. RAPID/Roadmap/15-AK-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Assessment Process (15-AK-a) The Clean Air Act is the law that defines the...

  2. RAPID/Roadmap/15-AK-b | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Minor Permit (15-AK-b) The mission of the Air Permit Program is to...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  5. Manufacturing company faces $8 million penalty for alleged RCRA violations

    SciTech Connect (OSTI)

    1995-03-01

    On October 7, 1994, EPA filed a complaint against Eastman Kodak Company for alleged RCRA violations at Kodak`s manufacturing and hazardous waste treatment, storage, and disposal facilities located in Rochester, New York. A proposed consent decree accompanied the complaint filed in the US District Court for the Western District of New York (United States v. Eastman Kodak Company, Dockett Number: 94-CV-6503T). According to the terms of the proposed consent decree, Kodak is to pay an $8 million civil penalty by implementing six environmental projects. The company must also upgrade its industrial sewer system and bring all operations into compliance with RCRA regulations. This action indicates EPA`s intent to promote waste reduction and pollution prevention in addition to requiring compliance at large, aging manufacturing facilities.

  6. Microsoft Word - CCP-AK-LANL-006-Revision 13

    Office of Environmental Management (EM)

    P2010-3583 CCP-AK-LANL-006 Central Characterization Program Acceptable Knowledge Summary Report For LOS ALAMOS NATIONAL LABORATORY TA-55 MIXED TRANSURANIC WASTE WASTE STREAMS: LA-MHD01.001 LA-CIN01.001 LA-MIN02-V.001 LA-MIN04-S.001 Revision 13 February 10, 2014 Mike Ramirez Printed Name APPROVED FOR USE INFORMATION ONLY CCP-AK-LANL-006, Rev. 13 Effective Date: 02/10/2014 CCP Acceptable Knowledge Summary Report Page 2 of 229 RECORD OF REVISION Revision Number Date Approved Description of Revision

  7. Ak-Chin Indian Community Biomass Feasiiblity Study

    SciTech Connect (OSTI)

    Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

    2005-12-31

    Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

  8. Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

  9. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  10. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    Cogen","Petroleum",49092,1984,263 1990,"AK","Industrial Non-Cogen","All ... 1991,"OK","IPP NAICS-22 Cogen","Coal",1984516,4744,7324 1991,"OK","IPP NAICS-22 ...

  11. File:NREL-ak-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search File Edit with form History File:NREL-ak-50m.pdf Jump to: navigation, search File File history File usage Alaska Mainland...

  12. File:NREL-ak2-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    File Edit with form History File:NREL-ak2-50m.pdf Jump to: navigation, search File File history File usage Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Size of...

  13. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center DRAFT DEPARTMENT OF ENERGY 1998 DRILL SITE CHARACTERIZATION REPORT AMCHITKA ISLAND, ALASKA Draft Long-Term

  14. Tennessee Eastman letter on Y-12 reduction in force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy as there are ties to Y-12's history, this article is presented well out of sequence. It contains original material that is valuable to a better understanding of the...

  15. Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.12 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Price

  16. Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S.

  17. HUD, State of Alaska & AK Regional Housing Authorities: An Energy Efficiency Partnership Success Story

    Office of Environmental Management (EM)

    HUD, STATE OF ALASKA & AK REGIONAL HOUSING AUTHORITIES |AN ENERGY EFFICIENCY PARTNERSHIP SUCCESS STORY April 29, 2014 Presented by: Dan Duame, Executive Director Aleutian Housing Authority 14 RHA's Created in the early 1970's under Title 18 of Alaska Statues Alaska Native Regional Housing Authority Overview Alaska Native Regional Housing Authority Overview Major conduit for federal, state & private affordable housing funding & services 51 NAHASDA Recipients 14 Regional Housing

  18. bectno-micro | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Micronized Coal Reburning Demonstration for NOx Control - Project Brief [PDF-245KB] New York State Electric & Gas Corp., Lansing NY; Eastman Kodak Co. Rochester, NY PROGRAM PUBLICATIONS Final Reports Micronized Coal Reburning Demonstration for NOx Control, Final Report [PDF-243KB] (Oct 1999) Appendix 2.6-1, Kodak Project Design Basis Appendix 2.6-1a. Project Design Basis [PDF-6.2MB] Appendix 2.6-1b. EERC Process Design [PDF-25.3MB] Appendix 2.6-1c. Process Description [PDF-6.3MB] Appendix

  19. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  20. Coal reburning for cost effective NO{sub x} compliance

    SciTech Connect (OSTI)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; Hunsicker, S.; Watts, J.U.

    1996-12-01

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  1. Coal reburning for cost-effective NO{sub x} compliance

    SciTech Connect (OSTI)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; O`Dea, D.T.; Hunsicker, S.; Watts, J.U.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  2. Integrated Plastic Substrates for OLED Lighting | Department of Energy

    Energy Savers [EERE]

    Plastic Substrates for OLED Lighting Integrated Plastic Substrates for OLED Lighting Lead Performer: Sinovia Technologies - Foster City, CA Partners: - Eastman Kodak Company - Rochester, NY - Vitriflex - San Jose, CA - Solvay, USA Inc. - Houston, TX DOE Total Funding: $1,211,240 Cost Share: $1,249,430 Project Term: 8/1/15 - 3/1/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will combine a barrier film technology with a

  3. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  4. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  5. 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    .I Y. ,J,.- i - 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNESSEE 37631 July 20, 1984 Ms. Gale P. Turi Division of Remedial Action Projects Office of Nuclear Energy U.S. Department of Energy MS - NE24 Washington, D.C. 20545 Dear Ms. Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to determine if there

  6. 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09

    U.S. Energy Information Administration (EIA) Indexed Site

    State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",,3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial

  7. 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9

    U.S. Energy Information Administration (EIA) Indexed Site

    "Planned Year","State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9 2014,"AK","Total Electric Power Industry","Hydroelectric",2,1,4.8,4.8 2014,"AK","Total Electric Power

  8. Methylene chloride exposure and birthweight in Monroe County, New York

    SciTech Connect (OSTI)

    Bell, B.P.; Franks, P.; Hildreth, N.; Melius, J. )

    1991-06-01

    This study examined the relationship between birthweight and exposure to emissions of methylene chloride (DCM) from manufacturing processes of the Eastman Kodak Company at Kodak Park in Rochester, Monroe County, New York. County census tracts were categorized as exposed to high, moderate, low or no DCM based on the Kodak Air Monitoring Program (KAMP) model, a theoretical dispersion model of DCM developed by Eastman Kodak Company. Birthweight and information on variables known to influence birthweight were obtained from 91,302 birth certificates of white singleton births to Monroe County residents from 1976 to 1987. No significant adverse effects of exposure to DCM on birthweight were found. Adjusted birthweight in high exposure census tracts was 18.7 g less than in areas with no exposure (95% confidence interval for the difference between high and no exposure - 51.6, 14.2 g). Problems inherent in the method of estimation of exposure, which may decrease power or bias the results, are discussed. Better methods to estimate exposure to emissions from multiple industrial point sources are needed.

  9. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  10. Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau, and V2612 Oph

    SciTech Connect (OSTI)

    al??kan, ?.; zavc?, ?.; Ba?trk, .; ?enavc?, H. V.; K?l?o?lu, T.; Y?lmaz, M.; Selam, S. O.; Latkovi?, O.; Djuraevi?, G.; Cski, A. E-mail: ozavci@science.ankara.edu.tr E-mail: hvsenavci@ankara.edu.tr E-mail: mesutyilmaz@ankara.edu.tr E-mail: olivia@aob.rs E-mail: attila@aob.rs

    2014-12-01

    We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau, and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10% and 20%, and the precision in absolute radii is between 5% and 10%. All four systems are W UMa-type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

  11. ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION

    Office of Legacy Management (LM)

    t\i,;;; il.,. (' . d ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION August 1,200l Robert Atkin U.S. Department of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, TN 3783 1 SUBJECT: CONTRACT NO. DE-AC05000R22750 FINAL REPORT-VERIFICATION SURVEY OF THE NEW BRUNSWICK LABORATORY SITE, NEW BRUNSWICK, NEW JERSEY Dear Mr. Atkin: The Environmental Survey and Site Assessment Program (ESSAP) of the Oak Ridge Institute for Science and Education (ORISE) conducted verification

  12. DE-FC26-03NT41877 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of an Advanced Airborne Natural Gas Leak Detection System DE-FC26-03NT41877 Goal: The goal is to improve the method by which the nation's natural gas pipelines are monitored for leaks. This project will flight test a high-sensitivity, broad-coverage, airborne, natural gas leak detection system developed by ITT Industries (formerly Eastman Kodak Company). The ITT airborne system can be used to quickly and efficiently locate and detect and locate concentrations of natural gas associated

  13. II.1 Itic

    Office of Legacy Management (LM)

    i! il II.1 Itic ihl j' ieil - Department of Emrgy \ Washington, DC20585 1 ' . The Honorable Bill. Johnson 30 Church Street Rochester, New York, 14614, Dear Mayor Johnion: I. ,Se$retary of EnergL Hazel.O'Leary has annouqced a .new appro the Department of Energy (DOE) and its communications with' .,support of this initiative, we are pleased to forward ttie e related to the, former Eastman Kodak Research Laboratoryisit jurisdiction that performed work for DOE or its predecesior information is

  14. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  15. Experiences with a compost biofilter for VOC control from batch chemical manufacturing operations

    SciTech Connect (OSTI)

    Gilmore, G.L.; Briggs, T.G.

    1997-12-31

    The Synthetic Chemicals Division of Eastman Kodak Company makes a large number of complex organic chemicals using batch reactor syntheses. Exhaust gas, resulting from batch reactor operations, typically contains many different volatile organic chemicals with dynamic concentration profiles. Exhaust streams of this type have been considered difficult to treat effectively by biofiltration. Eastman Kodak Company was interested in exploring the applicability of biofiltration to treat these types of off-gas streams as an alternative to more costly control technologies. To this end, a 20,000 cfm capacity BIOTON{reg_sign} biofilter was installed in December 1995 in Kodak Park, Rochester, New York. A study was initiated to determine the overall efficiency of the biofilter, as well as the chemical specific efficiencies for a number of organic compounds. Flame ionization detectors operated continuously on the inlet and outlet of the biofilter to measure total hydrocarbon concentrations. A process mass spectrometer was installed to simultaneously monitor the concentrations of seven organics in the inlet and outlet of the biofilter. In addition, the process control software for the biofilter continuously recorded pressure drop, temperature, and moisture content of the bed. This paper presents operating and performance data for the BIOTON biofilter from start-up through about eleven months of continuous operation. Included are data collected over a wide range of loading conditions, during initial start-up, and during start-up after shutdown periods. Data for total hydrocarbons, methanol, acetone, and heptane are presented. The relationship between organic loading and removal efficiency is discussed in the biofilter, which typically operates significantly below its design loading specification. The overall control efficiency of the biofilter at design loadings exceeds the design control efficiency of 90%.

  16. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)

  17. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    SciTech Connect (OSTI)

    Gomez de Castro, Ana Ines; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  19. Modeling ambient air concentrations of volatile organic compounds via digitally filtered FTIR spectra

    SciTech Connect (OSTI)

    Kaltenbach, T.

    1994-12-31

    As part of an agreement with the New York State Department of Environmental Conservation, Eastman Kodak Company has a program to monitor ambient air concentrations of volatile organic compounds at its fence lines. Currently, canister-based point sensors are used to collect a time-averaged sample every sixth day. The staff required to position, retrieve, and analyze these canisters makes this procedure expensive. Alternative methods are being investigated that can provide similar results in real time, while also saving costs. One such method is Fourier transform infrared (FTIR) spectroscopy. Radian Corporation performed a series of FTIR fence-line monitoring experiments at Kodak about one year ago. The spectra collected during this experiment are complicated by the presence of water vapor bands. Digital filtering techniques utilizing the Fourier transform are being explored as a means of removing the interference due to water vapor. When a digital filter is used as a spectral preprocessor, partial least squares (PLS) techniques can be employed to provide a powerful prediction pool. This seminar will describe the operation of the Fourier filters and present some encouraging preliminary results from PLS models.

  20. 9731: First building completed at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an "XA" unit for The Radiation Laboratory at Berkley. This unit was used for training the first employees of Tennessee Eastman Company. Additionally, Tennessee Eastman...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  2. WDR-PK-AK-018

    SciTech Connect (OSTI)

    Hollister, R

    2009-08-26

    Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysis Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the methane hydrate projects (which are described ... form and Trans Alaska Pipeline System (TAPS) Oil production from known ... depend on world oil prices and operating costs, ...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... concerns: (1) Pipeline Inspection and Repair Technologies, (2) Novel Sensors and Controls, and (3) Advanced Pipeline Materials. There are no on-going projects is this element. ...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Project objectives are: * Reduce the risk of large scale demonstration projects * Improve scientific exploration and strengthen a working relationship in CCS between China and the ...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in the injection zone(s); (3) improving efficiency of storage operations; and (4) ... construct cross sections and structure contour and isopach maps in order to characterize ...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to prepare a...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Act (ARRA) of 2009, to conduct geologic sequestration training and support funda- mental research projects for graduate and undergraduate students throughout the United...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fractures have been alleged in some situations to induce seismic activity that may cause a public nuisance or property damage. While the recent NAS report on...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l , optical, magnetic, and or catalytic properties. Efforts will also focus on assessing graphene for high temperature sensor applications. The novel control system research...

  17. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  18. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results in decreased ultrasonic P- and S-wave velocities and increased porosity and permeability. Initial measurements on carbonate samples reveal as much as 30% decrease in...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content; proportion of soft, deformable mineral grains to rigid grains; cementation; organic matter content; carbonate content; PROJECT DURATION Start Date 12012009 End Date...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to measure subtle surface displacements), seismology, and geochemistry in a straightforward series of procedures and algorithms, and assess the cost and efficacy of these...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Recent courses provided by the PTTC included a two-hour mini short course on the business model behind carbon capture and CO2 flooding, an overview of understanding...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field located in Mobile County, Alabama, to determine the diagenetic (physical, chemical, and biological) alteration of reservoir rock and formation fluid properties due...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angular Distribution of Intensity in a Flux of Radiation Scattered by a Cloud Dvoryashin, S.V., Shukurov, K.A., Shukurov, A.K., and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A study of the angular distribution of intensity in a flux of solar radiation scattered by a cloud was carried out in conditions of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200,

  11. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  12. High frame-rate, large field wavefront sensor

    SciTech Connect (OSTI)

    Avicola, K.; Salmon, J.T.; Brase, J.; Waltjen, K.; Presta, R.; Balch, K.S.

    1992-03-01

    A two-stage intensified 192 {times} 239 pixel imager developed by Eastman Kodak for motion analysis was used to construct a 1 kHz frame-rate Hartmann wavefront sensor. The sensor uses a monolithic array of lenslets with a focal length that is adjusted by an index fluid between the convex surface and an optical flat. The accuracy of the calculated centroid position, which is related to wavefront measurement accuracy, was obtained as a function of spot power and spot size. The sensor was then dynamically tested at a 1 kHz frame-rate with a 9 {times} 9 lenslet array and a fast steering mirror, which swept a plane wavefront across the wavefront sensor. An 8 cm diameter subaperture will provide a return signal (589 nm) level of about 1000 photons/ms using the AVLIS 1 kW laser (stretched pulse) as guide star source, which is sufficient to yield a wavefront measurement of better than {gamma}/10 rms. If an area of 6 {times} 6 pixels per Hartmann spot were allocated, this wavefront sensor could support a 32 {times} 32, or 1024, element deformable mirror.

  13. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    SciTech Connect (OSTI)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  14. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  15. 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0

    U.S. Energy Information Administration (EIA) Indexed Site

    STATE_CODE","UTILITY_ID","UTILNAME","RESIDENTIAL_GPREVENUES","COMMERCIAL_GPREVENUES","INDUSTRIAL_GPREVENUES","TRANS_GPREVENUES","TOTAL_GPREVENUES","RESIDENTIAL_GPGENERATION","COMMERCIAL_GPGENERATION","INDUSTRIAL_GPGENERATION","TRANS_GPGENERATION","TOTAL_GPGENERATION","RESIDENTIAL_GPCUSTOMERS","COMMERCIAL_GPCUSTOMERS","INDUSTRIAL_GPCUSTOMERS","TRANS_GPCUSTOMERS","TOTAL_GPCUSTOMERS" 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0 2013,1,"AL",195,"Alabama Power Co",2.507,0.063,,,2.57,55.7,1.4,,,57.1,628,12,,,640 2013,1,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,1,"AL",6422,"City of Florence - (AL)",0.368,0,0,0,0.368,13.8,0,0,0,13.8,50,0,0,0,50 2013,1,"AL",9094,"City of Huntsville - (AL)",8.632,1.64,0,0,10.272,323.7,61.5,0,0,385.2,1022,4,0,0,1026 2013,1,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,1,"AR",14063,"Oklahoma Gas & Electric Co",0.314,0.222,0.029,0,0.565,86.294,63.454,8.333,0,158.081,88,1,1,0,90 2013,1,"AZ",803,"Arizona Public Service Co",8.198,35.475,,,43.673,2049.62,8868.77,,,10918.39,2739,85,,,2824 2013,1,"AZ",16572,"Salt River Project",,5.429,,,5.429,,502,,,502,,8,,,8 2013,1,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,1,"AZ",19728,"UNS Electric, Inc",1.471,0.077,,,1.548,44.83,2.74,,,47.57,248,7,,,255 2013,1,"AZ",24211,"Tucson Electric Power Co",18.123,2.247,0.399,,20.769,657.86,173.23,5.3,,836.39,2619,62,2,,2683 2013,1,"CA",11208,"Los Angeles Department of Water & Power",64.746,109.462,0.47,,174.678,2158.218,3648.722,15.676,,5822.616,16536,614,28,,17178 2013,1,"CA",12745,"Modesto Irrigation District",0.122,,,,0.122,0.639,,,,0.639,1,,,,1 2013,1,"CA",14328,"Pacific Gas & Electric Co",0,0,0,0,0,0,0,0,0,0,0,0,0,,0 2013,1,"CA",14354,"PacifiCorp",5.272,0.451,0.016,0,5.739,274.699,23.147,0.8,0,298.646,1223,38,2,0,1263 2013,1,"CA",14534,"City of Pasadena - (CA)",16.888,14.845,0,0,31.733,675.458,593.795,0,0,1269.253,1043,53,0,0,1096 2013,1,"CA",16534,"Sacramento Municipal Util Dist",219.094,7.646,63.401,,290.141,33465.982,771.746,7565.049,,41802.777,53171,1423,646,,55240 2013,1,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"CA",18260,"Surprise Valley Electrificatio",0.045,0,0,0,0.045,1.8,0,0,0,1.8,9,0,0,0,9 2013,1,"CA",19281,"Turlock Irrigation District",0.015,,0.122,,0.137,2.99,,24.36,,27.35,6,,1,,7 2013,1,"CO",3989,"City of Colorado Springs - (CO)",2.513,0.654,,,3.167,235.6,33.8,,,269.4,743,16,,,759 2013,1,"CO",6604,"City of Fort Collins - (CO)",19.565,9.057,11.83,0,40.452,858.504,397.43,587.373,0,1843.307,1257,95,3,0,1355 2013,1,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,29,,,,29,43,,,,43 2013,1,"CO",12866,"Moon Lake Electric Assn Inc",0.036,,,,0.036,1.92,,,,1.92,4,,,,4 2013,1,"CO",15257,"Poudre Valley R E A, Inc",0.436,0.036,1.399,0,1.871,484.511,40.533,1554.178,0,2079.222,636,17,1,0,654 2013,1,"CO",15466,"Public Service Co of Colorado",277.472,142.981,,,420.453,12851.359,6623.167,,,19474.526,29441,788,,,30229 2013,1,"CO",16603,"San Luis Valley R E C, Inc",0.3,0.06,0.604,,0.964,75.1,15,151,,241.1,175,5,2,,182 2013,1,"CO",19499,"United Power, Inc",0.47,0.05,1.43,,1.95,527,50.4,1586.8,,2164.2,357,6,8,,371 2013,1,"CT",4176,"Connecticut Light & Power Co",181.909,23.844,0.747,0,206.5,19710.744,2410.9,75.421,0,22197.065,21408,371,7,0,21786 2013,1,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,1,"CT",19497,"United Illuminating Co",41.54,,,,41.54,4237.62,,,,4237.62,5933,,,,5933 2013,1,"CT",20038,"Town of Wallingford - (CT)",1.688,0.113,0,0,1.801,153.447,10.274,0,0,163.721,230,4,0,0,234 2013,1,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,1,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,1,"FL",18454,"Tampa Electric Co",13.23,2.89,0,0,16.12,529.2,115.6,0,0,644.8,2215,28,0,0,2243 2013,1,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"GA",3916,"Cobb Electric Membership Corp",1.029,0.026,0.443,,1.498,30.881,0.765,13.3,,44.946,151,3,1,,155 2013,1,"GA",7140,"Georgia Power Co",27.42,16.46,22.46,,66.34,670,1430,2346,,4446,4107,44,6,,4157 2013,1,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.646,0,3.003,76.05,3,25.84,0,104.89,507,2,2,0,511 2013,1,"IA",9417,"Interstate Power and Light Co",45.4,2.9,,,48.3,5570.9,144.7,,,5715.6,6107,568,,,6675 2013,1,"ID",9191,"Idaho Power Co",10.229,5.453,0.017,,15.699,1203,642,2,,1847,2034,67,2,,2103 2013,1,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.006,,,,9.006,23,,,,23 2013,1,"ID",14354,"PacifiCorp",4.106,0.431,0.002,0,4.539,211.627,23.68,0.1,0,235.407,1167,27,1,0,1195 2013,1,"ID",20169,"Avista Corp",3.747,0.748,0,0,4.495,1124.1,224.4,0,0,1348.5,965,40,0,0,1005 2013,1,"IN",9273,"Indianapolis Power & Light Co",6.442,0.571,14.835,,21.848,4294.886,380.52,9890.167,,14565.573,4170,129,24,,4323 2013,1,"IN",15470,"Duke Energy Indiana Inc",8.128,,,,8.128,406.5,,,,406.5,1309,,,,1309 2013,1,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,35,,,,35 2013,1,"KS",22500,"Westar Energy Inc",0.12,0.022,1.1,0,1.242,12,2.2,110,,124.2,37,1,1,,39 2013,1,"KY",10171,"Kentucky Utilities Co",2.69,0.085,0.004,0,2.779,795,25,1,0,821,536,18,1,0,555 2013,1,"KY",11249,"Louisville Gas & Electric Co",4.55,0.12,0,0,4.67,1330,38,0,0,1368,926,11,0,0,937 2013,1,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,1,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,,,0.542,19.6,0.1,,,19.7,172,1,,,173 2013,1,"KY",19446,"Duke Energy Kentucky",0.507,,,,0.507,47.6,,,,47.6,116,,,,116 2013,1,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,1,"MA",11804,"Massachusetts Electric Co",74.761,2.618,0.018,0,77.397,3332.112,103.699,0.717,0,3436.528,5179,199,3,0,5381 2013,1,"MA",13206,"Nantucket Electric Co",0.342,0.243,0,0,0.585,13.526,9.159,0,0,22.685,31,8,0,0,39 2013,1,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.858,,,,10.858,36,,,,36 2013,1,"MI",4254,"Consumers Energy Co",41,14,7,,62,41,1817,88,,1946,14389,114,3,,14506 2013,1,"MI",5109,"The DTE Electric Company",97,5,18,0,120,4283,225,887,0,5395,23341,113,25,0,23479 2013,1,"MI",10704,"City of Lansing - (MI)",2.922,0.818,0.007,0,3.747,97.5,27.25,0.25,0,125,390,109,1,0,500 2013,1,"MI",13780,"Northern States Power Co",0.091,,,,0.091,7.595,,,,7.595,15,,,,15 2013,1,"MI",19578,"Upper Peninsula Power Co",0.613,0,0,0,0.613,25.55,0,0,0,25.55,119,0,0,0,119 2013,1,"MI",20847,"Wisconsin Electric Power Co",2.14,0.091,0,0,2.231,71,3,0,0,74,275,5,0,0,280 2013,1,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,0,0,0.078,4.7,0.3,0,0,5,17,1,0,0,18 2013,1,"MN",689,"Connexus Energy",1.807,0.092,5.968,0,7.867,371.7,15,978.296,0,1364.996,471,3,1,0,475 2013,1,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,1,"MN",9417,"Interstate Power and Light Co",4.2,0.1,,,4.3,556.5,5.3,,,561.8,549,55,,,604 2013,1,"MN",12647,"Minnesota Power Inc",2.843,0.608,,,3.451,113.7,22.3,,,136,618,16,,,634 2013,1,"MN",13781,"Northern States Power Co - Minnesota",299.015,244.218,,,543.233,8470.68,6918.365,,,15389.045,20885,240,,,21125 2013,1,"MN",14232,"Otter Tail Power Co",0.767,1.078,0,0,1.845,59,82.9,0,0,141.9,263,32,0,0,295 2013,1,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.042,18.417,0,0,65.459,66,1,0,0,67 2013,1,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,8.149,,,8.483,33.4,814.9,,,848.3,79,1,,,80 2013,1,"MN",25177,"Dakota Electric Association",2.238,0.059,1.557,,3.854,559.5,14.8,389.2,,963.5,1365,82,22,,1469 2013,1,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,,,0.978,37.7,1.4,,,39.1,142,2,,,144 2013,1,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",17833,"City Utilities of Springfield - (MO)",0.842,0.13,0,0,0.972,35.7,7.9,0,0,43.6,149,8,0,0,157 2013,1,"MO",19436,"Union Electric Co - (MO)",71.2,,,,71.2,4748,,,,4748,6868,,,,6868 2013,1,"MS",6641,"4-County Electric Power Assn",0.204,0,0,0,0.204,7.65,0,0,0,7.65,25,0,0,0,25 2013,1,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,1,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,1,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,1,"MT",12825,"NorthWestern Energy LLC - (MT)",1.952,3.266,0,0,5.218,97.6,163.3,0,0,260.9,307,19,0,0,326 2013,1,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,1,"NC",3046,"Progress Energy Carolinas Inc",19.469,0.904,0.096,,20.469,486.729,36.16,3.84,,526.729,3298,83,2,,3383 2013,1,"NC",5416,"Duke Energy Carolinas, LLC",32.928,8.54,,,41.468,823.2,213.5,,,1036.7,5901,179,,,6080 2013,1,"NC",6235,"Public Works Comm-City of Fayetteville",0.308,0,0,0,0.308,7.7,0,0,0,7.7,57,0,0,0,57 2013,1,"NC",9837,"Jones-Onslow Elec Member Corp",0.196,,,,0.196,4.9,,,,4.9,49,,,,49 2013,1,"NC",16496,"Rutherford Elec Member Corp",0.14,,,,0.14,3.5,,,,3.5,24,,,,24 2013,1,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,1,"ND",12087,"McKenzie Electric Coop Inc",0.001,,,,0.001,0.1,,,,0.1,1,,,,1 2013,1,"ND",14232,"Otter Tail Power Co",0.511,0.12,0,0,0.631,39.321,9.2,0,0,48.521,195,14,0,0,209 2013,1,"NH",13441,"New Hampshire Elec Coop Inc",1.689,0.057,0,0,1.746,56.3,1.9,0,0,58.2,236,7,0,0,243 2013,1,"NH",15472,"Public Service Co of NH",2.406,0.47,0.105,0,2.981,101.332,46.972,3.798,0,152.102,158,9,2,0,169 2013,1,"NH",24590,"Unitil Energy Systems",0.463,0.004,0,0,0.467,14.438,0.065,0,0,14.503,25,1,0,0,26 2013,1,"NH",26510,"Granite State Electric Co",1.135,0.074,,,1.209,29.382,2.324,,,31.706,103,7,,,110 2013,1,"NJ",963,"Atlantic City Electric Co",6.266,1.458,0,0,7.724,477.501,79.252,0,0,556.753,771,12,0,0,783 2013,1,"NJ",16213,"Rockland Electric Co",1.784,0.006,0,0,1.79,131.281,0.667,0,0,131.948,119,1,0,0,120 2013,1,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,62,15,0,0,77 2013,1,"NM",6204,"City of Farmington - (NM)",0.035,0,0,0,0.035,1.9,0,0,0,1.9,6,0,0,0,6 2013,1,"NM",11204,"Los Alamos County",0.885,0.052,,,0.937,157.6,11.039,,,168.639,3333,10,,,3343 2013,1,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,0,27.759,5172.37,1166.87,269.91,0,6609.15,12248,464,3,0,12715 2013,1,"NM",17718,"Southwestern Public Service Co",12.153,1.439,,,13.592,405.088,47.982,,,453.07,827,91,,,918 2013,1,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,1,"NY",11171,"Long Island Power Authority",11.169,1.617,,,12.786,409,587,,,996,540,140,,,680 2013,1,"NY",13511,"New York State Elec & Gas Corp",100.211,4.478,1.008,,105.697,4048,213,47,,4308,14873,255,6,,15134 2013,1,"NY",13573,"Niagara Mohawk Power Corp.",103.04,2.12,1.06,0,106.22,5970,123,62,0,6155,8045,166,83,0,8294 2013,1,"NY",16183,"Rochester Gas & Electric Corp",37.822,0.735,,,38.557,1535.1,40.692,,,1575.792,5567,73,,,5640 2013,1,"OH",3542,"Duke Energy Ohio Inc",2.756,,,,2.756,275.6,,,,275.6,634,,,,634 2013,1,"OH",14006,"Ohio Power Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OK",7490,"Grand River Dam Authority",0,0,54.776,,54.776,0,0,13694,,13694,0,0,1,,1 2013,1,"OK",13734,"Northeast Oklahoma Electric Co",0.218,0.004,0,0,0.222,26.6,0.5,0,0,27.1,152,3,0,0,155 2013,1,"OK",14062,"Oklahoma Electric Coop Inc",0.824,0,0,0,0.824,164.9,0,0,0,164.9,1649,0,0,0,1649 2013,1,"OK",14063,"Oklahoma Gas & Electric Co",171.747,317.054,16.633,0,505.434,7733.377,19106.41,1935.612,0,28775.399,9681,837,38,0,10556 2013,1,"OK",15474,"Public Service Co of Oklahoma",15.434,0.336,0,0,15.77,457.587,9.634,0,0,467.221,673,8,0,0,681 2013,1,"OR",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OR",6022,"City of Eugene - (OR)",23.141,12.428,0,0,35.569,2226,1153,0,0,3379,2443,246,0,0,2689 2013,1,"OR",9191,"Idaho Power Co",0.093,,,,0.093,11,,,,11,18,,,,18 2013,1,"OR",14354,"PacifiCorp",408.297,81.386,27.237,0,516.92,35002.862,8816.17,3558.931,0,47377.963,41305,1371,65,0,42741 2013,1,"OR",15248,"Portland General Electric Co",806.261,27.751,101.307,0,935.319,76384.997,2622.585,5959.253,0,84966.835,85894,1947,145,0,87986 2013,1,"OR",40437,"Emerald People's Utility Dist",12.284,6.469,0,0,18.753,1535.477,808.62,0,0,2344.097,34,34,0,0,68 2013,1,"PA",14715,"PPL Electric Utilities Corp",2.59,,,,2.59,103.7,,,,103.7,335,,,,335 2013,1,"PA",14940,"PECO Energy Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"RI",13214,"The Narragansett Electric Co",60.105,1.484,0.044,0,61.633,2596.708,58.236,1.626,0,2656.57,4021,102,1,0,4124 2013,1,"SC",1613,"Berkeley Electric Coop Inc",1.317,0.03,0,0,1.347,43.9,0.439,0,0,44.339,333,4,,,337 2013,1,"SC",3046,"Progress Energy Carolinas Inc",0.229,0.028,,,0.257,5.723,1.12,,,6.843,47,2,,,49 2013,1,"SC",5416,"Duke Energy Carolinas, LLC",0.596,0.004,,,0.6,14.9,0.1,,,15,110,1,,,111 2013,1,"SC",14398,"Palmetto Electric Coop Inc",2.034,2.411,2.454,0,6.899,67.8,105.317,81.8,0,254.917,458,30,3,0,491 2013,1,"SC",17539,"South Carolina Electric&Gas Co",1.037,0,226.131,0,227.168,25.925,0,8228.212,0,8254.137,192,0,2,0,194 2013,1,"SC",17543,"South Carolina Public Service Authority",9.441,26.736,0.287,0,36.464,298.9,891.2,9.583,0,1199.683,1600,396,1,0,1997 2013,1,"SD",14232,"Otter Tail Power Co",0.315,0.23,0,0,0.545,8.2,6,0,0,14.2,41,5,0,0,46 2013,1,"SD",20401,"West River Electric Assn Inc",0.034,,,,0.034,17.1,,,,17.1,80,,,,80 2013,1,"TN",727,"Appalachian Electric Coop",0.292,0.1,0,0,0.392,10.95,3.75,0,0,14.7,36,1,0,0,37 2013,1,"TN",2247,"City of Bristol - (TN)",0.192,0.012,0,0,0.204,7.2,0.45,0,0,7.65,18,3,0,0,21 2013,1,"TN",3408,"City of Chattanooga - (TN)",5.912,6.292,0,0,12.204,221.7,235.95,0,0,457.65,816,29,0,0,845 2013,1,"TN",3704,"City of Clarksville - (TN)",0.696,1.74,0,0,2.436,26.1,65.25,0,0,91.35,91,5,0,0,96 2013,1,"TN",3758,"City of Cleveland - (TN)",0.208,0,0,0,0.208,7.8,0,0,0,7.8,34,0,0,0,34 2013,1,"TN",3812,"City of Clinton - (TN)",0.408,0.344,0,0,0.752,15.3,12.9,0,0,28.2,57,5,0,0,62 2013,1,"TN",4624,"Cumberland Elec Member Corp",1.152,0.152,0,0,1.304,43.2,5.7,0,0,48.9,165,7,0,0,172 2013,1,"TN",5399,"Duck River Elec Member Corp",1.324,2.296,0,0,3.62,49.65,86.1,0,0,135.75,175,8,0,0,183 2013,1,"TN",7174,"Gibson Electric Members Corp",0.2,0.1,0,0,0.3,7.5,3.75,0,0,11.25,39,1,0,0,40 2013,1,"TN",7625,"City of Greeneville - (TN)",0.052,0.1,0,0,0.152,1.95,3.75,0,0,5.7,10,1,0,0,11 2013,1,"TN",9777,"Johnson City - (TN)",2.552,0.472,0,0,3.024,95.7,17.7,0,0,113.4,335,8,0,0,343 2013,1,"TN",10421,"Knoxville Utilities Board",19.256,26.664,0,0,45.92,700.5,1262.4,0,0,1962.9,2245,69,0,0,2314 2013,1,"TN",10906,"City of Lenoir - (TN)",3.588,0.212,0,0,3.8,115.35,7.05,0,0,122.4,362,9,0,0,371 2013,1,"TN",12293,"City of Memphis - (TN)",17.07,1.986,4.812,0,23.868,426.75,49.65,120.3,0,596.7,1308,21,3,0,1332 2013,1,"TN",12470,"Middle Tennessee E M C",4.836,0.872,0,0,5.708,181.35,32.7,0,0,214.05,550,13,0,0,563 2013,1,"TN",13216,"Nashville Electric Service",21.372,7.504,0,0,28.876,801.45,281.4,0,0,1082.85,2429,63,0,0,2492 2013,1,"TN",17694,"Southwest Tennessee E M C",0.196,0.02,0,0,0.216,7.35,0.75,0,0,8.1,18,1,0,0,19 2013,1,"TN",19574,"Upper Cumberland E M C",0.392,0.048,0,0,0.44,14.7,1.8,0,0,16.5,29,3,0,0,32 2013,1,"TN",19898,"Volunteer Electric Coop",0.8,0.388,0,0,1.188,30,14.55,0,0,44.55,93,7,0,0,100 2013,1,"TX",5701,"El Paso Electric Co",2.823,0.088,0,0,2.911,79.9,2.5,0,0,82.4,370,6,0,0,376 2013,1,"TX",16604,"City of San Antonio - (TX)",48.654,51.084,0.384,0,100.122,4425.609,5090.967,38.376,0,9554.952,6462,557,1,0,7020 2013,1,"UT",12866,"Moon Lake Electric Assn Inc",0.148,0.022,,,0.17,7.99,1.212,,,9.202,17,1,,,18 2013,1,"UT",13073,"Mt Wheeler Power, Inc",0.021,,,,0.021,1.1,,,,1.1,2,,,,2 2013,1,"UT",14354,"PacifiCorp",158.394,33.901,9.139,0,201.434,8152.211,2846.716,1173.5,0,12172.427,35413,807,25,0,36245 2013,1,"UT",17874,"City of St George",0.084,0,0,0,0.084,2.84,0,0,0,2.84,8,0,0,0,8 2013,1,"VA",733,"Appalachian Power Co",0.221,,,,0.221,14.76,,,,14.76,11,,,,11 2013,1,"VA",17066,"Shenandoah Valley Elec Coop",0.213,0,0,0,0.213,14.246,0,0,0,14.246,12,0,0,0,12 2013,1,"VA",19876,"Virginia Electric & Power Co",166.416,14.353,0.762,0,181.531,12801.234,3064.185,58.615,0,15924.034,15248,226,1,0,15475 2013,1,"VT",7601,"Green Mountain Power Corp",39.65,10.83,0,0,50.48,1068,276,0,0,1344,3998,216,0,0,4214 2013,1,"WA",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"WA",14354,"PacifiCorp",10.666,3.788,0.006,0,14.46,547.74,316.508,0.3,0,864.548,2669,112,3,0,2784 2013,1,"WA",15500,"Puget Sound Energy Inc",334.185,64.655,0,0,398.84,26734.802,9103.828,0,0,35838.63,34030,959,0,0,34989 2013,1,"WA",17470,"Snohomish County PUD No 1",,2.091,,,2.091,,243.95,,,243.95,,16,,,16 2013,1,"WA",18429,"City of Tacoma - (WA)",6.11,2.57,0,0,8.68,509,214,0,0,723,1161,21,0,0,1182 2013,1,"WA",20169,"Avista Corp",9.34,5.835,0.144,0,15.319,2802,1750.5,43.2,0,4595.7,2374,64,2,0,2440 2013,1,"WI",5574,"East Central Energy",0.109,0,0,0,0.109,27.3,0,0,0,27.3,88,0,0,0,88 2013,1,"WI",11479,"Madison Gas & Electric Co",158,111,1,,270,5110,5939,29,,11078,12045,951,9,,13005 2013,1,"WI",13780,"Northern States Power Co",8.698,4.609,,,13.307,634.884,336.445,,,971.329,1277,55,,,1332 2013,1,"WI",20847,"Wisconsin Electric Power Co",166.97,40.3,44.391,0,251.661,9264,2329,3139,0,14732,18251,601,23,0,18875 2013,1,"WI",20856,"Wisconsin Power & Light Co",72.336,8.4,,,80.736,5682.6,417.2,,,6099.8,7122,971,,,8093 2013,1,"WI",20860,"Wisconsin Public Service Corp",13.098,8.448,0,0,21.546,545.77,352,0,0,897.77,1838,56,0,0,1894 2013,1,"WV",733,"Appalachian Power Co",0.011,,,,0.011,0.7,,,,0.7,2,,,,2 2013,1,"WY",3461,"Cheyenne Light Fuel & Power Co",0.291,0.581,,,0.872,8.314,16.6,,,24.914,28,7,,,35 2013,1,"WY",7222,"City of Gillette - (WY)",0.45,0.492,0,0,0.942,30,32.8,0,0,62.8,39,6,0,0,45 2013,1,"WY",11273,"Lower Valley Energy Inc",12.326,4.929,9.552,,26.807,1059.429,504.749,1138.606,,2702.784,1126,387,33,,1546 2013,1,"WY",14354,"PacifiCorp",15.753,0.84,0.903,0,17.496,814.892,43.2,110.8,0,968.892,3839,105,3,0,3947 2013,1,"WY",19156,"Powder River Energy Corp",0.032,0.028,,,0.06,16.2,13.8,,,30,24,2,,,26 2013,1,,99999,"National Total",4792.148,1589.407,655.869,0,7037.424,350819.302,108835.977,66013.422,0,525668.701,603911,18477,1249,0,623637 2013,2,"AL",195,"Alabama Power Co",2.558,0.072,,,2.63,56.85,1.6,,,58.45,634,12,,,646 2013,2,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,2,"AL",6422,"City of Florence - (AL)",0.36,0,0,0,0.36,13.5,0,0,0,13.5,49,0,0,0,49 2013,2,"AL",9094,"City of Huntsville - (AL)",8.544,1.64,0,0,10.184,320.4,61.5,0,0,381.9,1013,4,0,0,1017 2013,2,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,2,"AR",14063,"Oklahoma Gas & Electric Co",0.279,0.235,0.029,0,0.543,76.151,67.134,8.333,0,151.618,85,2,1,0,88 2013,2,"AZ",803,"Arizona Public Service Co",7.164,40.617,,,47.781,1791.018,10154.21,,,11945.228,2714,84,,,2798 2013,2,"AZ",16572,"Salt River Project",,5.044,,,5.044,,466,,,466,,8,,,8 2013,2,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,2,"AZ",19728,"UNS Electric, Inc",1.387,0.077,,,1.464,43.63,2.74,,,46.37,236,7,,,243 2013,2,"AZ",24211,"Tucson Electric Power Co",15.866,2.383,0.399,,18.648,575.93,180.79,5.3,,762.02,2533,60,2,,2595 2013,2,"CA",11208,"Los Angeles Department of Water & Power",67.077,105.929,0.395,,173.401,2235.918,3530.96,13.174,,5780.052,16512,627,17,,17156 2013,2,"CA",12745,"Modesto Irrigation District",0.116,,,,0.116,0.605,,,,0.605,1,,,,1 2013,2,"CA",14354,"PacifiCorp",5.193,0.449,0.016,0,5.658,267.638,23.03,0.8,0,291.468,1220,38,2,0,1260 2013,2,"CA",14534,"City of Pasadena - (CA)",9.243,6.621,,,15.864,369.68,264.838,,,634.518,567,23,,,590 2013,2,"CA",16534,"Sacramento Municipal Util Dist",194.815,6.859,60.348,,262.022,26474.29,693.025,6049.057,,33216.372,53268,1414,645,,55327 2013,2,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"CA",18260,"Surprise Valley Electrificatio",0.03,0,0,0,0.03,1.2,0,0,0,1.2,6,0,0,0,6 2013,2,"CA",19281,"Turlock Irrigation District",0.015,,0.147,,0.162,2.995,,29.36,,32.355,6,,1,,7 2013,2,"CO",3989,"City of Colorado Springs - (CO)",5.488,0.512,10.578,,16.578,532.7,38.8,269.5,,841,1116,13,3,,1132 2013,2,"CO",6604,"City of Fort Collins - (CO)",16.784,10.696,0.557,0,28.037,659.762,420.421,21.875,0,1102.058,1185,92,2,0,1279 2013,2,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,30,,,,30,44,,,,44 2013,2,"CO",12866,"Moon Lake Electric Assn Inc",0.066,,,,0.066,3.58,,,,3.58,4,,,,4 2013,2,"CO",15257,"Poudre Valley R E A, Inc",0.421,0.036,1.316,,1.773,467.667,40.533,1462.156,,1970.356,635,17,1,,653 2013,2,"CO",15466,"Public Service Co of Colorado",218.716,126.556,,,345.272,10129.88,5862.309,,,15992.189,29402,784,,,30186 2013,2,"CO",16603,"San Luis Valley R E C, Inc",0.296,0.065,0.604,,0.965,73.9,16.2,151,,241.1,168,12,2,,182 2013,2,"CO",19499,"United Power, Inc",0.47,0.05,2.16,,2.68,520.4,50.5,2401,,2971.9,355,6,8,,369 2013,2,"CT",4176,"Connecticut Light & Power Co",174.364,22.601,0.693,0,197.658,18933.921,2287.732,69.942,0,21291.595,21539,368,10,0,21917 2013,2,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,2,"CT",19497,"United Illuminating Co",42.21,,,,42.21,4305.87,,,,4305.87,5935,,,,5935 2013,2,"CT",20038,"Town of Wallingford - (CT)",1.547,0.121,0,0,1.668,140.6,11.027,0,0,151.627,228,4,0,0,232 2013,2,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,2,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,2,"FL",18454,"Tampa Electric Co",13.18,2.88,0,0,16.06,527.2,115.2,0,0,642.4,2206,26,0,0,2232 2013,2,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"GA",3916,"Cobb Electric Membership Corp",0.907,0.023,0.4,,1.33,27.202,0.69,12.013,,39.905,151,3,1,,155 2013,2,"GA",7140,"Georgia Power Co",27.53,17,22.46,,66.99,672,1431,2346,,4449,4122,42,6,,4170 2013,2,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.544,0,2.901,76.05,3,21.768,0,100.818,507,2,2,0,511 2013,2,"IA",9417,"Interstate Power and Light Co",39.3,2.9,,,42.2,4816,143.8,,,4959.8,6097,563,,,6660 2013,2,"ID",9191,"Idaho Power Co",10.104,5.557,0.017,0,15.678,1189,654,2,0,1845,2018,66,2,0,2086 2013,2,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.076,,,,9.076,23,,,,23 2013,2,"ID",14354,"PacifiCorp",4.172,0.401,0.002,0,4.575,213.241,23.797,0.1,0,237.138,1161,27,1,0,1189 2013,2,"ID",20169,"Avista Corp",3.735,0.748,0,0,4.483,1120.5,224.4,0,0,1344.9,968,40,0,0,1008 2013,2,"IN",9273,"Indianapolis Power & Light Co",4.498,0.444,8.201,,13.143,2998.883,293.547,5469.37,,8761.8,4188,128,25,,4341 2013,2,"IN",15470,"Duke Energy Indiana Inc",7.967,,,,7.967,796.7,,,,796.7,1304,,,,1304 2013,2,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,34,,,,34 2013,2,"KS",22500,"Westar Energy Inc",0.117,0.022,1,,1.139,11.7,2.2,100,,113.9,36,1,1,,38 2013,2,"KY",10171,"Kentucky Utilities Co",6.795,0.212,0.009,0,7.016,3808,119,5,0,3932,536,18,1,0,555 2013,2,"KY",11249,"Louisville Gas & Electric Co",10.98,0.243,0.067,0,11.29,6149,137,38,0,6324,914,11,1,0,926 2013,2,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,2,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,0,0,0.542,19.6,0.1,0,0,19.7,172,1,0,0,173 2013,2,"KY",19446,"Duke Energy Kentucky",0.521,,,,0.521,49,,,,49,118,,,,118 2013,2,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,2,"MA",11804,"Massachusetts Electric Co",69.404,2.75,0.014,0,72.168,3070.386,106.677,0.559,0,3177.622,5183,208,3,0,5394 2013,2,"MA",13206,"Nantucket Electric Co",0.336,0.245,0,0,0.581,13.056,9.301,0,0,22.357,32,7,0,0,39 2013,2,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.87,,,,10.87,34,,,,34 2013,2,"MI",4254,"Consumers Energy Co",40,13,1,,54,4013,1809,88,,5910,18636,95,2,,18733 2013,2,"MI",5109,"The DTE Electric Company",87,4,16,0,107,3785,177,799,0,4761,21658,109,25,0,21792 2013,2,"MI",10704,"City of Lansing - (MI)",2.874,0.818,0.008,0,3.7,95.75,27.25,0.25,0,123.25,383,109,1,0,493 2013,2,"MI",13780,"Northern States Power Co",0.079,,,,0.079,6.56,,,,6.56,15,,,,15 2013,2,"MI",19578,"Upper Peninsula Power Co",0.607,,,,0.607,25.3,,,,25.3,118,,,,118 2013,2,"MI",20847,"Wisconsin Electric Power Co",1.549,0.086,,,1.635,51,3,,,54,269,5,,,274 2013,2,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,,,0.078,4.7,0.3,,,5,17,1,,,18 2013,2,"MN",689,"Connexus Energy",1.837,0.092,6.024,0,7.953,376.7,15,987.58,0,1379.28,471,3,1,0,475 2013,2,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,2,"MN",9417,"Interstate Power and Light Co",3.6,0.1,,,3.7,472.9,5.3,,,478.2,549,55,,,604 2013,2,"MN",12647,"Minnesota Power Inc",2.819,0.508,,,3.327,112.3,20.3,,,132.6,582,15,,,597 2013,2,"MN",13781,"Northern States Power Co - Minnesota",242.939,158.251,,,401.19,6882.134,4483.034,,,11365.168,20895,240,,,21135 2013,2,"MN",14232,"Otter Tail Power Co",0.672,1.063,0,0,1.735,51.724,81.8,0,0,133.524,245,30,0,0,275 2013,2,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.043,18.417,0,0,65.46,66,1,0,0,67 2013,2,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,9.596,,,9.93,33.4,959.6,,,993,79,1,,,80 2013,2,"MN",25177,"Dakota Electric Association",2.241,0.059,1.075,,3.375,560.2,14.8,268.7,,843.7,1363,82,22,,1467 2013,2,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,0,0,0.978,37.7,1.4,0,0,39.1,142,2,0,0,144 2013,2,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",17833,"City Utilities of Springfield - (MO)",0.84,0.13,,,0.97,35.7,7.9,,,43.6,148,8,,,156 2013,2,"MO",19436,"Union Electric Co - (MO)",79.1,,,,79.1,5274,,,,5274,6871,,,,6871 2013,2,"MS",6641,"4-County Electric Power Assn",0.212,0,0,0,0.212,7.95,0,0,0,7.95,25,0,0,0,25 2013,2,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,2,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,2,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,2,"MT",12825,"NorthWestern Energy LLC - (MT)",1.954,3.266,0,0,5.22,97.7,163.3,0,0,261,307,19,0,0,326 2013,2,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,2,"NC",3046,"Progress Energy Carolinas Inc",18.236,1.419,0.096,,19.751,455.892,56.772,3.84,,516.504,3285,84,2,,3371 2013,2,"NC",5416,"Duke Energy Carolinas, LLC",32.852,8.536,,,41.388,821.3,213.4,,,1034.7,5890,178,,,6068 2013,2,"NC",6235,"Public Works Comm-City of Fayetteville",0.34,0,0,0,0.34,8.5,0,0,0,8.5,57,0,0,0,57 2013,2,"NC",9837,"Jones-Onslow Elec Member Corp",0.188,0,0,0,0.188,4.7,0,0,0,4.7,47,0,0,0,47 2013,2,"NC",16496,"Rutherford Elec Member Corp",0.144,,,,0.144,3.6,,,,3.6,25,,,,25 2013,2,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,2,"ND",12087,"McKenzie Electric Coop Inc",0.001,0,0,0,0.001,0.1,0,0,0,0.1,1,0,0,0,1 2013,2,"ND",14232,"Otter Tail Power Co",0.458,0.118,0,0,0.576,35.209,9.1,0,0,44.309,184,13,0,0,197 2013,2,"NH",13441,"New Hampshire Elec Coop Inc",1.683,0.057,0,0,1.74,56.1,1.9,0,0,58,236,7,0,0,243 2013,2,"NH",15472,"Public Service Co of NH",2.299,0.521,0.114,0,2.934,98.317,52.529,4.062,0,154.908,154,10,2,0,166 2013,2,"NH",24590,"Unitil Energy Systems",0.461,0.003,0,0,0.464,14.017,0.061,0,0,14.078,25,1,0,0,26 2013,2,"NH",26510,"Granite State Electric Co",1.135,0.074,0,0,1.209,29.382,2.324,0,0,31.706,103,7,0,0,110 2013,2,"NJ",963,"Atlantic City Electric Co",7.184,1.321,0,0,8.505,454.968,72.472,0,0,527.44,762,12,0,0,774 2013,2,"NJ",16213,"Rockland Electric Co",1.535,0.005,0,0,1.54,103.4,0.56,0,0,103.96,119,1,0,0,120 2013,2,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,61,15,0,0,76 2013,2,"NM",6204,"City of Farmington - (NM)",0.032,0,0,0,0.032,1.9,0,0,0,1.9,6,0,0,0,6 2013,2,"NM",11204,"Los Alamos County",0.682,0.097,,,0.779,118.828,17.435,,,136.263,293,11,,,304 2013,2,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,,27.759,5172.37,1166.87,269.91,,6609.15,12244,453,3,,12700 2013,2,"NM",17718,"Southwestern Public Service Co",8.89,1.962,,,10.852,296.337,65.408,,,361.745,820,91,,,911 2013,2,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,2,"NY",11171,"Long Island Power Authority",11.9,9.1,,,21,387,517,,,904,720,123,,,843 2013,2,"NY",13511,"New York State Elec & Gas Corp",100.014,4.473,1.008,0,105.495,4035,212,48,0,4295,14802,254,6,0,15062 2013,2,"NY",13573,"Niagara Mohawk Power Corp.",103.4,2.12,1.06,0,106.58,5970,123,62,0,6155,8045,166,83,0,8294 2013,2,"

  16. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  17. Advance Patent Waiver W(A)2010-024

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a request by EASTMAN CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42469

  18. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials and fuels in rocket propulsion systems. NETL Supercomputer DoD Supercomputing Resource Centers Visualization & Molecular Design Computational Chemistry Beowulf Clusters

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Each technology has its own advantages and disadvantages. Integrated technology development takes materials from molecular design through fabrication to commercialization. R&D173, ...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security....

  4. RAPID/Roadmap/20-AK-a | Open Energy Information

    Open Energy Info (EERE)

    to confirm location; however, surface pressure may not subject the casing to a hoop stress that will exceed 70 percent of the minimum yield strength of the casing. At least 24...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on only the most promising materials. Substances designed using fundamental approaches are synthesized and characterized in NETL-ORD's fully equipped synthetic...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods, limited variability is available in the final cathode structures. New approaches focus on generation of advanced microstructures that are more conducive to...

  7. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins by completing the online submission form where users can describe attributes, characteristics, and keywords of the submission. This information serves as the building...

  8. RAPID/Roadmap/1-AK-a | Open Energy Information

    Open Energy Info (EERE)

    for state lands within the planning area. Two types of state land use plans might govern geothermal development on state-owned land: an area plan or a management plan. These plans...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately CO 2 capture cost. The NETL-ORD is also conducting system and economic studies to R& D FAC T S Carbon Capture OFFICE OF RESEARCH AND DEVELOPMENT David Alman...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower heat capacity, and reduced heat of reaction. The result is a lower overall cost for CO 2 capture and separation. Many different types of solid materials have been...

  12. RAPID/Roadmap/7-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

  14. Electrical Resistance Tomographic Profile L2, Site 0, Barrow AK

    SciTech Connect (OSTI)

    Hubbard, Susan; Dafflon, Baptiste

    2013-12-08

    Figure 7a in http://esd.lbl.gov/files/about/staff/susanhubbard/PUBLISHED_-_Hubbard-Hydrogeology-2012_with_Gangodagamage_et_al.pdf

  15. RAPID/Roadmap/5-AK-a | Open Energy Information

    Open Energy Info (EERE)

    agency overseeing regulation of geothermal drilling and well development is the Alaska Oil and Gas Conservation Commission. The developer must have acquired a lease prior to this...

  16. RAPID/Roadmap/4-AK-b | Open Energy Information

    Open Energy Info (EERE)

    These studies help to identify geological structures with potential accumulations of oil or gas. These permits are a type of land use permit and are sometimes called Seismic...

  17. RAPID/Roadmap/4-AK-a | Open Energy Information

    Open Energy Info (EERE)

    (including both geophysical or seismic and shallow hole testing). The Alaska Division of Oil and Gas regulates the drilling and exploratory activities within the state and a...

  18. RAPID/Roadmap/4-AK-c | Open Energy Information

    Open Energy Info (EERE)

    87.030 - 87.050 cover this permit's requirements. Within ADNR, the Alaska Division of Oil and Gas handles all exploration activities and permitting under this chapter. Note: the...

  19. EIS-0186: Proposed Healy Clean Coal Project, Healy, AK

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in prior-year appro- priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. ...

  1. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  2. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  3. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil and gas exploration and production. These R&D portfolios include research conducted by NETL-ORD as well as extra-mural projects awarded through competitive solicitations. ...

  6. RAPID/Roadmap/3-AK-d | Open Energy Information

    Open Energy Info (EERE)

    permit when there is little interest in the initial call for applications by DO&G. In either process, the surface owner (if other than the state) will have a preference...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Darrell Paul Program Manager Battelle Memorial Institute 505 King Avenue Columbus, OH 43201...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fire Protection-Sacramento, CA California Department of Water Resources California Division of Oil, Gas and Geothermal Resources California Energy Commission California ...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology (EPAct...

  13. RAPID/Roadmap/6-AK-c | Open Energy Information

    Open Energy Info (EERE)

    system staff; and an explanation of how the proposed system will establish and maintain effective communications and relationships between the public water system management, its...

  14. RAPID/Roadmap/14-AK-a | Open Energy Information

    Open Energy Info (EERE)

    by the proposed project. Restoration of an affected waterbody is accomplished through the development and implementation of either a TMDL document or a Waterbody Recovery Plan....

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  16. RAPID/Roadmap/18-AK-c | Open Energy Information

    Open Energy Info (EERE)

    basis. General permits are appropriate for activities that are similar enough in nature that multiple individual permits are unnecessary. Geothermal drilling wastes are...

  17. RAPID/Roadmap/11-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of private persons: Before any construction, alteration, or improvement of any nature is undertaken on a privately owned, officially designated state monument or historic...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Act (NEPA) process is complete. * Approximately 32 sq. mi. of 3-D, 9- component surface seismic has been shot in the injection region and the data has been...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  1. RAPID/Roadmap/3-AK-e | Open Energy Information

    Open Energy Info (EERE)

    if the parties cannot agree on what constitutes reasonable concurrent use. As provided in 11 AAC 96.020, some uses and activities are generally allowed on state land...

  2. RAPID/Roadmap/19-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Use of Water Request for Water Right Permit Extension Statement of Beneficial Water Use Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  3. RAPID/Roadmap/19-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Water Fact Sheets: Water Rights in Alaska Application for Temporary Use of Water Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  4. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly evolving technology, capabilities, and approaches to information sharing, big data, and computational resources, both public and private, for the benefit of NETL...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as those associated with long-term liabilities. Operational issues include the management of reservoir pressure and stress to avoid conditions that might induce seismic...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities to test and evaluate technologies; validate and couple geomechanical and flow reservoir models to provide accurate and reliable simulations in fractured reservoirs...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Project locations for the two PCOR Partnership Development Phase Projects and risk management programs of appropriate size for a commercial-scale injection of CO2. The...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consistent with gas clean-up technology. Sensors and Controls - Designing advanced sensory materials, optical sensors, and platforms for high temperature sensors, as well as...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical...

  11. RAPID/Roadmap/3-AK-g | Open Energy Information

    Open Energy Info (EERE)

    receiver, that owns, operates, manages, or controls any line, plant, pipeline, or system for furnishing, producing, generating, transmitting, or distributing power,...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  13. Ak-Chin Electric Utility Authority | Open Energy Information

    Open Energy Info (EERE)

    82 2.653 68 45 144.753 1,889 417 2009-02 18.064 209 290 111.749 1,405 82 2.659 42 45 132.472 1,656 417 2009-01 20.158 239 290 117.553 1,516 82 2.017 22 45 139.728 1,777 417...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources of drinking water. Induced seismicity is when earthquakes occur due to human activity changing the stress field in the subsurface. Most induced seismic events are small...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of naturally occurring major, minor, and trace elements as indicators of sub-surface activity provides an understanding at the mineral and chemical levels of the larger processes...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed program reviews, systems analyses, review of emerging technologies, R&D activity, and discussions with stakeholders at all levels. This diverse research plan includes...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The facility was originally used to study the fate of CO 2 in the deep ocean, released ... Goals and Objectives The goal of the current research is to obtain fundamental, ...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a burner) is coupled to heat exchangers and a turbine in order to evaluate the dynamics of a fully integrated system. R& D FAC T S Energy Systems Dynamics OFFICE OF...

  19. RAPID/Roadmap/3-AK-b | Open Energy Information

    Open Energy Info (EERE)

    to AS 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  20. RAPID/Roadmap/9-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Stat. ch. 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and model data on high performance computers with pre-loaded software, such as ArcGIS, Petra, EarthVision, GoldSim, MATLAB, and other advanced analytical, statistical and...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their datasets using top-of-the-line research computers with key software, such as ArcGIS, Petra, GoldSim, and Earthvision, among other advanced geostatistical and analytical...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Conversion Model allows for the transfer of elements from the JetPlume and Transport models, taking care to best amalgamate the two contrasting approaches in each, while...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  5. RAPID/Roadmap/19-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrink, depending on the specific adsorbedabsorbed gas. In turn, this can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most existing reservoir simulators are designed for flow through inter-granular permeability within intact rock, perhaps with the addition of regular grids of fractures. These...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are cheap and easy to process but are limited by an inherent tradeoff between permeability and selectivity - polymeric membranes can have high permeability or high...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanner allows evaluation of microscopic structure and pore surfaces. Porosity, permeability, fracture roughness and aperture, overall structure, and composition can all be...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Baltrus Acting Division Director Molecular Science Division 412-386-4570 john.baltrus@netl.doe.gov Paul Turner Division Director Materials Characterization Division...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... via thermal desorption) to measure volatile organic compounds (VOCs); * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * R.M. Young and Davis Instruments ...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (a GC-FID with sample introduction via thermal desorption) to measure VOC's; * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * A Davis Instruments ...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to industry for commercial implementation. The instrument provides state-of-the- art improvements of reduced size and increased sensitivity and sample rate to facilitate...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can be then used in an inexpensive "breathalyzer" to test for and monitor diabetes. The NETLSC has also greatly accelerated progress on the development of...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling consistent with Biot's poroelastic theory was developed and imple- mented in FLAC and TOUGH2. * H-M models for fractured porous rocks were developed and implemented in a...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exploration and production of deepwater and ultra-deepwater resources. Adequate definition of materials performance and properties is critical to this effort. The outcome...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from each SECARB-Ed participating organization was created to provide direction for the business model and to guide the development of high quality training materials and an...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  20. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 3.08 2000's 4.31 4.39 4.07 4.47 4.94 5.77 6.00 5.97 7.69 8.59 2010's 12.19 13.05 15.71 --...

  1. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.82 12.82 13.40 9.59 11.62 11.62 15.00 17.42 2012 16.15 17.59 15.18 13.13 2014 15.81 16.03 16.03 15.76 15.12 2015 8.08...

  2. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 15.81 16.03 16.03 15.76 15.12 2015 7.50 7.80 8.08 7.90 7.16 6.51...

  3. Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 2,755 - No Data Reported; -- Not Applicable; NA Not...

  4. Kenai, AK Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 1,886 2,809 2,846 2,886 2,884 2015 2,748 2,754 2,753 2,753 2,755 2,755 - No...

  5. EIA-814, Monthly Imports Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AK 2829 OLEUM CA 3103 SKAG WAY AK 2506 OTAY MESA STATION CA 3181 ST PAUL AIRPORT AK 2828 PITTSBURG CA 3196 UPS, ANCHORAGE AK 2830 PORT COSTA CA 3107 VALDEZ AK 2713 PORT HUENEME CA...

  6. Obama Administration Announces Additional $13,969,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 41,700 AK Native Village of Minto 42,400 AK Native Village of Nanwalek (aka English Bay) 40,100 AK Native Village of Napaimute 34,500 AK Native Village of Napakiak ...

  7. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    SciTech Connect (OSTI)

    POLLIS, REBECCA

    2014-10-17

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  8. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2012-05-14

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  9. File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    GAS.pdf Jump to: navigation, search File File history File usage National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Size of...

  10. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  11. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  12. File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  13. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  14. Measurement of Fukushima Aerosol Debris in Sequim and Richland, WA and Ketchikan, AK

    SciTech Connect (OSTI)

    Miley, Harry S.; Bowyer, Ted W.; Engelmann, Mark D.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Keillor, Martin E.; Kiddy, Robert A.; Kirkham, Randy R.; Landen, Jonathan W.; Lepel, Elwood A.; Lidey, Lance S.; Litke, Kevin E.; Morris, Scott J.; Olsen, Khris B.; Thompson, Robert C.; Valenzuela, Blandina R.; Woods, Vincent T.; Biegalski, Steven R.

    2013-05-01

    Aerosol collections were initiated at several locations by PNNL shortly after the Great East Japan Earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.

  15. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-10-05

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  16. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  17. File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  18. File:EIA-AK-NPRA-ANWR-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  19. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  20. File:EIA-AK-NPRA-ANWR-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  1. File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  2. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-08-11

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William W. Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6569 william.aljoe@netl.doe.gov Teresa L. Nealon Principal Investigator University of Wyoming 1000 E. University Avenue P.O. Box 3011 Laramie, Wyoming 82071-3006 307-766-3029 tnealon@uwyo.edu PARTNERS None P R OJ E C T FAC T S Carbon Storage - Training Center Wyoming Carbon Capture and Sequestration Technology Institute; Workforce Training, Technology

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center Development and Implementation of the Midwest Geological Sequestration Consortium Sequestration Training and Education Program (STEP) Background Carbon capture utilization and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5534 bruce.brown@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions, such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico (GOM) and the offshore Arctic. Development in these areas poses unique technical and operational challenges, as well as distinct environmental and societal concerns. At present, of fshore domestic

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the energy consumed in the United States. Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally complex

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-ORD Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Office of Research and Development (ORD) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic frame- work of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P R O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov Bruce Brown Project Manager National EnergyTechnology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5534 bruce.brown@netl.doe.gov Kenneth Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org PARTNERS Advanced Resources International AGL Resources Alabama Oil & Gas Board Alawest Alpha Natural Resources American Coalition for Clean Coal Energy American Electric Power Amvest Gas

  16. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Kelly Rose Principal Investigator Research Physical Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Cynthia Powell Acting Focus Area Lead 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM ORISE Oregon State University Pacific Northwest National Laboratory Spatio-Temporal Tools & Geostatistical Approaches for Engineered-Natural Systems Risk Reduction

  17. File:08-AK-c - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    this file. Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from...

  18. US Fish and Wildlife Service biomonitoring operations manual, Appendices A--K

    SciTech Connect (OSTI)

    Gianotto, D.F.; Rope, R.C.; Mondecar, M.; Breckenridge, R.P.; Wiersma, G.B.; Staley, C.S.; Moser, R.S.; Sherwood, R.; Brown, K.W.

    1993-04-01

    Volume 2 contains Appendices and Summary Sheets for the following areas: A-Legislative Background and Key to Relevant Legislation, B- Biomonitoring Operations Workbook, C-Air Monitoring, D-Introduction to the Flora and Fauna for Biomonitoring, E-Decontamination Guidance Reference Field Methods, F-Documentation Guidance, Sample Handling, and Quality Assurance/Quality Control Standard Operating Procedures, G-Field Instrument Measurements Reference Field Methods, H-Ground Water Sampling Reference Field Methods, I-Sediment Sampling Reference Field Methods, J-Soil Sampling Reference Field Methods, K-Surface Water Reference Field Methods. Appendix B explains how to set up strategy to enter information on the ``disk workbook``. Appendix B is enhanced by DE97006389, an on-line workbook for users to be able to make revisions to their own biomonitoring data.

  19. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12.88 15.71 -- 15.74 7.49

  20. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.61 -- -- --

  1. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10.61

  2. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.49

  3. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -- -- -- -- 7.50 7.80 -- -- 7.16 -- -- --

  4. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.49

  5. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 7.50 7.80 7.16

  6. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  7. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  8. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    SciTech Connect (OSTI)

    McCoy, Renata; Xie, Shaocheng

    2013-12-26

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  9. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect (OSTI)

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at {approx}3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  10. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    SciTech Connect (OSTI)

    Poludniowski, Gavin G.; Evans, Philip M.

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties. Conclusions: If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths ({lambda} < 1.0 {mu}m) and grain radii (a > 0.5 {mu}m), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.

  11. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:06 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  12. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:07 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  13. 2014 Utility Bundled Retail Sales- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 96 132,889 12,514.0 9.42 Chugach Electric Assn Inc AK Cooperative 7 57,198 6,718.0 11.75 City & Borough of Sitka - (AK) AK Municipal 21 21,003 785.0 3.74 City of Seward - (AK) AK Municipal 125 31,961 5,927.0 18.54 City of Unalaska - (AK) AK Municipal

  14. Superfund record of decision (EPA region 10): Eielson Air Force Base, Fairbanks-North Star Borough, AK, September 30, 1996

    SciTech Connect (OSTI)

    1997-10-01

    The decision document presents the final remedial action selected for Eielson Air Force Base (AFB), Alaska. The sitewide investigation at Eielson AFB evaluated basewide contamination that is not confined or attributable to specific source areas identified and addressed in the FFA as well as cumulative risks to human health and the environment posed by contamination on a sitewide basis. Garrison Slough is the only one that poses an unacceptable risk to human health and the environment. Polychlorinated biphenyls (PCBs) were found in the fish tissue and sediments of Garrison Slough. Soils in a trench adjacent to Garrison Slough were contaminated with PCBs and appear to be the source of contamination to slough sediments via surface water runoff. The major components of the selected remedy include: Fishing restrictions in Garrison Slough; Fish control device near the downstream edge of Eielson AFB; Excavation of contaminated soils and sediments with concentrations greater than 10 mg/kg PCBs; Onsite disposal of material with PCB concentrations less than 50 mg/kg; Offsite disposal or treatment of materials with PCB concentrations greater than 50 mg/kg in accordance with the Toxic Substances Control Act (TSCA), 40 CFR part 761; and Environmental monitoring of soils, sediments, surface water, fish, and groundwater.

  15. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,"AK",599,"Anchorage Municipal Light and

  16. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,"AK",219,"Alaska Power and Telephone

  17. Category:EIA Map Files | Open Energy Information

    Open Energy Info (EERE)

    The following 113 files are in this category, out of 113 total. EIA-AK-CookInlet-BOE.pdf EIA-AK-CookInlet-BOE.pdf 10.19 MB EIA-AK-CookInlet-Gas.pdf EIA-AK-CookInlet-Gas.pdf...

  18. 1950s | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Photo 1950: IBM Punch Cards 1950: Maintenance of Kodak Film Processor 1950: Atoms for Peace Program Material 1950: Troops Train 1950: Manager 1951-1955 Armen Gregory Abdian 1950: ...

  19. Radiochemical technique for intensification of underexposed autoradiographs

    SciTech Connect (OSTI)

    Owunwanne, A.

    1984-04-01

    A radiochemical technique has been used to recover images of underexposed and developed autoradiographs. The underexposed image was radioactivated in a solution of (/sup 35/S)thiourea, air-dried, and reexposed to Kodak NMC film which was developed and processed in a Kodak X-Omat processor. Features which were not discernible in the underexposed autoradiographs were well distinguished in the intensified autoradiograph.

  20. Spectral and spatial characteristics of x-ray film detectors in the wavelength range 20--150 {angstrom}

    SciTech Connect (OSTI)

    Fedin, D.A.; Fedorchuk, R.V.; Koshevoi, M.O.; Lukjantsev, I.V.; Rupasov, A.A.; Shikanov, A.S.; Gullikson, E.

    1995-12-31

    Investigations of spectral sensitivity, contrast coefficient, and spatial resolution of widely used x-ray films have been undertaken at the P.N. Lebedev Institute. A description of experimental methodologies and results are presented. These studies were carried out using synchrotron radiation in the range of 20--150 {angstrom}. Spectral sensitivity and contrast coefficient dependencies on wavelength for Kodak 10106, DEF, RAR2490, and TPF films and spatial resolution for Kodak 10106 and RAR2490 films are presented and discussed.

  1. Environmentally Safe, Large Volume Utilization Applications for Gasification Byproducts

    SciTech Connect (OSTI)

    J.G. Groppo; R. Rathbone

    2008-06-30

    Samples of gasification by-products produced at Polk Station and Eastman Chemical were obtained and characterized. Bulk samples were prepared for utilization studies by screening at the appropriate size fractions where char and vitreous frit distinctly partitioned. Vitreous frit was concentrated in the +20 mesh fraction while char predominated in the -20+100 mesh fraction. The vitreous frit component derived from each gasifier slag source was evaluated for use as a pozzolan and as aggregate. Pozzolan testing required grinding the frit to very fine sizes which required a minimum of 60 kwhr/ton. Grinding studies showed that the energy requirement for grinding the Polk slag were slightly higher than for the Eastman slag. Fine-ground slag from both gasifiers showed pozzoalnic activity in mortar cube testing and met the ASTM C618 strength requirements after only 3 days. Pozzolanic activity was further examined using British Standard 196-5, and results suggest that the Polk slag was more reactive than the Eastman slag. Neither aggregate showed significant potential for undergoing alkali-silica reactions when used as concrete aggregate with ASTM test method 1260. Testing was conducted to evaluate the use of the frit product as a component of cement kiln feed. The clinker produced was comprised primarily of the desirable components Ca{sub 3}SiO{sub 5} and Ca{sub 2}SiO{sub 4} after raw ingredient proportions were adjusted to reduce the amount of free lime present in the clinker. A mobile processing plant was designed to produce 100 tons of carbon from the Eastman slag to conduct evaluations for use as recycle fuel. The processing plant was mounted on a trailer and hauled to the site for use. Two product stockpiles were generated; the frit stockpile contained 5% LOI while the carbon stockpile contained 62% LOI. The products were used to conduct recycle fuel tests. A processing plant was designed to separate the slag produced at Eastman into 3 usable products. The coarse frit has been shown to be suitable for use as clinker feed for producing Portland cement. The intermediate-size product is enriched in carbon (58-62% C) and may be used as recycle fuel either in the gasifier or in a PC boiler. The fines product contains 30-40% C and may also be used as a recycle gasifier fuel, as is presently done at TECO's Polk Station, however, due to gasifier operating requirements for the production of syngas, this is not feasible at Eastman.

  2. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  3. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  4. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  5. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  6. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No .* stfl)et. county, Slolo ond ZIP Codo) AK RIDGE ASSOCIATED UNIVERSITIES, o P o INC. .0. BOX 117 AK RIDGE TN 37830-6218 CODE...

  7. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., streltt, county, Statlt and ZIP Codo) AK RIDGE ASSOCIATED UNIVERSITIES, .0. BOX 117 o P o AK RIDGE TN 37830-6218 INC. 11....

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Next Release Date:","1302015" ,"Excel File Name:","n9020ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9020ak2m.htm" ,"Source:","Energy Information...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Next Release Date:","1302015" ,"Excel File Name:","n9012ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9012ak2m.htm" ,"Source:","Energy Information...

  10. CORAL Fact Sheet__FINAL AS ISSUED_UPDATED

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact S heet: Collaboration o f O ak R idge, A rgonne, a nd L ivermore ( CORAL) The C ollaboration o f O ak R idge, A rgonne, a nd L ivermore ( CORAL) i s a j oint p rocurement ...

  11. EA-1743: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Air Products And Chemicals, Inc. Waste Energy Project at the AK Steel Corporation Middletown Works, Middletown, Ohio

  12. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2011-02-07

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  13. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  14. Operations start and shipments begin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations start and shipments begin Y-12's formal operational start date of record is January 27, 1944. George Robinson, in The Oak Ridge Story, tells us that on that date, "a select group of Manhattan [Engineer] District personnel and officials of Stone and Webster and the Tennessee Eastman Corporation...witnessed the epochal first 'run' of uranium 235 on a mass basis by the electromagnetic method." Even this first successful production run had its share of frustrating problems.

  15. Most Viewed Documents for Materials: December 2014 | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Most Viewed Documents for Materials: December 2014 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 186 Heat Treatment Procedure Qualification -- Final Technical Report Robert C. Voigt (2004) 130 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 103 The influence of grain size on the mechanical properties ofsteel Morris Jr., J.W. (2001) 99 Damage identification and health

  16. Most Viewed Documents for Materials: September 2014 | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information for Materials: September 2014 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 176 The influence of grain size on the mechanical properties ofsteel Morris Jr., J.W. (2001) 141 Heat Treatment Procedure Qualification -- Final Technical Report Robert C. Voigt (2004) 119 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 91 Damage identification and health monitoring of structural and

  17. Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-27

    The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

  18. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.

  19. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.

  20. Collegiate Wind Competition Judges 2014 | Department of Energy

    Office of Environmental Management (EM)

    Judges 2014 Collegiate Wind Competition Judges 2014 The following is a list of the participating judges in the U.S. Department of Energy Collegiate Wind Competition 2014. Engineering Design Review Ben Polito, President and Co-Founder of Pika Energy Charles Newcomb, Director of Technical Strategy at Endurance Wind Power Trudy Forsyth, Managing Director of Wind Advisors Team Business Plan Justin Kaster, Co-Founder and Executive Director of Cleantech Open, Midwest Division Bruce Eastman, Chief

  1. SASproperty8_3_09

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04/09 Property List for RO Code '13' 1 BARCODE DESCRIPTION MANUF. MODEL COST 0000016386 COMPUTER PERSONAL E4 GATEWAY E4100 P4/2.4 $1,078.38 0000031152 LaCie 2TB Gigabit Et LACIE 300961 $999.00 S7237 KODAK PHOTO CD PLAYE KODAK N/A $449.00 0000017846 PRESS BRIDGE VIDEO/A OPAMP LABS VA-8 $1,195.00 0000021344 COMPUTER GATEWAY E-4 GATEWAY E-4500 D $735.00 0000015660 COMPUTER PERSONAL E- GATEWAY E-4000 P4/1.8 $950.00 0000021059 MACKIE AUDIO MIXER ( MACKIE 1402VLZ PRO $399.00 0000030017 CAMCORDER

  2. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect (OSTI)

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  3. New mammography screen/film combinations: Imaging characteristics and radiation dose

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Zheutlin, J.; Gornbein, J.A. )

    1990-04-01

    Five types of film (Kodak OM, Kodak OM-SO177, Konica CM, Dupont Microvision, and Fuji MiMa) exposed in combination with seven different intensifying screens (Min R, Min R Medium, Siemens Orthox MA, Kyokka HR Mammo Fine, Agfa Gevaert Detail S (old and new), and Konica Monarch) were processed for either 90 sec (at 33.3{degrees}C) or 3 min (at 35.0 degrees C). The films imaged a Computerized Imaging Reference System phantom with additional detail test objects placed on its surface to produce four groups of objects with which to evaluate resolution and contrast. For objects that tested resolution, the Kyokka HR Mammo Fine (Fuji) screen was statistically significantly superior; for objects that tested contrast, the Konica Monarch screen was statistically significantly superior. Extended processing did not affect Dupont and Kodak OM film as much as it affected the other films. It did affect contrast for the other films tested. The mean glandular doses from gridless exposures ranged from 32 to 80 mrad (0.32-0.80 mGy) over all film/screen/processing combinations for a 4.5-cm-thick test object. Several new film/screen combinations can provide images superior to the Kodak Min R/OM combination at a reduced radiation dose. The Kyokka HR Mammo Fine (Fuji) screen was found statistically superior in radiographic resolution of mammographic test objects and the Konica Monarch screen was found to be superior in defining contrast.

  4. Aleutian Pribilof Islands Weatherization Project

    Office of Environmental Management (EM)

    Aleutian Pribilof islands Weatherization project Presented by: ken Selby, Community services director Annotated by: Moses Tcheripanoff, MEDIA COORIDNATOR "Birthplace of the winds" Project overview  Weatherization  Energy conservation education  Home energy & safety review on-site review Native Village of Atka, AK Native Village of Nikolski, AK Native Village of Sand Point, AK Focus Communities Unanagx (Aleut) Communities ^ Tribal & community descriptions Bering Sea

  5. Energy Efficiency and Conservation Block Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-NANWALEK (AKA ENGLISH BAY) Location: Tribe AK-TRIBE- NANWALEK (AKA ENGLISH BAY) AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Nanwalek IRA Council proposes to explore the feasibility of wind generation capacity specifically for the purpose of determining if wind generation is a viable

  6. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Petersburg Place: Alaska Phone Number: (907) 772-4203 Website: www.ci.petersburg.ak.usindex. Facebook: https:www.facebook.competersburgalaska Outage...

  7. Microsoft PowerPoint - EM SSAB Chairs Webinar - (2) Huizenga...

    Office of Environmental Management (EM)

    cleanup milestones. Click to edit Master title style Sites Remaining in 2012 AK HI EM Historical Cleanup Sites Completed cleanup on 90 of 107 former nuclear weapons and...

  8. Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

    SciTech Connect (OSTI)

    Rowland,Joel; Gangodagamage,Chandana; Wilson,Cathy

    2013-12-08

    The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

  9. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson ., Steingrmsson B., Sigmundsson F., Axelsson G., rmannsson H.,...

  10. Final Technical Report to DOE for the Award DE-SC0004601 (Technical...

    Office of Scientific and Technical Information (OSTI)

    grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is...

  11. baepgac_ccdd | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Clean Coal Diesel Demonstration Project - Project Brief PDF-57KB (Withdrawn) Arthur D. Little, Inc., Fairbanks, AK PROGRAM PUBLICATIONS Final Reports Not available CCT Reports: ...

  12. baepgac-healy | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Healy Clean Coal Project - Project Brief PDF-226KB Alaska Industrial Development and Export Authority, Healy, AK PROGRAM PUBLICATIONS Final Reports Healy Clean Coal Project, ...

  13. Yakutat Power Inc | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 30150 Utility Location Yes Ownership P NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission...

  14. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE0025387 PRA Multiple sites in AK Environmental Resources Management Alaska Inc. (ERM); Loundsbury & Associates, Inc.; Peak Oilfield Services Company, LLC; Maritime Helicopters...

  15. Port Clarence, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clarence, Alaska: Energy Resources (Redirected from Port Clarence, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 65.2622222, -166.8458333 Show Map Loading...

  16. MHK Projects/Port Clarence | Open Energy Information

    Open Energy Info (EERE)

    arker.png","group":"","inlineLabel":"","visitedicon":"" Project Profile Project City Port Clarence, AK Project StateProvince Alaska Project Country United States Coordinates...

  17. 2014 Utility Bundled Retail Sales- Residential

    Gasoline and Diesel Fuel Update (EIA)

    Residential (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 14,115 141,151 16,728.0 11.85 Alaska Power and Telephone Co AK Investor Owned 5,328 24,116 7,301.0 30.27 Alaska Village Elec Coop, Inc AK Cooperative 7,869 35,665 21,188.0 59.41 Anchorage Municipal Light and Power AK Municipal 24,429 133,411 21,435.0

  18. Kotzebue Wind Project I | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.836485,...

  19. Unalakleet | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Unalakleet Valley Electric Cooperative Developer STG Inc. Energy Purchaser Unalakleet Location Unalakleet AK Coordinates 63.875773, -160.78527 Show...

  20. Hooper Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates...

  1. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315,...

  2. Kotzebue Wind Project Phase I | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.83907,...

  3. Selawik Wind Project | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Electric Coop Location Selawik AK Coordinates 66.608132,...

  4. EA-1743: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste Energy Project at the AK Steel Corporation Middletown Works, Middletown, Ohio Based on the analyses in the environmental assessment, DOE determined that its proposed action -...

  5. Quinhagak | Open Energy Information

    Open Energy Info (EERE)

    Facility Quinhagak Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Quinhagak Energy Purchaser Quinhagak Location Quinhagek AK Coordinates...

  6. Maps of Selected State Subdivisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  7. Generating Unit Retirements in the United States by State, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    www.eia.govcneafelectricitypageeia860.html." "Source: U.S. Energy Information ... of Retirement" "AK","Anchorage",599,"Anchorage Municipal Light and ...

  8. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 27, 2007 Data Announcements, Facility News Data from the NOAA Climate Reference Network for Barrow, AK, and Stillwater, OK, are Available Through the External Data Center...

  10. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to projects that the private sector may not finance * Good AK Agencies to Know and Follow - AEA, AHFC, Rural Development, HUD, EPA, DOI, DOE Private Money * Requires good ...

  11. Sherrod Elementary Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Sherrod Elementary Wind Project Facility Sherrod Elementary Sector Wind energy Facility Type Community Wind Location AK Coordinates 61.648163,...

  12. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOHT") demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and is operating at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOWM Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOITM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfdly piloted at a 10 tons-per- day (TPD) rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  13. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Environmental monitoring report No. 1, 1 April 1997--31 June 1997

    SciTech Connect (OSTI)

    1998-02-13

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol was designed, constructed, and has begun operation at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to {open_quotes}demonstrate the production of methanol using the LPMEOH{trademark} Processing conjunction with an integrated coal gasification facility.{close_quotes} The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOH{trademark} process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  14. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-12-31

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million effort being conducted under a cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day (TPD)) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and began a four-year operational period in April of 1997 at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOH?M Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOJYM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfidly piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This Demonstration Project is the culmination of that extensive cooperative development effort.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Cloud Data to Evaluate the Effect of a Land Surface on Clouds Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Zeng, X., W.-K. Tao, M. Zhang, C. Peters-Lidard, S. Lang, J. Simpson, S. Kumar, S. Xie, J. L. Eastman, C.-L. Shie, and J. V. Geiger, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci. (in press).

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2013" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, NE" "Carmeuse Lime Stone Inc","AL, IN, KY, MI, OH, PA, TN, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical

  17. June 2014 Most Viewed Documents for Materials | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information June 2014 Most Viewed Documents for Materials Science Subject Feed Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 181 /> Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. (1996) 162 /> Fatigue design curves for 6061-T6 aluminum Yahr, G.T.

  18. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect (OSTI)

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  19. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    1996-03-31

    The Liquid Phase Methanol (LPMEOEP") Demonstration Project at K.ingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L, P. (the Partnership). The LPMEOHY Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. On 4 October 1994, Air Products and Chemicals, Inc. (Air Products) and signed the agreements that would form the Partnership, secure the demonstration site, and provide the financial commitment and overall project management for the project. These partnership agreements became effective on 15 March 1995, when DOE authorized the commencement of Budget Period No. 2 (Mod. AO08 to the Cooperative Agreement). The Partnership has subcontracted with Air Products to provide the overall management of the project, and to act as the primary interface with DOE. As subcontractor to the Partnership, Air Products will also provide the engineering design, procurement, construction, and commissioning of the LPMEOHTM Process Demonstration Unit, and will provide the technical and engineering supervision needed to conduct the operational testing program required as part of the project. As subcontractor to Air Products, Eastman will be responsible for operation of the LPMEOHTM Process Demonstration Unit, and for the interconnection and supply of synthesis gas, utilities, product storage, and other needed sewices. The project involves the construction of an 80,000 gallons per day (260 tons-per-day (TPD)) methanol unit utilizing coal-derived synthesis gas fi-om Eastman's integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOHTM process is ideally suited for directly processing gases produced by modern day coal gasifiers. Originally tested at a small 3,200 gallons per day, DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates.

  20. A survey of films for use as dosimeters in interventional radiology

    SciTech Connect (OSTI)

    Fajardo, L.C.; Geise, R.A.; Ritenour, E.R.

    1995-04-01

    Analysis of radiation doses in interventional radiological procedures that can lead to deterministic radiation effects such as erythema and epilation would assist physicians in planning patient care after exposure and in reducing doses. Photographic films used to measure skin exposure in the past are too sensitive for the high doses involved in interventional procedures. Seventeen different types of films, many of which are generally available in hospitals, were surveyed to see if any would meet the demands of interventional radiology. Sensitometric curves obtained demonstrate that most films are inappropriate for high dose procedures. Using Kodak Fine Grain Positive and Deupont duplicating films and automatic processing, doses as high as 2.8 Gy could be measured with reasonable accuracy. Similar results can be obtained by manually processing Kodak XV-2 verification film at room temperature.

  1. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect (OSTI)

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  2. Dose comparisons for mammographic systems

    SciTech Connect (OSTI)

    Speiser, R.C.; Zanrosso, E.M.; Jeromin, L.S.; Carlson, R.A.

    1986-09-01

    Dose estimates were made for Kodak Min-R screens combined with Kodak Min-R film and Kodak Ortho M film, both with and without a 5:1 Bucky grid; for standard xeroradiographic techniques in negative development mode; and for the new, higher sensitivity xeroradiographic process of the Xerox 175 System. The estimates were derived from exposure versus depth measurements in phantoms made of BR12 breast simulation material using thermoluminescent detectors. A molybdenum target source with molybdenum filtration, at a half-value layer of 0.37-mm Al, was used for the screen-film measurements. All xeroradiographic measurements were made with a tungsten target source with aluminum filtration at half-value layers of 1.5 to 1.56 mm Al. Mean glandular dose estimates for the Min-R screen/Ortho M film combination with Bucky grid and for the new xeroradiographic process were found to be similar. Dose reduction with the new xeroradiographic system was achieved through a more sensitive photoreceptor and more sensitive development, which also improved the unique imaging characteristics of xeroradiography.

  3. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 5, July 1--September 30, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small, DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates.

  4. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1996-12-31

    The Liquid Phase Methanol (LPMEOH(TM)) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOIWM Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. During this quarter, the Cooperative Agreement was modified (Mod AO11) on 8 October 1996, authorizing the transition born Budget Period No. 2 (Design and Construction) to the . final Budget Period (Commissioning, Start-up, and Operation), A draft Topical Report on Process Economics Studies concludes that methanol coproduction with integrated gasification combined cycle (IGCC) electric power utilizing the LPMEOW process technology, will be competitive in serving local market needs. Planning for a proof-of- concept test run of the liquid phase dimethyl ether (DME) process at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended; and a deeision to proceed is pending. Construction (Task 2.2) is 97'Mo complete, asof31 December 1996. Completion of pipe pressure testing has taken longer than expected. This will delay completion of construction by about three weeks. Commissioning activities (Task 2.3) commenced in mid-October of 1996, and the demonstration unit is scheduled to be mechanically complete on 24 January 1997.

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  6. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    1998,1,4908,24636,4694,29431,1351,11643,1370,5978,12322,71688 213,"Alaska Electric Light&Power Co","AK",1998,1,1430,14868,354,3934,363,4986,459,6435,2606,30223 599,"Anchorage Mun Light and Power","AK",1998,1,1536,16776,4633,63484,0,0,103,993,6272,81253 3522,"Chugach Electric Assn, Inc.","AK",1998,1,5237,53636,3662,48363,171,2657,110,629,9180,105285 7353,"Golden Valley Elec Assn,

  7. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    1999,1,4729,25371,0,4618,29806,0,913,7221,0,1824,11369,0,12085,73767,0 213,"Alaska Electric Light&Power Co","AK",1999,1,1411,14636,12510,368,4119,1341,373,5065,89,476,7118,612,2628,30938,14552 599,"Anchorage Mun Light and Power","AK",1999,1,1610,17629,23679,4741,65419,5851,0,0,0,136,1748,4568,6487,84796,34098 3522,"Chugach Electric Assn, Inc.","AK",1999,1,5353,56990,60245,3682,50340,7974,163,2670,5,110,613,65,9308,110613,68289

  8. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    0,1,4986,26783,0,4707,29902,0,958,7412,0,1960,10345,0,12611,74441,0 213,"Alaska Electric Light&Power Co","AK",2000,1,1468,14187,12609,381,3936,1364,412,5175,92,509,6674,615,2770,29972,14680 599,"Anchorage Mun Light and Power","AK",2000,1,1610,17633,23679,4741,65419,5851,0,0,0,136,1748,4568,6487,84800,34098 3522,"Chugach Electric Assn, Inc.","AK",2000,1,5460,58441,61584,3811,51830,7890,166,2766,5,111,614,65,9548,113651,69544

  9. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    1,1,3872,20501,0,4067,24989,0,587,5188,0,1451,7424,0,9977,58102,0 213,"Alaska Electric Light&Power Co","AK",2001,1,1343,13592,12754,359,4018,1384,377,5010,95,483,6693,626,2562,29313,14859 219,"Alaska Power Co","AK",2001,1,441,2012,3909,642,2982,1759,,,,,,,1083,4994,5668 409,"Arctic Utilities Inc","AK",2001,1,,,,407,2137,61,,,,,,,407,2137,61 599,"Anchorage Mun Light and

  10. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,4183,21492,0,6036,38233,0,1146,8802,0,,,0,10431,58060,0 213,"Alaska Electric Light&Power Co","AK",2003,1,1408,14357,13016,365,4171,1405,375,5071,100,508,7402,682,2656,31001,15203 219,"Alaska Power Co","AK",2003,1,452,2128,4196,611,2953,1817,,,,,,,1063,5081,6013 599,"Anchorage Municipal Light and Power","AK",2003,1,1558,16145,23605,5325,71887,6016,,,,124,1409,4231,7007,89441,33852 653,"Andreanof Electric

  11. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,4240,21827,0,5616,29915,0,1043,8086,0,,,0,10899,59829,0 213,"Alaska Electric Light&Power Co","AK",2004,1,1430,14545,13190,871,11049,2088,353,4695,99,0,0,0,2654,30289,15377 219,"Alaska Power Co","AK",2004,1,492,2303,4247,668,3178,1851,,,,,,,1160,5481,6098 599,"Anchorage Municipal Light and Power","AK",2004,1,1963,17813,23688,6711,75668,6016,,,,,,,8674,93481,29704 653,"Andreanof Electric

  12. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,4653,21856,0,6387,31677,0,1073,7335,0,,,0,12114,60868,0 213,"Alaska Electric Light&Power Co","AK",2005,1,1491,15162,13275,907,11316,2101,353,4718,101,0,0,0,2751,31196,15477 219,"Alaska Power Co","AK",2005,1,544,2296,4318,692,3114,1877,,,,,,,1236,5410,6195 599,"Anchorage Municipal Light and Power","AK",2005,1,1689,15882,23821,6247,74328,6071,,,,,,,7936,90210,29892 1651,"Bethel Utilities

  13. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    8","AK",2008,1,6112.196,24724.315,30698,8059.794,31723.456,10510,1548.989,7613.387,535,0,0,0,15720.979,64061.158,41743 213,"Alaska Electric Light&Power Co","AK",2008,1,2015.937,14801.591,13678,1251.812,10568.181,2133,586.169,5267.906,104,0,0,0,3853.918,30637.678,15915 219,"Alaska Power Co","AK",2008,1,671,2365,4469,920,3569,2025,0,0,0,0,0,0,1591,5934,6494 599,"Anchorage Municipal Light and

  14. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    9","AK",2009,1,6541.05,26261.245,30585,8314.598,32767.826,10631,1391.23,7394.973,534,0,0,0,16246.878,66424.044,41750 213,"Alaska Electric Light&Power Co","AK",2009,1,3587,16219,13713,2198,10943,2143,1053,5362,91,0,0,0,6838,32524,15947 219,"Alaska Power Co","AK",2009,1,676.033,2544.992,4478,879.743,3565.976,2065,0,0,0,0,0,0,1555.776,6110.968,6543 599,"Anchorage Municipal Light and

  15. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    SciTech Connect (OSTI)

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per day, which represented a significant improvement over the 3.4Yi per day decline measured during the initial six weeks of operation in April and May of 1997. The deactivation rate also improved from the longer-term rate of 1.6% per day calculated throughout the summer and autumn of 1997.

  16. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    SciTech Connect (OSTI)

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project. Overall plant availability (defined as the percentage of time that the LPMEOH{trademark} demonstration unit was able to operate, with the exclusion of scheduled outages) was 97.5%, and the longest operating run without interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced; Eastman accepted all of the available methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic acid.

  17. City of Unalaska, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Unalaska Place: Alaska Phone Number: (907) 581-1260 Website: www.ci.unalaska.ak.uspublicut Facebook: https:www.facebook.comUnalaska.DutchHarbor Outage...

  18. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Name: Galena Electric Utility Place: Alaska Phone Number: (907) 656-1301 Website: www.ci.galena.ak.usindex.asp? Outage Hotline: (907) 656-1503 AFTER HOURS References: EIA Form...

  19. CX-100519 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Koyukuk City and Tribal Office Rehabilitation Award Number: DE-EE0006482 CX(s) Applied: A9, B5.1 Weatherization & Intergovernmental Programs Date: 01/08/2016 Location(s): AK Office(s): Golden Field Office

  20. ARM - Datastreams - twrcam3m

    Office of Scientific and Technical Information (OSTI)

    Atqasuk AK retired ARM Mobile Facility FKB M1 Browse Data Browse Plots Black Forest, Germany retired GRW M1 Browse Data Browse Plots Graciosa Island, Azores, Portugal retired NIM...

  1. Carlsbad Field Office P O. Box 3090 Carlsbad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two one Recommendations were was offered to CCP management in the areas of Personnel Training & Qualification and Acceptable Knowledge (AK). 2.0 SCOPE AND PURPOSE 2.1 Scope...

  2. CX-008566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AK CX(s) Applied: B5.19 Date: 06/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  3. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., stroot, county, Stato and ZIP Codo) (x) 9A. AMENDMENT OF SOLICITATION NO. r-- o AK RIDGE ASSOCIATED UNIVERSITIES, INC....

  4. CX-100115 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Association of Village Council Presidents Award Number: DE-EE0006759 CX(s) Applied: A9, A11 Date: 11/13/2014 Location(s): AK Office(s): Golden Field Office

  5. CX-100263 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Akutan Geothermal Project Award Number: DE-EE0000329 CX(s) Applied: A9, B3.1 Geothermal Technologies Office Date: 06/04/2015 Location(s): AK Office(s): Golden Field Office

  6. Procurement Directors DATE: TO:

    Broader source: Energy.gov (indexed) [DOE]

    Sequence 211 cause of commercial purchase orders. Government procurement. DoD, GSA, and NASA published a RIN 9000-AK46 proposed rule in the Federal Register at March l5, 2007 71 FR...

  7. 2014 Utility Bundled Retail Sales- Commercial

    Gasoline and Diesel Fuel Update (EIA)

    Commercial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 2,253 125,452 12,449.0 9.92 Alaska Power and Telephone Co AK Investor Owned 2,302 38,952 10,341.0 26.55 Alaska Village Elec Coop, Inc AK Cooperative 2,960 62,209 32,334.0 51.98 Anchorage Municipal Light and Power AK Municipal 6,362 879,373 113,515.6 12.91

  8. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  9. Observation of Temperature-Induced Crossover to an Orbital-Selective...

    Office of Scientific and Technical Information (OSTI)

    Temperature-Induced Crossover to an Orbital-Selective Mott Phase in AxFe2-ySe2 (AK, Rb) Superconductors Citation Details In-Document Search Title: Observation of Temperature-Induc...

  10. ARM - VAP Product - radflux1long

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, Atqasuk AK Southern Great Plains SGP C1 Browse Data Central Facility, Lamont, OK SGP E1 Browse Data Larned, KS (Extended) SGP E2 Browse Data Hillsboro, KS (Extended) SGP...

  11. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Service (NWS) atmospheric soundings for sites within the SGP area (Norman, OK, Topeka, KS, and Dodge City, KS), the NSA (Barrow, AK), and historical data for the TWP...

  12. CX-100570 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    RACEE Phase Two Technical Assistance Delivery Award Number: DE-EE0007352 CX(s) Applied: A9, A11 Office of Strategic Programs Date: 03/24/2016 Location(s): AK Office(s): Golden Field Office

  13. CX-100509 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kongiganak Wind Turbine Replacement & System Upgrades Award Number: DE-EE0006481 CX(s) Applied: A9, B1.31 Wind Power Date: 05/14/2014 Location(s): AK Office(s): Golden Field Office

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million ... WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Water Heating",,,,,"CO",,,"AZ","NM, NV",,"CA" ...

  15. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,4510,27326,4382,33333,938,7507,1096,8210,10926,76377 213,"Alaska Electric Light&Power Co","AK",93,1,1414,17003,300,3870,257,4005,406,6718,2377,31596 599,"Anchorage City of","AK",93,1,1565,16933,4680,61826,0,0,103,1013,6348,79772 3522,"Chugach Electric Assn Inc","AK",93,1,4584,51522,2820,41415,152,2720,79,749,7635,96406 6129,"Fairbanks City of","AK",93,1,265,2828,985,9745,0,0,107,1143,1357,13716

  16. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,3942,21413,4558,28817,739,5855,1176,7577,10414,63662 213,"Alaska Electric Light&Power Co","AK",94,1,1254,14352,302,3707,280,4089,404,6010,2240,28158 599,"Anchorage City of","AK",94,1,1396,15234,4303,56805,0,0,128,2069,5827,74108 3522,"Chugach Electric Assn Inc","AK",94,1,4520,47430,3152,42695,198,3504,129,867,7999,94496 6129,"Fairbanks City of","AK",94,1,326,3601,1139,11896,0,0,109,1201,1574,16698

  17. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,4233,22738,4568,28565,876,8305,1275,6350,10952,65958 213,"Alaska Electric Light&Power Co","AK",95,1,1334,15309,317,3885,306,4454,430,6735,2387,30383 599,"Anchorage City of","AK",95,1,1536,16097,4662,58853,0,0,132,1783,6330,76733 3522,"Chugach Electric Assn Inc","AK",95,1,4772,49632,3411,45661,178,3099,116,644,8477,99036 6129,"Fairbanks City of","AK",95,1,305,3169,1034,10808,0,0,111,1165,1450,15142

  18. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,4776,24339,4871,29393,1032,7712,1328,8823,12008,70266 213,"Alaska Electric Light&Power Co","AK",96,1,1402,15500,331,3855,340,4756,441,6343,2514,30454 599,"Anchorage City of","AK",96,1,1463,15345,4538,58554,0,0,156,1953,6157,75852 3522,"Chugach Electric Assn Inc","AK",96,1,4888,51647,3255,44649,161,2797,109,529,8413,99622 6129,"Fairbanks City of","AK",96,1,392,3320,1096,10817,0,0,110,1224,1598,15361

  19. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,5265,25179,5077,29785,1838,11039,1588,6254,13768,72257 213,"Alaska Electric Light&Power Co","AK",97,1,1625,16295,370,3966,397,5096,465,5663,2857,31020 599,"Anchorage City of","AK",97,1,1599,16701,4811,62516,0,0,121,1128,6531,80345 3522,"Chugach Electric Assn Inc","AK",97,1,5136,54305,3508,47624,167,2843,110,630,8921,105402 6129,"Fairbanks City of","AK",97,1,355,3792,1145,11330,0,0,123,1309,1623,16431

  20. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Stream Jump to: navigation, search Name: Tidal Stream Address: 76 Dukes Ave Place: London Zip: W4 2 AK Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 01926...

  1. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  2. Top 100 Oil and Gas Fields of 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Barrels of 42 U.S. Gallons) 200 9 2009 Est. Non 2009 Proved Production Producing Discov er 2008 Rank Field Name Location Reserves Volume Reserves Y ear Rank 1 PRUDHOE BAY AK 95.9 ...

  3. Biomimetic model for [FeFe]-hydrogenase: Asymmetrically disubstituted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic model for FeFe-hydrogenase: Asymmetrically disubstituted diiron complex with a redox-active 2,2'-bipyridyl ligand Authors: Roy, S., Groy, T., Jones, A.K. Title:...

  4. SEAGA Intermediate Level Handbook | Open Energy Information

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.fao.orgdocrep012ak213eak213e00.pdf Cost: Free Related Tools Energy and Power Evaluation Program (ENPEP) Global Relationship...

  5. 01240_NStransportation | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 6/3/2014 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background

  6. 2015 RENEWABLE ENERGY PROJECT DEVELOPMENT AND FINANCE WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dillingham, AK March 25-27 University of AK Bristol Bay Campus Room 128/130 Learning Objectives 1) Understand the process for and potential pitfalls of developing and financing community and facility scale renewable energy projects 2) Determine how the development of a renewable energy project could further a Tribe's goals 3) Learn from the experience of other tribal efforts in renewable energy development. Anticipated Results: Attendees will be comfortable discussing renewable energy project

  7. Alaska Housing Finance Corporation Energy Efficiency Programs and Resources Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Finance Corporation Energy Efficiency Programs and Resources Overview Established 1992 Promote construction of energy- efficient buildings IECC 2012 ASHRAE 62.2 AK Amendments BEES Building Energy Efficiency Standard 3 HERS Home Energy Rating System AkWarm Energy Modeling Software ARIS Alaska Retrofit Information System AHFC's ARIS database has become the clearinghouse for information on Alaska buildings More than 75,000 unique records Information from the database may be used

  8. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    042007 Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for SR-Rl- BClDP.001 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for Battelle Columbus laboratory (BCl) waste stream SR-Rl-BClDP.001. In accordance with the Waste

  9. Project_Descriptions_ITP_ARRA_Awards.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selections for Industrial Technologies Program Recovery Act Funding Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment Award Winners City and State Project Description Total DOE Funding Air Products and Chemicals, Inc. Middletown, OH Waste Energy Project at the AK Steel Corporation Middletown Works. The project will construct a combined cycle power generation plant at the Middletown, OH, works of AK

  10. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 April 16, 2010 New Mexico Environment Department 2905 East Rodeo Park Drive Building 1 Santa Fe, New Mexico 87505-6303 Subject: Request for Evaluation of an AK Sufficiency Determination for SR- BClDP.003 Dear Mr. Bearzi : We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for Battelle Columbus laboratory

  11. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PO Box 3090 Ca rl sbad , New Mexico 88221 MAY 20 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg . 1 Santa Fe , New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001 .002 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site (SRS) waste stream

  12. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POBox 3090 Ca rl sbad , New Mexico 88221 JU 16 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg . 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.002 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site (SRS) waste stream

  13. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 JUN 16 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.002 Dear Mr. Bearzi : We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site

  14. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico ~8221 JUN"1 G 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.003 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at

  15. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmen t of Energy Carlsbad Field Office . P. O. Box 3090 Carlsbad , New Mexico 8822 1 AY 2 () 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001.001 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP)

  16. Microsoft Word - Air Products Final EA Word 2010-07-13.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    43 FINAL ENVIRONMENTAL ASSESSMENT FOR THE AIR PRODUCTS AND CHEMICALS, INC. WASTE ENERGY PROJECT AT THE AK STEEL CORPORATION MIDDLETOWN WORKS, MIDDLETOWN, OHIO U.S. Department of Energy National Energy Technology Laboratory July 2010 DOE/EA-1743 FINAL ENVIRONMENTAL ASSESSMENT FOR THE AIR PRODUCTS AND CHEMICALS, INC. WASTE ENERGY PROJECT AT THE AK STEEL CORPORATION MIDDLETOWN WORKS, MIDDLETOWN, OHIO U.S. Department of Energy National Energy Technology Laboratory July 2010 DOE/EA-1743 iii COVER

  17. Tlingit and Haida Regional Housing Authority Energy Cents Program

    Energy Savers [EERE]

    DOE Review March 26 th , 2014 Tasha McKoy * Tlingit Haida Regional Housing Authority (THRHA) is the largest housing provider in Southeast, AK * Program focus is small household energy efficiency upgrades and region wide energy conservation education * Program deliverables: - Train 28 field assessors to conduct energy assessments in 400 homes throughout Southeast, AK - Energy fairs/community meetings in 14 communities - K-12 education * 28 field assessors conduct home assessments * 81 donators, *

  18. Alaska Energy Efficiency Finance Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Energy Efficiency Finance Forum Alaska Energy Efficiency Finance Forum January 14, 2016 9:00AM to 4:00PM AKST Anchorage, AK Carr-Gottstein Academic Center 4225 University Dr. Anchorage, AK 99508 The Alaska Energy Authority (AEA) is hosting an Alaska Energy Efficiency Finance Seminar to cover community- and commercial-scale energy efficiency in Alaska. The seminar will bring together building owners and energy efficiency project developers with lenders of many stripes to explore how Alaska

  19. Leading the Charge: Native Leaders Give Tribes a Voice on White House

    Office of Environmental Management (EM)

    Climate Task Force | Department of Energy Native Leaders Give Tribes a Voice on White House Climate Task Force Leading the Charge: Native Leaders Give Tribes a Voice on White House Climate Task Force March 13, 2014 - 10:56am Addthis Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN) Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN) Mayor Reggie Joule, Northwest Arctic Borough (AK) Mayor Reggie Joule, Northwest Arctic Borough (AK) Chairwoman Karen

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  1. CO{sub 2} HYDRATE PROCESS FOR GAS SEPARATION

    SciTech Connect (OSTI)

    G. Deppe; R. Currier; D. Spencer

    2004-01-01

    Modifications were implemented to the hydrogen flow test rig per safety review comments, and the apparatus was tested for leaks. Tests were then done using Helium/CO{sub 2} mixtures to re-verify performance prior to hydrogen testing. It was discovered that hydrate formation was more difficult to initiate, and new initiation methods were developed to improve the tests. Delivery of ETM hardware continued and buildup of the ETM system continued, the ETM is now mechanically complete. The STU (pilot plant) site selection process was resumed because Tennessee Eastman declined to participate in the program. Two potential sites were visited: The Global Energy/Conoco-Phillips Wabash River Plant, and the Tampa Electric Polk Power Plant.

  2. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  3. Measurement of relative output factors for the 8 and 4 mm collimators of Leksell Gamma Knife Perfexion by film dosimetry

    SciTech Connect (OSTI)

    Novotny, Josef Jr.; Bhatnagar, Jagdish P.; Quader, Mubina A.; Bednarz, Greg; Lunsford, L. Dade; Huq, M. Saiful

    2009-05-15

    Three types of films, Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55, were used to measure relative output factors of 4 and 8 mm collimators of the Leksell Gamma Knife Perfexion. The optical density to dose calibration curve for each of the film types was obtained by exposing the films to a range of known doses. Ten data points were acquired for each of the calibration curves in the dose ranges from 0 to 4 Gy, 0 to 8 Gy, and 0 to 80 Gy for Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55 films, respectively. For the measurement of relative output factors, five films of each film type were exposed to a known dose. All films were scanned using EPSON EXPRESSION 10000 XL scanner with 200 dpi resolution in 16 bit gray scale for EDR2 film and 48 bit color scale for Gafchromic films. The scanned images were imported in the red channel for both Gafchromic films. The background corrections from an unexposed film were applied to all films. The output factors obtained from film measurements were in a close agreement both with the Monte Carlo calculated values of 0.924 and 0.805 for 8 and 4 mm collimators, respectively. These values are provided by the vendor and used as default values in the vendor's treatment planning system. The largest differences were noted for the Kodak EDR 2 films (-2.1% and -4.5% for 8 and 4 mm collimators, respectively). The best agreement observed was for EBT Gafchromic film (-0.8% and +0.6% differences for 8 and 4 mm collimators, respectively). Based on the present values, no changes in the default relative output factor values were made in the treatment planning system.

  4. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{sup trademark}) process. Third quarterly report, 1996

    SciTech Connect (OSTI)

    1997-09-01

    The Liquid Phase Methanol (LPMEOH)(TM) demonstration project at King sport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol is being designed and constructed at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The Partnership will own and operate the facility for the four year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to `demonstrate the production of methanol using the LPMEOH(TM) Process in conjunction with an integrated coal gasification facility.` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four year demonstration period. The LPMEOH(TM) process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  5. Digital field ion microscopy

    SciTech Connect (OSTI)

    Sijbrandij, S.J.; Russell, K.F.; Miller, M.K.; Thomson, R.C.

    1998-01-01

    Due to environmental concerns, there is a trend to avoid the use of chemicals needed to develop negatives and to process photographic paper, and to use digital technologies instead. Digital technology also offers the advantages that it is convenient, as it enables quick access to the end result, allows image storage and processing on computer, allows rapid hard copy output, and simplifies electronic publishing. Recently significant improvements have been made to the performance and cost of camera-sensors and printers. In this paper, field ion images recorded with two digital cameras of different resolution are compared to images recorded on standard 35 mm negative film. It should be noted that field ion images exhibit low light intensity and high contrast. Field ion images were recorded from a standard microchannel plate and a phosphor screen and had acceptance angles of {approximately} 60{degree}. Digital recordings were made with a Digital Vision Technologies (DVT) MICAM VHR1000 camera with a resolution of 752 x 582 pixels, and a Kodak DCS 460 digital camera with a resolution of 3,060 x 2,036 pixels. Film based recordings were made with Kodak T-MAX film rated at 400 ASA. The resolving power of T-MAX film, as specified by Kodak, is between 50 and 125 lines per mm, which corresponds to between 1,778 x 1,181 and 4,445 x 2,953 pixels, i.e. similar to that from the DCS 460 camera. The intensities of the images were sufficient to be recorded with standard fl:1.2 lenses with exposure times of less than 2 s. Many digital cameras were excluded from these experiments due to their lack of sensitivity or the inability to record a full frame image due to the fixed working distance defined by the vacuum system. The digital images were output on a Kodak Digital Science 8650 PS dye sublimation color printer (300 dpi). All field ion micrographs presented were obtained from a Ni-Al-Be specimen.

  6. High-speed plasma imaging: A lightning bolt

    SciTech Connect (OSTI)

    Wurden, G.A.; Whiteson, D.O.

    1996-02-01

    Using a gated intensified digital Kodak Ektapro camera system, the authors captured a lightning bolt at 1,000 frames per second, with 100-{micro}s exposure time on each consecutive frame. As a thunder storm approaches while darkness descended (7:50 pm) on July 21, 1994, they photographed lightning bolts with an f22 105-mm lens and 100% gain on the intensified camera. This 15-frame sequence shows a cloud to ground stroke at a distance of about 1.5 km, which has a series of stepped leaders propagating downwards, following by the upward-propagating main return stroke.

  7. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect (OSTI)

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  8. Images of plasma disruption effects in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Maqueda, R.J.; Wurden, G.A.

    1999-02-01

    Fast-framing imaging of visible radiation from magnetically confined plasmas has lately become a useful tool for both machine operation and physics studies. Using an intensified, commercial Kodak Ektapro imaging system, the effects of a plasma disruption were observed in the Tokamak Fusion Test Reactor (TFTR). The high-energy runaway electrons created soon after the disruption collide with the plasma facing components damaging this surface and producing a shower of debris that traverses the toroidal vessel and falls over the inner bumper limiter.

  9. Microsoft Word - DOE-ID-INL-12-012.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECX Posting No.: DOE-ID-INL-12-012 SECTION A. Project Title: Film Processing Project at Test Reactor Area (TRA)-678 SECTION B. Project Description The proposed action is to install a silver recovery unit to the film processor in the film processing area at TRA-678 for the purpose of minimizing waste generation and implementing pollution prevention. The proposed film processor (Kodak M-35A) generates approximately 90 ml of developer and 140 ml of fixer effluents per 17 inch film and approximately

  10. High-energy x-ray response of photographic films: models and measurement

    SciTech Connect (OSTI)

    Henke, B.L.; Uejio, J.Y.; Stone, G.F.; Dittmore, C.H.; Fujiwara, F.G.

    1986-11-01

    A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the 1000-10,000-eV region. The absortpion and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/..mu..m/sup 2/), the photon energy, E (eV), and the angle of incidence, 0, of the exposing radiation. A detailed table is presented for the I values corresponding to optical densities in the 0.2--2.0 range and to photon energies, E (eV), in the 1000-10,000-eV region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse of specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the 1000-10,000-eV region this x-ray film is appreciably less sensitive but has higher resolution.

  11. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    SciTech Connect (OSTI)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-08-15

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D{sub max} were found to be 2.8, 3.0, 3.2, and 3.4 mm ({+-}0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm{+-}0.2 mm (Kodak EDR2) and 3.6 mm{+-}0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D{sub max} was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams.

  12. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect (OSTI)

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  13. On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase

    SciTech Connect (OSTI)

    Brokaw, Jason B.; Chu, Jhih-wei

    2010-11-17

    We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier works of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.

  14. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,41959 213,"Alaska Electric Light&Power Co","AK",2010,1,1535.941,15011.6,13783,980.665,11721.382,2156,987.54,11255.996,91,0,0,0,3504.146,37988.978,16030 219,"Alaska Power and Telephone Co","AK",2010,1,668.02,2319.376,4592,921.903,3261.675,2099,0,0,0,0,0,0,1589.923,5581.051,6691 599,"Anchorage Municipal Light and

  15. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    1","AK",2011,1,6234.999,25389.363,30394,8864.339,33363.108,11226,1796.286,8445.807,406,0,0,0,16895.624,67198.278,42026 213,"Alaska Electric Light&Power Co","AK",2011,1,1913.906,15780.043,13800,1191.056,11892.612,2172,749.249,8392.574,93,0,0,0,3854.211,36065.229,16065 219,"Alaska Power and Telephone Co","AK",2011,1,776.905,2477.956,4683,989.646,3281.279,2102,0,0,0,0,0,0,1766.551,5759.235,6785 599,"Anchorage Municipal Light and

  16. THE LONG RANGE ALPHA DETECTOR IN THE LANL GREEN IS CLEAN PROGRAM

    SciTech Connect (OSTI)

    K.M. GRUETZMACHER; R.M. BUSTOS; S.C. MYERS

    2001-06-01

    Los Alamos National Laboratory (LANL) is in the process of adding Long Range Alpha Detector (LRAD) technology to its established Green Is Clean (GIC) program. GIC material includes waste and material for recycle generated in radiological controlled areas (RCAs) that have been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). Properly segregated GIC material has a high probability of being free of radioactive contamination. LANL GIC operations provide a verification check on the AK-based determination for low-density and certain high-density items.

  17. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 See Block 16C 6. ISSUED BY CODE 00518 Oak Ridge U.S. Department of Energy P.O. Box 2001 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state and ZIP Code) AK RIDGE ASSOCIATED UNIVERSITIES, o P o .0. BOX 117 AK RIDGE TN 37830-6218 INC. 11. CONTRACTID CODE I PAGE OF PAGES 1 I 2 4. REQUISITIONIPURCHASE REQ. NO. 15. PROJECT NO. (If applicable) 12SCOO0484 Items 1 and 2 7. ADMINISTERED BY (If other than Item 6) CODE 1 0 0518 Oak Ridge U.S. Department of Energy P.O. Box

  18. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMENDMENTIMODIF[CATION NO. 3. EFFECTIVE DATE 341 See Block 16C 6.ISSUED8Y CODE 00518 Oak Ridge U.S. Department of Energy P.O. Box 2001 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZlP Code) AK RIDGE ASSOCIATED UNIVERSITIES, .0. BOX 117 o P o AK RIDGE TN 37830-6218 INC. 11. CONTRACT [0 CODE 1 PAGE OF PAGES 1 I 2 4. REOUISITIONIPURCHASE REO. NO. r. PROJECT NO. (If applicable) 12SC000849 Item 7 7. ADMINISTERED 8Y (If other than Item 6) CODE 100518 Oak Ridge

  19. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. EFFECTIVE DATE 354 See Block 16C 6. ISSUED BY CODE 00518 Oak Ridge u.S. Department of Energy P.O. Box 2001 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., street, counly. State and ZIP Code) AK RIDGE ASSOCIATED UNIVERSITIES, o P o .0. BOX 117 AK RIDGE TN 37830-6218 INC. 11. CONTRACT 10 CODE 1 PAGE OF PAGES 1 1 2 4. REQUISITIONIPURCHASE REQ. NO. 15. PROJECT NO. (If applicable) 12SCOO1876 7. ADMINISTERED BY (If other than Item 6) CODE 100518 Oak Ridge U.S. Department of Energy P.O.

  20. AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 324 See Block 16C 6. ISSUED BY CODE 00518 Oak Ridge U.S. Department of Energy P.O. Box 2001 Oak Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., stroet, county, stlJte tIIId ZlP Code) AK RIDGE ASSOCIATED UNIVERSITIES, o P o .0. BOX 117 AK RIDGE TN 37830-6218 INC. 11. CONTRACT 10 CODE 1 PAGE OF PAGES 1 I 2 4. REOUISITIONIPURCHASE REO. NO. 15. PROJECT NO. (If applicable) I1SC007443 7. ADMINISTERED BY (If other than Item 6) CODE 100518 Oak Ridge

  1. "2014 Utility Bundled Retail Sales- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",2253,125452,12449,9.9233173 "Alaska Power and Telephone Co","AK","Investor

  2. "2014 Utility Bundled Retail Sales- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",14115,141151,16728,11.851138 "Alaska Power and Telephone Co","AK","Investor

  3. "2014 Utility Bundled Retail Sales- Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16464,399492,41691,10.436004 "Alaska Power and Telephone Co","AK","Investor

  4. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAY 2 2007 Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for LA-MHD03.002 Dear Mr. Bearzi: We are submitting for your evaluation, a 'provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for Los Alamos National Laboratory (LANL) waste stream LA-MHD03.002. In accordance with the Waste

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  6. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" 0,"State Level Adjustment","AK","2007R",1,5766,24179,0,7398,30009,0,1385.504,7829.663,0,,,0,14549.504,62017.663,0 213,"Alaska Electric Light&Power Co","AK","2007R",1,1479,14609,13602,981,11953,2118,390.496,5260.337,99,0,0,0,2850.496,31822.337,15819 219,"Alaska Power

  7. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons per day) took place on 06 April 1997. Pressure drop and resistance coefficient across the gas sparger at the bottom of the reactor increased over this initial operating period. The demonstration unit was shut down from 08 May -17 June 1997 as part of a scheduled complex outage for the Kingsport site. During this outage, the gas sparger was removed, cleaned, and reinstalled. After completion of other maintenance activities, the demonstration unit was restarted, and maintained stable operation through the remainder of the reporting period. Again, the gas sparger showed an increase in pressure drop and resistance since the restart, although not as rapidly as during the April-May operation. Fresh oil was introduced online for the first time to a new flush connection on the gas inlet line to the reactov the flush lowered the pressure drop by 1 psi. However, the effects were temporary, and the sparger resistance coefficient continued to increase. Additional flushing with both fresh oil and entrained slurry recovered in the cyclone and secondary oil knock-out drum will be attempted in order to stabilize the sparger resistance coefficient.

  8. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    SciTech Connect (OSTI)

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better quanti& the catalyst aging behavior. During the reporting perio~ two batches of fresh catalyst were activated and transferred to the reactor (on 02 April and 20 June 1998). The weight of catalyst in the LPMEOW Reactor has reached 80% of the design value. At the end of the reporting period, a step-change in the pressure-drop profile within the LPMEOW Reactor and an increase in the pressure of the steam system which provides cooling to the LPMEOW Reactor were observed. No change in the calculated activity of the catalyst was detected during either of these transients. These parameters will be monitored closely for any additional changes.

  9. Attachment C

    Office of Environmental Management (EM)

    PLAN Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 PERMIT ATTACHMENT C Page C-i ATTACHMENT C WASTE ANALYSIS PLAN TABLE OF CONTENTS C-0 Introduction and Attachment Highlights ........................................................................... 1 C-0a Waste Characterization ........................................................................................ 2 C-0b AK

  10. Energy Efficiency for the Nunamiut People

    SciTech Connect (OSTI)

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  11. CX-100580 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation MHK River Power System Optimized for Performance, Durability and Survivability Award Number: DE-EE0007348 CX(s) Applied: A9 Water Power Program br> Date: 03/14/2016 Location(s): AK Office(s): Golden Field Office

  12. CX-100483 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gwich'in Solar and Energy Efficiency in the Arctic Award Number: DE-EE0006478 CX(s) Applied: A9, B5.1, B5.16 Weatherization & Intergovernmental Programs Date: 02/26/2014 Location(s): AK Office(s): Golden Field Office

  13. CX-100527 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices Award Number: DE-EE0006397 CX(s) Applied: B5.25 Water Power Program Date: 07/17/2014 Location(s): AK Office(s): Golden Field Office

  14. "Ask Argonne" - Robert Jacob, Climate Scientist, Part 2

    ScienceCinema (OSTI)

    Jacob, Robert

    2014-11-24

    Previously, climate scientist Robert Jacob talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1aK6WDv). In Part 2, he answers some of the questions that were submitted.

  15. F-1 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH...

  16. Alaska State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alaska State Historic Preservation Programmatic Agreement Alaska State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_ak.pdf More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  17. Observation

    Office of Scientific and Technical Information (OSTI)

    to an Orbital-Selective Mott Phase in A x Fe 2-y Se 2 (AK, Rb) Superconductors M. Yi, 1, 2 D. H. Lu, 3 R. Yu, 4 S. C. Riggs, 1, 2 J.-H. Chu, 1, 2 B. Lv, 5 Z. Liu, 1, 2 M. Lu,...

  18. CX-100183 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Upgrades for the Clinic and the Tannery and Wind Energy for Power to the Tannery Award Number: DE-EE0006483 CX(s) Applied: B5.18 Tribal Energy Program Date: 02/02/2015 Location(s): AK Office(s): Golden Field Office

  19. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    SciTech Connect (OSTI)

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-15

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4 keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5 keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10 keV range.

  20. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect (OSTI)

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  1. CCD detector development projects by the beamline technical support group at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Lee, J. H.; Fernandez, P.; Madden, T.; Molitsky, M.; Weizeorick, J.

    2007-11-11

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480 x 480 pixels and 96 outputs, giving very fast readout.

  2. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect (OSTI)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  3. Solid-state dosimeters: A new approach for mammography measurements

    SciTech Connect (OSTI)

    Brateman, Libby F.; Heintz, Philip H.

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 2830 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within ?1.2 and +1.1 kVp) for all instruments over a wide range of set kVps and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by ?6.5% to +3.5% depending on the SStD and TF. AK measurements over limited (2830) kVps ranged from ?6% to +7% for SStDs, compared with IC reference values. Relative AGDs for each SStD using its associated measurements of kVp, HVL and AK underestimated AGD in nearly all cases, compared with reference IC values, with discrepancies of AK measurements made by ICs. Applying measured factors for scatter effects in AK measurements for three SStDs reduced discrepancies between ?6.2% and +1.3%, shifting AGDs from SStDs closer to IC AGDs. Conclusions: This study revealed that SStD measurements yielded good agreement with set kVp, poor agreement with standard HVL determinations, and AK measurements that were substantially different from IC measurements. Discrepancies are partly related to the scattered radiation measured by ICs in determining AK. As a result, IC measurements required for AGD, using currently accepted methodology, typically result in higher AGDs than SStDs, because current methodologies do not account for differing instrument responses to scatter. HVLs reported by SStDs contribute to discrepancies in calculated AGD that depend on kVp and TF. Medical physicists are encouraged to compare their results for SStD instruments using a similar methodology for potential discrepancies with their traditional instruments.

  4. Diagnostic quality of mammograms obtained with a new low-radiation-dose dual-screen and dual-emulsion film combination

    SciTech Connect (OSTI)

    Wojtasek, D.A.; Teixidor, H.S.; Govoni, A.F.; Gareen, I.F. )

    1990-02-01

    We evaluated the image quality of mammograms made by using a new dual-screen, dual-emulsion film combination (Kodak Min-R Fast screen, T-Mat Mll film) that permits reduction of radiation exposure by approximately 50% when compared with a standard single-screen, single-emulsion film system (Kodak Min-R screen, OM-1 film). This new film has been improved when compared with earlier T-Mat M film, including the introduction of an inert dye to reduce light crossover to essentially 0%. Mammogram pairs made with the dual-emulsion film combination and the standard single-emulsion film combination were obtained in 50 patients otherwise undergoing routine mammography. The image pairs were randomized and evaluated by three radiologists who used a three-point scale (better, same, or worse). Each pair was evaluated with regard to parenchymal contrast, sharpness, and latitude, as well as the number and sharpness of calcifications (n = 19) and sharpness of masses (n = 12) when present. All three observers found the dual-emulsion film combination to be better than or the same as the standard with regard to parenchymal sharpness (94-100%), the number and sharpness of calcifications (98-100%), and sharpness of masses (100%). Two observers found the dual-emulsion film combination to be significantly worse (p less than .05) than the standard with respect to parenchymal contrast (72%, 86%), and all three observers rated it significantly worse for film latitude (14 to 42%). Our results suggest that this new dual-emulsion film combination that allows mammography to be performed with less radiation exposure can be used without loss of image quality.

  5. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification

    SciTech Connect (OSTI)

    Kirov, Assen S.; Caravelli, Gregory; Palm, Aasa; Chui, Chen; LoSasso, Thomas

    2006-10-15

    The higher sensitivity to low-energy scattered photons of radiographic film compared to water can lead to significant dosimetric error when the beam quality varies significantly within a field. Correcting for this artifact will provide greater accuracy for intensity modulated radiation therapy (IMRT) verification dosimetry. A procedure is developed for correction of the film energy-dependent response by creating a pencil beam kernel within our treatment planning system to model the film response specifically. Film kernels are obtained from EGSnrc Monte Carlo simulations of the dose distribution from a 1 mm diameter narrow beam in a model of the film placed at six depths from 1.5 to 40 cm in polystyrene and solid water phantoms. Kernels for different area phantoms (50x50 cm{sup 2} and 25x25 cm{sup 2} polystyrene and 30x30 cm{sup 2} solid water) are produced. The Monte Carlo calculated kernel is experimentally verified with film, ion chamber and thermoluminescent dosimetry (TLD) measurements in polystyrene irradiated by a narrow beam. The kernel is then used in convolution calculations to predict the film response in open and IMRT fields. A 6 MV photon beam and Kodak XV2 film in a polystyrene phantom are selected to test the method as they are often used in practice and can result in large energy-dependent artifacts. The difference in dose distributions calculated with the film kernel and the water kernel is subtracted from film measurements to obtain a practically film artifact free IMRT dose distribution for the Kodak XV2 film. For the points with dose exceeding 5 cGy (11% of the peak dose) in a large modulated field and a film measurement inside a large polystyrene phantom at depth of 10 cm, the correction reduces the fraction of pixels for which the film dose deviates from dose to water by more than 5% of the mean film dose from 44% to 6%.

  6. Eltron Research & Development

    SciTech Connect (OSTI)

    Evenson, Carl; Mackay, Richard; Faull, John

    2014-03-01

    This topical report covers technical work conducted under contract DE-FC26-05NT42469 between FY06 Q1 through FY14 Q2. The project evolved through several budget periods, budget revisions and continuation applications. This report covers work performed under the “base” program. In 2010 ARRA funding was added to the project. A separate report covering the ARRA portion of the project was submitted to DOE. The original project was focused on research and development for scale-up of hydrogen separation membrane for a FutureGen type power plant. The work included membrane testing and evaluation of metal alloy flat plates vs. tubes and metal membranes vs. cermet membranes. In addition, economic analysis and process modeling was performed. The original project team included CoorsTek, NORAM, and Praxair. In FY10Q2 a continuation application was filed for conducting a scale-up test at Eastman Chemical. In this part of the project a Subscale Engineering Prototype (SEP) membrane skid was designed, fabricated, and operated on a gasified coal slip-stream on Eastman’s site in Kingsport, TN. Following operation, the project was reorganized and a second continuation application with a new statement of work was initiated in FY12Q1. Finally, based on DOE’s decision not to proceed with a Process Development Unit (PDU) field test, a third continuation application and statement of work was initiated in FY13Q1 to close out the project.

  7. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  8. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  9. Final environmental assessment for the Liquid Phase Methanol (LPMEOH{trademark}) Project

    SciTech Connect (OSTI)

    1995-06-01

    The proposed project is to demonstrate on a commercial scale the production of methanol from coal-derived synthesis gas using the LPMEOH{trademark} process. The methanol produced during this demonstration will be used as a chemical feedstock (on-site) and/or as an alternative fuel in stationary and transportation applications (off-site). In addition, the production of dimethyl ether (DME) as a mixed co-product with methanol may be demonstrated for a six month period under the proposed project pending the results of laboratory/pilot-scale research on scale-up. The DME would be used as fuel in on-site boilers. The proposed LPMEOH facility would occupy approximately 0.6 acres of the 3,890-acre Eastman Chemical facility in Kingsport, TN. The effects of the proposed project include changes in air emissions, wastewater discharge, cooling water discharge, liquid waste quantities, transportation activities, socioeconomic effects, and quantity of solids for disposal. No substantive negative impacts or environmental concerns were identified.

  10. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect (OSTI)

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  11. Commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process. Technical progress report No. 3, October 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). A facility producing 260 TPD of methanol will be designed and constructed at a site located at the Eastman Chemical complex in Kingsport, Tennessee. The Partnership will own and operate the facility for the four-year demonstration facility operational period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to ``demonstrate the production of methanol using the LPMEOH{trademark} process in conjunction with an integrated coal gasification facility.`` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low sulfur dioxide, low nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research shows promising results. If implemented, the DME would be produced during the last six months of the operations phase. During the period 1 October 1994 to 31 March 1995, the project team completed essentially all the activities necessary to start detailed design. Major accomplishments in these activities are discussed.

  12. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  13. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    SciTech Connect (OSTI)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may be thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.

  14. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Feldman, Alexander

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:59 PM" "Back to

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:59 PM" "Back to

  17. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:36 PM" "Back to

  18. ,"Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:01 PM" "Back to

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:06 PM" "Back to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:07 PM" "Back to

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:07 PM" "Back to

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:08 PM" "Back to

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:08 PM" "Back to

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:01 PM" "Back to

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:58 PM" "Back to

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:28 PM" "Back to

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9050ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:30:32 PM" "Back to

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:06 PM" "Back to

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:21:06 PM" "Back to

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:07 PM" "Back to

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:08 PM" "Back to

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3020ak4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:22:08 PM" "Back to

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3035ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:23:35 PM" "Back to

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:01 PM" "Back to

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3050ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3050ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:57 PM" "Back to

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3060ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:26:27 PM" "Back to

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9011ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:29:16 PM" "Back to

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9011ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:29:17 PM" "Back to

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9012ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:29:32 PM" "Back to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n9020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:29:47 PM" "Back to