National Library of Energy BETA

Sample records for ak eastman kodak

  1. DOE - Office of Legacy Management -- Eastman Kodak Laboratory - NY 0-09

    Office of Legacy Management (LM)

    Eastman Kodak Laboratory - NY 0-09 FUSRAP Considered Sites Site: Eastman Kodak Laboratory (NY.0-09 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Eastman Kodak Rochester Lab NY.0-09-1 Location: Rochester , New York NY.0-09-1 Evaluation Year: 1987 NY.0-09-1 NY.0-09-2 Site Operations: Research and development with natural uranium solutions in 1943. NY.0-09-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-09-2 Radioactive

  2. Source characterization and control technology assessment of methylene chloride emissions from Eastman Kodak Company, Rochester, NY. Final report, July 1988-April 1989

    SciTech Connect (OSTI)

    Walata, S.A.; Rehm, R.M.

    1989-07-01

    This report gives results of an assessment of potential control technologies for methylene chloride (also known as dichloromethane or DCM) emission sources at Eastman Kodak Company's Kodak Park facility in Rochester, NY. DCM is a solvent used by Kodak in the manufacture of cellulose triacetate film support. Work has involved: a plant visit where major DCM emission sources were inspected, and evaluation of current and potential control technologies for the DCM emission sources. The report contains information gathered during the plant visit to the Kodak Park facility. Included are emission estimates determined by Kodak of all emission points greater than 8000 lb (3600 kg)/yr DCM, as well as a description of each point observed during the visit. Also included are results of an evaluation of control technologies that might be applied to the major emission sources. A cost analysis of different add-on control devices is provided for four of the uncontrolled emission points.

  3. Eastern Kodak Company

    SciTech Connect (OSTI)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied

  4. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  5. Subkilovolt response of Kodak T max XUV film

    SciTech Connect (OSTI)

    Dittmore, C.; Stoering, J.P. ); Gullikson, E. )

    1990-02-08

    A calibration of Kodak T max 100 XUV film at six x-ray energies ranging from 0.27 keV to 1.49 keV has been concluded. The primary purpose was to compare the sensitivity of this film to that of Kodak type 101-07 XUV film in order to appraise the feasibility of replacing the type 101-07 film with the type T max 100 film. In addition to being considerably less expensive, the T max 100 film is less disposed to abrasion from handling. A secondary objective was to provide a base for further response measurements should the T max 100 film prove to be an acceptable substitute for the type 101-07 film. 10 figs., 2 tabs.

  6. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect (OSTI)

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  7. Calibration of bremsstrahlung prefogged Kodak RAR 2492 film

    SciTech Connect (OSTI)

    Gorzen, D.F.; Armentrout, C.; Burek, A.; Bird, R.; Geddes, J.; Gerber, G. ); Rockett, P.D. )

    1990-10-01

    High-energy background radiation from PBFA II at Sandia National Laboratory introduces uncertainty regarding the effect of background fogging on the sensitivity of the x-ray film at soft x-ray energies. We have performed a calibration to determine how the sensitivity of the Kodak RAR 2492 film is affected by high-energy background radiation. To simulate the background radiation the film was fogged to various densities using a 10 keV bremsstrahlung spectrum. The film was then exposed to soft x-ray emission lines of Al {ital K}{alpha} and Ti {ital K}{alpha} selected by Bragg reflection from an electron bombardment source. The intensity of the x-ray flux was continuously monitored with a Si(Li) detector to eliminate error due to drift of the x-ray source's intensity. A microdensitometer with matched objectives was used to find the specular density of the exposed film. The results of the calibration are presented in the form of {ital D} vs log {ital l} for the various densities of the bremmstrahlung prefog exposures.

  8. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  9. Study for the replacement of Kodak Royal-X Pan film

    SciTech Connect (OSTI)

    Bunker, F.J.

    1989-08-01

    Kodak Royal-X Pan (RXP) film has been the prime film for oscilloscope camera recording at the Nevada Test Site (NTS) since 1962. Kodak discontinued making this film in 1987, however, so it became necessary to find a substitute that had as many of the photographic characteristics of RXP as possible --- spectral sensitivity, image quality, recording speed, base plus fog background density, and processing parameters. (RXP and Kodak 857 developer will continue being used at NTS until the film supply is exhausted.) RXP 2{1/4} {times} 3{1/4}-inch film has been the film of choice for oscillography at NTS because of its sensitivity to the blue radiation from P-11 phosphor, which constitutes the coating of oscilloscope tubes, and its ability to record fast transient occurrences, such as oscilloscope traces, in or near nanosecond exposure times. 1 ref., 40 figs., 4 tabs.

  10. Picosecond pulses produced by mode locking a Nd:glass laser with Kodak dye number26

    SciTech Connect (OSTI)

    Schiller, N.H.; Foresti, M.; Alfano, R.R.

    1985-05-01

    Kodak dye number26 was used to generate picosecond laser pulses by mode locking a Nd:glass laser. The intensity profiles and characteristics of the pulses were compared with those of pulses emitted using dyes number5 and number9860.

  11. Company's cogeneration effort conserves fuel, cuts power costs

    SciTech Connect (OSTI)

    Kingston, W.J.

    1983-05-01

    Kodak Park is Eastman Kodak Company's largest manufacturing complex. As temperatures drop here, steam - created as a by-product in producing electricity - will heat some 200 buildings.

  12. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  13. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  14. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  15. Response Model for Kodak Biomax-MS Film to X Rays

    SciTech Connect (OSTI)

    Knauer, J.P.; Marshall, F.J.; Yaakobi, B.; Anderson, D.; Schmitt, B.A.; Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.

    2007-01-24

    X-raysensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. New film becomes available as older films are phased out of production. Biomax-MS is a T-grain class of film that is proposed as a replacement for Kodak DEF film. A model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, SEM micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain type film.

  16. Response model for Kodak Biomax-MS film to x rays

    SciTech Connect (OSTI)

    Knauer, J. P.; Marshall, F. J.; Yaakobi, B.; Anderson, D.; Schmitt, B. A.; Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.

    2006-10-15

    X-ray-sensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. Replacement film must be found as older films are phased out of production. Biomax-MS is a 'T-grain' class of film that is proposed as a replacement for Kodak DEF and a model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, scanning electron microscopy micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain-type film.

  17. The curvature of sensitometric curves for Kodak XV-2 film irradiated with photon and electron beams

    SciTech Connect (OSTI)

    Battum, L. J. van; Huizenga, H.

    2006-07-15

    Sensitometric curves of Kodak XV-2 film, obtained in a time period of ten years with various types of equipment, have been analyzed both for photon and electron beams. The sensitometric slope in the dataset varies more than a factor of 2, which is attributed mainly to variations in developer conditions. In the literature, the single hit equation has been proposed as a model for the sensitometric curve, as with the parameters of the sensitivity and maximum optical density. In this work, the single hit equation has been translated into a polynomial like function as with the parameters of the sensitometric slope and curvature. The model has been applied to fit the sensitometric data. If the dataset is fitted for each single sensitometric curve separately, a large variation is observed for both fit parameters. When sensitometric curves are fitted simultaneously it appears that all curves can be fitted adequately with a sensitometric curvature that is related to the sensitometric slope. When fitting each curve separately, apparently measurement uncertainty hides this relation. This relation appears to be dependent only on the type of densitometer used. No significant differences between beam energies or beam modalities are observed. Using the intrinsic relation between slope and curvature in fitting sensitometric data, e.g., for pretreatment verification of intensity-modulated radiotherapy, will increase the accuracy of the sensitometric curve. A calibration at a single dose point, together with a predetermined densitometer-dependent parameter OD{sub max} will be adequate to find the actual relation between optical density and dose.

  18. Ak Chin Indian Community- 2004 Project

    Broader source: Energy.gov [DOE]

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  19. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  20. Advance Patent Waiver W(A)2007-001

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a request by EASTMAN KODAK CO. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42933

  1. SOLID-STATE LIGHTING BUILDING TECHNOLOGIES OFFICE Solid-State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Dow Corning * Four patent applications filed Eastman Kodak * Device Containing Non-Blinking Quantum Dots NP, PCT * Doped Nanoparticle-Based Semiconductor Junction NP, PCT * Ex-Situ ...

  2. Advance Patent Waiver W(A)2006-027

    Broader source: Energy.gov [DOE]

    This is a request by EASTMAN KODAK COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42864

  3. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  4. Comparison of the spectral response of a thinned, backside illuminated CCD with a CsI coated MCP system and Kodak 101 film

    SciTech Connect (OSTI)

    Li Yuelin; Crespo Lopex-Urrutia, J. R.; Tsakiris, G. D.; Sigel, R.; Volk, R.; Pina, L.

    1995-05-01

    A thinned backside illuminated CCD chip was calibrated by self consistently determining the thickness of its dead layer. Its spectral response and sensitivity were then compared with those of the calibrated Kodak 101 photographic plates and of a CsI coated microchannel plate detection system.

  5. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect (OSTI)

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  6. Details of the response of Kodak high resolution plate to x-irradiation for the characterization of ICF targets and components

    SciTech Connect (OSTI)

    Martin, A.J.; Simms, R.J.

    1985-01-01

    Radiographic images are used in the characterization of Internal Confinement Fusion targets and target components. The use of this technique involves consideration of: (1) the continuum and line emission source spectra produced by a tungsten anode, (2) the attenuation of the source spectrum by material in the x-ray path, and (3) the response of the x-ray detector, a Kodak HRP (High Resolution Plate), to the incident x-ray flux. 5 refs., 4 figs.

  7. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification

    SciTech Connect (OSTI)

    Sankar, A. . E-mail: asankar_phy@yahoo.co.in; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Gopalakrishna Kurup, P.G.; Murali, V.; Enke, Charles A.; Velmurugan, J.

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  9. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  18. Ak-Chin Indian Community - Biomass Feasibiltiy Study

    Energy Savers [EERE]

    October 19, 2005 2005 L. S. Gold & Associates, Inc. Page 2 October 19, 2005 AK-CHIN ... * Technical Contact: Leonard Gold, Manager Ak-Chin Energy Services L.S. Gold ...

  19. Project Reports for Ak Chin Indian Community- 2004 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Ak-Chin Indian Community will study the feasibility of siting a biopower installation on community lands.

  20. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    SciTech Connect (OSTI)

    Lanier, N.E.; Cowan, J.S.; Workman, J.

    2006-04-15

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  1. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect (OSTI)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  2. RAPID/Roadmap/18-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-AK-a) 18AKA - StorageTankRegistration (1).pdf Error creating...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  5. RAPID/Roadmap/6-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-AK-b) From DEC...

  6. RAPID/Roadmap/14-AK-d | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-AK-d) In accordance...

  7. AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Egg Ranch as fertilizer for its agricultural crops. - The Ak-Chin Indian Community ... Dairy Manure - Potato Processing Wastes - Food Waste - Other potential sources nearby ? ...

  8. RAPID/Roadmap/18-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Hazardous Waste Permit (18-AK-b) The Alaska Department of Environmental Conservation defers to the...

  9. RAPID/Roadmap/15-AK-c | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Title V Operating Permit (15-AK-c) One of the major initiatives...

  10. RAPID/Roadmap/14-AK-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-AK-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  11. RAPID/Roadmap/3-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  12. RAPID/Roadmap/17-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap17-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  13. RAPID/Roadmap/8-AK-c | Open Energy Information

    Open Energy Info (EERE)

    8-AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/3-AK-c | Open Energy Information

    Open Energy Info (EERE)

    AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/14-AK-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-AK-c) 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not...

  16. Microsoft Word - CCP-AK-LANL-006-Revision 13

    Office of Environmental Management (EM)

    P2010-3583 CCP-AK-LANL-006 Central Characterization Program Acceptable Knowledge Summary Report For LOS ALAMOS NATIONAL LABORATORY TA-55 MIXED TRANSURANIC WASTE WASTE STREAMS: ...

  17. Really Off the Grid: Hooper Bay, AK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  18. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  1. RAPID/Roadmap/12-AK-a | Open Energy Information

    Open Energy Info (EERE)

    12-AK-a.1 - Will the Project Affect Streams or Other Bodies of Water? The Anadromous Fish Act (AS 16.05.871-.901) requires that an individual or government agency provide prior...

  2. Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - No Data ...

  3. RAPID/Roadmap/15-AK-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Assessment Process (15-AK-a) The Clean Air Act is the law that defines the...

  4. RAPID/Roadmap/15-AK-b | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Minor Permit (15-AK-b) The mission of the Air Permit Program is to...

  5. RAPID/Roadmap/6-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of a load upon a highway. Examples of such vehicles are self-propelled cranes, pump trucks, off-road construction equipment or other road maintenance equipment. 6-AK-a.3 -...

  6. RAPID/Roadmap/7-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Us Power Plant Siting Process (7-AK-a) Add text. 07AKAPowerPlantSitingConstruction.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  7. RAPID/Roadmap/3-AK-h | Open Energy Information

    Open Energy Info (EERE)

    Settlement Lands Leasing (3-AK-h) 03AKHAlaskaNativeClaimsSettlementLandsLeasing.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  8. RAPID/Roadmap/13-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-AK-a) 13AKALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  9. Revamping AK-Ashland gas cleaning system

    SciTech Connect (OSTI)

    Brandes, H.; Koerbel, R.; Haberkamp, K.; Keeton, S.

    1995-07-01

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

  10. Ak-Chin Indian Community Biomass Feasiiblity Study

    SciTech Connect (OSTI)

    Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

    2005-12-31

    Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

  11. Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

  12. Manufacturing company faces $8 million penalty for alleged RCRA violations

    SciTech Connect (OSTI)

    1995-03-01

    On October 7, 1994, EPA filed a complaint against Eastman Kodak Company for alleged RCRA violations at Kodak`s manufacturing and hazardous waste treatment, storage, and disposal facilities located in Rochester, New York. A proposed consent decree accompanied the complaint filed in the US District Court for the Western District of New York (United States v. Eastman Kodak Company, Dockett Number: 94-CV-6503T). According to the terms of the proposed consent decree, Kodak is to pay an $8 million civil penalty by implementing six environmental projects. The company must also upgrade its industrial sewer system and bring all operations into compliance with RCRA regulations. This action indicates EPA`s intent to promote waste reduction and pollution prevention in addition to requiring compliance at large, aging manufacturing facilities.

  13. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  14. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1...

    Office of Scientific and Technical Information (OSTI)

    Barrow, AK (ARMBE-ATM NSAC1 V4) Title: ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4) The ARM CMBE-ATM Xie, McCoy, Klein et al. data file contains a best ...

  15. File:NREL-ak-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search File Edit with form History File:NREL-ak-50m.pdf Jump to: navigation, search File File history File usage Alaska Mainland...

  16. File:NREL-ak2-50m.pdf | Open Energy Information

    Open Energy Info (EERE)

    File Edit with form History File:NREL-ak2-50m.pdf Jump to: navigation, search File File history File usage Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Size of...

  17. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    Amchitka Island Test Center - AK 01 Site ID (CSD Index Number): AK.01 Site Name: Amchitka Island Test Center Site Summary: Site Link: Amchitka Island Test Center External Site Link: Alternate Name(s): Amchitka Island Test Center Alternate Name Documents: Location: Amchitka, Alaska Location Documents: Historical Operations (describe contaminants): Underground nuclear test site Historical Operations Documents: Eligibility Determination: Remediated by DOE Eligibility Determination Documents:

  18. Results from ORNL Characterization of Zr02-500-AK2 - Surrogate TRISO Material

    SciTech Connect (OSTI)

    Hunn, John D; Kercher, Andrew K

    2005-06-01

    This document is a compilation of the characterization data for the TRISO-coated surrogate particle batch designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the createion of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significanly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

  19. Results from ORNL characterization of ZrO2-500-AK2 - surrogate TRISO material

    SciTech Connect (OSTI)

    Kercher, Andrew K; Hunn, John D

    2005-06-01

    This document is a compilation of the characterization data for the TRISO-coated surrogate particles designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the creation of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significantly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

  20. Tennessee Eastman letter on Y-12 reduction in force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy as there are ties to Y-12's history, this article is presented well out of sequence. It contains original material that is valuable to a better understanding of the...

  1. Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 2,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Kenai, AK Liquefied Natural Gas Exports to

  2. Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.12 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price

  3. bectno-micro | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Micronized Coal Reburning Demonstration for NOx Control - Project Brief [PDF-245KB] New York State Electric & Gas Corp., Lansing NY; Eastman Kodak Co. Rochester, NY PROGRAM PUBLICATIONS Final Reports Micronized Coal Reburning Demonstration for NOx Control, Final Report [PDF-243KB] (Oct 1999) Appendix 2.6-1, Kodak Project Design Basis Appendix 2.6-1a. Project Design Basis [PDF-6.2MB] Appendix 2.6-1b. EERC Process Design [PDF-25.3MB] Appendix 2.6-1c. Process Description [PDF-6.3MB] Appendix

  4. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  5. Coal reburning for cost effective NO{sub x} compliance

    SciTech Connect (OSTI)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; Hunsicker, S.; Watts, J.U.

    1996-12-01

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  6. Coal reburning for cost-effective NO{sub x} compliance

    SciTech Connect (OSTI)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; O`Dea, D.T.; Hunsicker, S.; Watts, J.U.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  7. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  8. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  9. Methylene chloride exposure and birthweight in Monroe County, New York

    SciTech Connect (OSTI)

    Bell, B.P.; Franks, P.; Hildreth, N.; Melius, J. )

    1991-06-01

    This study examined the relationship between birthweight and exposure to emissions of methylene chloride (DCM) from manufacturing processes of the Eastman Kodak Company at Kodak Park in Rochester, Monroe County, New York. County census tracts were categorized as exposed to high, moderate, low or no DCM based on the Kodak Air Monitoring Program (KAMP) model, a theoretical dispersion model of DCM developed by Eastman Kodak Company. Birthweight and information on variables known to influence birthweight were obtained from 91,302 birth certificates of white singleton births to Monroe County residents from 1976 to 1987. No significant adverse effects of exposure to DCM on birthweight were found. Adjusted birthweight in high exposure census tracts was 18.7 g less than in areas with no exposure (95% confidence interval for the difference between high and no exposure - 51.6, 14.2 g). Problems inherent in the method of estimation of exposure, which may decrease power or bias the results, are discussed. Better methods to estimate exposure to emissions from multiple industrial point sources are needed.

  10. Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau, and V2612 Oph

    SciTech Connect (OSTI)

    Çalışkan, Ş.; Özavcı, İ.; Baştürk, Ö.; Şenavcı, H. V.; Kılıçoğlu, T.; Yılmaz, M.; Selam, S. O.; Latković, O.; Djurašević, G.; Cséki, A. E-mail: ozavci@science.ankara.edu.tr E-mail: hvsenavci@ankara.edu.tr E-mail: mesutyilmaz@ankara.edu.tr E-mail: olivia@aob.rs E-mail: attila@aob.rs

    2014-12-01

    We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau, and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10% and 20%, and the precision in absolute radii is between 5% and 10%. All four systems are W UMa-type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O – C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

  11. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  12. DE-FC26-03NT41877 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of an Advanced Airborne Natural Gas Leak Detection System DE-FC26-03NT41877 Goal: The goal is to improve the method by which the nation's natural gas pipelines are monitored for leaks. This project will flight test a high-sensitivity, broad-coverage, airborne, natural gas leak detection system developed by ITT Industries (formerly Eastman Kodak Company). The ITT airborne system can be used to quickly and efficiently locate and detect and locate concentrations of natural gas associated

  13. II.1 Itic

    Office of Legacy Management (LM)

    i! il II.1 Itic ihl j' ieil - Department of Emrgy \ Washington, DC20585 1 ' . The Honorable Bill. Johnson 30 Church Street Rochester, New York, 14614, Dear Mayor Johnion: I. ,Se$retary of EnergL Hazel.O'Leary has annouqced a .new appro the Department of Energy (DOE) and its communications with' .,support of this initiative, we are pleased to forward ttie e related to the, former Eastman Kodak Research Laboratoryisit jurisdiction that performed work for DOE or its predecesior information is

  14. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  15. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages

  16. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    SciTech Connect (OSTI)

    Gomez de Castro, Ana Ines; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  17. Experiences with a compost biofilter for VOC control from batch chemical manufacturing operations

    SciTech Connect (OSTI)

    Gilmore, G.L.; Briggs, T.G.

    1997-12-31

    The Synthetic Chemicals Division of Eastman Kodak Company makes a large number of complex organic chemicals using batch reactor syntheses. Exhaust gas, resulting from batch reactor operations, typically contains many different volatile organic chemicals with dynamic concentration profiles. Exhaust streams of this type have been considered difficult to treat effectively by biofiltration. Eastman Kodak Company was interested in exploring the applicability of biofiltration to treat these types of off-gas streams as an alternative to more costly control technologies. To this end, a 20,000 cfm capacity BIOTON{reg_sign} biofilter was installed in December 1995 in Kodak Park, Rochester, New York. A study was initiated to determine the overall efficiency of the biofilter, as well as the chemical specific efficiencies for a number of organic compounds. Flame ionization detectors operated continuously on the inlet and outlet of the biofilter to measure total hydrocarbon concentrations. A process mass spectrometer was installed to simultaneously monitor the concentrations of seven organics in the inlet and outlet of the biofilter. In addition, the process control software for the biofilter continuously recorded pressure drop, temperature, and moisture content of the bed. This paper presents operating and performance data for the BIOTON biofilter from start-up through about eleven months of continuous operation. Included are data collected over a wide range of loading conditions, during initial start-up, and during start-up after shutdown periods. Data for total hydrocarbons, methanol, acetone, and heptane are presented. The relationship between organic loading and removal efficiency is discussed in the biofilter, which typically operates significantly below its design loading specification. The overall control efficiency of the biofilter at design loadings exceeds the design control efficiency of 90%.

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive more than 8.4 million in funding to develop regional carbon storage technology training centers in the United States. The majority of this funding is provided by the...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at the porous microstructure scale of solid sorbent ... field simulation for microstructural evolution in alloys. ... environmentally benign Mg-based battery architecture with ...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background During hydraulic fracturing of ... the likelihood of seismic events due to water disposal with shale gas is more prevalent. ...

  8. WDR-PK-AK-018

    SciTech Connect (OSTI)

    Hollister, R

    2009-08-26

    Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysis Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related analytical tools; site characterization, methods to...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The first is a stacked storage field test in the Cranfield Oil Field near Natchez, and the second is conducted at a coal-fired power plant in Escatawpa, called Plant Daniel. The ...

  17. Modeling ambient air concentrations of volatile organic compounds via digitally filtered FTIR spectra

    SciTech Connect (OSTI)

    Kaltenbach, T.

    1994-12-31

    As part of an agreement with the New York State Department of Environmental Conservation, Eastman Kodak Company has a program to monitor ambient air concentrations of volatile organic compounds at its fence lines. Currently, canister-based point sensors are used to collect a time-averaged sample every sixth day. The staff required to position, retrieve, and analyze these canisters makes this procedure expensive. Alternative methods are being investigated that can provide similar results in real time, while also saving costs. One such method is Fourier transform infrared (FTIR) spectroscopy. Radian Corporation performed a series of FTIR fence-line monitoring experiments at Kodak about one year ago. The spectra collected during this experiment are complicated by the presence of water vapor bands. Digital filtering techniques utilizing the Fourier transform are being explored as a means of removing the interference due to water vapor. When a digital filter is used as a spectral preprocessor, partial least squares (PLS) techniques can be employed to provide a powerful prediction pool. This seminar will describe the operation of the Fourier filters and present some encouraging preliminary results from PLS models.

  18. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  19. 9731: First building completed at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an "XA" unit for The Radiation Laboratory at Berkley. This unit was used for training the first employees of Tennessee Eastman Company. Additionally, Tennessee Eastman...

  20. Six novel transition-metal phosphite compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of A{sup I}[M{sup III}(HPO{sub 3}){sub 2}] (A=K, NH{sub 4}, Rb and M=V, Fe)

    SciTech Connect (OSTI)

    Hamchaoui, Farida; Alonzo, Veronique; Universite Europeenne de Bretagne ; Venegas-Yazigi, Diego; Rebbah, Houria; Le Fur, Eric

    2013-02-15

    Six new transition metal(III) phosphites A{sup I}[V{sup III}(HPO{sub 3}){sub 2}], where A=K (1), NH{sub 4} (2) and Rb (3) and A{sup I}[Fe{sup III}(HPO{sub 3}){sub 2}] where A=K (4), NH{sub 4} (5) and Rb (6) have been synthesized under hydrothermal conditions and the solid-state structures were solved from single-crystal X-ray diffraction data. These compounds crystallize in the hexagonal system, space group P6{sub 3}mc (no. 186), with a=5.3294(2) A and c=12.3130(5) A for 1, a=5.3330(2) A and c=12.8760(4) A for 2, a=5.3459(2) A and c=12.6850(8) A for 3, a=5.3256(1) A and c=12.2362(3) A for 4, a=5.3229(2) A and c=12.8562(4) A for 5, a=5.3393(2) A and c=12.6913(5) A for 6, with Z=2 in the six phases. The crystal structures of these compounds are isotypic and exhibit a layered structure stacked along the c-axis with the A{sup +} cations located in the interlayer space. The [M{sup III}(HPO{sub 3}){sub 2}]{sup -} sheets are formed by MO{sub 6} octahedra interconnected by HPO{sub 3} tetrahedral phosphite oxoanions through sharing vertices. Thermal analysis shows a large range of stability for compounds containing potassium and rubidium cations with decomposition starting around 550 K for stable compounds and above 840 K for the most stable compounds leading in general to pyrophosphate compounds. Triangular nets of metallic centers are observed within the layers in which antiferromagnetic interactions are evidenced by magnetic susceptibility measurements suggesting magnetic frustration. - Graphical abstract: Six new transition metal(III) phosphites A{sup I}[M{sup III}(HPO{sub 3}){sub 2}], where A=K, NH{sub 4}, Rb and M=V, Fe, have been synthesized. The crystal structures of these compounds are isotypic and exhibit a lamellar structure related to Yavapaiite. The M(HPO{sub 3}){sub 2} layers separated by cationic species present the metallic centers in a triangular arrangement. Bulk antiferromagnetic behavior is observed for all the studied compounds. Highlights: Black

  1. High frame-rate, large field wavefront sensor

    SciTech Connect (OSTI)

    Avicola, K.; Salmon, J.T.; Brase, J.; Waltjen, K.; Presta, R.; Balch, K.S.

    1992-03-01

    A two-stage intensified 192 {times} 239 pixel imager developed by Eastman Kodak for motion analysis was used to construct a 1 kHz frame-rate Hartmann wavefront sensor. The sensor uses a monolithic array of lenslets with a focal length that is adjusted by an index fluid between the convex surface and an optical flat. The accuracy of the calculated centroid position, which is related to wavefront measurement accuracy, was obtained as a function of spot power and spot size. The sensor was then dynamically tested at a 1 kHz frame-rate with a 9 {times} 9 lenslet array and a fast steering mirror, which swept a plane wavefront across the wavefront sensor. An 8 cm diameter subaperture will provide a return signal (589 nm) level of about 1000 photons/ms using the AVLIS 1 kW laser (stretched pulse) as guide star source, which is sufficient to yield a wavefront measurement of better than {gamma}/10 rms. If an area of 6 {times} 6 pixels per Hartmann spot were allocated, this wavefront sensor could support a 32 {times} 32, or 1024, element deformable mirror.

  2. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    SciTech Connect (OSTI)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  3. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  4. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Inc. Equitable Resources Exxon Mobile Florida Municipal ... to monitor injection operations and to ensure public safety. ... to collect data on the performance of the lower part of the ...

  7. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Grant Bromhal Technical Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov ...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Baltrus Acting Division Director Molecular Science Division 412-386-4570 john.baltrus@netl.doe.gov Paul Turner Division Director Materials Characterization Division...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture, quantum mechanical simulations, integrated gasification, and clean ... And, as technology transfer cutting-edge inventions to present a wide energy research ...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Structural Materials are being developed for use in extreme environments associated with combustion, turbine, gasification, drilling, and other applications. Research focuses on ...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exploration and production of deepwater and ultra-deepwater resources. Adequate definition of materials performance and properties is critical to this effort. The outcome...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal ... Computational Chemistry Research in Support of Future Energy Technologies Background ...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities to test and evaluate technologies; validate and couple geomechanical and flow reservoir models to provide accurate and reliable simulations in fractured reservoirs...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Life prediction based on environmental and ...recipitation-strengthened nickel superalloys for oil and gas ... for these alloys as a function of borehole conditions. ...

  15. Ak-Chin Electric Utility Authority | Open Energy Information

    Open Energy Info (EERE)

    82 2.653 68 45 144.753 1,889 417 2009-02 18.064 209 290 111.749 1,405 82 2.659 42 45 132.472 1,656 417 2009-01 20.158 239 290 117.553 1,516 82 2.017 22 45 139.728 1,777 417...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ultimately CO 2 capture cost. The NETL-ORD is also conducting system and economic studies to R& D FAC T S Carbon Capture OFFICE OF RESEARCH AND DEVELOPMENT David Alman...

  19. RAPID/Roadmap/20-AK-a | Open Energy Information

    Open Energy Info (EERE)

    to confirm location; however, surface pressure may not subject the casing to a hoop stress that will exceed 70 percent of the minimum yield strength of the casing. At least 24...

  20. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.61 -- -- --

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  3. RAPID/Roadmap/3-AK-g | Open Energy Information

    Open Energy Info (EERE)

    receiver, that owns, operates, manages, or controls any line, plant, pipeline, or system for furnishing, producing, generating, transmitting, or distributing power,...

  4. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 3.08 2000's 4.31 4.39 4.07 4.47 4.94 5.77 6.00 5.97 7.69 8.59 2010's 12.19 13.05 15.71 --...

  5. Kenai, AK Liquefied Natural Gas Exports to Japan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.82 12.82 13.40 9.59 11.62 11.62 15.00 17.42 2012 16.15 17.59 15.18 13.13 2014 15.81 16.03 16.03 15.76 15.12 2015 8.08...

  6. Electrical Resistance Tomographic Profile L2, Site 0, Barrow AK

    SciTech Connect (OSTI)

    Hubbard, Susan; Dafflon, Baptiste

    2013-12-08

    Figure 7a in http://esd.lbl.gov/files/about/staff/susanhubbard/PUBLISHED_-_Hubbard-Hydrogeology-2012_with_Gangodagamage_et_al.pdf

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555...

  8. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 15.81 16.03 16.03 15.76 15.12 2015 7.50 7.80 8.08 7.90 7.16 6.51...

  9. Kenai, AK Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 1,886 2,809 2,846 2,886 2,884 2015 2,748 2,754 2,753 2,753 2,755 2,755 - No...

  10. RAPID/Roadmap/19-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Use of Water Request for Water Right Permit Extension Statement of Beneficial Water Use Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  11. RAPID/Roadmap/19-AK-b | Open Energy Information

    Open Energy Info (EERE)

    Water Fact Sheets: Water Rights in Alaska Application for Temporary Use of Water Water Maps and Data Feedback | Add a Reference Print PDF Retrieved from "http:...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Conversion Model allows for the transfer of elements from the JetPlume and Transport models, taking care to best amalgamate the two contrasting approaches in each, while...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to ...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can be then used in an inexpensive "breathalyzer" to test for and monitor diabetes. The NETLSC has also greatly accelerated progress on the development of...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The facility was originally used to study the fate of CO 2 in the deep ocean, released ... Goals and Objectives The goal of the current research is to obtain fundamental, ...

  17. RAPID/Roadmap/18-AK-c | Open Energy Information

    Open Energy Info (EERE)

    basis. General permits are appropriate for activities that are similar enough in nature that multiple individual permits are unnecessary. Geothermal drilling wastes are...

  18. RAPID/Roadmap/11-AK-a | Open Energy Information

    Open Energy Info (EERE)

    of private persons: Before any construction, alteration, or improvement of any nature is undertaken on a privately owned, officially designated state monument or historic...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and natural gas fuel America's economy and account for more than 60 percent of the energy ... The results can also be used to identify requirements for new materials with superior ...

  20. RAPID/Roadmap/3-AK-b | Open Energy Information

    Open Energy Info (EERE)

    to AS 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  1. RAPID/Roadmap/9-AK-a | Open Energy Information

    Open Energy Info (EERE)

    Stat. ch. 38.35, telephone or electric transmission and distribution lines, log storage, oil well drilling sites and production facilities for the purposes of recovering minerals...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower heat capacity, and reduced heat of reaction. The result is a lower overall cost for CO 2 capture and separation. Many different types of solid materials have been...

  4. RAPID/Roadmap/7-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 ... These interpretations support geospatial and geo-statistical evaluations associated with ...

  6. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov ... The original databook was started by NETL's Geology and Geospatial (G&G) team for the U.S. ...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 ... The original databook was started by NETL's Geology and Geospatial (G&G) team for the U.S. ...

  8. HUD, State of Alaska & AK Regional Housing Authorities: An Energy...

    Office of Environmental Management (EM)

    ... Alaska homes use Twice the total amount used as other homes classified as "cold very cold climates" times the energy sq. ft. 3 NANA region 9.15 sq. ft. (9x) Average US ...

  9. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This recognition sparked a desire within NETL to leverage rapidly evolving technology, capabilities, and approaches to information sharing, big data, and computational resources, ...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The goal is to simulate the conditions found in all of the major potential geological ... Objectives * Obtain representative strata samples per programproject constraints, working ...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and differential scanning calori- metry, NETL researchers test geological and environmental material samples to determine degradation and decom- position temperatures, absorbed ...

  12. Microsoft Word - DOE_EMPStrategy_July2016 - AK

    Office of Environmental Management (EM)

    Joint Electromagnetic Pulse Resilience Strategy A Collaborative Effort of the U.S. ... For DOE, the strategy was prepared by the Office of Electricity Delivery and Energy ...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a burner) is coupled to heat exchangers and a turbine in order to evaluate the dynamics of a fully integrated system. R& D FAC T S Energy Systems Dynamics OFFICE OF...

  16. RAPID/Roadmap/1-AK-a | Open Energy Information

    Open Energy Info (EERE)

    for state lands within the planning area. Two types of state land use plans might govern geothermal development on state-owned land: an area plan or a management plan. These plans...

  17. RAPID/Roadmap/19-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  19. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

  1. RAPID/Roadmap/14-AK-a | Open Energy Information

    Open Energy Info (EERE)

    by the proposed project. Restoration of an affected waterbody is accomplished through the development and implementation of either a TMDL document or a Waterbody Recovery Plan....

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 emissions from power plants that use fossil fuels ... first be overcome by methods that do not ... for repowering existing coal-fired facilities to capture CO ...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    samples. With scan times lasting only seconds, the system can capture, in real time, the migration of fluids and changes in rock material at in-situ petroleum and CO 2 storage ...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Successful implementation of portfolio research objectives will ultimately increase America's domestic oil and gas supply, reduce our nation's dependency on foreign imports, and ...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are cheap and easy to process but are limited by an inherent tradeoff between permeability and selectivity - polymeric membranes can have high permeability or high...

  6. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development and assessment of membranes tailored...

  7. RAPID/Roadmap/3-AK-d | Open Energy Information

    Open Energy Info (EERE)

    permit when there is little interest in the initial call for applications by DO&G. In either process, the surface owner (if other than the state) will have a preference...

  8. RAPID/Roadmap/5-AK-a | Open Energy Information

    Open Energy Info (EERE)

    agency overseeing regulation of geothermal drilling and well development is the Alaska Oil and Gas Conservation Commission. The developer must have acquired a lease prior to this...

  9. RAPID/Roadmap/4-AK-b | Open Energy Information

    Open Energy Info (EERE)

    These studies help to identify geological structures with potential accumulations of oil or gas. These permits are a type of land use permit and are sometimes called Seismic...

  10. RAPID/Roadmap/4-AK-a | Open Energy Information

    Open Energy Info (EERE)

    (including both geophysical or seismic and shallow hole testing). The Alaska Division of Oil and Gas regulates the drilling and exploratory activities within the state and a...

  11. RAPID/Roadmap/4-AK-c | Open Energy Information

    Open Energy Info (EERE)

    87.030 - 87.050 cover this permit's requirements. Within ADNR, the Alaska Division of Oil and Gas handles all exploration activities and permitting under this chapter. Note: the...

  12. RAPID/Roadmap/6-AK-c | Open Energy Information

    Open Energy Info (EERE)

    system staff; and an explanation of how the proposed system will establish and maintain effective communications and relationships between the public water system management, its...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and model data on high performance computers with pre-loaded software, such as ArcGIS, Petra, EarthVision, GoldSim, MATLAB, and other advanced analytical, statistical and...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their datasets using top-of-the-line research computers with key software, such as ArcGIS, Petra, GoldSim, and Earthvision, among other advanced geostatistical and analytical...

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security....

  17. EIS-0186: Proposed Healy Clean Coal Project, Healy, AK

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  19. RAPID/Roadmap/3-AK-e | Open Energy Information

    Open Energy Info (EERE)

    if the parties cannot agree on what constitutes reasonable concurrent use. As provided in 11 AAC 96.020, some uses and activities are generally allowed on state land...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on only the most promising materials. Substances designed using fundamental approaches are synthesized and characterized in NETL-ORD's fully equipped synthetic...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods, limited variability is available in the final cathode structures. New approaches focus on generation of advanced microstructures that are more conducive to...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (a GC-FID with sample introduction via thermal desorption) to measure VOC's; * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * A Davis Instruments ...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... via thermal desorption) to measure volatile organic compounds (VOCs); * Air Pollution Instruments gaseous monitors for NO x and O 3 ; * R.M. Young and Davis Instruments ...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deleterious Events Associated with Drilling and Production Background Increasingly, ... prediction of potential deleterious events in extreme offshore drilling and production. ...

  7. EIA-814, Monthly Imports Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AK 2829 OLEUM CA 3103 SKAG WAY AK 2506 OTAY MESA STATION CA 3181 ST PAUL AIRPORT AK 2828 PITTSBURG CA 3196 UPS, ANCHORAGE AK 2830 PORT COSTA CA 3107 VALDEZ AK 2713 PORT HUENEME CA...

  8. Three Better Plants Partners Recognized at Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    JayWrobel1.jpg Two Better Plants Challenge partners, Celanese Corporation and Eastman Chemical Company, and a Better Plants Program partner, The Dow Chemical Company, were ...

  9. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  11. Advance Patent Waiver W(A)2010-024

    Broader source: Energy.gov [DOE]

    This is a request by EASTMAN CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42469

  12. Energy Efficiency and Conservation Block Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Block Grant Program Project Title AK-TRIBE-NANWALEK (AKA ENGLISH BAY) Location: Tribe AK-TRIBE- NANWALEK (AKA ENGLISH BAY) AK American Recovery and Reinvestment Act: Proposed ...

  13. Synthesis of acrylates. Quarterly report, 1996

    SciTech Connect (OSTI)

    1996-10-01

    Eastman has completed its experimental work in the generation of propionate derivatives. Over the last quarter, Eastman has primarily devoted its time to completing the documentation and developing the potential extension of the oxidative condensation to dimethyl ether. Eastman has completed internal invention reports covering two patents and is working on the third with RTI which they expect to complete within the month. Becthel has also completed its work on the cost analysis of the propionate synthesis work (Task 1). RTI is continuing to develop active and stable catalysts for the condensation of propionic acid and formaldehyde. A total of 74 acid-base catalysts have been tested so far. Two invention reports have been completed based on RTI and Eastman`s work. A third invention report is currently being prepared for Eastman`s review on a novel methodology of methyl propionate activation. RTI is continuing to synthesize more acid-base catalysts with a goal of developing a catalyst which exhibits stable activity over a 200 h test period. Over the last quarter, RTI has also completed its initial tests on the slurry reactor system.

  14. 1950s | OSTI, US Dept of Energy Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    1950: Display 1950: Documents 1950: Group Photo 1950: IBM Punch Cards 1950: Maintenance of Kodak Film Processor 1950: Atoms for Peace Program Material 1950: Troops Train ...

  15. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    SciTech Connect (OSTI)

    POLLIS, REBECCA

    2014-10-17

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  16. File:08-AK-c - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    this file. Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from...

  17. ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION

    Office of Legacy Management (LM)

    ... IVC kg km m m3 MDC MeV mremyr mradh NaI NBL NIST ORISE ORNL pCig PMC post-RA PRAR SGS ... the New Brunswick Laboratory (NBL), is located in the town of New Brunswick, New Jersey. ...

  18. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... coke, waste oil, and propane gas." "Wood and Wood Derived Fuels includes paper pellets, railroad ties, utility poles, wood chips, bark, red liquor, sludge wood, spent ...

  19. File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  20. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  1. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12.88 15.71 -- 15.74 7.49

  2. Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10.61

  3. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7.49

  4. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  5. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  6. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1...

    Office of Scientific and Technical Information (OSTI)

    The ARM CMBE-ATM Xie, McCoy, Klein et al. data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data. Authors: ...

  7. US Fish and Wildlife Service biomonitoring operations manual, Appendices A--K

    SciTech Connect (OSTI)

    Gianotto, D.F.; Rope, R.C.; Mondecar, M.; Breckenridge, R.P.; Wiersma, G.B.; Staley, C.S.; Moser, R.S.; Sherwood, R.; Brown, K.W.

    1993-04-01

    Volume 2 contains Appendices and Summary Sheets for the following areas: A-Legislative Background and Key to Relevant Legislation, B- Biomonitoring Operations Workbook, C-Air Monitoring, D-Introduction to the Flora and Fauna for Biomonitoring, E-Decontamination Guidance Reference Field Methods, F-Documentation Guidance, Sample Handling, and Quality Assurance/Quality Control Standard Operating Procedures, G-Field Instrument Measurements Reference Field Methods, H-Ground Water Sampling Reference Field Methods, I-Sediment Sampling Reference Field Methods, J-Soil Sampling Reference Field Methods, K-Surface Water Reference Field Methods. Appendix B explains how to set up strategy to enter information on the ``disk workbook``. Appendix B is enhanced by DE97006389, an on-line workbook for users to be able to make revisions to their own biomonitoring data.

  8. 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY...

    Office of Legacy Management (LM)

    Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to ...

  9. Measurement of Fukushima Aerosol Debris in Sequim and Richland, WA and Ketchikan, AK

    SciTech Connect (OSTI)

    Miley, Harry S.; Bowyer, Ted W.; Engelmann, Mark D.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Keillor, Martin E.; Kiddy, Robert A.; Kirkham, Randy R.; Landen, Jonathan W.; Lepel, Elwood A.; Lidey, Lance S.; Litke, Kevin E.; Morris, Scott J.; Olsen, Khris B.; Thompson, Robert C.; Valenzuela, Blandina R.; Woods, Vincent T.; Biegalski, Steven R.

    2013-05-01

    Aerosol collections were initiated at several locations by PNNL shortly after the Great East Japan Earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Oil Systems Analysis Program Background In support of its mission, to advance the efficient recovery of our nation's oil and natural gas resources in an environmentally safe manner, the Strategic Center for National Gas and Oil (SCNGO) carries out a variety of analyses. These generally fall into four categories: 1. Technology Analysis - Evaluation of the state of current technology, the potential benefits of technology advancements, and the research needed to overcome barriers to those

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The various elements of the U.S. natural gas industry-production, gathering, processing, transportation, storage, and distribution-play important roles that affect nearly every sector of the economy. Natural gas accounts for 42 percent of the energy delivered to the U.S. industrial sector and provides heat for over 66 million residential consumers. Advances in unconventional gas production technology have led to a rapid increase in domestic gas production. In the decade between

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification, and accounting (MVA) tools to ensure the safety and viability of long-term geologic storage of CO2. The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil LOCATION Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501-5901 CONTACTS Albert B. Yost II Sr. Management Technical Advisor Strategic Center for Natural Gas & Oil National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 304-285-4479 albert.yost@netl.doe.gov Maria Vargas Deputy Director Strategic Center for Natural Gas & Oil National Energy

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Constantin Cranganu Principal Investigator Brooklyn College 2900 Bedford Avenue 4415 Ingersoll Hall Brooklyn, NY 11210 718-951-5000

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P. O. Box 880 Morgantown, WV 26507-0880 304-285-0906 joshua.hull@netl.doe.gov William Lawson Principal Investigator Petroleum Technology Transfer Council P.O. Box 8531 Tulsa, OK 74101-8531 918-629-1056 wlawson@appg.org

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of 222 Rn, 220 Rn, and CO2 Emissions in Natural CO2 Fields in Wyoming: Monitoring, Verification, and Accounting Techniques for Determining Gas Transport and Caprock Integrity Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage (CCS): Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and FormationFluid Interaction, Citronelle Oil Field, Alabama Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions intothe atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore Seal Repair Using Nanocomposite Materials Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory - Management of Water from Carbon Capture and Storage Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestra- tion (CCS) - the capture of CO 2 from large point sources and subsequent injection

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Robert J. Finley Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, IL 61820 217-244-8389 finley@illinois.edu PARTNERS Ameren American Air

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R &D FAC T S Carbon Storage CONTACTS Mary Anne Alvin Division Director Geosciences Division 412-386-5498 maryanne.alvin@netl.doe.gov T. Robert McLendon Geosciences Division 304-285-5749 t.mclendon@netl.doe.gov Geologic Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell or shrink, depending on the specific adsorbed/absorbed gas. In turn, this can affect permeability and

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and the world. Future federal legislation and/or regulation may further limit CO 2 emissions from U.S. power generation. Efforts to control CO 2 emissions from this sector are under- way through the development of carbon capture and storage (CCS) technologies. CCS could virtually eliminate CO 2 emissions from power plants

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROGRAM FACTS Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon manage- ment portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emission reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . The National Energy Technology Laboratory's (NETL) Carbon Storage Program is pre- paring CCS technologies for widespread laboratory deployment by 2020. The program goals are to: * Support industries'

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS J. Alexandra Hakala Geosciences Division Engineered Natural Systems Division National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5487 Alexandra.Hakala@netl.doe.gov George Guthrie Geological and Environmental Sciences Focus Area Leader Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 George.Guthrie@netl.doe.gov PARTNERS Carnegie

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yee Soong Principal Investigator Research Chemical Engineer 412-386-4925 yee.soong@netl.doe.gov Robert McLendon Research Engineer 412-386-5749 T.McLendon@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Geologic Storage Core Flow Laboratory Background The storage of CO₂ and production of coalbed methane (CBM) can

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractured Reservoir Generation and Simulation Codes: FracGen and NFflow Background Fluid flow through fractured media is becoming an ever more important part of our energy future for several reasons. Shale gas and shale oil are supplying larger amounts of our petroleum needs, and both rely on production from fractured rock. Other unconventional formations, such as tight sands, are also supplying a larger portion of our energy needs, and these also depend on flow through fractures for economical

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering & Manufacturing Onsite Research The National Energy Technology Laboratory (NETL) is the lead laboratory for the Depart- ment of Energy's Office of Fossil Energy research and development (R&D) program and has established a robust onsite research program. Federal scientists and engineers work closely with contractor organizations and researchers from universities to conduct cross- disciplinary research. Onsite R&D is managed by NETL's Research & Innovation Center (RIC),

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Portfolio Lead Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Computational Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL)

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy System Dynamics OFFICE OF RESEARCH AND DEVELOPMENT George Richards Focus Area Lead Energy System Dynamics 304-285-4458 george.richards@netl.doe.gov Energy System Dynamics NETL Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory (NETL) has established a strong onsite research program conducted by Federal scientists and engineers who work closely with employees of contractor organizations

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov Bryan Morreale Deputy Executive Director (acting) 412-386-5929 bryan.morreale@netl.doe.gov Jimmy Thornton Chief of Staff 304-285-4427 jimmy.thornton@netl.doe.gov Research and Innovation Center The National Energy Technology Laboratory (NETL), one of the Depart- ment of Energy's (DOE) 17 national laboratories, is leading research, development, and demonstration programs to resolve the environmen- tal, supply, and

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development Division OFFICE OF RESEARCH AND DEVELOPMENT David Alman Acting Focus Area Lead Materials Science and Engineering 541-967-5885 david.alman@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has been adopted at NETL. The

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equation of State Model Development for Extreme Temperatures and Pressures Background The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required to accurately assess the amount of recoverable petroleum within a reservoir, and to model the flow of these fluids within the porous media and wellbore. These properties are also used to design appropriate drilling and production equipment, such as blow-out preventers and risers. A limited

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance in High-Pressure, High-Temperature, and Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy and account for more than 60 percent of the energy consumed in the United States (U.S.). Most forecasts indicate that these resources will continue to play a vital role in the U.S. energy portfolio for the next several decades. Increasingly, however, the domestic oil and gas industry must search for hydrocarbons in geologically challenging and operationally

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deepwater Research in the DOE NETL High-Pressure Water Tunnel Facility Background The National Energy Technology Laboratory's (NETL) High-Pressure Water Tunnel Facility (HWTF) allows researchers to investigate the chemistry, physics, and hydrodynamics of gas bubbles, liquid drops, and solid particles in deepwater environments. Built to withstand conditions at simulated ocean depths in excess of 3,000 meters, the facility was originally used to study the fate of carbon dioxide (CO₂) in the deep

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Adverse Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with challenging offshore regions such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges as well as distinct environmental and societal concerns. At present, offshore domestic resources

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005,

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Alexandra Hakala Technical Coordinator Unconventional Resources 412-386-5487 alexandra.hakala@netl.doe.gov Natalie Pekney Technical Coordinator Unconventional Resources 412-386-5953 natalie.pekney@netl.doe.gov PARTNERS Carnegie Mellon University Penn State University University of Pittsburgh URS Virginia Tech West Virginia University Analytical chemist working with the inductively coupled plasma

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratory Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Engineering Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual goal for higher gas turbine- inlet

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture CONTACTS David Hopkinson Principal Investigator Technical Portfolio Lead for Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov David Alman Associate Director for Materials Engineering & Manufacturing 541-967-5885 david.alman@netl.doe.gov RESEARCH PARTNERS Energy Frontiers Research Centers Lawrence Berkeley National Laboratory AECOM Carbon Capture Research and Development Carbon capture and storage from fossil-based power generation is a critical component of realistic

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science & Engineering CONTACTS David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov Madhava Syamlal Senior Fellow Computational Engineering 304-285-4685 madhava.syamlal@netl.doe.gov RESEARCH PARTNERS AECOM Boston University Carnegie Mellon University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-RIC Geomaterials Research Facilities The National Energy Technology Laboratory (NETL) Research & Innovation Center (RIC) Geomaterials group uses unique facilities to analyze natural and manmade material samples and characterize the geologic framework of natural systems using the following tools: * Petrography * Scanning electron microscopy * X-ray microanalysis * X-ray- and micro-x-ray diffraction * Permeability measurements * Thermogravimetric analysis * Differential scanning

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Geoimaging Characterization CT Scanners Background Traditional petrographic and core-evaluation techniques typically aim to determine the mineral make-up and internal structure of rock cores and to analyze the properties influencing fluid flow. Often this type of evaluation is destructive because it involves physically sectioning the core to capture details of the sample's internal composition. The National Energy Technology Laboratory's (NETL) geoimaging facility provides a non-destructive

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells The Solid Oxide Fuel Cell (SOFC) Program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust SOFC system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $225 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1,000 hours over a 40,000 hour lifetime. The Fuel Cell Team performs fundamental SOFC technology evaluation, enhances

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EDX: NETL's Data Driven Tool for Science-Based Decision Making Data Exchange for Energy Solutions Background and Benefits In 2011, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) initiated the Energy Data eXchange (EDX), an online collection of capabilities and resources that advance research and customize energy-related needs. EDX was developed and is maintained by NETL's Research & Innovation Center (NETL-RIC) researchers and technical computing teams to

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Foamed Wellbore Cement Stability Under Deep-Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support the annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Impacts of Shale Gas Activities Background The technique of hydraulic fracturing, in which large volumes of fluid are injected at high pressures into low-permeability shale, can improve hydraulic connectivity and enable production of gas. In the past decade, hydraulic fracturing has dramatically increased the domestic production of natural gas due to widespread application in formations nationwide. This rapid increase in hydraulic fracturing activities has also created concern

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power: words like these instill enthusiasm in National Energy Technology Laboratory (NETL) in-house researchers because they describe the future of energy. And, as technology transfer professionals who gather cutting-edge inventions to present a wide energy research portfolio, we find the excitement contagious. Facilities and Capabilities As a federal laboratory, we welcome the

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. Predicted spill trajectory 40 days after a hypothetical blowout and the predicted location of beached oil as a result of this hypothetical spill. NETL's Blowout and Spill Occurrence Model (BLOSOM) Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has created an integrated data and modeling system to support DOE's mission to produce science-based evaluations of engineered and natural systems to ensure sustainable, environmentally responsible

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov GAIA LOCATIONS Albany, Oregon Building 1, Room 315 541-918-4507 Building 28, Room 155 541-967-5964 Morgantown,

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-combustion Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical compo- nent of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a pro- hibitive rise in the cost of producing energy. In high-pressure CO 2 -containing streams, such as those found in coal gasification processes, one well-established approach to removing

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-combustion Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO 2 concentrations, but capturing substantial amounts of CO 2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory (NETL) is pursuing a multi-faceted approach, which leverages cutting-edge research facilities,

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH PARTNERS AECOM Oak Ridge Institute for Science and Education (ORISE) Oregon State University

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Control CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Benjamin Chorpening Research Mechanical Engineer 304-285-4673 benjamin.chorpening@netl.doe.gov Michael Buric Research Scientist/Engineer 304-285-2052 michael.buric@netl.doe.gov George Richards Focus Area Lead 304-285-4458 george.richards@netl.doe.gov Raman Gas Analyzer for Natural Gas and Syngas Applications Goal The goal of this project is to develop

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Surface Science CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Madhava Syamlal Focus Area Lead Computational Science and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov Computational Chemistry Research in Support of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel renewable resources is highly dependent on solving a large number of individual break-through

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at the National Energy Technology Laboratory (NETL) study subsurface systems to better characterize and understand gas-fluid-rock and material inter- actions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL SuperComputer Introduction The National Energy Technology Laboratory (NETL) is home to Joule-one of the world's largest high-performance computers-along with advanced visualization centers serving the organization's research and development needs. Supercomputing provides the foundation of NETL's research efforts on behalf of the Department of Energy, and NETL maintains supercomputing capabilities to effectively support its research to meet DOE's Fossil Energy goals. Supercomputing

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO 2 Geological Storage: Coupled Hydro- Chemo-Thermo-Mechanical Phenomena- From Pore-Scale Processes to Macroscale Implications Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7313 bruce.brown@netl.doe.gov Kathryn Baskin Principal Investigator Managing Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 baskin@sseb.org PARTNERS

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Lee Spangler Principal Investigator Montana State University P.O. Box 173905 Bozeman, MT 59717-3905 406-994-4399 spangler@montana.edu PARTNERS Altamont Oil & Gas Inc. Barnard College Columbia University Idaho National Laboratory Lawrence Berkeley National Laboratory Los Alamos National Laboratory Schlumberger Carbon

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road PO Box 10940 Pittsburgh, PA 15236-0940 412-386-7594 andrea.dunn@netl.doe.gov Charles D. Gorecki Technical Contact Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal

  3. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  4. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  5. File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    GAS.pdf Jump to: navigation, search File File history File usage National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Size of...

  6. 1990,"AK","Combined Heat and Power, Commercial Power","All Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ducers","Petroleum",,,102.5,95.33 1990,"CA","Electric Generators, Independent Power Producers","Solar Thermal and Photovoltaic",,10,360.2,310.68 1990,"CA","Electric Generators, ...

  7. 2015,"AK","Total Electric Power Industry","All Sources",18,8...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Industry","All Sources",1,1,12,12 2015,"AR","Total Electric Power Industry","Solar Thermal and Photovoltaic",1,1,12,12 2015,"AZ","Total Electric Power ...

  8. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1 V4)

    SciTech Connect (OSTI)

    McCoy, Renata; Xie, Shaocheng

    2013-12-26

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  9. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-ATM NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-10-05

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  10. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1 V2.1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2010-08-11

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  11. ARM Climate Modeling Best Estimate Barrow, AK (ARMBE-CLDRAD NSAC1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2012-05-14

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  12. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  13. File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  14. File:EIA-AK-NPRA-ANWR-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  15. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  16. File:EIA-AK-NPRA-ANWR-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  17. File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  18. 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...034,15248,226,1,0,15475 2013,1,"VT",7601,"Green Mountain Power Corp",39.65,10.83,0,0,50.48... 2013,1,"WA",15500,"Puget Sound Energy Inc",334.185,64.655,0,0,398.84,26734.802,...

  19. Most Viewed Documents for Materials: December 2014 | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    Report Robert C. Voigt (2004) 130 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 103 The influence of grain size on the ...

  20. April 2013 Most Viewed Documents for Materials | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    C.; Skala, D.M. (1997) 209 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (null) 193 Metals design handbook Betts, W.S. (1988) ...

  1. A new way to control oxygen for electronic properties | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory From left to right: Argonne researchers Boyd Veal, Hakim Iddir, Peter Zapol and Jeff Eastman found they could use a small electric current to introduce oxygen voids, or vacancies, that dramatically change the conductivity of thin oxide films. Not pictured: Peter Baldo and Seong Keun Kim. Photo by Mark Lopez/Argonne National Laboratory. From left to right: Argonne researchers Boyd Veal, Hakim Iddir, Peter Zapol and Jeff Eastman found they could use a small electric current to

  2. Synthesis of acrylates and Methacrylates from Coal-Derived Syngas

    SciTech Connect (OSTI)

    1997-05-12

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees} C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. Eastman and Bechtel have also compared the RTI- Eastman-Bechtel three-step methanol route to five other process routes to MMA. The results show that the product MMA can be produced at 520/lb, for a 250 Mlb/year MMA plant, and this product cost is competitive to all other process routes to MMA, except propyne carbonylation. In the second step, RTI and Eastman have developed active and stable V-SI-P tertiary metal oxide catalysts, Nb/Si0{sub 2}, and Ta/Si0{sub 2} catalysts for condensation of propionic anhydride or propionic acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst performance. Eastman and Bechtel have used the RTI experimental results of a 20 percent Nb/Si0{sub 2} catalyst, in terms of reactant conversions, MAA selectivities, and MAA yield, for their economic analysis. Recent research focuses on enhancing the condensation reaction yields, a better understanding of the acid-base property correlation and enhancing the catalyst lifetime.

  3. Synthesis of acrylates and methacrylates from coal-derived syngas. Quarterly report, October--December 1996

    SciTech Connect (OSTI)

    1997-05-02

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. the resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-Si-P ternary metal oxide catalysts Nb/SiO{sub 2} and Ta/SiO{sub 2} catalysts for the condensation of propionic anhydride and acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields by better understanding of the acid-base property correlation, in situ condensation in a high-temperature, high- pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory data, a cost estimate is also being developed for the integrated process.

  4. Novel syngas-based process for methyl methacrylate

    SciTech Connect (OSTI)

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.; Choi, G.N.; Tam, S.S.; Tischer, R.E.; Srivastava, R.D.

    1996-12-31

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

  5. Microsoft Word - CCP-TP-005-Revision 26

    Office of Environmental Management (EM)

    ... Guide for AK Summary Reports CCP-AK-SITE-XXX Central Characterization Program Acceptable ... of this RH waste stream. CCP-AK-ORNL-XXX, CCP RH TRU Waste Certification Plan for 40 ...

  6. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  7. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect (OSTI)

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was

  8. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    SciTech Connect (OSTI)

    Poludniowski, Gavin G.; Evans, Philip M.

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size

  9. Superfund record of decision (EPA region 10): Eielson Air Force Base, Fairbanks-North Star Borough, AK, September 30, 1996

    SciTech Connect (OSTI)

    1997-10-01

    The decision document presents the final remedial action selected for Eielson Air Force Base (AFB), Alaska. The sitewide investigation at Eielson AFB evaluated basewide contamination that is not confined or attributable to specific source areas identified and addressed in the FFA as well as cumulative risks to human health and the environment posed by contamination on a sitewide basis. Garrison Slough is the only one that poses an unacceptable risk to human health and the environment. Polychlorinated biphenyls (PCBs) were found in the fish tissue and sediments of Garrison Slough. Soils in a trench adjacent to Garrison Slough were contaminated with PCBs and appear to be the source of contamination to slough sediments via surface water runoff. The major components of the selected remedy include: Fishing restrictions in Garrison Slough; Fish control device near the downstream edge of Eielson AFB; Excavation of contaminated soils and sediments with concentrations greater than 10 mg/kg PCBs; Onsite disposal of material with PCB concentrations less than 50 mg/kg; Offsite disposal or treatment of materials with PCB concentrations greater than 50 mg/kg in accordance with the Toxic Substances Control Act (TSCA), 40 CFR part 761; and Environmental monitoring of soils, sediments, surface water, fish, and groundwater.

  10. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,"AK",599,"Anchorage Municipal Light and

  11. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,"AK",219,"Alaska Power and Telephone

  12. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,"AK",219,"Alaska Power and Telephone

  13. Category:EIA Map Files | Open Energy Information

    Open Energy Info (EERE)

    The following 113 files are in this category, out of 113 total. EIA-AK-CookInlet-BOE.pdf EIA-AK-CookInlet-BOE.pdf 10.19 MB EIA-AK-CookInlet-Gas.pdf EIA-AK-CookInlet-Gas.pdf...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200, mounted on the sun tracker, the sky images with the angle of view 38 0) have...

  15. Radiochemical technique for intensification of underexposed autoradiographs

    SciTech Connect (OSTI)

    Owunwanne, A.

    1984-04-01

    A radiochemical technique has been used to recover images of underexposed and developed autoradiographs. The underexposed image was radioactivated in a solution of (/sup 35/S)thiourea, air-dried, and reexposed to Kodak NMC film which was developed and processed in a Kodak X-Omat processor. Features which were not discernible in the underexposed autoradiographs were well distinguished in the intensified autoradiograph.

  16. Spectral and spatial characteristics of x-ray film detectors in the wavelength range 20--150 {angstrom}

    SciTech Connect (OSTI)

    Fedin, D.A.; Fedorchuk, R.V.; Koshevoi, M.O.; Lukjantsev, I.V.; Rupasov, A.A.; Shikanov, A.S.; Gullikson, E.

    1995-12-31

    Investigations of spectral sensitivity, contrast coefficient, and spatial resolution of widely used x-ray films have been undertaken at the P.N. Lebedev Institute. A description of experimental methodologies and results are presented. These studies were carried out using synchrotron radiation in the range of 20--150 {angstrom}. Spectral sensitivity and contrast coefficient dependencies on wavelength for Kodak 10106, DEF, RAR2490, and TPF films and spatial resolution for Kodak 10106 and RAR2490 films are presented and discussed.

  17. Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect (OSTI)

    Stephenson, D.K.; Sassaman, K.E.

    1993-11-01

    The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

  18. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., streltt, county, Statlt and ZIP Codo) AK RIDGE ASSOCIATED UNIVERSITIES, .0. BOX 117 o P o AK RIDGE TN 37830-6218 INC. 11....

  19. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  20. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  1. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port...

  2. U.S. Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA...

  3. U.S. Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  4. U.S. Natural Gas Exports to Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  5. EA-1743: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Air Products And Chemicals, Inc. Waste Energy Project at the AK Steel Corporation Middletown Works, Middletown, Ohio

  6. EA-1743: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Air Products and Chemicals, Inc. Waste Energy Project at the AK Steel Corporation Middletown Works, Middletown, Ohio

  7. Aleutian Pribilof Islands Weatherization Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Energy conservation education ... Native Village of Sand Point, AK Focus Communities Unanagx ... core competencies for the Weatherization Assistance Program. ...

  8. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  9. ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McCoy, Renata; Xie, Shaocheng

    2011-02-07

    The ARM CMBE-ATM [Xie, McCoy, Klein et al.] data file contains a best estimate of several selected atmospheric quantities from ACRF observations and NWP analysis data.

  10. SASproperty8_3_09

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04/09 Property List for RO Code '13' 1 BARCODE DESCRIPTION MANUF. MODEL COST 0000016386 COMPUTER PERSONAL E4 GATEWAY E4100 P4/2.4 $1,078.38 0000031152 LaCie 2TB Gigabit Et LACIE 300961 $999.00 S7237 KODAK PHOTO CD PLAYE KODAK N/A $449.00 0000017846 PRESS BRIDGE VIDEO/A OPAMP LABS VA-8 $1,195.00 0000021344 COMPUTER GATEWAY E-4 GATEWAY E-4500 D $735.00 0000015660 COMPUTER PERSONAL E- GATEWAY E-4000 P4/1.8 $950.00 0000021059 MACKIE AUDIO MIXER ( MACKIE 1402VLZ PRO $399.00 0000030017 CAMCORDER

  11. Environmentally Safe, Large Volume Utilization Applications for Gasification Byproducts

    SciTech Connect (OSTI)

    J.G. Groppo; R. Rathbone

    2008-06-30

    Samples of gasification by-products produced at Polk Station and Eastman Chemical were obtained and characterized. Bulk samples were prepared for utilization studies by screening at the appropriate size fractions where char and vitreous frit distinctly partitioned. Vitreous frit was concentrated in the +20 mesh fraction while char predominated in the -20+100 mesh fraction. The vitreous frit component derived from each gasifier slag source was evaluated for use as a pozzolan and as aggregate. Pozzolan testing required grinding the frit to very fine sizes which required a minimum of 60 kwhr/ton. Grinding studies showed that the energy requirement for grinding the Polk slag were slightly higher than for the Eastman slag. Fine-ground slag from both gasifiers showed pozzoalnic activity in mortar cube testing and met the ASTM C618 strength requirements after only 3 days. Pozzolanic activity was further examined using British Standard 196-5, and results suggest that the Polk slag was more reactive than the Eastman slag. Neither aggregate showed significant potential for undergoing alkali-silica reactions when used as concrete aggregate with ASTM test method 1260. Testing was conducted to evaluate the use of the frit product as a component of cement kiln feed. The clinker produced was comprised primarily of the desirable components Ca{sub 3}SiO{sub 5} and Ca{sub 2}SiO{sub 4} after raw ingredient proportions were adjusted to reduce the amount of free lime present in the clinker. A mobile processing plant was designed to produce 100 tons of carbon from the Eastman slag to conduct evaluations for use as recycle fuel. The processing plant was mounted on a trailer and hauled to the site for use. Two product stockpiles were generated; the frit stockpile contained 5% LOI while the carbon stockpile contained 62% LOI. The products were used to conduct recycle fuel tests. A processing plant was designed to separate the slag produced at Eastman into 3 usable products. The coarse frit

  12. Three Better Plants Partners Recognized at Industrial Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference | Department of Energy Three Better Plants Partners Recognized at Industrial Energy Technology Conference Three Better Plants Partners Recognized at Industrial Energy Technology Conference June 30, 2016 - 4:20pm Addthis Jay_Wrobel_1.jpg Two Better Plants Challenge partners, Celanese Corporation and Eastman Chemical Company, and a Better Plants Program partner, The Dow Chemical Company, were recognized at the 2016 Industrial Energy Technology Conference (IETC) for their energy

  13. Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-27

    The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

  14. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.

  15. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.

  16. Most Viewed Documents for Materials: December 2014 | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Most Viewed Documents for Materials: December 2014 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 186 Heat Treatment Procedure Qualification -- Final Technical Report Robert C. Voigt (2004) 130 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 103 The influence of grain size on the mechanical properties ofsteel Morris Jr., J.W. (2001) 99 Damage identification and health monitoring

  17. Most Viewed Documents for Materials: September 2014 | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information for Materials: September 2014 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 176 The influence of grain size on the mechanical properties ofsteel Morris Jr., J.W. (2001) 141 Heat Treatment Procedure Qualification -- Final Technical Report Robert C. Voigt (2004) 119 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 91 Damage identification and health monitoring of structural and

  18. Collegiate Wind Competition Judges 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Judges 2014 Collegiate Wind Competition Judges 2014 The following is a list of the participating judges in the U.S. Department of Energy Collegiate Wind Competition 2014. Engineering Design Review Ben Polito, President and Co-Founder of Pika Energy Charles Newcomb, Director of Technical Strategy at Endurance Wind Power Trudy Forsyth, Managing Director of Wind Advisors Team Business Plan Justin Kaster, Co-Founder and Executive Director of Cleantech Open, Midwest Division Bruce Eastman, Chief

  19. New mammography screen/film combinations: Imaging characteristics and radiation dose

    SciTech Connect (OSTI)

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Zheutlin, J.; Gornbein, J.A. )

    1990-04-01

    Five types of film (Kodak OM, Kodak OM-SO177, Konica CM, Dupont Microvision, and Fuji MiMa) exposed in combination with seven different intensifying screens (Min R, Min R Medium, Siemens Orthox MA, Kyokka HR Mammo Fine, Agfa Gevaert Detail S (old and new), and Konica Monarch) were processed for either 90 sec (at 33.3{degrees}C) or 3 min (at 35.0 degrees C). The films imaged a Computerized Imaging Reference System phantom with additional detail test objects placed on its surface to produce four groups of objects with which to evaluate resolution and contrast. For objects that tested resolution, the Kyokka HR Mammo Fine (Fuji) screen was statistically significantly superior; for objects that tested contrast, the Konica Monarch screen was statistically significantly superior. Extended processing did not affect Dupont and Kodak OM film as much as it affected the other films. It did affect contrast for the other films tested. The mean glandular doses from gridless exposures ranged from 32 to 80 mrad (0.32-0.80 mGy) over all film/screen/processing combinations for a 4.5-cm-thick test object. Several new film/screen combinations can provide images superior to the Kodak Min R/OM combination at a reduced radiation dose. The Kyokka HR Mammo Fine (Fuji) screen was found statistically superior in radiographic resolution of mammographic test objects and the Konica Monarch screen was found to be superior in defining contrast.

  20. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect (OSTI)

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  1. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson ., Steingrmsson B., Sigmundsson F., Axelsson G., rmannsson H.,...

  2. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Petersburg Place: Alaska Phone Number: (907) 772-4203 Website: www.ci.petersburg.ak.usindex. Facebook: https:www.facebook.competersburgalaska Outage...

  3. No.","Financial and Activity Report (sheet 1 of 2) Version 1...

    Broader source: Energy.gov (indexed) [DOE]

    Rental Payments, Recove","Discretionary Grant" ,"Agency Bureau","TAFS","Sub-Account ... - Recovery Act",,"Discretionary Grant","Y-US","AK-ALASKA",299762,260016,,,"appli...

  4. No.","Financial and Activity Report (sheet 1 of 2) Version 1...

    Broader source: Energy.gov (indexed) [DOE]

    Rental Payments, Recove","Discretionary Grant" ,"Agency Bureau","TAFS","Sub-Account ... - Recovery Act",,"Discretionary Grant","Y-US","AK-ALASKA",299762,296136.63,,,"ap...

  5. Yakutat Power Inc | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 30150 Utility Location Yes Ownership P NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission...

  6. P9_SCM_G_Keff_PDFs.eps

    Office of Scientific and Technical Information (OSTI)

    Knoxville, TN 37996, USA A.K. Prinja Chemical and Nuclear Engineering Department, ... a new code, CGMF * Implementation and optimization of CGMF on a parallel machine * ...

  7. Kotzebue Wind Project I | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.836485,...

  8. Unalakleet | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Unalakleet Valley Electric Cooperative Developer STG Inc. Energy Purchaser Unalakleet Location Unalakleet AK Coordinates 63.875773, -160.78527 Show...

  9. Hooper Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates...

  10. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315,...

  11. Kotzebue Wind Project Phase I | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.83907,...

  12. Selawik Wind Project | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Electric Coop Location Selawik AK Coordinates 66.608132,...

  13. Quinhagak | Open Energy Information

    Open Energy Info (EERE)

    Facility Quinhagak Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Quinhagak Energy Purchaser Quinhagak Location Quinhagek AK Coordinates...

  14. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE0025387 PRA Multiple sites in AK Environmental Resources Management Alaska Inc. (ERM); Loundsbury & Associates, Inc.; Peak Oilfield Services Company, LLC; Maritime Helicopters...

  15. Working Together to Reduce Our Environmental Footprint 2015 Earth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gila Bike Race" by Richard Banker, U.S. Army Corps of Engineers CONSERVATION: "Environmental Sampling of Marine Species near Amchitka, AK" by Elizabeth Holland, Legacy Management

  16. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  17. Sherrod Elementary Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Sherrod Elementary Wind Project Facility Sherrod Elementary Sector Wind energy Facility Type Community Wind Location AK Coordinates 61.648163,...

  18. Regional Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AEA is an independent and public corporation of the State of Alaska Created by ... for final draft development and interface with AkAES 7 Alaska's Energy Plans ...

  19. Shape Shifters: Demonstrating Tunable Phase Shifting | U.S. DOE...

    Office of Science (SC) Website

    ... measurements, data acquisition, and analysis), National Science Foundation Materials Research Science and Engineering Centers Program (materials), and NASA NNX08AK04G (microscopy). ...

  20. Maps/Directions | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  1. I

    Office of Scientific and Technical Information (OSTI)

    . AK RESEARCH AivD DEVELOPMENT REPORT By: L. R. Kelman Argonne National Laboratory ... Changes in Uranium Under Thermal Cycling By L. R. Kelman Argonne National Laboratory ...

  2. Maps of Selected State Subdivisions

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Summary Maps of Selected State Subdivisions Map 1: Alaska Map 2: California Map 3: Louisiana Map 4: New Mexico Map 5: Texas Map 6: Western Planning Area, Gulf of Mexico Map 7: Central Planning Area, Gulf of Mexico Map 8: Eastern Planning Area, Gulf of Mexico Map 1: Alaska AK 50 - North Onshore and Offshore AK 10 - South Onshore AK 05 - South State Offshore AK 00 - South Federal Offshore Map 2: California CA 50 - Coastal Region

  3. Microsoft Word - CCP-TP-030-Revision 33 (Obsolete)

    Office of Environmental Management (EM)

    Project Corrective Active Report CAR 08-025, deleted Characterization Data ... Source Recovery (OSR) Project AK Summary Report Gas Generation Rate HydrogenMethane Gen. ...

  4. Port Clarence, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clarence, Alaska: Energy Resources (Redirected from Port Clarence, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 65.2622222, -166.8458333 Show Map Loading...

  5. MHK Projects/Port Clarence | Open Energy Information

    Open Energy Info (EERE)

    arker.png","group":"","inlineLabel":"","visitedicon":"" Project Profile Project City Port Clarence, AK Project StateProvince Alaska Project Country United States Coordinates...

  6. Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rowland,Joel; Gangodagamage,Chandana; Wilson,Cathy

    2013-12-08

    The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

  7. Energy Efficiency and Conservation Block Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEP A Determination for the Energy Efficiency and Conservation Block Grant Program Application submitted by the Native Village of Tetlin of AK Energy Efficiency and Conservation ...

  8. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to projects that the private sector may not finance * Good AK Agencies to Know and Follow - AEA, AHFC, Rural Development, HUD, EPA, DOI, DOE Private Money * Requires good ...

  9. A survey of films for use as dosimeters in interventional radiology

    SciTech Connect (OSTI)

    Fajardo, L.C.; Geise, R.A.; Ritenour, E.R.

    1995-04-01

    Analysis of radiation doses in interventional radiological procedures that can lead to deterministic radiation effects such as erythema and epilation would assist physicians in planning patient care after exposure and in reducing doses. Photographic films used to measure skin exposure in the past are too sensitive for the high doses involved in interventional procedures. Seventeen different types of films, many of which are generally available in hospitals, were surveyed to see if any would meet the demands of interventional radiology. Sensitometric curves obtained demonstrate that most films are inappropriate for high dose procedures. Using Kodak Fine Grain Positive and Deupont duplicating films and automatic processing, doses as high as 2.8 Gy could be measured with reasonable accuracy. Similar results can be obtained by manually processing Kodak XV-2 verification film at room temperature.

  10. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect (OSTI)

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  11. 1950s | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information 50s To view OSTI Historical Photo Gallery, you can browse the collections below. 1940s | 1960s | 1970s | 1980s | 1990s | 2000s 1950: Remodeling Building 1950: Display 1950: Documents 1950: Group Photo 1950: IBM Punch Cards 1950: Maintenance of Kodak Film Processor 1950: Atoms for Peace Program Material 1950: Troops Train 1950: Manager 1951-1955 Armen Gregory Abdian 1950: United Nations 1950: Filing Cabinets 1950: Composition Section 1950: Geneva Conference 1950: International

  12. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Environmental monitoring report No. 1, 1 April 1997--31 June 1997

    SciTech Connect (OSTI)

    1998-02-13

    The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol was designed, constructed, and has begun operation at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to {open_quotes}demonstrate the production of methanol using the LPMEOH{trademark} Processing conjunction with an integrated coal gasification facility.{close_quotes} The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOH{trademark} process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  13. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-09-30

    The Liquid Phase Methanol (LPMEOHT") demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and is operating at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOWM Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOITM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfdly piloted at a 10 tons-per- day (TPD) rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  14. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    1997-12-31

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million effort being conducted under a cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day (TPD)) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and began a four-year operational period in April of 1997 at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOH?M Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOJYM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfidly piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This Demonstration Project is the culmination of that extensive cooperative development effort.

  15. Dose comparisons for mammographic systems

    SciTech Connect (OSTI)

    Speiser, R.C.; Zanrosso, E.M.; Jeromin, L.S.; Carlson, R.A.

    1986-09-01

    Dose estimates were made for Kodak Min-R screens combined with Kodak Min-R film and Kodak Ortho M film, both with and without a 5:1 Bucky grid; for standard xeroradiographic techniques in negative development mode; and for the new, higher sensitivity xeroradiographic process of the Xerox 175 System. The estimates were derived from exposure versus depth measurements in phantoms made of BR12 breast simulation material using thermoluminescent detectors. A molybdenum target source with molybdenum filtration, at a half-value layer of 0.37-mm Al, was used for the screen-film measurements. All xeroradiographic measurements were made with a tungsten target source with aluminum filtration at half-value layers of 1.5 to 1.56 mm Al. Mean glandular dose estimates for the Min-R screen/Ortho M film combination with Bucky grid and for the new xeroradiographic process were found to be similar. Dose reduction with the new xeroradiographic system was achieved through a more sensitive photoreceptor and more sensitive development, which also improved the unique imaging characteristics of xeroradiography.

  16. U.S. Energy Information Administration | Annual Coal Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2014 Company Name Plant Location Top Ten Manufacturers American Crystal Sugar Co MN, ND Archer Daniels Midland IA, IL, MN, NE Carmeuse Lime Stone Inc AL, IN, KY, MI, OH, PA, TN, WI Cemex Inc AL, CA, CO, FL, GA, KY, OH, TN, TX Dakota Gasification Company ND Eastman Chemical Company TN Georgia-Pacific Consumer Products LP AL, GA, OK, VA, WI Holcim (US) Inc AL, CO, MD, MO, MT, OK, SC, TX, UT NewPage Corporation MD, MI, WI U S Steel

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Cloud Data to Evaluate the Effect of a Land Surface on Clouds Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Zeng, X., W.-K. Tao, M. Zhang, C. Peters-Lidard, S. Lang, J. Simpson, S. Kumar, S. Xie, J. L. Eastman, C.-L. Shie, and J. V. Geiger, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci. (in press).

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    1996-03-31

    The Liquid Phase Methanol (LPMEOEP") Demonstration Project at K.ingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L, P. (the Partnership). The LPMEOHY Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. On 4 October 1994, Air Products and Chemicals, Inc. (Air Products) and signed the agreements that would form the Partnership, secure the demonstration site, and provide the financial commitment and overall project management for the project. These partnership agreements became effective on 15 March 1995, when DOE authorized the commencement of Budget Period No. 2 (Mod. AO08 to the Cooperative Agreement). The Partnership has subcontracted with Air Products to provide the overall management of the project, and to act as the primary interface with DOE. As subcontractor to the Partnership, Air Products will also provide the engineering design, procurement, construction, and commissioning of the LPMEOHTM Process Demonstration Unit, and will provide the technical and engineering supervision needed to conduct the operational testing program required as part of the project. As subcontractor to Air Products, Eastman will be responsible for operation of the LPMEOHTM Process Demonstration Unit, and for the interconnection and supply of synthesis gas, utilities, product storage, and other needed sewices. The project involves the construction of an 80,000 gallons per day (260 tons-per-day (TPD)) methanol unit utilizing coal-derived synthesis gas fi-om Eastman's integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that

  19. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect (OSTI)

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Coal Consumers in the Manufacturing and Coke Sectors, 2014" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, NE" "Carmeuse Lime Stone Inc","AL, IN, KY, MI, OH, PA, TN, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical

  1. July 2013 Most Viewed Documents for Materials | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information July 2013 Most Viewed Documents for Materials Heat Treatment Procedure Qualification -- Final Technical Report Robert C. Voigt (2004) 513 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 346 Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers Nanstad, R.K.; Sokolov, M.A. (1995) 241 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A.

  2. June 2014 Most Viewed Documents for Materials | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information June 2014 Most Viewed Documents for Materials Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 181 Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. (1996) 162 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 146 Heat Treatment

  3. March 2014 Most Viewed Documents for Materials | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information March 2014 Most Viewed Documents for Materials Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. (1996) 243 Enhancing thermal conductivity of fluids with nanoparticles Choi, S.U.S.; Eastman, J.A. (1995) 186 Fatigue design curves for 6061-T6 aluminum Yahr, G.T. (1993) 148 Heat Treatment

  4. UTILITY CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TR

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,0,"Adjustment 2015","AK",,"Preliminary",4976.49,21101.412,25357,8473.714,31311.156,9963,2074.419,8654.281,550,0,0,0,15524.623,61066.849,35870 2015,1,213,"Alaska Electric Light&Power Co","AK","Investor Owned","Preliminary",1913.998,15449.014,14132,1187.91,11386.218,2277,1089.611,11159.477,96,0,0,0,4191.519,37994.709,16505 2015,1,219,"Alaska Power and Telephone Co","AK","Investor

  5. UTILITY CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TR

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,0,"Adjustment 2016","AK",,"Preliminary",5053.573,21105.66,25603,8520.019,31101.352,10068,2077.402,8262.225,553,0,0,0,15650.994,60469.237,36224 2016,1,213,"Alaska Electric Light&Power Co","AK","Investor Owned","Preliminary",1959.56,15960.558,14401,1089.283,10919.319,2249,1235.123,12537.949,126,0,0,0,4283.966,39417.826,16776 2016,1,219,"Alaska Power and Telephone Co","AK","Investor

  6. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    9","AK",2009,1,6541.05,26261.245,30585,8314.598,32767.826,10631,1391.23,7394.973,534,0,0,0,16246.878,66424.044,41750 213,"Alaska Electric Light&Power Co","AK",2009,1,3587,16219,13713,2198,10943,2143,1053,5362,91,0,0,0,6838,32524,15947 219,"Alaska Power Co","AK",2009,1,676.033,2544.992,4478,879.743,3565.976,2065,0,0,0,0,0,0,1555.776,6110.968,6543 599,"Anchorage Municipal Light and

  7. Next Update: November 2016"

    U.S. Energy Information Administration (EIA) Indexed Site

    14 Released: October 2015 (Revised: November 2015) Next Update: November 2016" "YEAR","STATE","TYPE OF PRODUCER","ENERGY SOURCE (UNITS)","CONSUMPTION for ELECTRICITY" 1990,"AK","Total Electric Power Industry","Coal (Short Tons)",404871 1990,"AK","Total Electric Power Industry","Petroleum (Barrels)",961837 1990,"AK","Total Electric Power Industry","Natural

  8. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 5, July 1--September 30, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small, DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates.

  9. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    1996-12-31

    The Liquid Phase Methanol (LPMEOH(TM)) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOIWM Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. During this quarter, the Cooperative Agreement was modified (Mod AO11) on 8 October 1996, authorizing the transition born Budget Period No. 2 (Design and Construction) to the . final Budget Period (Commissioning, Start-up, and Operation), A draft Topical Report on Process Economics Studies concludes that methanol coproduction with integrated gasification combined cycle (IGCC) electric power utilizing the LPMEOW process technology, will be competitive in serving local market needs. Planning for a proof-of- concept test run of the liquid phase dimethyl ether (DME) process at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended; and a deeision to proceed is pending. Construction (Task 2.2) is 97'Mo complete, asof31 December 1996. Completion of pipe pressure testing has taken longer than expected. This will delay completion of construction by about three weeks. Commissioning activities (Task 2.3) commenced in mid-October of 1996, and the demonstration unit is scheduled to be mechanically complete on 24 January 1997.

  10. Synthesis of acrylates. Quarterly report, 1996

    SciTech Connect (OSTI)

    1996-07-01

    Over the last quarter, Eastman has completed its experimental program on propionyl generation portion of the process. An improved olefin carbonylation process has been developed as the basis of the propionate synthesis portion of the project (Task 1). Bechtel has also completed a production cost estimate for the synthesis of propionic anhydride from ethylene, carbon monoxide, and recycled propionic acid based on the yields demonstrated for the Eastman carbonylation process. The results show a cost of $0.43/lb, which we judge to be competitive as a basis for MMA, which sells for about $0. 75/lb. RTI has tested (Task 2) over 71 acid-base catalysts for the condensation of propionic anhydride/acid with formaldehyde. Other catalysts are being tested to minimize the deactivation observed on these materials. These catalysts are more likely than the V-Si-P catalysts as potential candidates for a commercial process. RTI has also completed the assembly and operation of a HTHP slurry reactor system for demonstration of liquid phase synthesis (Task 3). NCSU has tested slurry fluids including decalin and tetralin for hydrothermal, oxidative, and reductive stability. The results of their effort will be directly applicable to bench-scale testing in the RTI HTHP slurry reactor.

  11. Solar Energy Prospecting in Remote Alaska | Department of Energy

    Office of Environmental Management (EM)

    Prospecting in Remote Alaska Solar Energy Prospecting in Remote Alaska Solar-Prospecting-AK-final.jpg A new report from the U.S. Department of Energy Office of Indian Energy, ...

  12. Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report assesses the suitability of using US-developed light water SMR technology to provide energy for Schriever Air Force Base, CO and Clear Air Force Station, AK, as well as broader SMR...

  13. City of Unalaska, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Unalaska Place: Alaska Phone Number: (907) 581-1260 Website: www.ci.unalaska.ak.uspublicut Facebook: https:www.facebook.comUnalaska.DutchHarbor Outage...

  14. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Name: Galena Electric Utility Place: Alaska Phone Number: (907) 656-1301 Website: www.ci.galena.ak.usindex.asp? Outage Hotline: (907) 656-1503 AFTER HOURS References: EIA Form...

  15. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge TN 37831 8. NAME AND ADDRESS OF CONTRACTOR (No., stroot, county, Stato and ZIP Codo) (x) 9A. AMENDMENT OF SOLICITATION NO. r-- o AK RIDGE ASSOCIATED UNIVERSITIES, INC....

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","52016" ,"Release Date:","7292016" ,"Next Release Date:","8312016" ,"Excel File Name:","n3020ak4m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","52016" ,"Release Date:","7292016" ,"Next Release Date:","8312016" ,"Excel File Name:","n3020ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","52016" ,"Release Date:","7292016" ,"Next Release Date:","8312016" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","52016" ,"Release Date:","7292016" ,"Next Release Date:","8312016" ,"Excel File Name:","n3020ak3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  20. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    ... FG Fed er al Gu lf, FP Fede ra l P acific U.S. Energy Information Administration 97 1 ... SOUTH CA 6 KUPARUK RIVER AK 7 WASSON TX 8 GREEN CANYON BLK 743 (ATLANTIS) FG 9 ...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ... of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand Cubic Feet)","Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars per Thousand Cubic Feet)","Sabine ...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Cubic Feet)","Liquefied U.S. Natural Gas Exports to China (MMcf)","Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet)","Sabine Pass, LA Liquefied Natural ...

  3. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Stream Jump to: navigation, search Name: Tidal Stream Address: 76 Dukes Ave Place: London Zip: W4 2 AK Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 01926...

  4. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Prices Table 18. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope ...

  5. CX-008566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AK CX(s) Applied: B5.19 Date: 06/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  6. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  7. ARM - VAP Product - radflux1long

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, Atqasuk AK Southern Great Plains SGP C1 Browse Data Central Facility, Lamont, OK SGP E1 Browse Data Larned, KS (Extended) SGP E2 Browse Data Hillsboro, KS (Extended) SGP...

  8. ARM - Datastreams - twrcam3m

    Office of Scientific and Technical Information (OSTI)

    Atqasuk AK retired ARM Mobile Facility FKB M1 Browse Data Browse Plots Black Forest, Germany retired GRW M1 Browse Data Browse Plots Graciosa Island, Azores, Portugal retired NIM...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... from the public during Part 1 of his "Ask Argonne" video set (http:bit.ly1aK6WDv). ... "Ask Argonne" - Robert Jacob, Climate Scientist, Part 1 Jacob, Robert Argonne's climate ...

  10. Vacuum Insulation for Window

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - New construc;on - 90.1---2004 - Post---1980 construc;on (90.1---1989) - Pre---1980 ... Minneapolis, MN 14 6B Helena, MT Helena, MT 15 7 Duluth, MN Duluth, MN 16 8 Fairbanks, AK ...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","n3020ak4a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","n3020ak3a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  16. SEAGA Intermediate Level Handbook | Open Energy Information

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.fao.orgdocrep012ak213eak213e00.pdf Cost: Free Related Tools Energy and Power Evaluation Program (ENPEP) Global Relationship...

  17. CX-100519 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Koyukuk City and Tribal Office Rehabilitation Award Number: DE-EE0006482 CX(s) Applied: A9, B5.1 Weatherization & Intergovernmental Programs Date: 01/08/2016 Location(s): AK Office(s): Golden Field Office

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million ... WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Water Heating",,,,,"CO",,,"AZ","NM, NV",,"CA" ...

  19. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From 1996-2003, I was maintenance supervisor, project planner, project engineer, and area manager for AK Steel, in Middletown, Ohio, a company that produces flat-rolled steel and ...

  20. CX-100115 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Association of Village Council Presidents Award Number: DE-EE0006759 CX(s) Applied: A9, A11 Date: 11/13/2014 Location(s): AK Office(s): Golden Field Office

  1. ARM - Datastreams - 915rwptempmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noise ratio dB*100 ssnr ( time, height ) Acoustic spectral width ms; 100*%, see comment ... Locations North Slope Alaska NSA C1 Browse Data Central Facility, Barrow AK retired ...

  2. Microsoft Word - FY05 EMSP 86807 Report.doc

    Office of Scientific and Technical Information (OSTI)

    ... Environmental Science and Technology. 39, 18:7126- 7133. BORCH, T.; BIEDERMAN, J.A.; MOGK, D.W.; GERLACH, R.; BUTTERFIELD, P.W.; JORDAN, R.N.; CAMPER, A.K.: Characterization of Two ...

  3. Notices ENVIRONMENTAL PROTECTION AGENCY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plan, North Slope Borough, AK, Review Period Ends: 01292013, Contact: Serena Sweet 907-271-4543. EIS No. 20120398, Final EIS, NPS, WI, Ice Age Complex at Cross Plains ...

  4. NSAR Ten Year Renewable Energy Plan - Integration Planning

    Energy Savers [EERE]

    27 Always gov't fine print 28 From Fairbanks originally 29 My inspiration 30 Twins 31 Sweet Caroline 32 www.CCHRC.org check it out 33 Off to work 34 Braided Stream 35 AK Marine ...

  5. CX-100263 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Akutan Geothermal Project Award Number: DE-EE0000329 CX(s) Applied: A9, B3.1 Geothermal Technologies Office Date: 06/04/2015 Location(s): AK Office(s): Golden Field Office

  6. CX-100116 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Akutan Award Number: DE-EE0000329 CX(s) Applied: A9, B3.1 Date: 11/13/2014 Location(s): AK Office(s): Golden Field Office

  7. Performance Assessment for Transuranic Waste

    National Nuclear Security Administration (NNSA)

    ... al. 1978a, b; Gholz 1982; Law and Waring 1994; Hansen et al. 2000; Knapp and Smith 2001). ... Knapp, A.K., and M.D. Smith. 2001. Variation among biomes in temporal dynamics of ...

  8. https://mi3.ncdc.noaa.gov/mi3report/MISC/asos-stations.txt

    National Nuclear Security Administration (NNSA)

    20021988 26410 502177 CDV CORDOVA M K SMITH AP CORDOVA AP UNITED STATES AK ... 36.28333 20000623 13964 032574 FSM FT SMITH RGNL AP FT SMITH RGNL AP UNITED STATES AR ...

  9. Department of Energy to Host ARPA-E Energy Innovation Summit...

    Broader source: Energy.gov (indexed) [DOE]

    (R-TN) U.S. Senator Lisa Murkowski (R-AK) U.S. Senator Mark Udall (D-CO) Rep. Steve Israel (D-NY) Find more information and register for the ARPA-E Energy Innovation Summit. ...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Support for the ARMNSA Site Brower, W.S.(a), Jensen, A.M.(a), Ivanoff, J. Sr.(a), ... The NSA CART site in Barrow, AK is supported by two local organizations. The first is ...

  11. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OK, Topeka, KS, and Dodge City, KS), the NSA (Barrow, AK), and historical data for the ... They contain soundings for a given month. nsa,sgp,twp06snwsupastation.00 Six second ...

  12. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. ...

  13. Procurement Directors DATE: TO:

    Broader source: Energy.gov (indexed) [DOE]

    Sequence 211 cause of commercial purchase orders. Government procurement. DoD, GSA, and NASA published a RIN 9000-AK46 proposed rule in the Federal Register at March l5, 2007 71 FR...

  14. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  15. 2014 YWC Gallery | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 2,253 125,452 12,449.0 9.92 Alaska Power and Telephone Co AK Investor Owned 2,302 38,952 10,341.0 26.55 Alaska Village Elec Coop, Inc AK Cooperative 2,960 62,209 32,334.0 51.98 Anchorage Municipal Light and Power AK Municipal 6,362 879,373 113,515.6 12.91

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9050ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9030ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9012ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9020ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9050ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9030ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9020ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9010ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9011ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9012ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9040ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2014 ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9040ak2a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9011ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","62016" ,"Release Date:","8312016" ,"Next Release Date:","9302016" ,"Excel File Name:","n9010ak2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  10. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ... View Dataset August 2010 ARM Climate Modeling Best Estimate Barrow, AK with additional satellite product (ARMBE-CLDRAD NSAC1 V2.1a) McCoy, Renata ; Xie, Shaocheng The ARM CMBE-ATM ...

  11. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 April 16, 2010 New Mexico Environment Department 2905 East Rodeo Park Drive Building 1 Santa Fe, New Mexico 87505-6303 Subject: Request for Evaluation of an AK Sufficiency Determination for SR- BClDP.003 Dear Mr. Bearzi : We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for Battelle Columbus laboratory

  12. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PO Box 3090 Ca rl sbad , New Mexico 88221 MAY 20 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg . 1 Santa Fe , New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001 .002 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site (SRS) waste stream

  13. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POBox 3090 Ca rl sbad , New Mexico 88221 JU 16 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg . 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.002 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site (SRS) waste stream

  14. Mr. James Bearzi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 JUN 16 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.002 Dear Mr. Bearzi : We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at the Savannah River Site

  15. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico ~8221 JUN"1 G 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.003 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at

  16. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmen t of Energy Carlsbad Field Office . P. O. Box 3090 Carlsbad , New Mexico 8822 1 AY 2 () 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001.001 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP)

  17. 01240_NStransportation | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 6/3/2014 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background

  18. Project_Descriptions_ITP_ARRA_Awards.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selections for Industrial Technologies Program Recovery Act Funding Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment Award Winners City and State Project Description Total DOE Funding Air Products and Chemicals, Inc. Middletown, OH Waste Energy Project at the AK Steel Corporation Middletown Works. The project will construct a combined cycle power generation plant at the Middletown, OH, works of AK

  19. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    042007 Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for SR-Rl- BClDP.001 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for Battelle Columbus laboratory (BCl) waste stream SR-Rl-BClDP.001. In accordance with the Waste

  20. Tlingit and Haida Regional Housing Authority Energy Cents Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Review March 26 th , 2014 Tasha McKoy * Tlingit Haida Regional Housing Authority (THRHA) is the largest housing provider in Southeast, AK * Program focus is small household energy efficiency upgrades and region wide energy conservation education * Program deliverables: - Train 28 field assessors to conduct energy assessments in 400 homes throughout Southeast, AK - Energy fairs/community meetings in 14 communities - K-12 education * 28 field assessors conduct home assessments * 81 donators, *

  1. Leading the Charge: Native Leaders Give Tribes a Voice on White House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Task Force | Department of Energy Native Leaders Give Tribes a Voice on White House Climate Task Force Leading the Charge: Native Leaders Give Tribes a Voice on White House Climate Task Force March 13, 2014 - 10:56am Addthis Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN) Chairwoman Karen Diver, Fond du Lac Band of Lake Superior Chippewa (MN) Mayor Reggie Joule, Northwest Arctic Borough (AK) Mayor Reggie Joule, Northwest Arctic Borough (AK) Chairwoman Karen

  2. Measurement of relative output factors for the 8 and 4 mm collimators of Leksell Gamma Knife Perfexion by film dosimetry

    SciTech Connect (OSTI)

    Novotny, Josef Jr.; Bhatnagar, Jagdish P.; Quader, Mubina A.; Bednarz, Greg; Lunsford, L. Dade; Huq, M. Saiful

    2009-05-15

    Three types of films, Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55, were used to measure relative output factors of 4 and 8 mm collimators of the Leksell Gamma Knife Perfexion. The optical density to dose calibration curve for each of the film types was obtained by exposing the films to a range of known doses. Ten data points were acquired for each of the calibration curves in the dose ranges from 0 to 4 Gy, 0 to 8 Gy, and 0 to 80 Gy for Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55 films, respectively. For the measurement of relative output factors, five films of each film type were exposed to a known dose. All films were scanned using EPSON EXPRESSION 10000 XL scanner with 200 dpi resolution in 16 bit gray scale for EDR2 film and 48 bit color scale for Gafchromic films. The scanned images were imported in the red channel for both Gafchromic films. The background corrections from an unexposed film were applied to all films. The output factors obtained from film measurements were in a close agreement both with the Monte Carlo calculated values of 0.924 and 0.805 for 8 and 4 mm collimators, respectively. These values are provided by the vendor and used as default values in the vendor's treatment planning system. The largest differences were noted for the Kodak EDR 2 films (-2.1% and -4.5% for 8 and 4 mm collimators, respectively). The best agreement observed was for EBT Gafchromic film (-0.8% and +0.6% differences for 8 and 4 mm collimators, respectively). Based on the present values, no changes in the default relative output factor values were made in the treatment planning system.

  3. Digital field ion microscopy

    SciTech Connect (OSTI)

    Sijbrandij, S.J.; Russell, K.F.; Miller, M.K.; Thomson, R.C.

    1998-01-01

    Due to environmental concerns, there is a trend to avoid the use of chemicals needed to develop negatives and to process photographic paper, and to use digital technologies instead. Digital technology also offers the advantages that it is convenient, as it enables quick access to the end result, allows image storage and processing on computer, allows rapid hard copy output, and simplifies electronic publishing. Recently significant improvements have been made to the performance and cost of camera-sensors and printers. In this paper, field ion images recorded with two digital cameras of different resolution are compared to images recorded on standard 35 mm negative film. It should be noted that field ion images exhibit low light intensity and high contrast. Field ion images were recorded from a standard microchannel plate and a phosphor screen and had acceptance angles of {approximately} 60{degree}. Digital recordings were made with a Digital Vision Technologies (DVT) MICAM VHR1000 camera with a resolution of 752 x 582 pixels, and a Kodak DCS 460 digital camera with a resolution of 3,060 x 2,036 pixels. Film based recordings were made with Kodak T-MAX film rated at 400 ASA. The resolving power of T-MAX film, as specified by Kodak, is between 50 and 125 lines per mm, which corresponds to between 1,778 x 1,181 and 4,445 x 2,953 pixels, i.e. similar to that from the DCS 460 camera. The intensities of the images were sufficient to be recorded with standard fl:1.2 lenses with exposure times of less than 2 s. Many digital cameras were excluded from these experiments due to their lack of sensitivity or the inability to record a full frame image due to the fixed working distance defined by the vacuum system. The digital images were output on a Kodak Digital Science 8650 PS dye sublimation color printer (300 dpi). All field ion micrographs presented were obtained from a Ni-Al-Be specimen.

  4. High-speed plasma imaging: A lightning bolt

    SciTech Connect (OSTI)

    Wurden, G.A.; Whiteson, D.O.

    1996-02-01

    Using a gated intensified digital Kodak Ektapro camera system, the authors captured a lightning bolt at 1,000 frames per second, with 100-{micro}s exposure time on each consecutive frame. As a thunder storm approaches while darkness descended (7:50 pm) on July 21, 1994, they photographed lightning bolts with an f22 105-mm lens and 100% gain on the intensified camera. This 15-frame sequence shows a cloud to ground stroke at a distance of about 1.5 km, which has a series of stepped leaders propagating downwards, following by the upward-propagating main return stroke.

  5. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect (OSTI)

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  6. Images of plasma disruption effects in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Maqueda, R.J.; Wurden, G.A.

    1999-02-01

    Fast-framing imaging of visible radiation from magnetically confined plasmas has lately become a useful tool for both machine operation and physics studies. Using an intensified, commercial Kodak Ektapro imaging system, the effects of a plasma disruption were observed in the Tokamak Fusion Test Reactor (TFTR). The high-energy runaway electrons created soon after the disruption collide with the plasma facing components damaging this surface and producing a shower of debris that traverses the toroidal vessel and falls over the inner bumper limiter.

  7. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    SciTech Connect (OSTI)

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project

  8. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    SciTech Connect (OSTI)

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  9. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  10. CO{sub 2} HYDRATE PROCESS FOR GAS SEPARATION

    SciTech Connect (OSTI)

    G. Deppe; R. Currier; D. Spencer

    2004-01-01

    Modifications were implemented to the hydrogen flow test rig per safety review comments, and the apparatus was tested for leaks. Tests were then done using Helium/CO{sub 2} mixtures to re-verify performance prior to hydrogen testing. It was discovered that hydrate formation was more difficult to initiate, and new initiation methods were developed to improve the tests. Delivery of ETM hardware continued and buildup of the ETM system continued, the ETM is now mechanically complete. The STU (pilot plant) site selection process was resumed because Tennessee Eastman declined to participate in the program. Two potential sites were visited: The Global Energy/Conoco-Phillips Wabash River Plant, and the Tampa Electric Polk Power Plant.

  11. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  12. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  13. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{sup trademark}) process. Third quarterly report, 1996

    SciTech Connect (OSTI)

    1997-09-01

    The Liquid Phase Methanol (LPMEOH)(TM) demonstration project at King sport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol is being designed and constructed at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The Partnership will own and operate the facility for the four year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to `demonstrate the production of methanol using the LPMEOH(TM) Process in conjunction with an integrated coal gasification facility.` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four year demonstration period. The LPMEOH(TM) process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  14. Synthesis of acrylates and methacrlyates from coal-derived syngas. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Tischer, R.E.; Spivey, J.J.

    1995-08-01

    The objective Task 1, Synthesis of Propionates, is to develop the technology for the synthesis of low-cost propionates. These propionates are the basic feedstock for the subsequent reaction with formaldehyde to produce the target molecule, methyl methacrylate (MMA). Eastman has explored several possible routes to the propionates and has concluded that the most promising is the synthesis of propionic anhydride from the reaction of propionic acid from and ethylene (and also hydrogen in some cases). The main advantage of the anhydride over the acid is that its subsequent reaction with formaldehyde does not produce water, which can lead to undesired byproducts. Bechtel is carrying out a cost analysis of the Eastman route to the anhydride to determine if it is potentially competitive with commercially practiced routes to the same molecule. The answer is expected next quarter. The objective Task 2, Condensation Catalysis to develop catalysts for the condensation of the propionate (propionic anhydride is our target molecule) with formaldehyde. This reaction produces methacrylic acid (MAA), which would then be reacted with methanol to produce MMA in the slurry reactor. We have synthesized a wide range of catalysts and the results show that there is substantial byproduct formation, including 3-pentanone and some propionic acid. Our results show the highest yields of MAA using an alkalized alumina (1%Na/{sub y}-AI{sub 2}O{sub 3}). Although the condensation of propionic acid with formaldehyde is well studied in the literature, little is reported on the condensation of the anhydride. Although it is likely that the same general types of acid/base catalysts that promote the acid condensation will also promote that of the anhydride, the strength and balance of the acid and base sites is likely to be different. We plan to explore the relationship of the catalyst properties and MMA yields using the Altamira system, due to be delivered this next quarter.

  15. High-energy x-ray response of photographic films: models and measurement

    SciTech Connect (OSTI)

    Henke, B.L.; Uejio, J.Y.; Stone, G.F.; Dittmore, C.H.; Fujiwara, F.G.

    1986-11-01

    A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the 1000-10,000-eV region. The absortpion and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/..mu..m/sup 2/), the photon energy, E (eV), and the angle of incidence, 0, of the exposing radiation. A detailed table is presented for the I values corresponding to optical densities in the 0.2--2.0 range and to photon energies, E (eV), in the 1000-10,000-eV region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse of specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the 1000-10,000-eV region this x-ray film is appreciably less sensitive but has higher resolution.

  16. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    SciTech Connect (OSTI)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-08-15

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D{sub max} were found to be 2.8, 3.0, 3.2, and 3.4 mm ({+-}0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm{+-}0.2 mm (Kodak EDR2) and 3.6 mm{+-}0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D{sub max} was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams.

  17. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect (OSTI)

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  18. On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase

    SciTech Connect (OSTI)

    Brokaw, Jason B.; Chu, Jhih-wei

    2010-11-17

    We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier works of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.

  19. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,41959 213,"Alaska Electric Light&Power Co","AK",2010,1,1535.941,15011.6,13783,980.665,11721.382,2156,987.54,11255.996,91,0,0,0,3504.146,37988.978,16030 219,"Alaska Power and Telephone Co","AK",2010,1,668.02,2319.376,4592,921.903,3261.675,2099,0,0,0,0,0,0,1589.923,5581.051,6691 599,"Anchorage Municipal Light and

  20. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    1","AK",2011,1,6234.999,25389.363,30394,8864.339,33363.108,11226,1796.286,8445.807,406,0,0,0,16895.624,67198.278,42026 213,"Alaska Electric Light&Power Co","AK",2011,1,1913.906,15780.043,13800,1191.056,11892.612,2172,749.249,8392.574,93,0,0,0,3854.211,36065.229,16065 219,"Alaska Power and Telephone Co","AK",2011,1,776.905,2477.956,4683,989.646,3281.279,2102,0,0,0,0,0,0,1766.551,5759.235,6785 599,"Anchorage Municipal Light and