National Library of Energy BETA

Sample records for airshares eu carbon

  1. AirShares EU Carbon Allowances Fund | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Jump to: navigation, search Name: AirShares EU Carbon Allowances Fund Place: New York, New York Zip: 10170 Product: AirShares is a commodity...

  2. Queens County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  3. Bronx County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  4. New York, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  5. Richmond County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  6. New York County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  7. Kings County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AirShares EU Carbon Allowances Fund Allco Renewable Energy Group Limited LLC AltPower Inc Alternative Fuels Vehicle Group Ambata Capital Partners American Wind Power Hydrogen LLC...

  8. Antje Wittenberg, Directorate General for Enterprise and Industry, The EU

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raw Materials Initiative and the Report of the Ad-hoc Group | Department of Energy Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the Ad-hoc Group Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the Ad-hoc Group Office presentation icon Session_A2_Wittenberg_0.ppt More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: Scope

  9. CHO Invest EU1 | Open Energy Information

    Open Energy Info (EERE)

    CHO Invest EU1 Jump to: navigation, search Name: CHO Invest EU1 Place: Morcenx, France Product: France-based CHO Power electricity production unit Coordinates: 44.033454,...

  10. EU Energy Shriram EPC | Open Energy Information

    Open Energy Info (EERE)

    search Name: EU Energy - Shriram EPC Place: United Kingdom Sector: Wind energy Product: Joint venture set up for the acquisition of DeWind GmbH from FKI. References: EU Energy -...

  11. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    Open Energy Info (EERE)

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  12. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    EU (Smart Grid Project) Jump to: navigation, search Project Name EcoGrid EU Country Denmark Headquarters Location Bornholm, Denmark Coordinates 55.160427, 14.866884 Loading...

  13. EU Energy Wind Limited | Open Energy Information

    Open Energy Info (EERE)

    Wind Limited Jump to: navigation, search Name: EU Energy (Wind) Limited Place: Central Milton Keynes, United Kingdom Zip: K9 1LH Sector: Wind energy Product: The company will be...

  14. Measurement and analysis of the muonic x rays of /sup 151/Eu and /sup 153/Eu

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-05-01

    Monopole and quadrupole charge distributions of /sup 151/Eu and /sup 153/Eu were investigated by muonic atom K and L x-ray measurements. The model-independent Barrett charge radii R/sub k/ and the isotope shift ..delta..R/sub k/ were measured, and the value of ..delta.. = 0.606(18) fm/sup 2/ was deduced. This isotope shift is the largest known of all nuclear pairs. The isomer shift of the first excited state of /sup 153/Eu is found to be close to zero, in contrast to the large isomer shifts observed in its neighbors: /sup 152/Sm and /sup 154/Gd. The quadrupole moments of the first excited states were determined as Q/sup 151/((7/2)/sup +/) = 1.28(2) e b and Q/sup 153/((7/2)/sup +/) = 0.44(2) e b. The value for /sup 151/Eu and its ground-state quadrupole moment of Q/sup 151/((5/2)/sup +/) = 0.90(1) e b reported previously are several times larger than the respective single particle units. This fact shows that a fair amount of collectivity is involved in the (5/2)/sup +/ ground state and in the (7/2)/sup +/ first excited state of /sup 151/Eu.

  15. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect (OSTI)

    Poulopoulos, P.; Goschew, A.; Straub, A.; Fumagalli, P.; Kapaklis, V.; Wolff, M.; Delimitis, A.; Wilhelm, F.; Rogalev, A.; Pappas, S. D.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  16. Evidence of Eu{sup 2+} 4f electrons in the valence band spectra of EuTiO{sub 3} and EuZrO{sub 3}

    SciTech Connect (OSTI)

    Kolodiazhnyi, T.; Valant, M.; Williams, J. R.; Bugnet, M.; Botton, G. A.; Ohashi, N.; Sakka, Y.

    2012-10-15

    We report on optical band gap and valence electronic structure of two Eu{sup 2+}-based perovskites, EuTiO{sub 3} and EuZrO{sub 3} as revealed by diffuse optical scattering, electron energy loss spectroscopy, and valence-band x-ray photoelectron spectroscopy. The data show good agreement with the first-principles studies in which the top of the valence band structure is formed by the narrow Eu 4f{sup 7} electron band. The O 2p band shows the features similar to those of the Ba(Sr)TiO{sub 3} perovskites except that it is shifted to higher binding energies. Appearance of the Eu{sup 2+} 4f{sup 7} band is a reason for narrowing of the optical band gap in the title compounds as compared to their Sr-based analogues.

  17. The magnetic structure of EuCu2Sb2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  18. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  19. U.S. and EU Unite to Strengthen Economic Integration and Boost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EU Unite to Strengthen Economic Integration and Boost Jobs, Growth and Competitiveness U.S. and EU Unite to Strengthen Economic Integration and Boost Jobs, Growth and ...

  20. Optical Probing of metamagnetic phases in epitaxial EuSe

    SciTech Connect (OSTI)

    Galgano, G. D.; Henriques, A. B.; Bauer, G.; Springholz, G.

    2011-12-23

    EuSe is a wide gap magnetic semiconductors with a potential for applications in proof-of-concept spintronic devices. When the temperature is lowered, EuSe goes through sharp transitions between a variety of magnetic phases and is thus described as metamagnetic. The purpose of the present investigation is to correlate the magnetic order to the sharp dichroic doublet, discovered recently in high quality thin epitaxial layers of EuSe, grown by molecular beam epitaxy. We report detailed measurements of the doublet positions and intensities as a function of magnetic field in low temperatures, covering several magnetic phases.

  1. Eu{sup 3+} luminescence enhancement by intercalation of benzenepolycarboxylic guests into Eu{sup 3+}-doped layered gadolinium hydroxide

    SciTech Connect (OSTI)

    Gu, Qingyang; Pan, Guohua; Ma, Teng; Huang, Gailing; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2014-05-01

    Graphical abstract: Two benzenepolycarboxylic sensitizers, 1,3,5-benzenetricarboxylic acid (BTA) and 1,2,4,5-benzenetetracarboxylic acid (BA), were intercalated into NO{sub 3}LGdH:Eu, in which different structures of the compounds resulted in varied arrangement in the gallery. The two organic compounds especially BA markedly enhanced the red luminescence of Eu{sup 3+} due to efficient energy transfer between the organic guests and Eu{sup 3+} centers. - Highlights: We report the intercalation of benzenepolycarboxylic organic sensitizers into LRH. We study the intercalation structure and the arrangement of the interlayer guests. The two organic compounds can markedly enhance the luminescence of Eu{sup 3+}. There exists efficient energy transfer between organic guests and Eu{sup 3+} centers. This material opens a route for fabricating new multifunctional luminescent materials. - Abstract: Two benzenepolycarboxylic organic sensitizers, 1,3,5-benzenetricarboxylic acid (BTA) and 1,2,4,5-benzenetetracarboxylic acid (BA), were intercalated into the gallery of NO{sub 3}{sup ?} type Eu{sup 3+}-doped layered gadolinium hydroxide (NO{sub 3}LGdH:Eu). CHN analysis, FTIR, and SEM were employed to characterize the intercalation structures of the as-prepared organic/inorganic hybrids. The area per unit charge (S{sub charge}) was used to explain the intercalation structure and the arrangement of the interlayer guests. Different structures of the two organic compounds resulted in varied arrangement of guests. Photoluminescence studies indicated that both of the two organic compounds especially BA markedly enhanced the red luminescence of Eu{sup 3+} due to efficient energy transfer between the organic guests and Eu{sup 3+} centers.

  2. EU Energy Voith Turbo JV | Open Energy Information

    Open Energy Info (EERE)

    JV Jump to: navigation, search Name: EU Energy & Voith Turbo JV Place: Germany Sector: Wind energy Product: Joint co-operation agreement for the development of the Voith WinDrive...

  3. CMI hosts EU, Japan to discuss global critical materials strategy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI hosts EU, Japan to discuss global critical materials strategy Submitted by mlthach on Wed, 09102014 - 18:00 Finding ways to ensure the planet's supply of rare earths and...

  4. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu[superscript 2+]/Eu[superscript 3+] ratios by XANES

    SciTech Connect (OSTI)

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Burger, P.V.; Shearer, C.K.; Le, L.; Newville, M.; Choi, Y.

    2010-03-16

    We have determined D{sub Eu} between augite and melt in samples that crystallized from a highly spiked martian basalt composition at four f{sub O{sub 2}} conditions. D{sub Eu} augite/melt shows a steady increase with f{sub O{sub 2}} from 0.086 at IW-1 to 0.274 at IW+3.5. This increase is because Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure; thus increasing f{sub O{sub 2}} leads to greater Eu{sup 3+}/Eu{sup 2+} in the melt and more Eu (total) can partition into the crystallizing pyroxene. This interpretation is supported by direct determinations of Eu valence state by XANES, which show a steady increase of Eu{sup 3+}/Eu{sup 2+} with increasing f{sub O{sub 2}} in both pyroxene (0.38 to 14.6) and glass (0.20 to 12.6) in the samples. Also, pyroxene Eu{sup 3+}/Eu{sup 2+} is higher than that of adjacent glass in all the samples, which verifies that Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure. Combining partitioning data with XANES data allows for the calculation of specific valence state D-values for augite/melt where D{sub Eu{sup 3+}} = 0.28 and D{sub Eu{sup 2+}} = 0.07.

  5. New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Feng; Meltzer, Richard S.; Li, Xufan; Budai, John D.; Chen, Yu -Sheng; Pan, Zhengwei

    2014-01-01

    Eu2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu2+ ions in a new hexagonal EuAl2O4 phosphor whose Eu2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emission exhibits a typical radiative lifetime ofmore » 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less

  6. A least-cost optimisation model of CO{sub 2} capture applied to major UK power plants within the EU-ETS framework

    SciTech Connect (OSTI)

    Kemp, A.G.; Kasim, A.S.

    2008-02-15

    Concerns about the cost of CO{sub 2} capture and sequestration, and the effectiveness of carbon abatement policies loom large in discussions on climate change mitigation. Several writers address the issue from various perspectives. This paper attempts to add relative realism to discussions on CO{sub 2} capture costs and the deployment of carbon capture technology in the UK by using publicly available company data on the long term capacity expansion and CO{sub 2} capture investment programmes of selected power plants in the UK. With an estimated 8 billion plan to install a generation capacity of GW and capture capability of 44 Mt CO{sub 2}/year, it is imperative to optimise this huge potential investment. A least-cost optimisation model was formulated and solved with the LP algorithm available in GAMS. The model was then applied to address a number of issues, including the choice of an optimal carbon abatement policy within the EU-ETS framework. The major findings of the study include (a) the long term total cost curve of CO{sub 2} capture has three phases rising, plateau, rising; (b) alternative capture technologies do not have permanent relative cost advantages or disadvantages; (c) Government incentives encourage carbon capture and the avoidance of emission penalty charges; and (d) the goals of EU-ETS are more effectively realised with deeper cuts in the EUA ratios than merely hiking the emission penalty, as proposed in EU-ETS Phase II.

  7. Report on the EU-US Environmental Biotechnology Workshop on Microbial Community Dynamics: Cooperation and Competition

    SciTech Connect (OSTI)

    Wall, Judy D.

    2013-07-01

    The Workshop on Microbial Community Dynamics: Cooperation and Competition to be held in the fall of 2012 in St. Louis, Missouri, USA, is an initiative of the Environmental Biotechnology Working Group of the EU-US Taskforce on Biotechnology Research, a cooperative program between the European Commission and the United States of America. The activities of the Environmental Biotechnology Working Group have as their goals to provide a forum for early career scientists from the US and EU to meet, to learn cutting edge research in the area of microbial biotechnology from world experts and to set the groundwork for future cooperation and collaboration. Workshop topics will address fundamental physiology and genetics of microbial communities that will contribute to advances in bioremediation, bioenergy conversion and carbon sequestration. Senior scientist participants will be world renowned experts who will present the current status of their fields and forecast research challenges and opportunities. It is a goal of the Environmental Biotechnology Working Group to facilitate the formation of direct collaborations among US and European scientists in programs of mutual interest and benefit. Therefore, the workshop will also provide an opportunity for members of the Working Group and attendees to identify areas where advancement is necessary and plan the steps necessary for realizing future research collaborations. In addition, time will be provided for mentoring of the early career scientists by the senior scientists on an individual basis.

  8. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS...

    Energy Savers [EERE]

    ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL...

  9. Effect of Eu substitution on superconductivity in Ba{sub 8?x}Eu{sub x}Al{sub 6}Si{sub 40} clathrates

    SciTech Connect (OSTI)

    Liu, Lihua; Bi, Shanli; Peng, Bailu; Li, Yang

    2015-05-07

    The silicon clathrate superconductor is uncommon as its structure is dominated by strong Si-Si covalent bonds, rather than the metallic bond, that are more typical of traditional superconductors. To understand the influence of large magnetic moment of Eu on superconductivity for type-I clathrates, a series of samples with the chemical formula Ba{sub 8?x}Eu{sub x}Al{sub 6}Si{sub 40} (x?=?0, 0.5, 1, and 2) were synthesised in which Eu occupied Ba sites in cage center. With the increase of Eu content, the cubic lattice parameter decreases monotonically signifying continuous shrinkage of the constituting (Ba/Eu)@Si{sub 20} and (Ba/Eu)@Si{sub 24} cages. The temperature dependence of magnetization at low temperature revealed that Ba{sub 8}Al{sub 6}Si{sub 40} is superconductive with transition temperature at T{sub C}?=?5.6?K. The substitution of Eu for Ba results in a strong superconductivity suppression; Eu-doping largely decreases the superconducting volume and transition temperature T{sub C}. Eu atoms enter the clathrate lattice and their magnetic moments break paired electrons. The Curie-Weiss temperatures were observed at 3.9, 6.6, and 10.9?K, respectively, for samples with x?=?0.5, 1.0, and 2.0. Such ferromagnetic interaction of Eu can destroy superconductivity.

  10. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  11. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  12. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  13. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent HalidesAB2I5:Eu2+(A=Li–Cs;B=Sr, Ba)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer themore » B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.« less

  14. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent HalidesAB2I5:Eu2+(A=Li–Cs;B=Sr, Ba)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer themore »B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.« less

  15. U.S. and EU Unite to Strengthen Economic Integration and Boost Jobs, Growth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Competitiveness | Department of Energy EU Unite to Strengthen Economic Integration and Boost Jobs, Growth and Competitiveness U.S. and EU Unite to Strengthen Economic Integration and Boost Jobs, Growth and Competitiveness November 9, 2006 - 9:25am Addthis WASHINGTON, DC - Today, the Bush Administration hosted the second informal U.S.-EU economic ministerial meeting to discuss transatlantic economic integration and shared economic challenges. Commerce Secretary Carlos M. Gutierrez and

  16. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  17. Modulated ferromagnetic ordering and the magnetocaloric response of Eu{sub 4}PdMg

    SciTech Connect (OSTI)

    Ryan, D. H. Legros, Analle; Niehaus, Oliver; Pttgen, Rainer; Cadogan, J. M.; Flacau, R.

    2015-05-07

    Neutron powder diffraction confirms that the primary ordering mode in Eu{sub 4}PdMg is ferromagnetic with a europium moment of 6.5(2) ?{sub B}. {sup 151}Eu Mssbauer spectroscopy shows that the unusual linear temperature dependence of the magnetisation reported for this system is an intrinsic property and not an artefact of the applied field. The form and temperature evolution of the {sup 151}Eu Mssbauer spectra strongly suggest that there is an incommensurate modulation to the magnetic structure that modifies the basic ferromagnetic order. This modulated structure may be the origin of the broad magnetocaloric response previously observed in Eu{sub 4}PdMg.

  18. The magnetic structure of EuCu2Sb2

    SciTech Connect (OSTI)

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mssbauer spectroscopy. The room temperature 151Eu isomer shift of 12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) ?B which is the full free-ion moment expected for the Eu2+ ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.

  19. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future PDF icon US-EU-Japan Working Group on Critical Materials.pdf

  20. Optical and structural stability of blue SrO:Eu{sup 2+} phosphor

    SciTech Connect (OSTI)

    Komatsu, Keiji; Nakamura, Atsushi; Ohshio, Shigeo; Toda, Ikumi; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2013-08-15

    Chemical stability of 6-coodinated SrO is a fundamental problem when this is used for various applications. In this study, optical and chemical stabilities of 8-coordinated SrO:Eu{sup 2+} phosphor were investigated. SrO:Eu{sup 2+} phosphor was synthesized from thermal treatment of SrO:Eu powder located on a single crystalline MgO at 1500 C under reduction atmosphere. Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence and chemical stability in distilled water for 3 days. Our findings prove that obtained 8-coordinated SrO:Eu{sup 2+} possesses relative optical and chemical stabilities in water. - Graphical abstract: Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence in distilled water. Highlights: We investigated optical and chemical stabilities of 8-coordinated SrO:Eu{sup 2+} phosphor in water. Obtained 8-coordinated SrO:Eu{sup 2+} phosphor exhibit strong blue luminescence and chemical stability in distilled water for 3 days. We found that the 8-coodrodinated SrO crystal structure changed to SrCO{sub 3} crystal structure after the 5 days immersion. The obtained SrO:Eu{sup 2+} phosphor possesses high chemical stability under water, compared with commercial (6-coordinated) SrO.

  1. EU Energy Renewables Ltd now part of DeWind | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Previously a subsidiary of EU Energy plc focused on researching renewable energy technologies, until acquisition by Composite Technology...

  2. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future PDF icon US-EU-Japan Working Group on Critical Materials.pdf

  3. SrAgZn and EuAgZn with KHg{sub 2}-type structureStructure, magnetic properties, and {sup 151}Eu Mssbauer spectroscopy

    SciTech Connect (OSTI)

    Gerke, Birgit; Rodewald, Ute Ch.; Niehaus, Oliver; Pttgen, Rainer

    2013-07-15

    Samples of SrAgZn and EuAgZn were synthesized by reaction of the elements in sealed tantalum crucibles. Both structures were refined on the basis of single crystal X-ray diffractometer data: KHg{sub 2}-type, Imma, a=476.7(1), b=780.9(2), c=810.1(2) pm, R{sub 1}/wR{sub 2}=0.0189/0.0119, 381 F values for SrAg{sub 1.12}Zn{sub 0.88} and a=474.43(9), b=760.8(2), c=799.0(2) pm, R{sub 1}/wR{sub 2}=0.0226/0.0483, 370 F values for EuAg{sub 1.17}Zn{sub 0.83} with 13 variables per refinement. Silver and zinc are randomly distributed on the Hg position and build up three-dimensional networks. EuAgZn shows ferromagnetic ordering at 29(1) K. In the temperature range from 75 to 300 K the sample shows CurieWeiss behaviour with ?{sub eff}=7.87(1) ?{sub B}/Eu atom and ?{sub P}=37.1(1) K, indicating divalent europium. {sup 151}Eu Mssbauer spectroscopic measurements confirmed the divalent state with an isomer shift of ?9.31 mm/s at 78 K. Temperature dependent {sup 151}Eu data show first magnetic hyperfine field splitting at 25 K and a saturated magnetization of 17 T at 5.2 K. The temperature dependence can be described by an S=7/2 Brillouin function. - Graphical abstract: The near neighbor coordination of the strontium and europium atoms in SrAg{sub 1.12}Zn{sub 0.88}, EuAg{sub 1.17}Zn{sub 0.83}, and EuAuZn. - Highlights: Synthesis of new intermetallic zinc compounds SrAgZn and EuAgZn. Ferromagnetic ordering of EuAgZn at 29 K. Magnetic hyperfine field splitting in the {sup 151}Eu Mssbauer spectrum.

  4. Low-temperature solvothermal synthesis of EuS hollow microspheres

    SciTech Connect (OSTI)

    Peng, Yong; Wang, Hong; Li, Peng; Fu, Yao Xing, Mingming; Jiang, Tao; Luo, Xixian

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. We have successfully synthesised the EuS hollow microsphere at 230 C in acetonitrile. The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis, and UVvis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 ?m. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.

  5. Growth and optical properties of partially transparent Eu doped CaF{sub 2} ceramic

    SciTech Connect (OSTI)

    Ghosh, Manoranjan Sen, Shashwati Pitale, S. S. Goutam, U. K. Shinde, Seema Patra, G. D. Gadkari, S. C.

    2014-04-24

    Partially transparent ceramic of 2 at.% Eu doped CaF{sub 2} have been grown preferentially towards [111] direction. For this purpose, Eu doped CaF{sub 2} nanoparticles (size?12 nm) obtained by a low temperature solution growth method has been pressed at 1000C under vacuum. The preferentially grown ceramic shows 15% transparency within the visible range of spectrum. As confirmed by the X-ray diffraction result, the hot pressed ceramic exhibits reduced lattice volume than the nanopowder. It indicates Eu{sup 3+} as the dominant substituting ions at the Ca{sup 2+} sites of CaF{sub 2} lattice in the hot pressed ceramic material. It is corroborated by the photoluminescence results of hot pressed ceramic which shows strong red emission corresponding to Eu{sup 3+} sites. However, photoluminescence of nanopowder exhibits intense peak in the blue region of the spectrum which is characteristics of Eu2+ sites.

  6. Assessment of allowance mechanism China's carbon trading pilots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Ling; Shen, Bo; Qi, Shaozhou; Price, Lynn

    2015-08-28

    The allowance mechanism is one of the core and sensitive aspects in design of a carbon trading scheme and affects the compliance cost for each company covered under the scheme. By examining China's allowance mechanism from two aspects including allowance allocation and allowance distribution, this paper compares China's carbon trading pilots with the EU Emissions Trading System and California Cap-and-Trade Program, and through the comparison identify issues that affect the efficiency of the pilots. The paper also recommends course of actions to strengthen China's existing pilots and build valuable experiences for the establishment of the national cap-and-trade system in China.

  7. Assessment of Allowance Mechanismin China's Carbon Trading Pilots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Ling; Shen, Bo; Qi, Shaozhou; Price, Lynn

    2015-08-01

    The allowance mechanism is one of the core and sensitive aspects in design of a carbon trading scheme and affects the compliance cost for each company covered under the scheme. By examining China's allowance mechanism from two aspects including allowance allocation and allowance distribution, this paper compares China's carbon trading pilots with the EU Emissions Trading System and California Cap-and-Trade Program, and through the comparison identify issues that affect the efficiency of the pilots. The paper also recommends course of actions to strengthen China's existing pilots and build valuable experiences for the establishment of the national cap-and-trade system in China.

  8. Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alammar, Tarek; Cybinska, Joanna; Campbell, Paul S.; Mudring, Anja -Verena

    2015-05-12

    In this study, sonication of Ln(CH3COO)3·H2O, Eu(CH3COO)3·H2O and NaOH dissolved in the ionic liquid-butyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH)3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800 °C for 3 h allowed to obtain Ln2O3:Eu nanopowders. Gd2O3 and Y2O3 were obtained in the C-type lanthanide sequioxide structure, whereas La2O3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL). SEM studies revealed that the synthesized Gd2O3:Eu, La2O3:Eu, and Y2O3:Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials showmore » very efficient red emission due to the intraconfigurational f–f transitions of Eu3+. The quantum yields for Ln2O3:Eu (5%) were determined to be 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I02/I01 of Eu3+ varies from 5.3 for Gd2O3, to 5.6 for Y2O3 to 6.5 for La2O3, which increased the color chromaticity.« less

  9. Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alammar, Tarek; Cybinska, Joanna; Campbell, Paul S.; Mudring, Anja -Verena

    2015-05-12

    In this study, sonication of Ln(CH3COO)3·H2O, Eu(CH3COO)3·H2O and NaOH dissolved in the ionic liquid-butyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH)3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800 °C for 3 h allowed to obtain Ln2O3:Eu nanopowders. Gd2O3 and Y2O3 were obtained in the C-type lanthanide sequioxide structure, whereas La2O3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL). SEM studies revealed that the synthesized Gd2O3:Eu, La2O3:Eu, and Y2O3:Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials showmore »very efficient red emission due to the intraconfigurational f–f transitions of Eu3+. The quantum yields for Ln2O3:Eu (5%) were determined to be 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I02/I01 of Eu3+ varies from 5.3 for Gd2O3, to 5.6 for Y2O3 to 6.5 for La2O3, which increased the color chromaticity.« less

  10. Nanoscale determinant to brighten up GaN:Eu red light-emitting diode: Local potential of Eu-defect complexes

    SciTech Connect (OSTI)

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-04-21

    Emission sites in GaN:Eu red light-emitting diodes (LEDs) were investigated using a new spectroscopy technique, namely, site-selective pulse-driven emission spectroscopy (PDES). The PDES, in which the emission intensity of a pulse-driven LED is recorded with respect to the pulse frequency, revealed the charge-trapping dynamics of the Eu emission sites. We found that a determinant of the emission intensity of the sites was not their relative abundance, but rather the spatial extent of the local potential, which determines the effectiveness of the capture of injection charges. Minor sites with wider potentials enhanced the emission intensity of the LED, resulting in emission spectra that differ from those obtained using the photoluminescence of a GaN:Eu thin film. The potential curve is determined by the atomic structure of the complexes, which consist of a Eu dopant and nearby defects in the GaN host. The extent was characterized by a parameter, namely, cutoff frequency, and the emission sites with the wider and narrower potentials in the GaN:Eu LED were found to have cutoff frequencies of 400 kHz and 3 MHz, respectively. The cutoff frequency of 3 MHz was found to be the upper limit for emission sites in the LED. The emission site with the wider potential is useful for slower devices such as light fixtures, while the site with the narrower potential is useful for faster devices such as opto-isolators.

  11. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  12. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  13. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  14. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Research Team Members Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory, in collaboration with researchers from regional

  15. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. Commercially available first-generation CO2 capture technologies are currently being used in various industrial applications. However, in their current state of development, these technologies are not ready for implementation on coal-based power plants because they have not been demonstrated at appropriate scale, require approximately one-third of the plant's steam and power to operate,

  16. U.S. and EU Unite to Strengthen Economic Integration and Boost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean energy technology investments." Following the adoption of a joint strategy to fight soaring global illegal trade in counterfeit and pirate goods, U.S. and EU experts are...

  17. Fuel switching in the electricity sector under the EU ETS: Review and prospective

    SciTech Connect (OSTI)

    Delarue, E.; Voorspools, K.; D'haeseleer, W.

    2008-06-15

    The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS. In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.

  18. DeWind Inc formerly EU Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: DeWind Inc (formerly EU Energy Ltd) Place: Central Milton Keynes, United Kingdom Zip: MK9 1LH Sector: Wind energy Product: UK-based wind turbine...

  19. Energy Department Partners with EU on Electric Vehicle and Smart Grid

    Office of Environmental Management (EM)

    Coordination | Department of Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination July 19, 2013 - 5:17pm Addthis Yesterday, representatives from the Energy Department, the European Commission and Argonne National Lab celebrated the launch of the Electric Vehicle-Smart Grid Interoperability Center. From left to right: Mr. Giovanni De Santi, Director of the JRC Institute for energy

  20. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance

    SciTech Connect (OSTI)

    Moore, Evan G.; D'Aleo, Anthony; Xu, Jide; Raymond, Kenneth N.

    2009-05-29

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV-visible and then efficiently transfer the energy to the lanthanoid centre. The synthesis and the complexation of Ln{sup III} cations (Ln = Eu, Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu{sup III} complex ([Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}) has been evaluated in terms of its thermodynamic stability, UV-visible absorption and luminescence properties. For this complex, the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid at pH = 7.4. This Eu{sup III} complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH = 7.4) when compared with other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}. This overall improvement was achieved by saturating the coordination sphere of the Eu{sup III} cation, yielding an increased metal-centred efficiency by excluding solvent water molecules from the metal's inner sphere.

  1. Management of waste electrical and electronic equipment in two EU countries: A comparison

    SciTech Connect (OSTI)

    Torretta, Vincenzo; Ragazzi, Marco; Istrate, Irina Aura; Rada, Elena Cristina

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Review on data regarding WEEE management in Italy and in Romania. Black-Right-Pointing-Pointer Problems that countries that will enter in the EU will have to solve facing with the WEEE management. Black-Right-Pointing-Pointer Pilot experiences useful for the awareness campaign of the population. - Abstract: The paper presents some data regarding waste electrical and electronic (WEEE) management in one of the founding countries of the EU, Italy, and in a recent entry into the EU, Romania. The aim of this research was to analyze some problems that countries entering the EU will have to solve with respect to WEEE management. The experiences of Italy and Romania could provide an interesting reference point. The strengths and weaknesses that the two EU countries have encountered can be used in order to give a more rational plan for other countries. In Italy the increase of WEEE collection was achieved in parallel with the increase of the efficiency of selective Municipal Solid Waste collection. In Romania, pilot experiences were useful to increase the awareness of the population. The different interests of the two populations towards recyclable waste led to a different scenario: in Romania all types of WEEE have been collected since its entrance into the EU; in Italy the 'interest' in recycling is typically related to large household appliances, with a secondary role of lighting equipment.

  2. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  3. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  4. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  5. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  6. Preparation, photoluminescent properties and luminescent dynamics of BaAlF{sub 5}:Eu{sup 2+} nanophosphors

    SciTech Connect (OSTI)

    Zhang, Wei; Hua, Ruinian; Liu, Tianqing; Zhao, Jun; Na, Liyan; Chen, Baojiu

    2014-12-15

    Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via a mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that these nanoparticles may have potential applications for sensing, spectrometer calibration and solid-state lasers.

  7. Synthesis, Structure, and Spectroscopy of Epitaxial EuFeO3 Thin Films

    SciTech Connect (OSTI)

    Choquette, Amber K.; Colby, Robert J.; Moon, E. J.; Schleputz, C. M.; Scafetta, Mark D.; Keavney, David J.; May, Steven J.

    2015-03-04

    Rare earth iron perovskites RFeO3, where R is a rare earth cation, exhibit an array of magnetic, catalytic, optical and electrochemical properties. Here we study EuFeO3 films synthesized by molecular beam epitaxy in order to better understand the optical properties of ferrites. A combination of x-ray diffraction, x-ray reflectivity, Rutherford backscattering spectroscopy, and scanning transmission electron microscopy were used to characterize the film structure and cation composition. X-ray absorption spectroscopy confirms the nominal 3+ valence states of Eu and Fe. The optical properties of EuFeO3 were investigated using variable angle spectroscopic ellipsometry between the phonon energies of 1.25 to 5 eV. We find that EuFeO3 is a semiconductor with an onset of optical absorption near 2.5 eV. The absorption spectrum of EuFeO3 is blue-shifted with respect to LaFeO3 films, a result that is attributed to the structural differences of the two materials.

  8. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect (OSTI)

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  9. Hetero-epitaxial EuO interfaces studied by analytic electron microscopy

    SciTech Connect (OSTI)

    Mundy, Julia A.; Hodash, Daniel; Melville, Alexander; Held, Rainer; Mairoser, Thomas; Schmehl, Andreas; Muller, David A.; Kourkoutis, Lena F.; Schlom, Darrell G.

    2014-03-03

    With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

  10. Climate for Collaboration: Analysis of US and EU Lessons and Opportunities in Energy and Climate Policy

    SciTech Connect (OSTI)

    De Vita, A.; de Connick, H.; McLaren, J.; Cochran, J.

    2009-11-01

    A deepening of cooperation between the United States and the European Union requires mutual trust, and understanding of current policies, challenges and successes. Through providing such understanding among policymakers, industry and other stakeholders in both economies, opportunities for transatlantic cooperation on climate change and energy policy emerge. This paper sets out by discussing the environmental, legislative, and economic contexts of the EU and US as related to climate. This context is essential to understanding how cap-and-trade, renewable energy and sustainable transportation policies have taken shape in the EU and the US, as described in Chapter 3.1. For each of these policies, a barrier analysis and discussion is provided. Chapter 4 builds off this improved understanding to listobservations and possible lessons learned. The paper concludes with recommendations on topics where EU and US interests align, and where further cooperation could prove beneficial.

  11. A first principles investigation of ferromagnetic EuFe{sub 4}As{sub 12}

    SciTech Connect (OSTI)

    Shankar, A. Sandeep,; Thapa, R. K.; Rai, D. P.; Maibam, J.

    2015-05-15

    Density functional theory (DFT) based calculations of electronic and magnetic properties of filled skutterudites EuFe{sub 4}As{sub 12} have been performed using FP-LAPW method within the framework of the LSDA approach. The rare-earth filled skutterudites have attracted much attention because of the presence of the highly localized f-electrons and d- electrons of rare-earth and transition metal respectively, with high density of states near Fermi level. The calculation performed near the Fermi level of density of states shows the compound to be suitable for thermoelectric application. The exchange-splitting of Eu-4f states were analysed to explain the ferromagnetic behaviour of EuFe{sub 4}As{sub 12} with magnetic moment value 5.18 ?{sub B}.

  12. Eu-doped α-Fe{sub 2}O{sub 3} nanoparticles with modified magnetic properties

    SciTech Connect (OSTI)

    Freyria, Francesca Stefania; Barrera, Gabriele; Tiberto, Paola; Belluso, Elena; Levy, Davide; Saracco, Guido; Allia, Paolo; Garrone, Edoardo; Bonelli, Barbara

    2013-05-15

    Eu-doping of hematite (α-Fe{sub 2}O{sub 3}) nanoparticles (NPs) takes place under hydrothermal conditions, and does not at ambient temperature and pressure. Required circumstances have been studied in detail. In the presence of Eu, besides hematite, some goethite and ferrihydrite are formed. Evidence for the occurrence of doping is reported. Chemical composition, as studied by EDS (bulk) and XPS (surface), reveals an enrichment of Eu at NPs core, ascribed to the occurrence of a two-step mechanism of NP formation, comprising nucleation at first, in which Eu{sup 3+} ions compete with Fe{sup 3+} ions, notwithstanding the large difference in concentration, and a successive growth step of NPs in a solution comparatively richer in Fe{sup 3+} species. The Eu content affects: (i) the morphology of NPs, as shown by TEM and FE-SEM; (ii) lattice parameters, as obtained by Rietveld refinement of XRD patterns; (iii) magnetic properties, due to the presence of Eu{sup 3+} ions, characterized by a higher one-ion anisotropy and a lower magnetic moment with respect to iron cations. - Graphical abstract: Eu-doped α-Fe{sub 2}O{sub 3} NPs are obtained by forced hydrolysis under hydrothermal conditions: changes are observed in NPs morphology, lattice parameters and magnetic properties. - Highlights: • Eu-doped hematite NPs were prepared by forced hydrolysis. • Eu ions affect NPs morphology and lattice parameters. • Eu ions affect the magnetic properties of hematite NPs. • Doped NPs have a Eu-richer core.

  13. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  14. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squaredmore » Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  15. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  16. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    SciTech Connect (OSTI)

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng E-mail: qjr@zju.edu.cn; Zhang, Junpei; Han, Junbo; Qiu, Jianrong E-mail: qjr@zju.edu.cn

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  17. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  18. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  19. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  20. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  1. The electronic and optical properties of Eu/Si-codoped anatase TiO{sub 2} photocatalyst

    SciTech Connect (OSTI)

    Lin Yanming; Jiang Zhenyi; Zhang Xiaodong; Hu Xiaoyun; Fan Jun

    2012-03-05

    The electronic and optical properties of Eu/Si-codoped anatase TiO{sub 2} are investigated using the density functional theory. The calculated results show that the synergistic effects of Eu/Si codoping can effectively extend the optical absorption edge, which can lead to higher visible-light photocatalytic activities than pure anatase TiO{sub 2}. To verify the reliability of our calculated results, nanocrystalline Eu/Si-codoped TiO{sub 2} is prepared by a sol-gel-solvothermal method, and the experimental results also indicate that the codoping sample exhibits better absorption performance and higher photocatalytic activities than pure TiO{sub 2}.

  2. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  4. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  5. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  6. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  7. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  8. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  9. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  10. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    SciTech Connect (OSTI)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  11. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  12. Synthesis, crystal structure and magnetic properties of Li{sub 0.44}Eu{sub 3}[B{sub 3}N{sub 6}

    SciTech Connect (OSTI)

    Kokal, I.; Aydemir, U.; Prots, Yu.; Frster, T.; Sichelschmidt, J.; Yahyaoglu, M.; Auffermann, G.; Schnelle, W.; Schappacher, F.; Pttgen, R.; Somer, M.

    2014-02-15

    Li{sub 0.44}Eu{sub 3}[B{sub 3}N{sub 6}] was synthesized from the metathesis reaction of Li{sub 3}[BN{sub 2}] and EuCl{sub 3} at 850 C. Li{sub 0.44}Eu{sub 3}[B{sub 3}N{sub 6}] crystallizes in the trigonal space group R3{sup }c (No. 167) with a=12.0225(2) , c=6.8556(2) and Z=6. In the crystal structure, isolated, planar cyclic [B{sub 3}N{sub 6}]{sup 9?} units are charge-balanced by the mixed-valence Eu{sup 3+}/Eu{sup 2+} and Li{sup +} cations. Li{sup +} occupies partially (44%) the Wyckoff site 6b and is sandwiched between the [B{sub 3}N{sub 6}]{sup 9?} anions. Mssbauer spectroscopy results show the resonance lines of Eu{sup 2+} and Eu{sup 3+}, respectively, indicating the heterogeneous mixed valency of the Eu atoms. X-Band ESR investigations between 5 and 300 K reveal an intense signal over the whole temperature range originating from Eu{sup 2+}. Magnetic susceptibility measurements indicate a CurieWeiss behavior with an experimental effective magnetic moment of ?{sub eff}=8.28 ?{sub B} per formula unit. - Graphical abstract: Single crystals of Li{sub 0.44}Eu{sub 3}[B{sub 3}N{sub 6}] was obtained from the metathesis reaction of Li{sub 3}[BN{sub 2}] and EuCl{sub 3.}{sup 151}Eu Mssbauer, ESR and magnetic susceptibility measurements reveal the heterogeneous mixed valency of the Eu atoms. Display Omitted - Highlights: Single crystals of Li{sub 0.44}Eu{sub 3}[B{sub 3}N{sub 6}] was obtained from the metathesis reaction of Li{sub 3}[BN{sub 2}] and EuCl{sub 3} at 850 C. Crystal structure is built up by isolated, planar cyclic [B{sub 3}N{sub 6}]{sup 9?} units which are surrounded by mixed valence Eu{sup 3+}/Eu{sup 2+}. Li{sup +} occupies partially (44%) the site 6b and is sandwiched between the [B{sub 3}N{sub 6}]{sup 9?} anions. The {sup 151}Eu Mssbauer spectroscopy, electron spin resonance spectroscopy and magnetic susceptibility measurements confirm the heterogeneous mixed valency of Eu.

  13. Microsoft Word - EU-US Smart Grid assessment - final report -online version.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JRC 73070 EUR 25522 EN Assessing Smart Grid Benefits and Impacts: EU and U.S. Initiatives Joint Report EC JRC - US DOE Vincenzo Giordano Steven Bossart European Commission US Department of Energy-DOE Joint Research Centre (JRC) Office of Electricity and Energy Reliability Institute for Energy and Transport 2012 2 European Commission Joint Research Centre (JRC) Institute for Energy and Transport (IET) Contact information Gianluca Fulli Address: Joint Research Centre, Westerduinweg 3, NL-1755 LE

  14. Carbon Trading Protocols for Geologic Sequestration

    SciTech Connect (OSTI)

    Hoversten, Shanna

    2008-08-07

    Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-year phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.

  15. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon storage and flux can

  16. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  17. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  18. Carbon Jungle | Open Energy Information

    Open Energy Info (EERE)

    Jungle Jump to: navigation, search Name: Carbon Jungle Place: El Segundo, California Zip: 90246 Sector: Carbon Product: Carbon Jungle's mission is to decrease CO2 in the atmosphere...

  19. Carbon Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Carbon Connections Place: Norfolk, England, United Kingdom Zip: NR4 7TJ Sector: Carbon Product: Carbon Connections links partner...

  20. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  1. Asset Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search Name: Asset Carbon Place: United Kingdom Product: UK-based startup looking to invest in CDMJI projects. References: Asset Carbon1 This article...

  2. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  3. Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III) Sensitization Process

    SciTech Connect (OSTI)

    D'Aleo, Anthony; Moore, Evan G.; Szigethy, Geza; Xu, Jide; Raymond, Kenneth N.

    2009-06-17

    The efficiency of Eu3+ luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N,N'-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L{sup 1}), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L{sup 2}) and N,N'-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L{sup 3}). Spectroscopic characterization of both the Gd(III) and Eu(III) metal complexes, TD-DFT analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L{sup 2}){sub 2}]{sup -} derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L{sup 3}){sub 2}]{sup -}, the large quenching of the luminescence quantum yield compared to [Eu(L{sup 2}){sub 2}]{sup -} is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L{sup 1}){sub 2}]{sup -}, the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion.

  4. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  5. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  6. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  7. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  8. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Management Initiative Fact Sheets Research Team Members Key Contacts Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American

  9. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  10. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Simulation Initiative Fact sheet More Information Research Team Members Key Contacts Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry, and academic institutions that is developing, demonstrating and deploying state-of-the-art computational modeling and simulation tools to accelerate the development of carbon capture technologies from discovery to development, demonstration, and ultimately the

  11. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  12. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  13. Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011

    Broader source: Energy.gov [DOE]

    Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

  14. Structure, magnetism, specific heat, and dielectric properties of Eu{sub 2}Ta{sub 2}O{sub 7}

    SciTech Connect (OSTI)

    Kolodiazhnyi, T. Sakurai, H.; Matsushita, Y.

    2014-11-17

    Polycrystalline Eu{sub 2}Ta{sub 2}O{sub 7} containing layered perovskite slabs was prepared and analyzed. Eu{sub 2}Ta{sub 2}O{sub 7} crystallizes in the orthorhombic centrosymmetric Cmcm space group (with unit cell: a?=?3.95156(9), b?=?27.0775(6), and c?=?5.68279(13) ) isomorphous with high-temperature Sr{sub 2}Ta{sub 2}O{sub 7}. Dielectric measurements reveal that, in contrast to Sr{sub 2}Ta{sub 2}O{sub 7} which is ferroelectric below 166?K, Eu{sub 2}Ta{sub 2}O{sub 7} remains paraelectric down to at least 0.45?K and shows no magneto-dielectric coupling. Magnetic data in the 2400?K range indicate an antiferromagnetic phase transition with a sharp susceptibility peak at 2.71(5) K. Further analysis using specific heat measurements reveals that the second magnetic phase transition occurs at 1.10(5) K and dominates the spin entropy of the Eu{sup 2+} 4f{sup 7} ions. The possible origin of the two successive magnetic phase transitions in Eu{sub 2}Ta{sub 2}O{sub 7} requires further studies.

  15. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosecurity, and Health Environmental Microbiology Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding...

  16. Spin-phonon study of EuMn{sub 2}O{sub 5} nanorods

    SciTech Connect (OSTI)

    Hsu, Ting-Wei; Yang, Chung-Cheun Tong, Yong-Xiang; Shih, Wei-Jhe; Lin, Kuen-Song

    2015-05-07

    EuMn{sub 2}O{sub 5} multiferroic nanorods, with diameters radial (?L{sub C}?) lengths of 25(6) nm 47(15) nm and 51(16) nm 70(26) nm, were fabricated by the hydrothermal method. Ferrimagnetic ordering below 50?K (T*) is observed in the ?L{sub C}??=?70?nm sample, which exhibited ferromagnetic (FM) behavior below T* in a field cooling process. No similar behavior was found in the ?L{sub C}??=?47?nm sample. These observations reveal that only the ?L{sub C}??=?70?nm sample has a meta-FM state, and this sample exhibits the stronger coupling between the Mn ions. Raman spectra of both sets of samples were obtained in 0, 610, 1000, 1600, and 2000?G magnetic fields. The red-shift of the A{sub g} (681?cm{sup ?1}) mode of the both samples increased with the strength of the field above 1000?G, indicating the existence of spin-phonon interaction. The smaller sampled exhibited a larger red-shift, suggesting that the size importantly affects the of EuMn{sub 2}O{sub 5} nanorods.

  17. Study of the electronic and magnetic properties of EuAlO{sub 3} using FP-LAPW method

    SciTech Connect (OSTI)

    Sandeep, Shankar, A.; Rai, D. P.; Thapa, R. K.; Ghimire, M. P.

    2015-05-15

    The electronic and magnetic properties of EuAlO{sub 3} is calculated by first-principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Density of states (DOS), magnetic moments and band structures of the systems are presented. For the exchange and correlation energy, local spin density approximation (LSDA+U) with the inclusion of Hubbard potential U is used. Our calculation showed an indirect band gap of the order of 4 eV for EuAlO{sub 3} in the spin down channel of the DOS and band structures supporting HMF nature of the system. The effective magnetic moment of 6.00?{sub B} also supported the above conclusion with an integral value. The DOS of Eu were found responsible for the HMF nature of the system.

  18. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  19. The carbon component of the UK power price

    SciTech Connect (OSTI)

    Kris Voorspools

    2006-08-01

    CO{sub 2} emissions trading is in full swing in Europe and is already having an impact on the price of power in the UK. If EU allowances (EUAs) trade at euro 20/t-CO{sub 2}, the EUA component in the power price is estimated to be slightly < euro 10/MW.h. In the case of UK power for delivery 1 year ahead, this is {approximately} 10% of the market price of power. The introduction of a carbon components into the UK power prices took place along before the 'official' start of ETS in 2005. Analysis of historical data of the price of power, gas, coal and EUAs shows that the first trace of a CO{sub 2} component in UK power dates back to August 2003, shortly after EUAs first started to trade. In April 2004, CO{sub 2} was fully integrated into the UK power price. 4 refs., 5 figs.

  20. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  1. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  2. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  3. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon capture faqs faq-header-big.jpg CARBON CAPTURE - BASICS Q: Why capture carbon? A: According to the Energy Information Administration (EIA), fossil fuel power plants generated more than two-thirds of the electricity in the United States and they are expected to continue to play a critical role in powering the Nation's electricity generation for the foreseeable future. However, electricity production from these power plants is under scrutiny due to concerns that anthropogenic emission of

  4. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide information on the net surface

  5. ARM - Carbon Cycle Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Cycle Balance Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Carbon Cycle Balance The net result of this recycling is that our atmosphere now gains a total of 5 gigatonnes (1 gigatonne = 1x1012 kilograms) of carbon annually. Nearly all of this ends up in gases that are greenhouse

  6. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Carbon Dioxide Atmospheric concentrations of carbon dioxide have ranged from 200 to 280 ppm over the last 160,000 years. During the 1,000 years before the industrial revolution, in a time of stable global climate, the range was

  7. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  8. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  9. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  10. New hydrolytically stable solvent for Am/Eu separation in acidic media

    SciTech Connect (OSTI)

    Smirnov, I.V.; Babain, V.A.; Chirkov, A.V.

    2007-07-01

    Americium and europium extraction by synergistic mixture of 2,6-bis(1-aryl-1H-tetrazol-5-yl)pyridines (ATP) - chlorinated cobalt dicarbollide (CCD) in polar diluent s from HNO{sub 3} media was studied. Meta-nitro-benzo-trifluoride, phenyl-tri-fluoro-methyl sulfone and 1,2-dichloroethane were used as diluents. The effect of diluent, composition of aqueous phase and substituent nature in aryl ring of ATPs on the extraction efficiency and selectivity of americium and europium separation was investigated. At the optimal ratio of nATP:CCD 1:1 the Am - Eu separation factor exceeded 90. Extraction of {sup 85}Sr, {sup 137}Cs and {sup 133}Ba was investigated and it was found that the mixture nATP-CCD provided the separation of Sr /Ba pair with a factor of 35. High resistance of 2,6-bisaryltetrazolyl pyridines to the action of nitric acid was demonstrated. (authors)

  11. On the peculiar properties of triangular-chain EuCr{sub 3}(BO{sub 3}){sub 4} antiferromagnet

    SciTech Connect (OSTI)

    Gondek, ?.; Szytu?a, A.; Przewo?nik, J.; ?ukrowski, J.; Prokhorov, A.; Chernush, L.; Zubov, E.; Dyakonov, V.; Tyvanchuk, Yu.

    2014-02-15

    In this paper we report studies on EuCr{sub 3}(BO{sub 3}){sub 4} compound, that is a member of newly discovered family of huntite-related specimens for non-linear optics. For the first time, the uncommon temperature dependence of the EuCr{sub 3}(BO{sub 3}){sub 4} lattice parameters is reported. Additionally, the magnetism of this compound is extremely interesting. Namely, a possible interplay in between potentially magnetic rare-earth ions and 3d metal stacked within quasi-1D chain that can lead to a great variety of magnetic behaviour. Indeed, in our studies we have found 3D-long range ordering with metamagnetic behaviour, while at higher temperature the magnetic chains become uncoupled. - Graphical abstract: Torsion-like vibrations are the key to understand negative thermal expansion along the a-axis. Display Omitted - Highlights: EuCr{sub 3}(BO{sub 3}){sub 4} is a peculiar triangular-chain antiferromagnet. Rare earth sublattice is non-magnetic with Eu{sup 3+} configuration. Cr{sup 3+} magnetic moments show 1-D behaviour along with spin fluctuations. Torsion vibrations of Cr triangular tubes lead to anomalous expansion of unit cell.

  12. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect (OSTI)

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  13. Carbon-Based and Carbon-Supported Heterogeneous Catalysts for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Based and Carbon-Supported Heterogeneous Catalysts for the Conversion of Biomass Carbon-based heterogeneous catalysts play a central role in the conversion of biomass to...

  14. Boston Carbon Corp | Open Energy Information

    Open Energy Info (EERE)

    Carbon Corp Jump to: navigation, search Name: Boston Carbon Corp Place: Carlisle, Massachusetts Zip: 1741 Sector: Carbon Product: Boston Carbon Corporation helps develop clean...

  15. Edgewood Carbon Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  16. Eon Masdar Integrated Carbon | Open Energy Information

    Open Energy Info (EERE)

    Eon Masdar Integrated Carbon Jump to: navigation, search Name: Eon Masdar Integrated Carbon Place: Germany Sector: Carbon Product: Germany-based carbon emission projects developer....

  17. Renaissance Carbon Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carbon Investment Ltd Jump to: navigation, search Name: Renaissance Carbon Investment Ltd. Place: Shanghai, China Zip: 200052 Sector: Carbon Product: Renaissance Carbon Investment...

  18. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  19. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  20. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  1. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  2. carbon | OpenEI Community

    Open Energy Info (EERE)

    carbon Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

  3. Carbon Capture Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

  4. Carbon International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Carbon International Place: London, United Kingdom Zip: NW1 8LH Sector: Carbon Product: London-based energy and communications...

  5. Carbone Lorraine | Open Energy Information

    Open Energy Info (EERE)

    Carbone Lorraine Jump to: navigation, search Name: Carbone Lorraine Place: France Product: Paris-based company developing industrial applications and systems for the optimal...

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors, and data processing. Fortunately, additional research has proven that etching carbon with sulfuric acid can also make the carbon magnetic, opening the door for...

  7. Solvothermal synthesis and tunable luminescence of Tb{sup 3+}, Eu{sup 3+} codoped YF{sub 3} nano- and micro-crystals with uniform morphologies

    SciTech Connect (OSTI)

    Tian, Yue [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China) [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)] [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Li, Xiangping; Zhang, Jinsu; Tian, Bining; Sun, Jiashi; Cheng, Lihong; Zhong, Haiyang; Zhong, Hua [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)] [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China)] [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China)

    2012-12-15

    Tb{sup 3+}, Eu{sup 3+} codoped YF{sub 3} nano- and micro-crystals with the morphologies of ellipsoid-like nanoplate, spindle, sandwich-structural rhombus and nanoaggregate were synthesized through a solvothermal method. The morphologies of the prepared products can be tailored by controlling the volume ratio of ethylene glycol (EG) to H{sub 2}O, solvent type or the reaction time. A possible formation mechanism of the sandwich-structural rhombus like YF{sub 3} phosphor was proposed. The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be easily tuned from yellowish green, yellow to orange by increasing Eu{sup 3+} concentration. The energy transfer from Tb{sup 3+} to Eu{sup 3+} in YF{sub 3} phosphors was studied. It was found that the interaction type between Tb{sup 3+} and Eu{sup 3+} is electric dipole-dipole interaction. - Graphical abstract: Sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors were synthesized through a solvothermal process. The formation mechanism of the sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors was studied. Highlights: Black-Right-Pointing-Pointer YF{sub 3} nano- and micro-crystals were synthesized through solvothermal route. Black-Right-Pointing-Pointer A formation mechanism of the sandwich-structural rhombus like YF{sub 3} was proposed. Black-Right-Pointing-Pointer The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be tuned. Black-Right-Pointing-Pointer Energy transfer from Tb{sup 3+} to Eu{sup 3+} is confirmed as electric dipole-dipole interaction.

  8. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  9. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  10. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction (forcing and

  11. Wetland (peat) Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are uncertain. This is in part because many climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems will partition future releases of carbon to the atmosphere. Ecosystem observations of CH4 emissions lack mechanistic links to the processes that govern CH4 efflux: microbial

  12. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  13. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  14. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  15. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  16. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  17. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  18. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  19. An unusual carbon-carbon bond cleavage reaction during phosphinothricin

    Office of Scientific and Technical Information (OSTI)

    biosynthesis (Journal Article) | SciTech Connect An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine

  20. An unusual carbon-carbon bond cleavage reaction during phosphinothricin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biosynthesis (Journal Article) | SciTech Connect An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine

  1. Synthesis of nanocrystalline REBO{sub 3} (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO{sub 3}:Eu using a borohydride-based solution precursor route

    SciTech Connect (OSTI)

    Henkes, Amanda E.; Schaak, Raymond E.

    2008-12-15

    A solution precursor route has been used to synthesize a series of nanocrystalline rare-earth borates. Amorphous precursor powders are precipitated during an aqueous reaction between RE{sup 3+} and NaBH{sub 4}, and the isolated powders can be annealed in air at 700 deg. C to form YBO{sub 3}, NdBO{sub 3}, SmBO{sub 3}, EuBO{sub 3}, GdBO{sub 3}, and HoBO{sub 3}. YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties that are similar to high-quality nanocrystals prepared by other methods. The materials have been characterized by FTIR spectroscopy, powder XRD, SEM, DSC, UV-Vis fluorimetry, and TEM with EDS and element mapping. - Graphical abstract: Amorphous nanoscopic precursor powders are formed through the aqueous reaction of RE{sup 3+} with NaBH{sub 4}. Once isolated, the powders can be annealed at 700 deg. C in air to form a series of nanocrystalline REBO{sub 3} orthoborates. Nanocrystalline YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties when excited with UV light.

  2. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  3. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience: Bioenergy, Biosecurity, and Health » Environmental Microbiology » Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon management. Get Expertise Principle Investigator Cheryl Kuske Bioscience Division 505 665 4800 Email Get Expertise John Dunbar Bioscience Division Email Get Expertise Chris Yeager Bioscience

  4. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  5. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  6. Photoluminescence studies of shock-recovered Y{sub 2}O{sub 3}:Eu{sup 3+}

    SciTech Connect (OSTI)

    Kishimura, Hiroaki Hamada, Sho; Aruga, Atsushi; Matsumoto, Hitoshi

    2015-01-05

    A series of shock-recovery experiments on Y{sub 2}O{sub 3}:Eu{sup 3+} powder were conducted involving the impact of a flyer plate accelerated by a single-stage powder-propellant gun. The recovered samples were characterized by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy. The XRD and PL results of samples shocked at pressures of 13 GPa indicated that a phase transition from a cubic phase to a monoclinic phase occurred. The recovered samples shocked at 21 and 25 GPa consisted of Y{sub 2}O{sub 3}:Eu{sup 3+} with the cubic phase and the monoclinic phase. These results indicated that the shock-induced phase transition was the partial completion of the phase transition.

  7. Theoretical studies of strongly correlated rare-earth intermetallics RIn? and RSn? (R=Sm, Eu, and Gd)

    SciTech Connect (OSTI)

    Shafiq, M.; Ahmad, Iftikhar E-mail: dr.iftikhar@uom.edu.pk; Jalali Asadabadi, S.

    2014-09-14

    In this paper, the structural, elastic, and electronic properties of RIn? and RSn? (R = Sm, Eu, Gd) compounds have been investigated using the full potential linearized augmented plane wave plus local orbital method within the density functional theory. The structural properties are investigated using the LDA, GGA, and the band correlated LDA+U and GGA+U schemes. The lattice parameters are in good agreement with the available experimental results and the divalent state of Eu is also verified. The spin-orbit coupling is included in order to predict the correct electronic properties and splitting of 4f states of the rare earth elements is also incorporated. We calculated Bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Kleinman parameters, Poisson's ratio, Lame's co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds.

  8. Synthesis and characterization of spherical ZrO{sub 2}:Eu{sup 3+} phosphors by spray pyrolysis process

    SciTech Connect (OSTI)

    Quan, Z.W.; Wang, L.S.; Lin, J. . E-mail: jlin@ns.ciac.jl.cn

    2005-05-18

    Europium doped zirconia (ZrO{sub 2}:Eu{sup 3+}) powder phosphors consisting of spherical, dense and submicrometer size particles were successfully synthesized by a spray drying process followed by a post annealing treatment process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscope (SEM), photoluminescence (PL) spectra as well as lifetimes were utilized to characterize the prepared samples. The results of XRD indicated that the samples began to crystallize at 500 deg. C, and the crystallinity increased with increasing the annealing temperature. The powders with metastable tetragonal symmetry were obtained at relatively low temperature. The effects of annealing temperature, the Eu{sup 3+} concentration as well as the morphology on the PL intensity were investigated in this work.

  9. Effect Of EDTA On Luminescence Property Of Eu{sup +3} Doped YPO{sub 4} Nanoparticles

    SciTech Connect (OSTI)

    Parchur, A. K.; Okram, G. S.; Singh, R. A.; Tewari, R.; Pradhan, Lina; Vatsa, R. K.; Ningthoujam, R. S.

    2010-12-01

    Nanoparticles of Eu{sup 3+} doped YPO{sub 4} have been prepared using ethylene glycol (EG). Ethylene diamine tetra acetic acid (EDTA) is used as a complexing agent. X-ray diffraction results show that the nanoparticles are crystalline in tetragonal structure. Based on William-Hall relation, the effective crystallite size and strain developed in lattice are found to be 28 nm and 0.002, respectively. With the addition of EDTA, there is a slight shift towards the lower wavelength in emission peaks. Asymmetric ratio of electric to magnetic dipole transition intensities are found to decrease with addition of EDTA. Emission intensity decreases with EDTA because of decrease of particle size as well as decrease of number of Eu{sup 3+} activators per unit volume. These materials are dispersible in water, which may have potential biological applications.

  10. Structural and magnetic phase transitions inEuTi1-xNbxO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Ling; Morris, James R.; Koehler, Michael R.; Dun, Zhiling; Zhou, Haidong; Yan, Jiaqiang; Mandrus, David; Keppens, Veerle

    2015-07-30

    We have investigated the structural and magnetic phase transitions in EuTi1-xNbxO3 (0 ≤ x ≤ 0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pm3¯m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x ≥ 0.1. The structural transition in pure and doped compounds is marked by a dramatic steplike softening of themore »elastic moduli near TS , which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.« less

  11. Pressure-enhanced superconductivity in Eu3Bi2S4F4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Yongkang; Zhai, Hui -Fei; Zhang, Pan; Xu, Zhu -An; Cao, Guang -Han; Thompson, J. D.

    2014-12-17

    The pressure effect on the newly discovered charge-transferred BiS2-based superconductor, Eu3Bi2S4F4, with a Tc of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ~10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher Tc emerges and dominates at high pressures. In the broad pressure window of 0.68GPa≤p≤2.00 GPa, the high-Tc phase coexists with the low-Tc phase. Hall effect measurements reveal a significant difference in electronic structures between themore » two superconducting phases. As a result, our work devotes the effort to establish the commonality of pressure effect on the BiS2-based superconductors, and also uncovers the importance of electron carrier density in the high-Tc phase.« less

  12. Measurement of the 3s1/2-3p3/2 resonance line of sodiumlike Eu52+

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trbert, E.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2015-08-20

    We have measured the 3s1/2-3p3/2 transition in sodiumlike Eu52+ situated at 41.232 with an uncertainty of 73 ppm. Our measurement extends previous high-precision measurements into the 561/2-3p3/2 and 3p1/2-3d3/2 transitions in the neighboring magnesiumlike, aluminumlike, and siliconlike europium ions.

  13. Giant magnetocaloric effect in magnetoelectric Eu{sub 1-x}Ba{sub x}TiO{sub 3}

    SciTech Connect (OSTI)

    Rubi, Km; Kumar, Pawan; Maheswar Repaka, D. V.; Chen, Ruofan; Wang, Jian-Sheng; Mahendiran, R.

    2014-01-20

    We report the magnetic entropy change (ΔS{sub m}) in magnetoelectric Eu{sub 1-x}Ba{sub x}TiO{sub 3} for 0.1 ≤ x ≤ 0.9. We find −ΔS{sub m} = 11 (40) J/kg·K in x = 0.1 for a field change of 1 (5) T, respectively, which is the largest value among all Eu-based oxides. ΔS{sub m} arises from the field-induced suppression of the spin entropy of Eu{sup 2+}:4f{sup 7} localized moments. While ∣−ΔS{sub m}∣ decreases with increasing x, ∣−ΔS{sub m}∣ = 6.58 J/kg·K observed in the high spin diluted composition x = 0.9 is larger than that in many manganites. Our results indicate that these magnetoelectrics are potential candidates for cryogenic magnetic refrigeration.

  14. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  15. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  16. Bifunctional Fe{sub 3}O{sub 4}@Gd{sub 2}O{sub 3}:Eu{sup 3+}nanocomposites obtained by the homogeneous precipitation method

    SciTech Connect (OSTI)

    Peng, Hongxia; Cui, Bin; Wang, Yingsai

    2013-05-15

    Graphical abstract: The TEM images reveal clearly the coreshell structures because of the obvious difference in contrast between the central part and the fringe, which indicates the Gd{sub 2}O{sub 3}:Eu{sup 3+} layer had successfully deposited on the magnetite Fe{sub 3}O{sub 4} cores. And Fe{sub 3}O{sub 4}@Gd{sub 2}O{sub 3}:Eu{sup 3+} nanoparticles keep the spherical morphology, non-aggregation and rough surface. The images reveal that the average diameters of the Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}@Gd{sub 2}O{sub 3}:Eu{sup 3+} nanoparticles are ?200 nm and ?250 nm, respectively. The thickness of Gd{sub 2}O{sub 3}:Eu{sup 3+} layer is ?25 nm. Highlights: ? Fe{sub 3}O{sub 4}@Gd{sub 2}O{sub 3}:Eu{sup 3+} nanocomposites were synthesized by homogeneous precipitation method. ? Formation of coreshell nanostructure revealed by transmission electron microscopy. ? Fe{sub 3}O{sub 4}@Gd{sub 2}O{sub 3}:Eu{sup 3+} nanocomposites showed magnetic behavior and fluorescence properties. ? Possible applications including bioseparation, drug delivery system, bio-labels, etc. - Abstract: An easy homogeneous precipitation method was developed for the synthesis of bifunctional magnetic-fluorescent nanocomposites with Fe{sub 3}O{sub 4} nanoparticles as the core and europium-doped gadolinium oxide (Gd{sub 2}O{sub 3}:Eu{sup 3+}) as the shell. The nanocomposites showed both strong magnetic behavior and unique Eu-related fluorescence properties with a high emission intensity, which may lead to development of nanocomposites with great potential for applications in drug targeting, biosensors, and diagnostic analysis.

  17. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  18. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  19. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  20. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Luminescent properties of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} and its potential application in white light emitting diodes

    SciTech Connect (OSTI)

    Wang, Zhijun; Li, Panlai; Li, Ting; Zhang, Xing; Li, Qingxuan; Yang, Zhiping; Guo, Qinglin

    2013-06-01

    Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ? White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes.

  4. Carbon-particle generator

    DOE Patents [OSTI]

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  5. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  6. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  7. Carbon Solutions Group | Open Energy Information

    Open Energy Info (EERE)

    Solutions Group Jump to: navigation, search Name: Carbon Solutions Group Place: Chicago, Illinois Zip: 60601 Sector: Carbon Product: Carbon Solutions Group collaborates with...

  8. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  9. Participatory Carbon Monitoring: Operational Guidance for National...

    Open Energy Info (EERE)

    Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

  10. Arreon Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Arreon Carbon Ltd Jump to: navigation, search Name: Arreon Carbon Ltd Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Carbon Product: Beijing-based firm that...

  11. GS Carbon Corporation | Open Energy Information

    Open Energy Info (EERE)

    Carbon Corporation Jump to: navigation, search Name: GS Carbon Corporation Place: New York, New York Zip: 10119 Sector: Carbon Product: The company offsets emissions output with...

  12. Carbon Market Brasil Consulting | Open Energy Information

    Open Energy Info (EERE)

    Market Brasil Consulting Jump to: navigation, search Name: Carbon Market Brasil Consulting Place: Sao Paulo, Brazil Zip: 04120-070 Sector: Carbon Product: Brazil-based carbon...

  13. Universal Carbon Credits Limited | Open Energy Information

    Open Energy Info (EERE)

    Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...

  14. Carbon Trust Enterprises Limited | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Limited Jump to: navigation, search Name: Carbon Trust Enterprises Limited Place: London, United Kingdom Zip: WC2A 2AZ Sector: Carbon Product: Carbon Trust Enterprises...

  15. Equinox Carbon Equities LLC | Open Energy Information

    Open Energy Info (EERE)

    Equinox Carbon Equities LLC Jump to: navigation, search Name: Equinox Carbon Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm...

  16. The Social Carbon Company | Open Energy Information

    Open Energy Info (EERE)

    Social Carbon Company Jump to: navigation, search Name: The Social Carbon Company Place: Brasilia, Distrito Federal (Brasilia), Brazil Zip: CEP 70610-440 Sector: Carbon, Services...

  17. Carbon Credit Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Credit Capital Place: New York, New York Zip: 10012 Sector: Carbon, Services Product: Project Advisory Services and Carbon...

  18. The Global Carbon Bank | Open Energy Information

    Open Energy Info (EERE)

    Global Carbon Bank Jump to: navigation, search Name: The Global Carbon Bank Place: Houston, Texas Zip: 77025 Sector: Carbon, Services Product: Houston-based provider of advisory...

  19. CarbonMicro | Open Energy Information

    Open Energy Info (EERE)

    Place: Irvine, California Zip: CA 92618 Sector: Carbon Product: Carbon Micro Battery Corporation has a unique technology of creating micro and nanoscale carbon...

  20. Carbon Micro Battery LLC | Open Energy Information

    Open Energy Info (EERE)

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  1. Method for production of carbon nanofiber mat or carbon paper

    DOE Patents [OSTI]

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  2. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  3. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Carbon cloth supported electrode

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  5. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  7. Carbon Trust | Open Energy Information

    Open Energy Info (EERE)

    Trust Jump to: navigation, search Name: Carbon Trust Place: London, Greater London, United Kingdom Zip: EC4A 3BF Sector: Carbon Product: London-based independent company funded by...

  8. Sustainable Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search Name: Sustainable Carbon Place: Sao Paulo, Sao Paulo, Brazil Zip: 04 038 032 Product: Sao Paulo-based joint-venture with CantorCO2e Brazil. The...

  9. Carbon Clear | Open Energy Information

    Open Energy Info (EERE)

    Clear Jump to: navigation, search Name: Carbon Clear Place: United Kingdom Product: UK-based voluntary offset provider. References: Carbon Clear1 This article is a stub. You can...

  10. Comparative study of optical and structural properties of electrospun 1-dimensional CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nanofibers and bulk phosphor

    SciTech Connect (OSTI)

    Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin

    2014-09-15

    We report the optical and structural studies of Eu{sup 3+}-doped 1-dimensional CaYAl{sub 3}O{sub 7} nano-fiber phosphor. CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphors were synthesized by electrospinning technique and the pristine nano-fibers were annealed at 900 C to form well crystallized uniform fibers. Under ultraviolet excitation, the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} exhibited red emission, due to transitions in the 4f states of Eu{sup 3+}. In order to explore the difference between the quantum efficiency of nano-fiber and bulk CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphor, detailed structural and optical analyses were carried out. The structural analysis of the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nano-fibers indicates that the structural environment surrounding the dopant Eu{sup 3+} ion was more unstable in nano-fiber when compared to a bulk sample. Decay curves for both the samples when fitted with double exponential decay model indicate that the nano-fiber has shorter decay time, arising from the larger contribution from the non-radiative decay, due to defect levels introduced in the host lattice. - Highlights: Synthesis of red nano-phosphor through electrospinning Luminescence properties of bulk and nano-phosphors are compared. Inferior emission intensity of the nano-phosphor is analyzed using MEM. Charge cloud around nano-phosphor was found to be oblique.

  11. Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications

    SciTech Connect (OSTI)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Hawrami, Rastgo; Higgins, William; Van Loef, Edgar; Glodo, J.; Shah, Kanai; Bhattacharya, P.; Tupitsyn, E; Groza, Michael; Burger, Arnold

    2013-01-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec) than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

  12. Carbon nanotube array based sensor

    DOE Patents [OSTI]

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  13. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  14. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  15. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  16. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  17. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  18. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  19. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS

  20. ARM - Measurement - Black carbon concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsBlack carbon concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Black carbon concentration The concentration of carbon in its very absorbing, elemental, non-organic, non-oxide form (e.g. graphite). Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  1. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a crucial bridge between our current global energy economy and a cleaner, more diversified energy future. Researchers from Los Alamos, OSU and the NETL have demonstrated that this approach is technically feasible and poised for full-scale roll-out. October 16, 2015 Jumpstarting the carbon capture industry: Science on the

  2. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  3. Lu{sub 2}O{sub 3}:Eu{sup 3+} glass ceramic films: Synthesis, structural and spectroscopic studies

    SciTech Connect (OSTI)

    Carrera Jota, M.L.; Garca Murillo, A.; Morales Ramrez, A. de J.; Rosa Cruz, E. de la; Kassiba, Abdelhadi

    2014-03-01

    Graphical abstract: - Highlights: Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} films were synthesized by solgel and by dip-coating technique. Effects of incorporating PVP on structural properties were studied. Effects of incorporating silica (SiO{sub 2}) luminescence characteristics were analyzed. X-ray diffraction results showed that Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} crystallizes at 700 C. The 611 nm emission for the Lu:Si = 8:1 system presented an improvement. - Abstract: For the first time, transparent and crack free europium-doped lutetia silica solgel films were synthesized using the dip-coating technique on silica quartz substrates. In this study, we examined the effects of incorporating polyvinylpyrrolidone (PVP) and silica (SiO{sub 2}) into different precursor solutions for different LuSi molar ratios: 4:1, 6:1, 8:1 and 10:1. Different systems, such as Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} (using the above Lu:Si molar ratios), were synthesized by solgel and by dip-coating technique, employing acetylacetonate lutetium and tetraethylorthosilicate as Lu and Si precursors, in order to produce Lu{sub 2}O{sub 3}:Eu{sup 3+} (5 mol%)@SiO{sub 2} glassceramic films. The film microstructure was studied by microRaman spectroscopy (MRS) and X-ray diffraction (XRD) for different Lu:Si molar ratios on films annealed at 700 C. X-ray diffraction results showed that the lutetium oxide cubic phase crystallizes in the silica matrix at 700 C, and the crystallite size of Lu{sub 2}O{sub 3}:Eu{sup 3+}@SiO{sub 2} films varies from 5 nm to 17 nm according to the respective Lu:Si molar ratios. Opto-geometrical parameters determined by m-lines spectroscopy using a 632.5 nm HeNe laser showed that the Eu{sup 3+} doped films heat-treated at 700 C presented a thickness and density of 1.7 ?m (8.8 g cm{sup ?3}), 970 nm (9.2 g cm{sup ?3}), 1 ?m (9.3 g cm{sup ?3}) and 1.3 ?m (9.25 g cm{sup ?3}) for the Lu:Si = 4:1, 6:1, 8:1 and 10:1 molar ratio systems, respectively. The Lu:Si = 8:1 system 611 nm emission presented an improvement. These results were provided by photoluminescent spectroscopy.

  4. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  5. 2e Carbon Access | Open Energy Information

    Open Energy Info (EERE)

    e Carbon Access Jump to: navigation, search Name: 2e Carbon Access Place: New York, New York Zip: 10280 Sector: Carbon Product: 2E Carbon Access is an enterprise focused solely on...

  6. Less Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Less Carbon Ltd Jump to: navigation, search Name: Less Carbon Ltd Place: London, Greater London, United Kingdom Zip: EC3M 4BT Sector: Carbon Product: Less Carbon advises energy...

  7. SGL Carbon AG | Open Energy Information

    Open Energy Info (EERE)

    Carbon AG Jump to: navigation, search Name: SGL Carbon AG Place: Wiesbaden, Hessen, Germany Zip: 65203 Sector: Carbon Product: A Germany-based manufacturer of carbon-based products...

  8. Comparative Gamma Spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded Plastic Scintillators

    SciTech Connect (OSTI)

    Cherepy, N J

    2010-11-19

    We are developing new scintillator materials that offer potential for high resolution gamma ray spectroscopy at low cost. Single crystal SrI{sub 2}(Eu) offers {approx}3% resolution at 662 keV, in sizes of {approx}1 in{sup 3}. We have developed ceramics processing technology allowing us to achieve cubic inch scale transparent ceramic scintillators offering gamma spectroscopy performance superior to NaI(Tl). We fabricated a bismuth-loaded plastic scintillator that demonstrates energy resolution of {approx}8% at 662 keV in small sizes. Gamma ray spectroscopy can be used to identify the presence of weak radioactive sources within natural background. The ability to discriminate close-lying spectral lines is strongly dependent upon the energy resolution of the detector. In addition to excellent energy resolution, large volume detectors are needed to acquire sufficient events, for example, to identify a radioactive anomaly moving past a detector. We have employed a 'directed search' methodology for identifying potential scintillator materials candidates, resulting in the discovery of Europium-doped Strontium Iodide, SrI{sub 2}(Eu), Cerium-doped Gadolinium Garnet, GYGAG(Ce), and Bismuth-loaded Polymers. These scintillators possess very low self-radioactivity, offer energy resolution of 3-8% at 662 keV, and have potential to be grown cost-effectively to sizes similar to the most widely deployed gamma spectroscopy scintillator, Thallium-doped Sodium Iodide, NaI(Tl). In this study, gamma ray spectra of a variety of sources, were obtained employing SrI{sub 2}(Eu), GYGAG(Ce), Bi-loaded polymers, LaBr{sub 3}(Ce), and NaI(Tl). The effects of detector size, energy resolution, and background radioactivity (including self-radioactivity) on the ability to distinguish weak sources is quantified, based on a simple model, and qualitatively compared to laboratory data.

  9. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect (OSTI)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  10. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  11. Measurement of the 3s1/2-3p3/2 resonance line of sodiumlike Eu52+

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Träbert, E.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2015-08-20

    We have measured the 3s1/2-3p3/2 transition in sodiumlike Eu52+ situated at 41.232 Å with an uncertainty of 73 ppm. Our measurement extends previous high-precision measurements into the 56< Z< 78 range of atomic numbers. We also present measurements of 3s1/2-3p3/2 and 3p1/2-3d3/2 transitions in the neighboring magnesiumlike, aluminumlike, and siliconlike europium ions.

  12. Bioenergy Technologies Office (BETO) Announces Renewable Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement ...

  13. Interferometric Lithography Patterned Pyrolytic Carbon. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Interferometric Lithography Patterned Pyrolytic Carbon. Citation Details In-Document Search Title: Interferometric Lithography Patterned Pyrolytic Carbon. Abstract not provided....

  14. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  15. Synthesis and photoluminescence properties of NaLaMgWO{sub 6}:RE{sup 3+} (RE = Eu, Sm, Tb) phosphor for white LED application

    SciTech Connect (OSTI)

    Hou, Jingshan; CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ; Yin, Xin; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ; Huang, Fuqiang; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ; Jiang, Weizhong

    2012-06-15

    Highlights: ► NaLa{sub 1−x}MgWO{sub 6}:xRE{sup 3+} phosphors were synthesized by solid-state reaction method. ► Compared with Y{sub 2}O{sub 3}:Eu{sup 3+}, NaLaMgWO{sub 6}:Eu{sup 3+} performed better luminescence properties. ► The results demonstrated NaLaMgWO{sub 6} as a suitable host for RE{sup 3+}-doping. -- Abstract: Single phase of NaLa{sub 1−x}MgWO{sub 6}:xRE{sup 3+} (0 < x ≤1) (RE = Eu, Sm, Tb) phosphors were prepared by solid-state reaction method. X-ray diffraction, scanning electron microscopy, the morphology energy-dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectra and photoluminescence were used to characterize the samples. Under the light excitation, NaLaMgWO{sub 6}:Eu{sup 3+}, NaLaMgWO{sub 6}:Sm{sup 3+} and NaLaMgWO{sub 6}:Tb{sup 3+}, phosphors showed the characteristic emissions of Eu{sup 3+} ({sup 5}D{sub 0} → {sup 7}F{sub 4,3,2,1}), Sm{sup 3+} ({sup 4}G{sub 5/2} → {sup 6}H{sub 5/2,7/2,9/2}), and Tb{sup 3+} ({sup 5}D{sub 4} → {sup 7}F{sub 6,5,4,3}), respectively. The intensity of the red emission for Na(La{sub 0.6}Eu{sub 0.4})MgWO{sub 6} is 2.5 times higher than that of (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} under blue light irradiation. The quantum efficiencies of the entitled phosphors excited under 394 nm and 464 nm are also investigated and compared with commercial phosphors Y{sub 2}O{sub 3}:Eu{sup 3+}, Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Y{sub 3}A{sub 5}G{sub 12}:Ce{sup 3+}. The results demonstrated NaLaMgWO{sub 6}:RE{sup 3+} phosphors as potential candidates for white light emitting diode pumped by UV or blue chip.

  16. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  17. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  18. ARM - Field Campaign - Aircraft Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAircraft Carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Abstract Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle

  19. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  20. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    SciTech Connect (OSTI)

    Zhang, Weihuan; Zhang, Yuepin Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312?nm excited with 275?nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  1. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Mica, biotite, muscovite, diopside, tremolite, ultramafic rock, hematite, Ca-Mg-carbonate, calcite, aragonite, dolomite, crystal nucleation,

  2. supercritical carbon dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supercritical carbon dioxide - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  3. Carbon Sequestration.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration: Novel Concepts Current Sequestration Methods Novel Concepts * Glacial Storage * Biogenic Methane * Mineralization * Waste Streams / Recycling * Calcium Carbonate Hydrates Glacial Storage David Sevier, Aqueous Logic *Uses solid CO2 Clathrates *Stores Clathrates in columns of water inside glaciers, which are then refrozen *Storage in glaciers or Arctic/Antarctic ice sheets *Shares traits with geologic and oceanic storage *Issues with remoteness of areas Biogenic Methane Energetics,

  4. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  5. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  6. Eu3+ as a dual probe for the determination of IL anion donor power: A combined luminescence spectroscopic and electrochemical approach

    SciTech Connect (OSTI)

    Babai, Arash; Kopiec, Gabriel; Lackmann, Anastasia; Mallick, Bert; Pitula, Slawomir; Tang, Sifu; Mudring, Anja-Verena

    2014-04-01

    This work is aimed at giving proof that Eu(Tf2N)(3) (Tf2N = bis(trifluoromethanesulfonyl)amide) can act as both an optical and electrochemical probe for the determination of the Lewis acidity of an ionic liquid anion. For that reason the luminescence spectra and cyclic voltammograms of dilute solutions of Eu(Tf2N)(3) in various ionic liquids were investigated. The Eu2+/3+ redox potential in the investigated ILs can be related to the Lewis basicity of the IL anion. The IL cation had little influence. The lower the determined halfwave potential, the higher the IL anion basicity. The obtained ranking can be confirmed by luminescence spectroscopy where a bathochromic shift of the D-5(0) -> F-7(4) transition indicates a stronger Lewis basicity of the IL anion. (C) 2014 Published by Elsevier B.V.

  7. High temperature thermoelectric properties of the solid-solution zintl phase Eu??Cd6-xZnxSb??

    SciTech Connect (OSTI)

    Kazem, Nasrin; Hurtado, Antonio; Sui, Fan; Ohno, Saneyuki; Zevalkink, Alexandra; Snyder, Jeffrey G.; Kauzlarich, Susan M.

    2015-08-24

    Solid-solution Zintl compounds with the formulaEu??Cd6-xZnxSb?? have been synthesized from the elements as single crystals using a tin flux according to the stoichiometry Eu:Cd:Zn:Sb:Sn of 11:6xp:xp:12:30 with xp = 0, 1, 2, 3, 4, 5, and 6, where xp is the preparative amount of Zn employed in the reaction. The crystal structures and the compositions were established by single-crystal as well as powder X-ray diffraction and wavelength-dispersive X-ray analysis measurements. The title solid-solution Zintl compounds crystallize isostructurally in the centrosymmetric monoclinic space group C 2/m (No. 12, Z = 2) as the Sr??Cd?Sb?? structure type (Pearson symbol mC58). There is a miscibility gap at 3 ? xp ? 4 where the major product crystallizes in a disordered structure related to the Ca?Mn?Bi? structure type; otherwise, for all other compositions, the Sr??Cd?Sb?? structure is the majority phase. Eu??Cd?Sb?? shows lower lattice thermal conductivity relative to Eu??Zn?Sb?? consistent with its higher mean atomic weight, and as anticipated, the solid-solution samples of Eu??Cd6xZnxSb?? have effectively reduced lattice thermal conductivities relative to the end member compounds. Eu?????(1)Cd????(2)Zn????(2)Sb?????(1) exhibits the highest zT value of >0.5 at around 800 K which is twice as large as the end member compounds.

  8. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  9. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2008-09-11

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2317&D2). Remedial actions performed in the Balance of Site (BOS) Laboratory Area of EU Z2-33 and two small areas in EU Z2-42 are described in Sects. 5 through 10 of this Phased Construction Completion Report (PCCR). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for EU Z2-33; (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs; (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results; and (4) Describe RAs performed in the EU Z2-33 BOS Laboratory Area and two small areas in EU Z2-42. Approximately 18 acres in EU Z2-33 are addressed in this PCCR. Based on the results of the DVS evaluation and RAs performed, all 18 acres are recommended for unrestricted industrial use to 10 ft bgs. Three Federal Facility Agreement sites are addressed and recommended for no further action within this acreage, including: (1) K-1004-L Recirculating Cooling Water Lines Leak Sites; (2) K-1044 Heavy Equipment Repair Shop; and (3) K-1015-A Laundry Pit. Remedial actions for EU Z2-33 were developed in response to DVS characterization results described in the EU Z2-33 Technical Memorandum (Appendix A) and to support reindustrialization of the East Tennessee Technology Park as a commercial industrial park. Remediation criteria were designed for the protection of a future industrial worker who normally would not have the potential for exposure to soil below 10ft bgs. Accordingly, the Zone 2 ROD required land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-33 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a low probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-33. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18 acres addressed in this PCCR were assigned a low probability for consideration of release for unrestricted land use.

  10. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2011-06-08

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  11. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  12. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  13. Carbon Storage Newsletter | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Newsletter Each month, NETL compiles the Carbon Storage Newsletter to summarize recent public and private sector carbon storage news from around the world. Subscription information and directions for this free resource is available via the Subscription Directions webpage. A comprehensive archive of the Carbon Storage Newsletter is available below. Please note that prior to 2013, NETL's Carbon Storage Newsletter was known as the Carbon Sequestration Newsletter. 2016 Carbon Storage

  14. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  15. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  16. Global carbon budget 2014

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

  17. Global carbon budget 2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  18. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  19. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  20. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destination of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Destination of Atmospheric Carbon Oceans: 92 gigatonnes [(Gt) 1 gigatonne = 1x1012 kilograms] are recycled annually from the atmosphere to the oceans. This carbon is used for biosynthesis or remains dissolved

  1. Carbon Stars | Open Energy Information

    Open Energy Info (EERE)

    Stars Jump to: navigation, search Name: Carbon Stars Place: Netherlands Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References:...

  2. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exist even at room temperature. This makes carbon's magnetism an interesting natural effect with potential real-world applications if samples are thin enough. Magnetic hysteresis...

  3. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  4. Carbon-assisted flyer plates

    SciTech Connect (OSTI)

    Stahl, David B.; Paisley, Dennis L.

    1994-01-01

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  5. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  8. Carbonate Deposition | Open Energy Information

    Open Energy Info (EERE)

    Alteration Products Carbonate deposits come in many forms and sometimes develop into spectacular colorful terraces such as these at Mammoth Hot Springs in Yellowstone National...

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  10. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  13. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  14. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  15. Carbon Nanotube Nanocomposites, Methods of Making Carbon Nanotube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposites, and Devices Comprising the Nanocomposites - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Nanotube Nanocomposites, Methods of Making Carbon Nanotube Nanocomposites, and Devices Comprising the Nanocomposites Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology describes methods to fabricate supercapacitors using

  16. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) (Conference...

    Office of Scientific and Technical Information (OSTI)

    Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Paul Alivisatos, LBNL Director...

  17. Core Carbon Group AS CCG | Open Energy Information

    Open Energy Info (EERE)

    Carbon Group AS CCG Jump to: navigation, search Name: Core Carbon Group AS (CCG) Place: Copenhagen, Denmark Zip: DK-1074 Sector: Carbon Product: The Core Carbon Group (formerly...

  18. Pressure effects on magnetic pair-breaking in Mn- and Eu-substituted BaFe{sub 2}As{sub 2}

    SciTech Connect (OSTI)

    Rosa, P. F. S.; Garitezi, T. M.; Adriano, C.; Urbano, R. R.; Pagliuso, P. G.; Grant, T.; Fisk, Z.; Fernandes, R. M.

    2014-05-07

    We report a combined study of hydrostatic pressure (P ? 25 kbar) and chemical substitution on the magnetic pair-breaking effect in Eu- and Mn-substituted BaFe{sub 2}As{sub 2} single crystals. At ambient pressure, both substitutions suppress the superconducting (SC) transition temperature (T{sub c}) of BaFe{sub 2x}Co{sub x}As{sub 2} samples slightly under the optimally doped region, indicating the presence of a pair-breaking effect. At low pressures, an increase of T{sub c} is observed for all studied compounds followed by an expected decrease at higher pressures. However, in the Eu dilute system, T{sub c} further increases at higher pressure along with a narrowing of the SC transition, suggesting that a pair-breaking mechanism reminiscent of the Eu Kondo single impurity regime is being suppressed by pressure. Furthermore, Electron Spin Resonance (ESR) measurements indicate the presence of Mn{sup 2+} and Eu{sup 2+} local moments and the microscopic parameters extracted from the ESR analysis reveal that the AbrikosovGor'kov expression for magnetic pair-breaking in a conventional sign-preserving superconducting state cannot describe the observed reduction of T{sub c}.

  19. The origin of bimodal luminescence of ?-SiAlON:Eu{sup 2+} phosphors as revealed by fluorescence microscopy and cathodoluminescence analysis

    SciTech Connect (OSTI)

    Gan, Lin; Mao, Zhi-Yong; Zeng, Xiong-Hui; Zhang, Yu-Qiang; Zhao, Yang; Xu, Fang-Fang; Zhu, Ying-Chun; Liu, Xue-Jian

    2014-03-01

    Graphical abstract: - Highlights: Bimodal emission is originated from ?-SiAlON grains with z ? 2. Coexistence of two kinds of emission centers in the ?-SiAlON phase is definite. Fluorescence microscopy shows influence of the z value on emission of ?-SiAlON. - Abstract: Eu{sup 2+}-doped SiAlON phosphors with the composition of Eu{sub x}Si{sub 6?z}Al{sub z}O{sub z}N{sub 8?z} (0.5 ? z ? 3) at a fixed x = 0.01 were synthesized by the gas pressure sintering method. Dependence of luminescence properties on the phase compositions in ?-SiAlON:Eu{sup 2+} phosphors has been examined via fluorescence microscope and scanning electron microscope equipped with a cathodoluminescence spectrometer and an energy dispersive spectrometer. Bimodal emission (green and violet) from ?-SiAlON phase is observed in the samples with z ? 2, indicating co-existence of two different kinds of coordination for Eu{sup 2+} ions in the host lattice.

  20. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated MolybdateTungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 CaWO 4 :Eu 3+ 0D CdS/CdSe QD Nanoscale Heterostructures

    SciTech Connect (OSTI)

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu?-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW??xMoxO? (0 ? x ? 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW??xMoxO?: Eu? (0 ? x ? 1) solid solution composite nanowires increase with increasing Mo component (x). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW??xMoxO?: Eu? (0 ? x ? 1) evincing the highest photoluminescence (PL) output at x = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (x = 0.8) 0D QD composite nanoscale heterostructures. Our results show that CaW??xMoxO?: Eu? (x = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW??xMoxO?: Eu? nanowires. The observed PL quenching is especially pronounced in CaW??xMoxO?: Eu? (x = 0.8) 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu? activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW??xMoxO?: Eu? (x = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.

  1. Synthesis of compositionally-defined single-crystalline Eu?-activated molybdate-tungstate solid solution composite nanowires and observation of charge transfer in a novel class of 1D CaMoO?-CaWO?: Eu? 0D CdS/CdSe QD nanoscale heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Jinkyi; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu?-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW??xMoxO? (0 ? x ? 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW??xMoxO?: Eu? (0 ? x ? 1) solid solution composite nanowires increase with increasing Mo component (x). We note a clear dependence of luminescence output upon nanowire chemical composition withmoreour 1D CaW??xMoxO?: Eu? (0 ? x ? 1) evincing the highest photoluminescence (PL) output at x = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (x = 0.8) 0D QD composite nanoscale heterostructures. Our results show that CaW??xMoxO?: Eu? (x = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW??xMoxO?: Eu? nanowires. The observed PL quenching is especially pronounced in CaW??xMoxO?: Eu? (x = 0.8) 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu? activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW??xMoxO?: Eu? (x = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.less

  2. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  3. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  4. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  5. Carbon Trust CECIC JV | Open Energy Information

    Open Energy Info (EERE)

    CECIC JV Jump to: navigation, search Name: Carbon Trust & CECIC JV Place: China Sector: Carbon Product: China-based JV innovator and transferrer of low carbon technology in China....

  6. NETL: Carbon Storage Technology R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Technology Carbon Storage Infrastructure Core Research and Development Supporting Activities 1 2 3 slideshow html by WOWSlider.com v5.4 The objective of DOE's Carbon...

  7. Mandarin Global Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mandarin Global Carbon Ltd Jump to: navigation, search Name: Mandarin Global Carbon Ltd Place: Londaon, Greater London, United Kingdom Zip: W1S 1TD Sector: Carbon, Hydro Product:...

  8. First Carbon Fund Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fund Ltd Jump to: navigation, search Name: First Carbon Fund Ltd Place: London, Greater London, United Kingdom Zip: EC1V 9EE Sector: Carbon Product: First Carbon Fund Ltd., acts as...

  9. CarbonFree Technology | Open Energy Information

    Open Energy Info (EERE)

    CarbonFree Technology Jump to: navigation, search Logo: CarbonFree Technology Name: CarbonFree Technology Address: 22 St. Clair Ave. E., Suite 1103 Place: Toronto, Ontario Country:...

  10. Carbon-free | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-free Subscribe to RSS - Carbon-free Carbon-free PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid Scientists at the U.S....

  11. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect (OSTI)

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  12. Process for making hollow carbon spheres

    DOE Patents [OSTI]

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  13. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at

  14. How to Store Carbon | Department of Energy

    Energy Savers [EERE]

    to Store Carbon How to Store Carbon March 17, 2016 - 3:30pm Addthis Jenny Bowman National Energy Technology Laboratory What does this project do? Carbon capture and storage is critical to fighting climate change. (Learn the basics with our Carbon Capture 101 infographic.) Researchers are developing modeling tools to ensure carbon storage is safe, viable and worthwhile. The tools will make it easier to select and monitor underground carbon storage sites. The project is led by NETL, one of the

  15. Greenstone Carbon Management Ltd | Open Energy Information

    Open Energy Info (EERE)

    solutions provider to measure, manage and mitigate their carbon emissions and realise business and financial benefits. References: Greenstone Carbon Management Ltd.1 This...

  16. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiohon, Georges A; Liang, Chengdu

    2013-02-05

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  17. Timing Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Timing Carbon Ltd Jump to: navigation, search Name: Timing Carbon Ltd Place: Beijing, Beijing Municipality, China Zip: 100022 Product: UK registered, China based CDM and voluntary...

  18. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  19. Carbon Trust Investments Ltd | Open Energy Information

    Open Energy Info (EERE)

    Investments Ltd Jump to: navigation, search Name: Carbon Trust Investments Ltd Place: United Kingdom Sector: Carbon Product: UK-based venture capital investment division of The...

  20. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  1. Carbon Capture Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Carbon Capture Corporation Address: 7825 Fay Avenue Place: La Jolla, California Zip: 92037 Region: Southern CA Area Sector: Carbon...

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  3. Carbon Sequestration Initiative CSI | Open Energy Information

    Open Energy Info (EERE)

    Sequestration Initiative CSI Jump to: navigation, search Name: Carbon Sequestration Initiative (CSI) Place: Cambridge, Massachusetts Zip: MA 02139-4307 Sector: Carbon Product:...

  4. Carbon Trade Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Carbon Trade Ltd Place: Scotland, United Kingdom Zip: ML12 6HW Product: Scotland-based landfill gas project developer. References: Carbon...

  5. Intan Carbon Corporation | Open Energy Information

    Open Energy Info (EERE)

    Intan Carbon Corporation Jump to: navigation, search Name: Intan Carbon Corporation Place: Beijing, Beijing Municipality, China Zip: 100031 Sector: Efficiency Product:...

  6. BSMB Carbon Consult | Open Energy Information

    Open Energy Info (EERE)

    BSMB Carbon Consult Jump to: navigation, search Name: BSMB Carbon Consult Place: Brazil Product: Sao Paulo-based in-house resource of Banco Sumitomo Mitsui Brasileiro. References:...

  7. Carbon Bank Ireland | Open Energy Information

    Open Energy Info (EERE)

    Ireland Jump to: navigation, search Name: Carbon Bank Ireland Place: Nevada Zip: 89411 Product: Investment bank focused on CDM projects. References: Carbon Bank Ireland1 This...

  8. Carbon Opportunity Group | Open Energy Information

    Open Energy Info (EERE)

    Opportunity Group Jump to: navigation, search Name: Carbon Opportunity Group Place: Chicago, Illinois Zip: 60606 Sector: Carbon, Services Product: Chicago-based firm that provides...

  9. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiochon, Georges A; Liang, Chengdu

    2014-01-14

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  10. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index AgencyCompany Organization: Resources for the Future Partner: United Nations...

  11. Low Carbon Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Research Institute Jump to: navigation, search Logo: Low Carbon Research Institute Name: Low Carbon Research Institute Address: King Edward VII Avenue CF10 3NB Place: Cardiff,...

  12. Common Carbon Metric | Open Energy Information

    Open Energy Info (EERE)

    Common Carbon Metric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Common Carbon Metric AgencyCompany Organization: United Nations Environment Programme, World...

  13. Carbon Limiting Technologies | Open Energy Information

    Open Energy Info (EERE)

    Limiting Technologies Jump to: navigation, search Name: Carbon Limiting Technologies Place: London, Greater London, United Kingdom Zip: N1 8HA Sector: Carbon Product: UK-based...

  14. Development and Commercialization of Alternative Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon ...

  15. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  17. Energy-Related Carbon Emissions in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel...

  18. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  19. New Zealand Joins International Carbon Storage Group

    Broader source: Energy.gov [DOE]

    The Carbon Sequestration Leadership Forum today announced that New Zealand has become the newest member of the international carbon storage body.

  20. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  2. China Low Carbon Platform | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Platform Jump to: navigation, search Name China Low Carbon Platform AgencyCompany Organization Institute of Development Studies, Climate Change and Development Centre,...

  3. CUFR Tree Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: www.fs.fed.usccrctopicsurban-forestsctcc Cost: Free Language: English References: CUFR Tree Carbon Calculator1 Overview "The CUFR Tree Carbon...

  4. SciTech Connect: "carbon sequestration"

    Office of Scientific and Technical Information (OSTI)

    carbon sequestration" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "carbon sequestration" Semantic Semantic Term Title: Full Text:...

  5. Princeton Plasma Physics Lab - Carbon-free

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon-free Carbon-free en PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid http:www.pppl.govnewspress-releases201601...

  6. USAID Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Application ComplexityEase of Use: Not Available Website: www.afolucarbon.org Cost: Free Language: English USAID Carbon Calculator Screenshot Logo: USAID Carbon Calculator This...

  7. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  8. The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} LED conversion phosphor

    SciTech Connect (OSTI)

    Li, Y.Q.; With, G. de; Hintzen, H.T.

    2008-03-15

    The influence of the replacement of Sr by Ca on structural and luminescence properties of Eu{sup 2+}-doped Sr{sub 2}Si{sub 5}N{sub 8} is reported. The Rietveld refinement of the powder X-ray diffraction data shows that the Ca{sup 2+} ion preferentially occupies the larger Sr site in Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. Although the excitation spectrum is hardly modified, the position of the emission band of Eu{sup 2+} can be tailored through partial replacement of Sr by Ca in Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, resulting in red-emission shifting from 620 to 643 nm. Furthermore, (Sr, Ca){sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} shows high potential as a conversion phosphor for white-light LED applications due to similar absorption, conversion efficiency and thermal quenching behaviour for 465 nm excitation after the introduction of the Ca ion. - Graphical abstract: The temperature dependence of the luminescence efficiency of M{sub 1.9}Eu{sub 0.1}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba) and Sr{sub 1.3}Ca{sub 0.6}Eu{sub 0.1}Si{sub 5}N{sub 8} ({lambda}{sub exc}=465 nm)

  9. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  10. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  11. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  12. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  13. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  14. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. Photoluminescence and electrical characterization of unfilled tetragonal tungsten bronze Ba{sub 4}La{sub 1?x}Eu{sub x}TiNb{sub 9}O{sub 30}

    SciTech Connect (OSTI)

    Wei, T.; Wang, Y.Q.; Zhao, C.Z.; Zhan, L.Q.

    2014-12-15

    Graphical abstract: PL spectra of the unfilled TTB structure BLTN: Eu{sup 3+}x samples (x = 0.00, 0.25, 0.50, 0.75, and 1.00) excited by 399 nm. The inset is a schematic diagram of the unfilled TTB structure. - Highlights: Unfilled TTB structure BLTN: Eu{sup 3+}x ceramics have been synthesized. Photoluminescenct properties of the BLTN: Eu{sup 3+}x ceramics have been first reported. Bright red emission excited by NUV light has been observed at room temperature. Obvious variations of dielectric characteristics have been confirmed. Relaxor-like ferroelectric phase transitions have been detected. - Abstract: Unfilled tetragonal tungsten bronze (TTB) structure Ba{sub 4}LaTiNb{sub 9}O{sub 30} doped by Eu{sup 3+} (BLTN: Eu{sup 3+}x) with different x have been prepared, and their structural, photoluminescence, dielectric, and ferroelectric properties are carefully investigated in this work. Bright red emission, originating from {sup 5}D{sub 0} ? {sup 7}F{sub 1} and {sup 5}D{sub 0} ? {sup 7}F{sub 2} transitions of Eu{sup 3+} ions, has been observed by naked eyes at room temperature under near ultraviolet (NUV) light excitation. Optimized emission intensity is obtained when x = 1.00 for present unfilled TTB-type BLTN: Eu{sup 3+}x samples. Furthermore, with increasing x, the dielectric and ferroelectric characteristics of the unfilled TTB-type BLTN: Eu{sup 3+}x samples also display remarkable variation. When x ? 0.50 relaxor-like ferroelectric phase transitions are detected above room temperature, it is believed that unfilled TTB-type BLTN: Eu{sup 3+}x = 1.00 involving bright photoluminescence and enhanced ferroelectric properties may act as a potentially multifunctional optical-electro material.

  16. Red phosphor Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} for potential application in field emission displays and white light-emitting diodes

    SciTech Connect (OSTI)

    Wang, Ting; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei; Yu, Xue

    2014-12-15

    Abstract: A novel red emitting phosphor of Eu{sup 3+} doped Ca{sub 2}Ge{sub 7}O{sub 16} was prepared through the solid state reaction. The luminescence properties were studied in detail by photoluminescence excitation (PLE), emission (PL) spectra and cathodoluminescence (CL). Under the excitation of ultraviolet light, Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor shows the characteristic {sup 5}D{sub 0}-{sup 7}F{sub J}(J = 1, 2, 3, 4) transition of Eu{sup 3+} with two different emissions due to the two kinds of Eu{sup 3+} ions. The luminescent intensity could be improved by co-doping with the charge compensators R{sup +} (Li, Na, K) which partially substitute for Ca{sup 2+} crystal sites. CL spectra show that Eu{sup 3+} ions were excited by the plasma produced by the incident electrons and the CL properties of Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+}, Li{sup +} as a function of accelerating voltage and probe current were investigated. Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor offers higher thermal stability compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+}. The results indicate that Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} can be a suitable red-emitting phosphor candidate for FEDs and w-LEDs.

  17. Controlled peak wavelength shift of Ca{sub 1-} {sub x} Sr {sub x} (S {sub y} Se{sub 1-} {sub y} ):Eu{sup 2+} phosphor for LED application

    SciTech Connect (OSTI)

    Nazarov, Mihail . E-mail: nazarov.mihail@samsung.com; Yoon, Chulsoo

    2006-08-15

    The highly efficient red-orange-yellow-emitting phosphor (Ca{sub 1-} {sub x} Sr {sub x} )(S{sub 1-} {sub y} Se {sub y} ):Eu{sup 2+} in combination with commercial green phosphor SrGa{sub 2}S{sub 4}:Eu{sup 2+} and blue LED are proposed for a three-band white LED. The luminescence mechanism and optimization parameters are discussed on the basis of proposed peak wavelength diagram. - Graphical abstract: 'Peak wavelength diagram for (Ca{sub 1-} {sub x} Sr {sub x} )(S{sub 1-} {sub y} Se {sub y} ):Eu{sup 2+}'.

  18. Cation-poor complex metallic alloys in Ba(Eu)AuAl(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    SciTech Connect (OSTI)

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6xGa6y (x = 1, y = 0.9) (I), BaAu6xAl6y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (coloring scheme). Chemical bonding analyses for two different EuAu6Tr6 models reveal maximization of the number of heteroatomic AuTr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the EuAu6Tr6 models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 ?B/f.u. at 2 K. As a result, the effective moments of 8.3 ?B/f.u., determined from CurieWeiss fits, point to divalent oxidation states for europium in both III and IV.

  19. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  20. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Hhne, D. Spemann, P. Esquinazi, M. Ungureanu, and T. Butz, "-Electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism," Phys. Rev. Lett. 98, 187204 (2007...

  1. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming (Pleasanton, CA)

    1993-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  2. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  3. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  4. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  5. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  7. Carbon-assisted flyer plates

    DOE Patents [OSTI]

    Stahl, D.B.; Paisley, D.L.

    1994-04-12

    A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.

  8. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  9. Activated carbon to the rescue

    SciTech Connect (OSTI)

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  10. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  11. Lithographically defined microporous carbon structures

    DOE Patents [OSTI]

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  12. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  13. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  14. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  15. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    SciTech Connect (OSTI)

    Tian, Guoxin; Martin, Leigh R.; Rao, Linfeng

    2010-10-01

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML{sup 2+}, ML{sup 2+} and ML{sub 3}(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated {alpha}-hydroxyl group of lactate participates in the complexation.

  16. How Carbon Capture Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture Works How Energy Works 34 likes How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost three-fourths of human-caused emissions in the past two decades. Carbon capture, utilization and storage (CCUS) -- also referred to as carbon capture, utilization and sequestration -- is a process that captures carbon dioxide emissions from sources like coal-fired power plants and

  17. Annual Report: Carbon Storage (30 September 2012)

    Office of Scientific and Technical Information (OSTI)

    Carbon Storage Carbon Storage Carbon Storage Annual Report: Carbon Storage 30 September 2012 NETL Technical Report Series NETL-TRS-Carbon Storage-2012 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  18. ARM - What is the Carbon Cycle?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the Carbon Cycle? Oceanic Properties Future Trends Carbon Cycle Balance Destination of Atmospheric Carbon Sources of Atmospheric Carbon The cycling of carbon from the atmosphere to organic compounds and back again not only involves

  19. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  20. Carbon nanotubes on a substrate

    DOE Patents [OSTI]

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  1. Fiscal Year 2010 Phased Construction Completion Report for EU Z2-32 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-02-01

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORJO 1-2161 &D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORIO 1 -2224&D3) (RDRJRAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone I exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together, which allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was completed for the EU addressed in this document (EU Z2-32). The purpose of this Phased Construction Completion Report (PCCR) is to address the following: (1) Document DVS characterization results for EU Z2-32. (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs. (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results. (4) Describe the remedial action performed in the K-1066-G Yard in EU Z2-32. Approximately 18.4 acres are included in the EU addressed in this PCCR. Based on results of the DVS evaluation, all 18.4 acres are recommended for unrestricted industrial use to 10 ft bgs. There are no Federal Facility Agreement Sites included in Appendix A of the Zone 2 ROD in EU Z2-32. The Zone 2 ROD requires land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-32 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a high probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-32. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18.4 acres addressed in this PCCR were assigned a high probability for consideration of release for unrestricted land use. This document contains the main text (Sects. 1 through 13) and one appendix. The main text addresses the purpose for this PCCR as described above. Additional supporting detail (e.g., field work and data summaries, graphics) is provided in the EU Z2-32 technical memorandum (Appendix A). Historical and DVS analytical data used in this PCCR are provided on a compact disc accompanying this document and can be accessed through the Oak Ridge Environmental Information System.

  2. Novel method for carbon nanofilament growth on carbon fibers

    SciTech Connect (OSTI)

    Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs with smooth walls and low impurity content were grown. Carbon nanofibers were also grown on a carbon fiber cloth using plasma enhanced chemical vapor deposition (CVD) from a mixture of acetylene and ammonia. In this case, a cobalt colloid was used to achieve a good coverage of nanofibers on carbon fibers in the cloth. Caveats to CNT growth include damage in the carbon fiber surface due to high-temperatures (>800 C). More recently, Qu et al. reported a new method for uniform deposition of CNT on carbon fibers. However, this method requires processing at 1100 C in the presence of oxygen and such high temperature is anticipated to deepen the damage in the carbon fibers. In the present work, multi-scale filaments (herein, linear carbon structures with multi-micron diameter are called 'fibers', all structures with sub-micron diameter are called 'filaments') were created with a low temperature (ca. 550 C) alternative to CVD growth of CNTs. Specifically, nano-scale filaments were rapidly generated (> 10 microns/hour) on commercial micron scale fibers via catalytic (Pd particles) growth from a fuel rich combustion environment at atmospheric pressure. This atmospheric pressure process, derived from the process called Graphitic Growth by Design (GSD), is rapid, the maximum temperature low enough (below 700 C) to avoid structural damage and the process inexpensive and readily scalable. In some cases, a significant and unexpected aspect of the process was the generation of 'three scale' materials. That is, materials with these three size characteristics were produced: (1) micrometer scale commercial PAN fibers, (2) a layer of 'long' sub-micrometer diameter scale carbon filaments, and (3) a dense layer of 'short' nanometer diameter filaments.

  3. Carbon tax or carbon permits: The impact on generators' risks

    SciTech Connect (OSTI)

    Green, R.

    2008-07-01

    Volatile fuel prices affect both the cost and price of electricity in a liberalized market. Generators with the price-setting technology will face less risk to their profit margins than those with costs that are not correlated with price, even if those costs are not volatile. Emissions permit prices may respond to relative fuel prices, further increasing volatility. This paper simulates the impact of this on generators' profits, comparing an emissions trading scheme and a carbon tax against predictions for the UK in 2020. The carbon tax reduces the volatility faced by nuclear generators, but raises that faced by fossil fuel stations. Optimal portfolios would contain a higher proportion of nuclear plant if a carbon tax was adopted.

  4. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  5. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  6. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  7. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Busch, Donald E. (Hinsdale, IL); Fenske, George R. (Downers Grove, IL); Lee, Sam (Gardena, CA); Shepherd, Gary (Los Alamitos, CA); Pruett, Gary J. (Cypress, CA)

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  8. Gold-catalyzed synthesis of carbonates and carbamates from carbon monoxide

    DOE Patents [OSTI]

    Friend, Cynthia M; Madix, Robert J; Xu, Bingjun

    2015-01-20

    The invention provides a method for producing organic carbonates via the reaction of alcohols and carbon monoxide with oxygen adsorbed on a metallic gold or gold alloy catalyst.

  9. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  10. Covalently functionalized carbon nanostructures and methods for their separation

    DOE Patents [OSTI]

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  11. Methods for purifying carbon materials

    DOE Patents [OSTI]

    Dailly, Anne (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  12. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN)

    1993-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  13. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1993-12-07

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  14. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN)

    1994-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  15. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect (OSTI)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  16. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  17. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  18. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  19. The surface structure of ?-uranophane and its interaction with Eu(III) An integrated computational and fluorescence spectroscopy study

    SciTech Connect (OSTI)

    Kuta, Jadwiga; Wang, Zheming; Wisuri, Katy; Wander, Matthew C F.; Wall, Nathalie; Clark, Aurora E.

    2013-02-15

    Uranophane is a rare U(VI) secondary silicate mineral formed in nature by the oxidation of the primary mineral uraninite. It is also relevant to the long-term geochemistry of nuclear waste repositories, where it can be formed under oxidizing conditions and has the potential to act as a secondary barrier to the migration of radionuclides through mineral sorption reactions. A combination of classical molecular dynamics and ab-initio density functional theory (DFT) has been employed to investigate the uranophane|water interface as well as the interfacial reactivity of the U(VI) silicate toward acidic conditions and radionuclide ion sorption. The sorption simulations have been complemented by experimental sorption studies and laser induced fluorescence spectroscopy to help identify the molecular structure of the surface sorbed species. Experimental distances and essential coordination numbers are properly captured by the simulation results within bulk uranophane, while interfacial water is found to orient primarily with the hydrogen-atoms directed towards the negatively charged surface. Sorption sites for water are observed to belong to 3 different groups: (1) those involving uranyl oxygen, (2) involving uranyl and silica hydroxyl oxygen atoms, and (3) involving hydroxyl hydrogen. The pKa of the surface -OH groups have been calculated using a variety of models, including a bond valence approach and utilization of the energetics of deprotonation within DFT. Under basic conditions, deprotonation of the Si-OH groups is likely responsible for uranophane dissolution. Finally, the stability and structure of surface sorbed Eu3+ has been examined, with a stable inner-sphere species being observed.

  20. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1987-11-17

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  1. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results from molecular dynamics simulations. Extreme Carbon: Liquid Diamond or Molten Graphite? Versatile carbon takes on a dizzying array of forms and functions. Chains of carbon...

  2. 2011 Department of Energy Investments in Carbon Capture Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon...

  3. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1985-04-29

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  4. Tools for Forest Carbon Inventory, Management, and Reporting...

    Open Energy Info (EERE)

    of carbon in forests are crucial for forest carbon management, carbon credit trading, national reporting of greenhouse gas inventories to the United Nations Framework...

  5. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  6. Bloomberg New Energy Finance Carbon Markets formerly New Energy...

    Open Energy Info (EERE)

    Bloomberg New Energy Finance Carbon Markets formerly New Energy Finance Carbon Markets Group Jump to: navigation, search Name: Bloomberg New Energy Finance Carbon Markets (formerly...

  7. The Structure of Ions near Carbon Nanotubes: New Insights into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Structure of Ions near Carbon Nanotubes: New Insights into Carbon Surface Chemistry and Implications for Water Purification Carbon-based materials have long been used for a...

  8. Easy Carbon Consultancy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carbon Consultancy Co Ltd Jump to: navigation, search Name: Easy Carbon Consultancy Co Ltd Place: Chaoyang District, Beijing Municipality, China Zip: 100022 Sector: Carbon Product:...

  9. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  10. EFRC Carbon Capture and Sequestration Activities at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

  11. International Carbon Reduction Offset Alliance ICROA | Open Energy...

    Open Energy Info (EERE)

    Carbon Reduction Offset Alliance ICROA Jump to: navigation, search Name: International Carbon Reduction & Offset Alliance (ICROA) Place: United Kingdom Sector: Carbon Product:...

  12. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name: Big Sky Carbon Sequestration Partnership Address: 2327 University...

  13. Carbon Credit Capital and Feedback Ventures JV | Open Energy...

    Open Energy Info (EERE)

    Capital and Feedback Ventures JV Jump to: navigation, search Name: Carbon Credit Capital and Feedback Ventures JV Place: India Sector: Carbon Product: String representation "Carbon...

  14. Low Carbon Communities of the Americas | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Communities of the Americas Jump to: navigation, search Logo: Low Carbon Communities of the Americas Name Low Carbon Communities of the Americas AgencyCompany...

  15. Mexico-Low-Carbon Development | Open Energy Information

    Open Energy Info (EERE)

    Mexico-Low-Carbon Development (Redirected from ESMAP-Low-Carbon Development for Mexico) Jump to: navigation, search Logo: Mexico-ESMAP Low Carbon Growth Studies Program Name...

  16. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, Powell (New Bern, NC); Mausner, Leonard F. (Stony Brook, NY); Prach, Thomas F. (Port Jefferson, NY)

    1987-01-01

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  17. Indonesia-Low Carbon Development Options Study | Open Energy...

    Open Energy Info (EERE)

    Indonesia-Low Carbon Development Options Study (Redirected from ESMAP-Indonesia-Low Carbon Development Options Study) Jump to: navigation, search Name Indonesia-ESMAP Low Carbon...

  18. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. ...

  19. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  20. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of todays carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Poriferas carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  1. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  2. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition withmore » our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.« less

  3. Luminescence properties of a blue-emitting phosphor: (Sr{sub 1?x}Eu{sub x})Si{sub 9}Al{sub 19}ON{sub 31} (0

    SciTech Connect (OSTI)

    Liu, Lihong; Xie, Rong-Jun; Hirosaki, Naoto; Dierre, Benjamin; Sekiguchi, Takashi

    2013-11-15

    Blue-emitting Sr{sub 1?x}Eu{sub x}Si{sub 9}Al{sub 19}ON{sub 31} phosphors were synthesized at 1800 C for 2 h under 1 MPa N{sub 2} by using the gas-pressure sintering method (GPS). The microstructure, photoluminescence (PL) properties of the prepared phosphors were investigated. Under the 290 nm excitation, broad PL emission bands with peak positions at 448490 nm were detected. The concentration quenching was not observed owing to the large distance betweenEu{sup 2+} ions that made the nonradiative energy transfer between neighboring Eu{sup 2+} ions difficult. The blue phosphor generally showed a small thermal quenching at low Eu{sup 2+} concentrations. The absorption and external quantum efficiency of the synthesized Sr{sub 0.5}Eu{sub 0.5}Si{sub 9}Al{sub 19}ON{sub 31} were 85% and 62% upon the 365 nm excitation, respectively. The interesting PL results indicate that Sr{sub 1?x}Eu{sub x}Si{sub 9}Al{sub 19}ON{sub 31} has great potentials as a blue phosphor for white LEDs applications. - Graphical abstract: Sr{sub 0.7}Eu{sub 0.3}Si{sub 9}Al{sub 19}ON{sub 31} gives blue-emitting at 471 nm. Excitation spectrum is composed of five bands in the range of 250450 nm, which are matching well with emission wavelength of UV LEDs. Display Omitted - Highlights: Blue-emitting Sr{sub 1?x}Eu{sub x}Si{sub 9}Al{sub 19}ON{sub 31} phosphors were synthesized by gas-pressure sintering method. The concentration quenching was not observed in this phosphor. This blue phosphor generally showed a small thermal quenching at low Eu{sup 2+} concentrations. The absorption and external quantum efficiency of the synthesized Sr{sub 0.5}Eu{sub 0.5}Si{sub 9}Al{sub 19}ON{sub 31} were 85% and 62% upon the 365 nm excitation.

  4. Terahertz detection and carbon nanotubes

    ScienceCinema (OSTI)

    Leonard, Francois

    2014-06-13

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  5. Desalination with carbon aerogel electrodes

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  6. Terahertz detection and carbon nanotubes

    SciTech Connect (OSTI)

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  7. Low Carbon Aviation Committee Meeting

    Broader source: Energy.gov [DOE]

    The first committee meeting of the Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions Project will be held on June 2–3, 2015 at the National Academy of Sciences. BETO Director Jonathan Male will be speaking on a Department of Energy panel at the meeting, and Lead Analyst Zia Haq will be in attendance.

  8. EcoBio Carbon | Open Energy Information

    Open Energy Info (EERE)

    EcoBio Carbon Jump to: navigation, search Name: EcoBio Carbon Place: Sao Paulo, Santa Catarina, Brazil Zip: 88750-000 Product: Brazilian CDM project developer. References: EcoBio...

  9. Sindicatum Carbon Capital SCC | Open Energy Information

    Open Energy Info (EERE)

    Sindicatum Carbon Capital SCC Jump to: navigation, search Name: Sindicatum Carbon Capital (SCC) Place: London, United Kingdom Zip: W1S 1HX Product: SCC is a specialist end-to-end...

  10. Carbon Capital Markets | Open Energy Information

    Open Energy Info (EERE)

    Capital Markets Jump to: navigation, search Name: Carbon Capital Markets Place: London, United Kingdom Zip: W1J 8DY Sector: Carbon Product: London-based fund manager and trader...

  11. Low Carbon Investors Ltd | Open Energy Information

    Open Energy Info (EERE)

    Investors Ltd Jump to: navigation, search Name: Low Carbon Investors Ltd Place: London, England, United Kingdom Zip: W1W 7TH Sector: Carbon Product: London-based manager of the Low...

  12. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  13. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  14. Integrated Climate and Carbon-cycle Model

    Energy Science and Technology Software Center (OSTI)

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  15. FE Carbon Capture and Storage News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC 20585202-586-6660 en NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential http:energy.govfearticlesnetl-s-2015-carbon-storage-atlas-shows-...

  16. Recycling Carbon Dioxide to Make Plastics

    Broader source: Energy.gov [DOE]

    The world’s first successful large-scale production of a polypropylene carbonate polymer using waste carbon dioxide as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy.

  17. Carbon sequestration in depleted oil shale deposits

    DOE Patents [OSTI]

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  18. 2014 Carbon Storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 12-14, 2014 Sheraton Station Square Hotel, Pittsburgh, Pennsylvania TUESDAY, AUGUST 12, 2014 - GRAND STATION BALLROOM FUTURE OF CARBON STORAGE RESEARCH Julio Friedmann, Deputy Assistant Secretary for Clean Coal, U.S. Department of Energy Carbon Storage Program Overview Traci Rodosta, Carbon Storage Technology Manager, U.S. Department of Energy, National Energy Technology Laboratory

  19. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  20. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  1. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  2. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  3. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates New Species of Cyanobacteria Forms Intracellular Carbonates Print Wednesday, 30 January 2013 00:00 A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering

  4. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Greening up fossil fuels with carbon sequestration Researchers make progress fighting climate change by capturing carbon dioxide from power plants and storing it deep underground in geological reservoirs March 25, 2013 Greening up fossil fuels with carbon sequestration Most of the world's existing energy supply is stored underground in

  5. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  6. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  7. vacuum-carbonate | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process Project No.: DE-NT0005498 ISGS solvent cartoon. ISGS solvent cartoon. The Illinois State Geological Survey is developing an integrated vacuum carbonate absorption process (IVCAP) for post-combustion carbon dioxide (CO2) capture. This process employs potassium carbonate solution as a solvent that can be integrated with the power plant steam cycle by using low-quality steam. Researchers will confirm IVCAP process

  8. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy ... Carbon Footprint Sector: Computers, Electronics and Electrical Equipment (NAICS 334, ...

  9. Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate...

    Open Energy Info (EERE)

    could invade carbonate rocks which were otherwise essentially impermeable. Alteration intensity (and correspondingly inferred paleopermeability) is only slightly higher in...

  10. Financing Residential Energy Efficiency with Carbon Offsets

    Energy Savers [EERE]

    Financing Residential Energy Efficiency with Carbon Offsets Steve Erario Energy Programs Associate at Alarm.com March 13, 2013 2 * Steve Erario served as the Carbon Project Coordinator at MaineHousing, which houses the state of Maine's weatherization program. In that role, he helped develop the certified carbon offsets project from 2010 to 2012. Ultimately Steve managed the sale of carbon offsets to Chevrolet Motors, and the revenue from the sales are currently being used to weatherize

  11. Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu{sup 3+} in CaTiO{sub 3} for red emission in display application

    SciTech Connect (OSTI)

    Som, S. E-mail: swarthc@ufs.ac.za; Kumar, Vinod; Kumar, Vijay; Terblans, J. J.; Swart, H. C. E-mail: swarthc@ufs.ac.za; Kunti, A. K.; Dutta, S.; Chowdhury, M.; Sharma, S. K.

    2014-05-21

    This paper reports on the defect correlated self-quenching and spectroscopic investigation of calcium titanate (CaTiO{sub 3}) phosphors. A series of CaTiO{sub 3} phosphors doped with trivalent europium (Eu{sup 3+}) and codoped with potassium (K{sup +}) ions were prepared by the solid state reaction method. The X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure. The scanning electron microscopy images revealed the irregular morphology of the prepared phosphors consisting out of ?m sized diameter particles. The Eu{sup 3+} doped phosphors illuminated with ultraviolet light showed the characteristic red luminescence corresponding to the {sup 5}D{sub 0}?{sup 7}F{sub J} transitions of Eu{sup 3+}. As a charge compensator, K{sup +} ions were incorporated into the CaTiO{sub 3}:Eu{sup 3+} phosphors, which enhanced the photoluminescence (PL) intensities depending on the doping concentration of K{sup +}. The concentration quenching of Eu{sup 3+} in this host is discussed in the light of ion-ion interaction, electron phonon coupling, and defect to ion energy transfer. The spectral characteristics and the Eu-O ligand behaviour were determined using the Judd-Ofelt theory from the PL spectra instead of the absorption spectra. The CIE (International Commission on Illumination) parameters were calculated using spectral energy distribution functions and McCamy's empirical formula. Photometric characterization indicated the suitability of K{sup +} compensated the CaTiO{sub 3}:Eu{sup 3+} phosphor for pure red emission in light-emitting diode applications.

  12. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  13. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm003_warren_2011_o .pdf More Documents & Publications Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Lower Cost Carbon Fiber Precursors

  14. CE2 Carbon Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Carbon Capital LLC Jump to: navigation, search Name: CE2 Carbon Capital LLC Place: California Sector: Carbon, Renewable Energy Product: US-based carbon trader that looks to take...

  15. Allied Carbon Credit GmbH | Open Energy Information

    Open Energy Info (EERE)

    Allied Carbon Credit GmbH Jump to: navigation, search Name: Allied Carbon Credit GmbH Place: Hessen, Germany Sector: Carbon Product: Frankfurt-based carbon advisory and consultancy...

  16. High surface area silicon carbide-coated carbon aerogel

    DOE Patents [OSTI]

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  17. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints:...

  18. Synthesis, crystal structure and photoluminescence of a new Eu-doped Sr containing sialon (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}

    SciTech Connect (OSTI)

    Yamane, Hisanori; Shimooka, Satoshi; Uheda, Kyota

    2012-06-15

    Colorless transparent platelet single crystals of a novel Eu{sup 2+}-doped strontium silicon aluminum oxynitride, (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}, were prepared at 1800 Degree-Sign C and 0.92 MPa of N{sub 2}. Fundamental reflections of electron and X-ray diffraction of the crystals were indexed with a face-centered orthorhombic unit cell (a=5.8061(5) A, b=37.762(3) A, c=9.5936(9) A). Diffuse streaks elongated in the b-axis direction were observed around the fundamental reflections hkl with h=2n+1 of the electron and X-ray diffraction, indicating stacking faults of (0 1 0)[1 0 0]/2. A crystal structure model without the stacking faults was obtained using the X-ray diffraction data of the fundamental reflections with the space group Fdd2. A SiN{sub 4}-tetrahedron double layer of [SiN{sub 2}]{sub 2} and a Sr/Eu double layer of [(Sr{sub 0.94}Eu{sub 0.06})Al{sub 1.2}Si{sub 0.8}N{sub 0.8} O{sub 1.2}]{sub 2} are stacked alternately along the b-axis direction. The title compound showed an emission with a peak wavelength of 490 nm under 334 nm excitation at room temperature. - Graphical abstract: Single crystals of a novel Eu{sup 2+}-doped strontium silicon aluminum oxynitride, (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}, having stacking faults on the (0 1 0) plane of an orthorhombic cell, were prepared at 1800 Degree-Sign C and 0.92 MPa of N{sub 2}. The compound showed emission with a peak wavelength of 490 nm under 334 nm excitation at room temperature. Highlights: Black-Right-Pointing-Pointer A new compound Eu{sup 2+}-doped (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6} was prepared. Black-Right-Pointing-Pointer Stacking faults in the compound were clarified by electron and X-ray diffraction. Black-Right-Pointing-Pointer A basic crystal structure model was obtained based on the X-ray diffraction data. Black-Right-Pointing-Pointer An emission of 490 nm under 334 nm excitation at room temperature was observed.

  19. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOE Patents [OSTI]

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  20. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from

    Office of Scientific and Technical Information (OSTI)

    Flue Gas Streams (Journal Article) | SciTech Connect Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams Citation Details In-Document Search Title: Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system

  1. Partitioning of Eu(III) between acidic aqueous Al(NO{sub 3}){sub 3} and tri-n-octyl phosphine oxide

    SciTech Connect (OSTI)

    Shafer, J.C.; Harrington, R.C.; Nash, K.L.

    2008-07-01

    As the Hanford site undergoes remediation, significant economies could be realized if aluminum is kept from High-Level Waste glass. An acidic scrub of the Hanford sludge could enhance Al removal; however, a caveat is the potential mobilization of transuranic elements, which would require a secondary cleanup of the Al/Cr waste stream. Previous solvent extraction (SX) studies have shown that >99% of the Eu and U can be extracted from simulated acidic Al/Cr waste. This study examines the use of extraction chromatographic methods. Results indicate the systems behave comparably and either method could be considered for Hanford clean-up purposes. (authors)

  2. High-Temperature Thermoelectric Properties of the SolidSolution Zintl Phase Eu11Cd6Sb12xAsx (x < 3)

    SciTech Connect (OSTI)

    Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J; Snyder, G Jeffrey; Kauzlarich, Susan M

    2014-02-11

    Zintl phases are compounds that have shown promise for thermoelectric applications. The title solidsolution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ?3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.780.49 W/mK for x = 0; 0.720.53 W/mK for x = 1; and 0.700.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 ? V/K) but also high electrical resistivity (6.8 to 12.8 m?cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12xAsx are interpreted in discussion with the As site substitution.

  3. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  4. ARM - Field Campaign - ARM LBNL Carbon Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM LBNL Carbon Project ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM LBNL Carbon Project 2002.04.02 - 2006.06.30 Lead Scientist : Margaret Torn For data sets, see below. Abstract In ARM's Carbon Project, we aim to improve our ability to predict exchanges of carbon, water, and energy at the landscape scale. As we develop these models, we can better understand how the fluxes of carbon,

  5. Probing the Surprising Secrets of Carbonic Acid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23, 2014 Contact: Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 CarbonicAcid Though carbonic acid exists for only a fraction of a second before changing into a mix of hydrogen and bicarbonate ions, it is critical to both the health of the atmosphere and the human body. Though it garners few public headlines, carbonic acid, the

  6. Eu{sup 2+}, Mn{sup 2+} co-doped Ba{sub 9}Y{sub 2}Si{sub 6}O{sub 24} phosphors based on near-UV-excitable LED lights

    SciTech Connect (OSTI)

    Kim, Yoejin; Park, Sangmoon

    2014-01-01

    Graphical abstract: - Highlights: • New near-ultraviolet (NUV)-excitable materials composed of Ba{sub 9}Eu{sub m}Mn{sub n}Y{sub 2}Si{sub 6}O{sub 24} (m = 0.01–0.5, n = 0–0.7) were prepared. • High energy-transfer from Eu{sup 2+} to Mn{sup 2+} and their energy-transfer mechanism were discussed. • The co-doping of Eu{sup 2+} and Mn{sup 2+} in the orthosilicate structure resulted in the emission of white light under NUV LED light. - Abstract: New single-phase and near-ultraviolet (NUV)-excitable materials composed of Ba{sub 9}Eu{sub m}Mn{sub n}Y{sub 2}Si{sub 6}O{sub 24} (m = 0.01–0.5, n = 0–0.7) were prepared via a solid-state reaction in reducing atmosphere. X-ray diffraction patterns of the obtained phosphors were examined to index the peak positions. After doping the host structure with Eu{sup 2+} and Mn{sup 2+} emitters, the intense green, white, and orange emission lights that were observed in the photoluminescence spectra under NUV excitation were monitored. The dependence of the luminescent intensity of the Mn{sup 2+} co-doped (n = 0.1–0.7) host lattices on the fixed Eu{sup 2+} content (m = 0.1, 0.3, 0.5) is also investigated. Co-doping Mn{sup 2+} into the Eu{sup 2+}-doped host structure enabled a high energy-transfer from Eu{sup 2+} to Mn{sup 2+} and their energy-transfer mechanism were discussed. Using these phosphors, the desired CIE values including emissions throughout the green to orange regions of the spectra were achieved. Efficient white-light light-emitting diodes (LEDs) were fabricated using Eu{sup 2+} and Mn{sup 2+} co-doped phosphors based on NUV-excitable LED lights.

  7. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1994-04-05

    A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  8. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1993-05-04

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  9. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  10. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  11. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  12. Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In{sub 2}O{sub 3} and Eu{sup 3+}:In{sub 2}O{sub 3} nanoparticles

    SciTech Connect (OSTI)

    Anand, Kanica; Thangaraj, R.; Kumar, Praveen; Kaur, Jasmeet; Singh, R. C.

    2015-05-15

    In the present endeavor, Indium oxide (In{sub 2}O{sub 3}) and Europium doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:0.5%Eu{sup 3+} and In{sub 2}O{sub 3}:5%Eu{sup 3+}) nanoparticles were prepared by co-precipitation method. Synthesized nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry (UV-vis). XRD revealed that nanoparticles were of pure bixbyite-type cubic phase and the crystallite size decreased with the Eu{sup 3+} doping. SEM micrographs showed that particles were spherical in shape. Synthesized nanoparticles were used for photo degradation of methylene blue (MB) dye under sunlight and the results clearly showed that In{sub 2}O{sub 3}:5%Eu{sup 3+} nanoparticles exhibited higher activity than pure In{sub 2}O{sub 3} nanoparticles. For gas sensing characteristics, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of the gas sensors prepared from synthesized nanoparticles is 300C. The investigations revealed that the addition of Eu{sup 3+} as a dopant enhanced the sensing response of In{sub 2}O{sub 3} nanoparticles appreciably.

  13. Characterization of electrospun lignin based carbon fibers

    SciTech Connect (OSTI)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5?m and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31?W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  14. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  15. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1993-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  16. Carbon fibers from SRC pitch

    DOE Patents [OSTI]

    Greskovich, Eugene J. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  17. Molten carbonate fuel cell matrices

    DOE Patents [OSTI]

    Vogel, Wolfgang M. (Glastonbury, CT); Smith, Stanley W. (Vernon, CT)

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  18. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  19. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  20. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent HalidesAB2I5:Eu2+(A=LiCs;B=Sr, Ba)

    SciTech Connect (OSTI)

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.

  1. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  3. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOE Patents [OSTI]

    Hartwig, John F. (Durham, CT); Kawatsura, Motoi (Chatham, NJ); Loeber, Oliver (New Haven, CT)

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  4. Photoluminescence spectroscopy of YVO{sub 4}:Eu{sup 3+} nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    SciTech Connect (OSTI)

    Senty, T. R.; Yalamanchi, M.; Cushing, S. K.; Seehra, M. S.; Bristow, A. D.; Zhang, Y.; Shi, X.

    2014-04-28

    Photoluminescence spectra of YVO{sub 4}:Eu{sup 3+} nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO{sub 4}:Eu{sup 3+} nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17?nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominant {sup 5}D{sub 0} {sup 7}F{sub 2} electric-dipole transition at 619?nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.

  5. The future of carbon sequestration. 2nd ed.

    SciTech Connect (OSTI)

    2007-04-15

    The report is an overview of the opportunities for carbon sequestration to reduce greenhouse gas emissions. It provides a concise look at what is driving interest in carbon sequestration, the challenges faced in implementing carbon sequestration projects, and the current and future state of carbon sequestration. Topics covered in the report include: Overview of the climate change debate; Explanation of the global carbon cycle; Discussion of the concept of carbon sequestration; Review of current efforts to implement carbon sequestration; Analysis and comparison of carbon sequestration component technologies; Review of the economic drivers of carbon sequestration project success; and Discussion of the key government and industry initiatives supporting carbon sequestration.

  6. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  7. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The deliverables are discussed in the following sections and greater details are provided in the materials that are attached to this report. In August 2004, a presentation was made to Pioneer Hi-Bred, discussing the Partnership and the synergies with terrestrial sequestration, agricultural industries, and ongoing, complimentary USDA efforts. The Partnership organized a Carbon session at the INRA 2004 Environmental and Subsurface Science Symposium in September 2004; also in September, a presentation was made to the Wyoming Carbon Sequestration Advisory Committee, followed up with a roundtable discussion.

  9. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  10. Blue light emitting SrSn(OH){sub 6} nano-rods doped with lanthanide ions (Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+})

    SciTech Connect (OSTI)

    Patel, D.K.; Nuwad, J.; Rajeswari, B.; Vishwanadh, B.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Pillai, C.G.S.; Kulshreshtha, S.K.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Room temperature synthesis of blue light emitting SrSn(OH){sub 6} nano-rods. ? Blue light emission originates from the recombination of self trapped excitons. ? There exists energy transfer from host to lanthanide ions in SrSn(OH){sub 6}:Ln nano-rods. ? Solubility of Eu{sup 3+} ions in SrSn(OH){sub 6} nano-rods is around 1.5 at%. -- Abstract: Blue light emitting SrSn(OH){sub 6} nano-rods were prepared in aqueous medium at room temperature. Presence of lanthanide ions in reaction medium during synthesis of nano-rods, leads to significant changes in the morphology of the nano-rods. Based on luminescence studies emission in the blue region from SrSn(OH){sub 6} nano-rods has been attributed to radiative recombination of self trapped excitons in the lattice. SrSn(OH){sub 6} nano-rods were doped with lanthanide ions like Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+} and their luminescence studies revealed that there exists energy transfer from host to lanthanide ions. From the luminescence studies on Eu{sup 3+} doped samples, it is confirmed that up to 1.5 at%, Eu{sup 3+} ions get incorporated at Sr{sup 2+} site in SrSn(OH){sub 6} lattice and beyond which a separate Eu{sup 3+} containing phase is formed. Part of the europium ions also exists as Eu{sup 2+} species in the lattice as confirmed by electron paramagnetic resonance (EPR) studies.

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  12. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  15. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  16. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  17. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  18. Electrolyte reservoir for carbonate fuel cells

    DOE Patents [OSTI]

    Iacovangelo, Charles D. (Schenectady, NY); Shores, David A. (Minneapolis, MN)

    1985-01-01

    An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  19. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  20. Carbon Nanofiber Supercapacitor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Electricity Transmission Electricity Transmission Find More Like This Return to Search Carbon Nanofiber Supercapacitor Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Carbon nanofiber supercapacitors with large areal capacitances (292 KB) PDF Document Publication Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes (814

  1. Healthy habits: reducing our carbon footprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Healthy habits: reducing our carbon footprint Healthy habits: reducing our carbon footprint We're dedicated to cutting greenhouse gas emissions by 30 percent across the Lab, from facilities to transportation. January 30, 2014 Healthy habits: reducing our carbon footprint From monitoring storm water run-off in Los Alamos Canyon to riding their bikes to work, employees in the field all over the Lab's 36 square miles see the landscape around them as an inspiration and reminder to go green at work

  2. Electrocatalysts on Carbon Nanoparticles - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts on Carbon Nanoparticles Brookhaven National Laboratory Contact BNL About This Technology A transmission electron micrograph showing a plurality of low-height Pt platelets formed on an underlying carbon substrate. The carbon substrate is shown as an amorphous, lighter-colored grey background whereas the regions of the surface coated with Pt are comparatively darker and exhibit lattice fringes, indicating some degree of crystalline order. The Pt platelets have an average diameter

  3. Carbon nanostructures-elixir or poison?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  4. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  5. ARM - ChloroFluoroCarbons (CFCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListChloroFluoroCarbons (CFCs) Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans ChloroFluoroCarbons (CFCs) Unlike some other greenhouse gases (nitrous oxide, methane, and carbon dioxide), CFCs do not occur in nature. They are humanly-created molecules used in industry for air conditioning,

  6. Carbon Capture and Storage | Department of Energy

    Energy Savers [EERE]

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. PDF icon Fossil Energy Research Benefits - Carbon Capture and Storage More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 A Legacy of Benefit Fossil Energy FY 2013 Budget-in-Brief

  7. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  8. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  9. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2013-06-11

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  10. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2015-03-24

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  11. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2015-10-20

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  12. Carbon Cycle Engineering | Open Energy Information

    Open Energy Info (EERE)

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  13. First Carbon Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: First Carbon Solutions Place: Bethesda, Maryland Product: To be completed... Coordinates: 40.020185, -81.073819 Show Map Loading...

  14. Carbon Power & Light, Inc | Open Energy Information

    Open Energy Info (EERE)

    Power & Light, Inc Jump to: navigation, search Name: Carbon Power & Light, Inc Place: Wyoming Phone Number: 307-326-5206 Website: www.carbonpower.com Facebook: https:...

  15. Carbon, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carbon, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8964065, -92.421852 Show Map Loading map... "minzoom":false,"mappingservice":"...

  16. Carbon and Energy Reporter | Open Energy Information

    Open Energy Info (EERE)

    and Energy Reporter Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon and Energy Reporter AgencyCompany Organization: Johnson Controls Sector: Energy User...

  17. Low Carbon Transition Unit | Open Energy Information

    Open Energy Info (EERE)

    Transition Unit Jump to: navigation, search Name Low Carbon Transition Unit AgencyCompany Organization Danish Government Partner Danish Ministry of Climate, Energy and Buildings;...

  18. Carbon Markets Global Ltd | Open Energy Information

    Open Energy Info (EERE)

    Markets Global Ltd Jump to: navigation, search Name: Carbon Markets Global Ltd Place: London, United Kingdom Zip: NW4 2HT Product: Assist project originators develop and finance...

  19. High performance carbon nanocomposites for ultracapacitors

    DOE Patents [OSTI]

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  20. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...