Sample records for airborne observations campaigns

  1. CX Lyrae 2008 Observing Campaign

    E-Print Network [OSTI]

    de Ponthiere, Pierre; Hambsch, Franz-Josef

    2012-01-01T23:59:59.000Z

    The Blazhko effect in CX Lyr has been reported for the first time by Le Borgne et al. (2007). The authors have pointed out that the Blazhko period was not evaluated accurately due to dataset scarcity. The possible period values announced were 128 or 227 days. A newly conducted four-month observing campaign in 2008 (fifty-nine observation nights) has provided fourteen times of maximum. From a period analysis of measured times of maximum, a Blazhko period of 62 +/- 2 days can be suggested. However, the present dataset is still not densely sampled enough to exclude that the measured period is still a modulation of the real Blazhko period. Indeed the shape of the (O-C) curve does not repeat itself exactly during the campaign duration.

  2. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsObservations and Modeling of the Green Ocean Amazon: SKIP Pre-campaign Measurements Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON...

  3. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsObservations and Modeling of the Green Ocean Amazon: CCN Activity of Aerosols Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014)...

  4. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer (TDCIMS) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  5. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Gas chromatograph (SVTAG) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  6. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPSD Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  7. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Luminescence Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a...

  8. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOx Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below or...

  9. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cluster Air Ion Spectrometer (NAIS) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  10. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxidation Flow Reactor Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send...

  11. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Compounds in the Amazon Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  12. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHUVA Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  13. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harvard Bounce Apparatus Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  14. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  15. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIDAR Comparison Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a...

  16. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sounding Enhancement Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us...

  17. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxidation Flow Reactor 2 Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  18. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particulate Matter and Gases Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  19. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OHCIMS Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  20. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRI-PTR-ToFMS Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  1. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parsivel2 Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  2. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    SciTech Connect (OSTI)

    Verlinde, J

    2010-10-18T23:59:59.000Z

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  3. ARM - Field Campaign - Co-ordinated Airborne Studies in the Tropics - CAST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign

  4. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME V)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirborne Carbon Measurements

  5. ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic Cloud

  6. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne HSRL and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP Measurements

  7. Campaign-level science traceability for Earth observation system architecting

    E-Print Network [OSTI]

    Seher, Theodore K. (Theodore Kimball)

    2009-01-01T23:59:59.000Z

    The Earth Sciences Decadal Survey of 2007 presented a comprehensive vision for the evolution of space-based Earth Science resources. The practical development of the Decadal campaign, however, has highlighted four challenges ...

  8. ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE) govCampaignsThe

  9. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot Study

  10. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME III)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of the Madden(ARM-ACME III) ARM

  11. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME VI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of the Madden(ARM-ACME III)

  12. ARM - Field Campaign - ARM Airborne Carbon Measurements IV (ARM-ACME IV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of the Madden(ARM-ACME III)IV

  13. ARM - Field Campaign - Arctic Lower Troposphere Observed Structure (ALTOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft Integration and

  14. ARM - Field Campaign - Biomass Burning Observation Project - BBOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD

  15. ARM - Field Campaign - Routine AAF CLOWD Optical Radiative Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain(RACORO)

  16. ARM - Field Campaign - Supplement to Arctic Lower Troposphere Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data Discovery

  17. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments...

  18. Airborne observations of the kinematics and statistics of breaking waves

    E-Print Network [OSTI]

    Kleiss, Jessica M.

    2009-01-01T23:59:59.000Z

    for 12 sequential images sam- pled at 7.5Hz. Observations 2,distributions of six sam- ple image sequences selected from

  19. airborne radar observations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ionospheric modication by high power radio waves Physics Websites Summary: with the Finland component of CUTLASS, and the rst observations of articial irregularities by...

  20. MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. II. THE AGILE 2007 DECEMBER CAMPAIGN

    SciTech Connect (OSTI)

    Donnarumma, I.; Pucella, G.; Vittorini, V.; D'Ammando, F.; Tavani, M. [INAF/IASF-Rome, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Vercellone, S. [INAF/IASF Palermo Via Ugo La Malfa 153, 90146 Palermo (Italy); Raiteri, C. M.; Villata, M.; Smart, R. L. [INAF/OATo, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Perri, M. [ASI-ASDC, Via G. Galilei, I-00044 Frascati (Rome) (Italy); Chen, W. P. [Institute of Astronomy, National Central University, Taiwan (China); Kataoka, J.; Kawai, N.; Mori, Y. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Tosti, G.; Impiombato, D. [Dip. di Fisica, Univ. di Perugia, Via Pascoli, I-06123 Perugia (Italy); Takahashi, T.; Sato, R. [ISAS/JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Bulgarelli, A. [INAF/IASF-Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Chen, A. W., E-mail: immacolata.donnarumma@iasf-roma.inaf.i [INAF/IASF-Milano, Via E. Bassini 15, I-20133 Milan (Italy)

    2009-12-20T23:59:59.000Z

    We report on the second Astrorivelatore Gamma a Immagini Leggero (AGILE) multiwavelength campaign of the blazar 3C 454.3 during the first half of 2007 December. This campaign involved AGILE, Spitzer, Swift, Suzaku, the Whole Earth Blazar Telescope (WEBT) consortium, the Rapid Eye Mount (REM), and the Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) telescopes, offering a broadband coverage that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions. The two-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM, and by sparse observations in mid-infrared and soft/hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift, and Suzaku, respectively. The source was detected with an average flux of approx250 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, typical of its flaring states. The simultaneous optical and gamma-ray monitoring allowed us to study the time lag associated with the variability in the two energy bands, resulting in a possible approx

  1. Optical spectroscopic observations of gamma-ray blazar candidates IV. Results of the 2014 follow-up campaign

    E-Print Network [OSTI]

    Ricci, F; Landoni, M; D'Abrusco, R; Milisavljevic, D; Stern, D; Masetti, N; Paggi, A; Smith, Howard A; Tosti, G

    2015-01-01T23:59:59.000Z

    The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: 1) to confirm the nature of these candidates, and 2) whenever possible determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the Northern hemisphere with Kitt Peak National Observatory (KPNO) and in the Southern hemi...

  2. ARM - Field Campaign - Observations and Modeling of the Green Ocean Amazon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-PhasegovCampaignsNauru99

  3. ARM - Field Campaign - Surface Observation in Support of in-situ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09 -

  4. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01T23:59:59.000Z

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  5. Gaia-GOSA: An interactive service for coordination of asteroid observation campaigns

    E-Print Network [OSTI]

    Santana-Ros, T; Micha?owski, T

    2015-01-01T23:59:59.000Z

    We present the Gaia-Groundbased Observational Service for Asteroids (GOSA). Gaia-GOSA is an interactive tool which supports observers in planning photometric observations of asteroids. Each user is able to personalise the observation plan taking into account the equipment used and the observation site. The list of targets has been previously selected among the most relevant and scientifically remarkable objects, while the prediction of the transits in the Gaia's field of view have been calculated at the Observatoire de la C\\^ote d'Azur. The data collected by the GOSA community will be exploited to enhance the reliability of the Gaia's Solar system science. The service is publicly available at www.gaiagosa.eu.

  6. The CLIMODE Field Campaign Observing the Cycle of Convection and Restratification over the Gulf Stream

    E-Print Network [OSTI]

    Thomas, L.

    A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. ...

  7. EPOXI: COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN

    SciTech Connect (OSTI)

    Meech, K. J. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); A'Hearn, M. F.; Bodewits, D. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Adams, J. A. [Department of Astronomy, Cornell University, 202 Space Sciences Building, Ithaca, NY 14853 (United States); Bacci, P. [Centro Astronomico di Libbiano, Peccioli Pisa (Italy); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 65011, Yunnan (China); Barrera, L. [Universidad Metropolitana de Ciencias de la Educacion, Av. J. P. Alessandri 774, Nunoa, Santiago (Chile); Battelino, M. [Swedish Space Corporation, P.O. Box 4207, 17104 Solna (Sweden); Bauer, J. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Becklin, E. [Stratospheric Observatory for Infrared Astronomy, Universities Space Research Association, Mail Stop 211-3, Moffett Field, CA 94035 (United States); Bhatt, B. [Indian Institute of Astrophysics, CREST Campus, Block-II, Koramangala, Sarjapur Road, Bangalore 560034 (India); Biver, N.; Bockelee-Morvan, D. [LESIA, Observatoire de Paris, 5 place Jules Janssen, Meudon 92195 (France); Boehnhardt, H. [Max-Planck Institute for Solar System Research, Max-Planck-Str. 2, Katlenburg-Lindau 37191 (Germany); Boissier, J. [INAF-Inst. di Radioastronomia, Via P. Gobetti 101, 40129 Bologna (Italy); Bonev, B. P. [Department of Physics, Catholic University of America/GSFC, 620 Michigan Ave., N.E., Washington, DC 20064 (United States); Borghini, W. [Osservatorio Astronomico Naturalistico di Casasco, Strada Ca'Simoni 15050, Casasco (Italy); Brucato, J. R. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze 50125 (Italy); Bryssinck, E. [Brixiis Observatory, Eyckensbeekstraat 2, 9150 Kruibeke (Belgium); Buie, M. W. [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street 400, Boulder, CO 80302 (United States)

    2011-06-10T23:59:59.000Z

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was {approx}16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO{sub 2}-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  8. Optical spectroscopic observations of gamma-ray blazar candidates II. The 2013 KPNO campaign in the Northern Hemisphere

    E-Print Network [OSTI]

    Massaro, F; D'Abrusco, R; Milisavljevic, D; Paggi, A; Masetti, N; Smith, Howard A; Tosti, G

    2015-01-01T23:59:59.000Z

    We recently started a systematic search of low-energy counterparts of the unidentified gamma-ray sources (UGSs) listed in the Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) and the Fermi-LAT 2-Year Source Catalog (2FGL).} The main goal of our investigation is to find active galaxies belonging to the blazar class that lie within the positional uncertainty region of the UGSs and thus could be their potential low-energy counterparts. To achieve our aims, we first adopted several procedures based on the peculiar observational properties of blazars in the radio and in the IR. Then we carried out a follow-up spectroscopic campaign in the optical band to verify the nature of the candidates selected as potential counterparts of the UGSs. Here we present the results of the observations carried out in 2013 in the Northern Hemisphere at Kitt Peak National Observatory (KPNO). Optical spectroscopy is crucial to confirm the nature of the sources and can be used to estimate their redshifts; it will also allow ...

  9. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01T23:59:59.000Z

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  10. Near UV atmospheric absorption measurements of column abundances during Airborne Arctic Stratospheric Expedition, January-February 1989: 3. BrO observations

    SciTech Connect (OSTI)

    Wahner, A.; Callies, J.; Dorn, H.P.; Platt, U.; Schiller, C. (Kernforschungsanlage Juelich (West Germany))

    1990-03-01T23:59:59.000Z

    Column abundances of BrO were measured during the Airborne Arctic Stratospheric Expedition from January 6 to February 9, 1989 by near UV absorption spectroscopy. BrO was detected during early flights by scattered sunlight observations during twilight and direct moon light observations during the night. The daytime vertical column abundances of BrO varied between 2 {times} 10{sup 13} cm{sup {minus}2} and 13 {times} 10{sup 13} cm{sup {minus}2} and are consistent with observed OClO column abundances and chemical model calculations. The nighttime presence of BrO suggests different vertical profiles of BrO and ClO.

  11. ARM - Field Campaign - IHOP Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997Launch

  12. ARM - Field Campaign - MWR Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE WebsitegovCampaignsMWR

  13. ARM - Field Campaign - SITAC Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP IcegovCampaignsSITAC

  14. ARM - Field Campaign - BDRF Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft

  15. ARM - Field Campaign - MOPITT Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website

  16. ARM - Field Campaign - Photoacoustic Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010

  17. Near UV atmospheric absorption measurements of column abundances during Airborne Arctic Stratospheric Expedition, January-February 1989: 2. OClO observations

    SciTech Connect (OSTI)

    Schiller, C.; Wahner, A.; Platt, U.; Dorn, H.P.; Callies, J.; Ehhalt, D.H. (Kernforschungsanlage Juelich (West Germany))

    1990-03-01T23:59:59.000Z

    Column abundances of OClO were measured during the Airborne Arctic Stratospheric Expedition from January 6 to February 9, 1989 by near UV absorption spectroscopy. OClO was detected during AASE inside the vortex and at the edge of the vortex with column abundances of 3-10 {times} 10{sup 12} cm{sup {minus}2} under twilight conditions and up to 1 {times} 10{sup 14} cm{sup {minus}2} during the night. For comparison, in the Antarctic winter nighttime column abundances of OClO ranged from 1-2.5 {times} 10{sup 14} cm{sup {minus}2}, while those at mid-latitudes were below the detection limit, i.e. by at least a factor of 10 lower (Solomon et al., 1988). The measurements are broadly consistent with observed BrO column abundances and chemical model calculations.

  18. cuny.edu/campaign CUNY CAMPAIGN

    E-Print Network [OSTI]

    Qiu, Weigang

    cuny.edu/campaign 2012 Tomorrow Building Together THE CUNY CAMPAIGN for Voluntary Charitable Giving that assist New Yorkers. The 2012-13 CUNY Campaign, "Building Tomorrow Together," is our opportunity to make click "register me". Now you can login and make a pledge. Next: Make Your Pledge Enter your "NYS EMPLID

  19. Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002 during the IHOP_2002 Campaign

    E-Print Network [OSTI]

    Guichard, Francoise

    Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002, Boulder, Colorado (Manuscript received 4 September 2007, in final form 23 June 2008) ABSTRACT Mesoscale at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14

  20. X-ray/UV Observing Campaign on the Mrk 279 AGN Outflow: A Global Fitting Analysis of the UV Absorption

    E-Print Network [OSTI]

    Jack R. Gabel; Nahum Arav; Jelle S. Kaastra; Gerard A. Kriss; Ehud Behar; Elisa Costantini; C. Martin Gaskell; Kirk T. Korista; Ari Laor; Frits Paerels; Daniel Proga; Jessica Kim Quijano; Masao Sako; Jennifer E. Scott; Katrien C. Steenbrugge

    2005-01-25T23:59:59.000Z

    We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the Hubble Space Telescope (41 ks) and the Far Ultraviolet Spectroscopic Explorer (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering -- a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because: (a) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (b) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (c) it provides a natural explanation for variability in the Ly$\\alpha$ absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results.

  1. New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter

    E-Print Network [OSTI]

    Zhou, Lijun

    2010-10-12T23:59:59.000Z

    This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size...

  2. ARM - Field Campaign - IPASRC II Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997LaunchgovCampaignsIPASRC II

  3. ARM - Field Campaign - Nauru99 Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-PhasegovCampaignsNauru99 Campaign

  4. Airborne and ground based measurements of volatile organic compounds using proton transfer reaction mass spectrometry in Texas and Mexico City

    E-Print Network [OSTI]

    Fortner, Edward Charles

    2009-05-15T23:59:59.000Z

    Measurements of ambient volatile organic compounds (VOCs) by proton transfer reaction mass spectrometry (PTR-MS) are reported from recent airborne and surface based field campaigns. The Southeast Texas Tetroon Study (SETTS) was a project within...

  5. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  6. ARM - Field Campaign - CLASIC - Radiosonde Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloudgovCampaignsCASES

  7. ARM - Field Campaign - CLEX-5 Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to hear from

  8. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8,3,9, 20153,7,8,24,

  9. Near UV atmospheric absorption measurements of column abundances during Airborne Arctic Stratospheric Expedition, January-February 1989: 1. Technique and NO sub 2 observations

    SciTech Connect (OSTI)

    Wahner, A.; Callies, J.; Dorn, H.P.; Platt, U.; Schiller, C. (Kernforschungsanlage Juelich (West Germany))

    1990-03-01T23:59:59.000Z

    Spectroscopic measurements of column abundances of NO{sub 2} were carried out from the NASA DC-8 airplane during the Airborne Arctic Stratospheric Expedition in January and February 1989. Stratospheric airmasses inside and close to the polar vortex were found to be highly depleted of NO{sub 2} with lowest vertical column abundances of NO{sub 2} below 2 {times} 10{sup 14} cm{sup {minus}2} compared to abundances of 3-5 {times} 10{sup 15} cm{sup {minus}2} south of 50{degree}N in winter (WMO, 1985).

  10. ARM - Field Campaign - Spring UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall

  11. ARM - Field Campaign - Replicator Sonde Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain

  12. ARM - Field Campaign - Summer UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data Discovery Browse

  13. Airborne Multiwavelength High-Spectral-Resolution Lidar (HSRL-2) Observations During TCAP 2012: Vertical Proles of Optical and Microphysical Properties of a Smoke/Urban Haze Plume Over the Northeastern Coast of the US

    SciTech Connect (OSTI)

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; Burton, S. P.; Chemyakin, Eduard; Kolgotin, A.; Hair, John; Cook, A. L.; Harper, David; Rogers, R. R.; Hare, Rich; Cleckner, Craig; Obland, Michael; Tomlinson, Jason M.; Berg, Larry K.; Schmid, Beat

    2014-10-10T23:59:59.000Z

    We present rst measurements with the rst airborne multiwavelength High-Spectral Resolution Lidar (HSRL-2), developed by NASA Langley Research Center. The instrument was operated during the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed out ow of urban haze and fresh biomass burning smoke from the East Coast of the US out over the West Atlantic Ocean. Lidar ratios at 355 and 532 nm were ... sr indicating moderately absorbing aerosols. Extinctionrelated Angstrom exponents were 1.5{2 pointing at comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieves particle e*ective radii of approximately 0.2 *m, which is in agreement with the large Angstrom exponents. We nd reasonable agreement to particle size parameters obtained from situ measurements carried out with the DOE G-1 aircraft that ew during the lidar observations.

  14. Airborne Internet : market & opportunity

    E-Print Network [OSTI]

    Bhadouria, Anand

    2007-01-01T23:59:59.000Z

    The purpose of this thesis to evaluate the opportunity for service provider entry and of the airborne internet, to analyze the disruptive impact technology used by AirCell and AeroSat has had on the development of an ...

  15. Aircraft Observations of Aerosol Composition and Ageing in New England and Mid-Atlantic States during the Summer 2002 New England Air Quality Study Field Campaign

    SciTech Connect (OSTI)

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Y.- N.; Senum, Gunar; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl M.; Hubbe, John M.; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, J. T.; Onasch, Timothy B.; Worsnop, Douglas R.

    2007-05-11T23:59:59.000Z

    Aerosol chemical composition, size distributions, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 NEAQS field campaign. An Aerodyne Aerosol Mass Spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub ?g m-3. Volume data derived from the AMS were compared with volume measurements from a PCASP optical particle detector and an Scanning Mobility Particle Spectrometer (SMPS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/SMPS volume was 1.25; the median ratio for AMS/nephelometer scattering was 1.18. Size spectra were compared for subsets of samples with different effective diameters (Deff). There is good agreement between the AMS, PCASP, and SMPS spectra for larger values of Deff but an unexplained over-prediction in the AMS for small values. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in 2 high sulfate plumes. Average aerosol concentrations were 11 ?g m-3. The organic content was high in comparison to monitoring data from the IMPROVE network, varying from 70% in clean air to 40% in high concentration sulfate plumes. The ratio of organic aerosol to CO and light absorption acting were examined as a function of photochemical age. CO is a conservative tracer for urban emissions and light absorption is a surrogate for black carbon which is also conservative. Comparisons were made to surface ratios measured under conditions where there is little secondary organic aerosol (SOA). An increase in these ratios relative to surface values indicates that 70 - 80% of the organic aerosol in polluted air masses was secondary. Most of this SOA is rapidly formed within a few hours. At longer time scales there is a slow accumulation of organic aerosol and a slow increase in light absorption per unit mass of black carbon. Our results demonstrate the utility of the AMS as a rapid response instrument suitable for aircraft operations.

  16. SUPPLEMENTARY MATERIALS Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    values. #12;Figure S2: Scatter plot of observed acetonitrile and OA concentrations for seven campaigns in black. 80th percentile acetonitrile concentrations for each campaign are indicated with a dashed line

  17. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Energy Savers [EERE]

    Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

  18. ARM - Campaign Backgrounders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATIONCLASIC Science Team Related LinksMaterialsCampaign

  19. ARM - Campaign Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? WeairgovInstrumentswsiCampaign Journal

  20. Rooftop Unit Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c eRooftop Unit Campaign

  1. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirbornealpacasgovCampaignsList

  2. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOE Patents [OSTI]

    Deaton, Juan D. (Menan, ID); Schmitt, Michael J. (Idaho Falls, ID); Jones, Warren F. (Idaho Falls, ID)

    2011-12-13T23:59:59.000Z

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  3. airborne sunphotometer airborne: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    122 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  4. Bishop's Bottled Water Free Campaign

    E-Print Network [OSTI]

    water on Earth #12;Environmental Impacts Recycling...or lack there of! · In Toronto alone, as few as 50Bishop's Bottled Water Free Campaign #12;What's the point? Bottled water is deeply embedded not agree with bottled water free campaign, it is important to keep in mind that Bishop's University

  5. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign 2

  6. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaigngovCampaignsCloud

  7. ace-asia field campaign: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both local and remote, on the West- ern Arctic atmospheric 2013-01-01 184 CLOUD LIFE CYCLE OBSERVED DURING THE 2009 CLOUD TOMOGRAPHY FIELD CAMPAIGN Environmental Sciences...

  8. ARM - Field Campaign - Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign

  9. DUKE FORWARD CAMPAIGN REPORT 2013

    E-Print Network [OSTI]

    Ferrari, Silvia

    . . . . . . . . . . . . . . . . . . . . 34 CAMPAIGN GIVING AND PROGRESS The Numbers tomorrow's leaders. Interdisciplinary Education and Research . . . 16 Medicine effort involves every school at Duke, as well as Duke Athletics, the Libraries, and Duke Medicine. Every

  10. Modeling for Airborne Contamination

    SciTech Connect (OSTI)

    F.R. Faillace; Y. Yuan

    2000-08-31T23:59:59.000Z

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

  11. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17T23:59:59.000Z

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  12. Airborne agent concentration analysis

    DOE Patents [OSTI]

    Gelbard, Fred

    2004-02-03T23:59:59.000Z

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  13. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  14. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at

  15. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect (OSTI)

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10T23:59:59.000Z

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, high concentrations of methanol and monoterpenes were found above some of these regions. These observations demonstrate the ability to measure fluxes from specific sources by eddy covariance from an aircraft, and suggest the utility of measurements using fast response chemical sensors to constrain emission inventories and map out source distributions for a much broader array of trace gases than was observed in this study. This paper reports the first regional direct eddy covariance fluxes of isoprene. The emissions of VOCs measured from aircraft with 2 km spatial resolution can quantify the distribution of major sources providing the observations required for testing statewide emission inventories of these important trace gases. These measurements will be used in a future study to assess BVOC emission models and their driving variable datasets.

  16. Airborne Particulate Threat Assessment

    SciTech Connect (OSTI)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31T23:59:59.000Z

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

  17. ARM - Field Campaign - ARRA AERI Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE

  18. ARM - Field Campaign - COSMOS Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to

  19. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01T23:59:59.000Z

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  20. Campaign Participation May 27, 2014

    E-Print Network [OSTI]

    Portman, Douglas

    % 60-School of Nursing 38% 24-Warner School of Education 35% 90-Health Sciences 33% Finance - URMC 100% University Health Service 59% University Communications 57% University Audit 50% Research & Project% Facilities & Services - Utility/Energy Mgmt 11% Career Center 9% Security & Traffic 7% Page 2 #12;Campaign

  1. Signal processing for airborne bistatic radar 

    E-Print Network [OSTI]

    Ong, Kian P

    The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...

  2. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2012 Annual Report campaign information 2012 Local Employee Committee Darcy Pollock (Chair), Texas Tech University Health Sciences Center David Abercia, Texas Tech University Dianah Ascencio, Texas Department of Transportation

  3. Lightning Strikes on Airborne Grounded Systems 

    E-Print Network [OSTI]

    Malinga, Gilbert Aporu

    2014-10-13T23:59:59.000Z

    , NOAA, 2014. ........................................................................................ 4 Fig. 1-2 Schematic illustrating airborne wind turbines based on the concept of a tethered buoyant blimp (Altaeros, 2014... of airborne structures of varied diameter. ............................... 73 Table 4-3 Surface electrical charge, tQ induced on cylindrical structures of varied geometry, representing an airborne wind turbine, as a function of elevation...

  4. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2011 Annual Report of Transportation Vickie Wilhite, Health and Human Services Commission Greater West Texas Campaign Manager Nicole campaign information 2011 Local Employee Committee Darcy Pollock (chair), Texas Tech University Health

  5. Inside this issue: Energy Campaign 1

    E-Print Network [OSTI]

    Kidd, William S. F.

    Energy Campaign enters fifth year October 2011Volume 5, Issue Office of Environmental Sustainability Sustainability Bulletin The University Energy Campaign has been going strong in its effort to decrease the amount to use and enjoy. #12;Page 2 Sustainability Bulletin Energy campaign (continued from page 1) Everyone

  6. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  7. ARM - Field Campaign - Radiative Heating in Underexplored Bands Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign(RHUBC)

  8. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM

  9. ARM - Field Campaign - Supplemental Sondes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data

  10. ARM - Historical Field Campaign Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, FeatureListGeneral ChangesField Campaign

  11. ARM - Propose a Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User RecoveryARMParticipantsgovCampaignsPropose a

  12. Quarterly Cybersecurity Awareness Campaigns and Toolkits | Department...

    Broader source: Energy.gov (indexed) [DOE]

    coordinates a variety of internal cybersecurity awareness campaigns to provide DOE employees with timely information on current cyber threats, recommended mitigations, and sound...

  13. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    geothermal exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for...

  14. 2013 State Employee Charitable Campaign serving the the campaign area of

    E-Print Network [OSTI]

    Rock, Chris

    2013 State Employee Charitable Campaign serving the the campaign area of grEatEr wESt tExaS Honorary Campaign CHairS David Dewhurst, Texas Lieutenant Governor Joe Straus, Texas Speaker of the House LoCaL EmpLoyEE CommittEE David Abercia Texas Tech University (chair) Dianah Ascencio Texas Department

  15. ForPeerReview SMOS Validation by means of an airborne campaign in the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (SMOS) delivers global surface soil moisture fields at high temporal resolution which is of high-band radiometer EMIRAD-2 and concurrent ground sampling was carried out within one SMOS pixel in the Skjern River and energy exchanges at the land-surface-atmosphere interface S. Bircher, J. E. Balling and N. Skou

  16. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  17. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2010-10-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  18. airborne aura big: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...

  19. airborne thermal magnetic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...

  20. Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC)Gas and OilPhaseObservation of aof

  1. Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic

    E-Print Network [OSTI]

    Patel, Aniruddh D.

    Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic individuals who want to learn the nuts and bolts of how a campaign works, and help elect the next Mayor of New York City. Hours are completely flexible with a small requirement

  2. MSIV leakage airborne iodine transport

    SciTech Connect (OSTI)

    Cline, J.E. (Cline Associates Inc., Rockville, MD (United States))

    1993-01-01T23:59:59.000Z

    Gaseous iodine deposits on surfaces exposed to vapors. Basic chemical and physical principles predict this behavior, and several laboratory and in-plant measurements demonstrate the characteristic. An empirical model was developed that describes the deposition, resuspension, and transformation of airborne radioiodine molecular species as a stream containing these forms moves along its pathway. The model uses a data base of measured values of deposition and resuspension rates in its application and describes the conversion of the more reactive inorganic iodine species I[sub 2] to the less reactive organic species CH[sub 3]I as the iodine deposits and resuspends along the path. It also considers radioactive decay and chemical surface bonding during residence on surfaces. For the 8-day [sup 131]I, decay during the airborne portion of the transport is negligible. Verification of the model included measurement tests of long gaseous-activity sampling lines of different diameters, operated at different flow rates and stream temperatures. The model was applied to the streams at a boiling water reactor nuclear power plant to describe the transport through leaking main steam isolation valves (MSIVs), following a loss-of-coolant accident.

  3. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01T23:59:59.000Z

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  4. ARM - Field Campaign - Fall 1995 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-ArcticSingle

  5. ARM - Field Campaign - Fall 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOPgovCampaignsFall

  6. ARM - Field Campaign - Winter SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWatergovCampaignsWinter SCM

  7. 1996 multisite photometric and spectral campaign on the lambda Boo star 29 Cyg

    E-Print Network [OSTI]

    D. E. Mkrtichian; A. V. Kusakin; V. P. Malanushenko; M. Paparo; M. C. Akan; J. R. Percy; S. Thompson; K. Krisciunas; V. I. Burnashev; C. Ibanoglu; R. Pekunlu; A. Devlen; A. Ozturk; V. A. Koval

    1998-05-19T23:59:59.000Z

    The preliminary results of a 1996 multisite campaign on the pulsating lambda Bootis star 29 Cyg are presented. This campaign, initiated by the Central Asian Network (CAN), allowed to collect data during 48 photometric and 2 spectroscopic nights at observatories of Ukraine, Kazakhstan, Turkey, Hungary, Canada and USA. The multiplicity of excited modes is confirmed in both spectroscopy and photometry. The analysis of all 1995 and 1996 data, combined with new CAN observations made in July-October 1997, is under way.

  8. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    SciTech Connect (OSTI)

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26T23:59:59.000Z

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  9. Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan

    E-Print Network [OSTI]

    Fushimi, K; Sakama, M; Sakaguchi, Y

    2011-01-01T23:59:59.000Z

    The airborne radioactive isotopes from the Fukushima Daiichi nuclear plant was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.

  10. Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan

    E-Print Network [OSTI]

    K. Fushimi; S. Nakayama; M. Sakama; Y. Sakaguchi

    2012-10-19T23:59:59.000Z

    The airborne radioactive isotopes from the Fukushima Daiichi nuclear plan t was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.

  11. Recycling Campaign Prizes for best project proposal to

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling The Guide #12;Recycling Campaign Award OIKOS Luxembourg in collaboration with the University of Luxembourg's Cell to participate in the Recycling Campaign Award. The Recycling Campaign Award invites you to work in teams

  12. Chemistry of airborne particles from metallurgical processing

    E-Print Network [OSTI]

    Jenkins, Neil Travis, 1973-

    2003-01-01T23:59:59.000Z

    Airborne particles fall into one of three size ranges. The nucleation range consists of nanoparticles created from vapor atom collisions. The decisive parameter for particle size and composition is the supercooling of the ...

  13. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18T23:59:59.000Z

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  14. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect (OSTI)

    Butterweck, Gernot [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bucher, Benno [Swiss Federal Nuclear Safety Inspectorate, 5232 Villigen HSK (Switzerland); Rybach, Ladislaus [Swiss Federal Institute of Technology Zurich, Institute of Geophysics, 8093 Zurich (Switzerland)

    2008-08-07T23:59:59.000Z

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  15. THE CAMPAIGN TO TRANSFORM EINSTEIN 2 THE CAMPAIGN TO TRANSFORM EINSTEIN

    E-Print Network [OSTI]

    Yates, Andrew

    THE CAMPAIGN TO TRANSFORM EINSTEIN #12;2 THE CAMPAIGN TO TRANSFORM EINSTEIN #12;ALBERT EINSTEIN COLLEGE OF MEDICINE 1 F or more than five decades, Albert Einstein College of Medicine has responded to the changing landscape of biomedical research with a commitment to improving human health. Einstein's research

  16. The Campaign for McMaster University The Campaign for McMaster University

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Master University · Financial Procedure for Research Grants · Indirect Costs Associated with Research Funding fromThe Campaign for McMaster University The Campaign for McMaster University Research Integrity Policy Orientation Michelle Bennett University Secretariat Kimberly Mason Office of Academic Integrity Kathy Charters

  17. Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign – Part 2: Model comparison and radical budget

    E-Print Network [OSTI]

    Dusanter, S.

    Measurements of hydroxyl (OH) and hydroperoxy (HO2) radicals were made during the Mexico City Metropolitan Area (MCMA) field campaign as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) ...

  18. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    population. This relation between respiratory diseases and environmental factors about air pollution can help to building an epidemiological hypothesis for this region. So, it...

  19. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed study will improve the understanding and representation in climate and Earth system models of clouds and aerosols as well as their interactions and coupling with the...

  20. System architecting of a campaign of earth observing satellites

    E-Print Network [OSTI]

    Colson, Justin M

    2008-01-01T23:59:59.000Z

    Given the current level of concern over anthropogenic climate change, and the ongoing debate worldwide regarding what action should be taken to reduce and reverse future warming, the ability to collect data on Earth system ...

  1. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective follows from the first in that, although the diameter...

  2. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future climate scenarios resulting from human activities globally show the possible drying and the eventual possible conversion of rain forest to savanna in response to global...

  3. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as coarse particles such as fragments of plants and insects, pollen grains, algae, fern spores, and fungal spores in Amazonia and near Manaus; 2) develop new TEM...

  4. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrated into the larger Brazilian Earth System Model (BESM) and several US Earth System Models. This research provides results that directly contribute to DOE's Atmospheric...

  5. ARM - Field Campaign - ARM MJO Investigation Experiment on Gan Island

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of thegovCampaignsARM MJO

  6. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE Water Vapor

  7. ARM - Field Campaign - ARM-UAV Fall 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE Water

  8. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfraredgovCampaignsAerosol Lidar

  9. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfraredgovCampaignsAerosol

  10. ARM - Field Campaign - CASES Data Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloudgovCampaignsCASES Data

  11. ARM - Field Campaign - CRYSTAL-FACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love

  12. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?

  13. ARM - Field Campaign - Diffuse Shortwave IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment

  14. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARM Data

  15. ARM - Field Campaign - Fall 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARM

  16. ARM - Field Campaign - Fall 1997 Shortwave IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARMShortwave IOP

  17. ARM - Field Campaign - Fall 1997 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARMShortwave

  18. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux

  19. ARM - Field Campaign - International Pyrgeometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-

  20. ARM - Field Campaign - MWR Temporary Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACEgovCampaignsMWR Temporary

  1. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic CloudgovCampaignsNSA

  2. ARM - Field Campaign - Spring 1994 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles ingovCampaignsSpring

  3. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOPgovCampaignsSpring

  4. ARM - Field Campaign - Summer 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer

  5. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot

  6. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle

  7. An Overview of the 2014 ALMA Long Baseline Campaign

    E-Print Network [OSTI]

    Partnership, ALMA; Vlahakis, C; Corder, S; Remijan, A; Barkats, D; Lucas, R; Hunter, T R; Brogan, C L; Asaki, Y; Matsushita, S; Dent, W R F; Hills, R E; Phillips, N; Richards, A M S; Cox, P; Amestica, R; Broguiere, D; Cotton, W; Hales, A S; Hiriart, R; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kern, J; Kneissl, R; Liuzzo, E; Marcelino, N; Marson, R; Mignano, A; Nakanishi, K; Nikolic, B; Perez, J E; Pérez, L M; Toledo, I; Aladro, R; Butler, B; Cortes, J; Cortes, P; Dhawan, V; Di Francesco, J; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Mangum, J; Marconi, G; Nagai, H; Nyman, L -A; Perley, R; Radiszcz, M; Rodón, J A; Sawada, T; Takahashi, S; Tilanus, R P J; van Kempen, T; Vilaro, B Vila; Watson, L C; Wiklind, T; Gueth, F; Tatematsu, K; Wootten, A; Castro-Carrizo, A; Chapillon, E; Dumas, G; de Gregorio-Monsalvo, I; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hibbard, J E; Hill, T; Kaminski, T; Karim, A; Krips, M; Kurono, Y; Lopez, C; Martin, S; Maud, L; Morales, F; Pietu, V; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Whyborn, N; Zwaan, M A; Alves, F; Andreani, P; Avison, A; Barta, M; Bedosti, F; Bendo, G J; Bertoldi, F; Bethermin, M; Biggs, A; Boissier, J; Brand, J; Burkutean, S; Casasola, V; Conway, J; Cortese, L; Dabrowski, B; Davis, T A; Trigo, M Diaz; Fontani, F; Franco-Hernandez, R; Fuller, G; Madrid, R Galvan; Giannetti, A; Ginsburg, A; Graves, S F; Hatziminaoglou, E; Hogerheijde, M; Jachym, P; Serra, I Jimenez; Karlicky, M; Klaasen, P; Kraus, M; Kunneriath, D; Lagos, C; Longmore, S; Leurini, S; Maercker, M; Magnelli, B; Vidal, I Marti; Massardi, M; Maury, A; Muehle, S; Muller, S; Muxlow, T; O'Gorman, E; Paladino, R; Petry, D; Pineda, J; Randall, S; Richer, J S; Rossetti, A; Rushton, A; Rygl, K; Monge, A Sanchez; Schaaf, R; Schilke, P; Stanke, T; Schmalzl, M; Stoehr, F; Urban, S; van Kampen, E; Vlemmings, W; Wang, K; Wild, W; Yang, Y; Iguchi, S; Hasegawa, T; Saito, M; Inatani, J; Mizuno, N; Asayama, S; Kosugi, G; Morita, K -I; Chiba, K; Kawashima, S; Okumura, S K; Ohashi, N; Ogasawara, R; Sakamoto, S; Noguchi, T; Huang, Y -D; Liu, S -Y; Kemper, F; Koch, P M; Chen, M -T; Chikada, Y; Hiramatsu, M; Iono, D; Shimojo, M; Komugi, S; Kim, J; Lyo, A -R; Muller, E; Herrera, C; Miura, R E; Ueda, J; Chibueze, J; Su, Y -N; Trejo-Cruz, A; Wang, K -S; Kiuchi, H; Ukita, N; Sugimoto, M; Kawabe, R; Hayashi, M; Miyama, S; Ho, P T P; Kaifu, N; Ishiguro, M; Beasley, A J; Bhatnagar, S; Braatz, J A; Brisbin, D G; Brunetti, N; Carilli, C; Crossley, J H; D'Addario, L; Meyer, J L Donovan; Emerson, D T; Evans, A S; Fisher, P; Golap, K; Griffith, D M; Hale, A E; Halstead, D; Hardy, E J; Hatz, M C; Holdaway, M; Indebetouw, R; Jewell, P R; Kepley, A A; Kim, D -C; Lacy, M D; Leroy, A K; Liszt, H S; Lonsdale, C J; Matthews, B; McKinnon, M; Mason, B S; Moellenbrock, G; Moullet, A; Myers, S T; Ott, J; Peck, A B; Pisano, J; Radford, S J E; Randolph, W T; Venkata, U Rao; Rawlings, M; Rosen, R; Schnee, S L; Scott, K S; Sharp, N K; Sheth, K J; Simon, R S; Tsutsumi, T; Wood, S J

    2015-01-01T23:59:59.000Z

    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long...

  8. Active airborne contamination control using electrophoresis

    SciTech Connect (OSTI)

    Veatch, B.D.

    1994-06-01T23:59:59.000Z

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  9. Transmutation Fuels Campaign FY-09 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2009-09-01T23:59:59.000Z

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  10. What'sforLunch? Campaign Against Diabetes

    E-Print Network [OSTI]

    Qiu, Weigang

    What'sforLunch? n 1 n What's For Lunch at cunY? Campaign Against Diabetes City University of New and diabetes. #12;n 2 n What's for Lunch at cunY? Stacy, a psychology student at Queens College, is hungry, has just been diagnosed with pre-diabetes. She is trying hard to find food that will help her to lose

  11. ARM - Field Campaign - ASRC RSS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations

  12. ARM - Field Campaign - Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfrared

  13. CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING

    E-Print Network [OSTI]

    Marco, Shmuel "Shmulik"

    CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING Sagi Filin1 , Amit@tau.ac.il Commission VIII/8 KEY WORDS: Airborne laser scanning, Geomorphology, Dead Sea, Land Degradation, Sinkholes of collapse sinkholes in high resolution using airborne laser scanning technology. As a study case, we use

  14. Competitive Energy Reduction (CER) Campaign at the University of Texas

    E-Print Network [OSTI]

    Hofmann, Hans A.

    1 Competitive Energy Reduction (CER) Campaign at the University of Texas Scientists and Engineers Reduction Campaign at the University of Texas Energy Reduced by Enlisting Volunteers and Promoting .................................................................................................................................................10 Appendix A ­ Lab Energy Audit Checklist

  15. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics Sarah A. Shull, Olivier Campaign Logistics by Sarah A. Shull B.S.E. Aerospace Engineering (2001) The University of Michigan) #12;4 Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull

  16. Matrix Modeling Methods for Spaceflight Campaign Logistics Analysis

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Matrix Modeling Methods for Spaceflight Campaign Logistics Analysis Afreen Siddiqi and Olivier L-based modeling approach for analyzing spaceflight campaign logistics. A campaign is considered to be a series logistics properties. A logistics strategy index is proposed for quantifying manifesting strategies

  17. A Radio SETI Campaign for microsec-sec Periodic Signals

    E-Print Network [OSTI]

    Harp, G R; Astorga, Alfredo; Arbunich, Jack; Hightower, Kristin; Meitzner, Seth; Barott, W C; Nolan, Michael C; Messerschmitt, D G; Vakoch, Douglas A; Shostak, Seth; Tarter, J C

    2015-01-01T23:59:59.000Z

    We report a novel radio autocorrelation (AC) search for extraterrestrial intelligence (SETI). For selected frequencies across the terrestrial microwave window (1-10 GHz) observations were conducted at the Allen Telescope Array to identify artificial non-sinusoidal periodic signals with radio bandwidths greater than 1 kHz, which are capable of carrying substantial messages with symbol-rates from 10-10e6 Hz. Out of 243 observations, about half (101) were directed toward sources with known continuum flux greater than 1 Jy (quasars, pulsars, supernova remnants and masers), based on the hypothesis that they might harbor heretofore undiscovered natural or artificial, repetitive, phase or frequency modulation. The rest of the targets were mostly toward exoplanet stars and similarly interesting targets from the standpoint of SETI. This campaign rules out several previously untested hypotheses relating to the number of artificially modulated "natural" sources. Since we are using a phase sensitive detector, these obser...

  18. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign

  19. ARM - Field Campaign - RS-90 Transition IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign

  20. Airborne observations of the kinematics and statistics of breaking waves

    E-Print Network [OSTI]

    Kleiss, Jessica M.

    2009-01-01T23:59:59.000Z

    E. M. Janssen, 1996: Wave energy dissipation by whitecaps.waves: Surface impulse and wave energy dissipation rates. J.to the ocean, dissipating wave energy that is then available

  1. Airborne infrared observations and analyses of a large forest fire

    SciTech Connect (OSTI)

    Stearns, J.R.; Zahniser, M.S.; Kolb, C.E.; Sanford, B.P.

    1986-08-01T23:59:59.000Z

    Extensive IR spatial images and spectral signatures were gathered from an active large brush and forest fire by the Flying Infrared Signatures Technology Aircraft of the U.S. Air Force Geophysics Laboratory. Infrared images give the apparent temperatures of actively burning and burned over regions and aid in identifying the type and intensity of the fire. Spectral signatures of hot regions from interferometer and spatial data can also be used to determine apparent fire temperatures. Gasesous combustion products in the fire plume are quantitatively identified by the IR absorption spectra at 1-cm/sup -1/ resolution using the hot fire emission as the radiation source. Concentrations of CO were measured at 50 times higher than ambient levels. The applicability of these techniques to gathering data relevant to important environmental and military problems, including atmospheric pollution from fires and possible short-term climatic effects due to fires ignited in a nuclear exchange, is discussed.

  2. AAO support observations for the Hubble Deep Field Sout

    E-Print Network [OSTI]

    B. J. Boyle

    1998-04-09T23:59:59.000Z

    We present proposed ground-based support observations at the AAO for the forthcoming Hubble Deep Field South (HDF-S) campaign.

  3. ARM - Field Campaign - Indirect and Semi-Direct Aerosol Campaign (ISDAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric

  4. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect (OSTI)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01T23:59:59.000Z

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  5. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01T23:59:59.000Z

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  6. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect (OSTI)

    Not Listed

    2013-03-01T23:59:59.000Z

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  7. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud

  8. ARM - Field Campaign - Fall 1997 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5

  9. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data

  10. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer Profiler

  11. ARM - Field Campaign - NSA Snow IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic

  12. ARM - Field Campaign - PGS Validatation 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM Data Discovery

  13. ARM - Field Campaign - SGP99 IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP Ice

  14. ARM - Field Campaign - Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGPObservation

  15. ARM - Field Campaign - Spring 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM Data

  16. ARM - Field Campaign - Spring 1996 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM DataUAV IOP

  17. ARM - Field Campaign - Spring 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM DataUAV

  18. ARM - Field Campaign - Spring 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM

  19. ARM - Field Campaign - Spring SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM

  20. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09 - 2004.02.13 Lead

  1. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09 - 2004.02.13

  2. ARM - Field Campaign - Surface spectral albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09

  3. ARM - Field Campaign - UAV Field Test IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP

  4. Employee Giving Campaign supports community partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwo StatesEmployee ConcernsDec. 2014 -

  5. Rooftop Unit Campaign | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of ii iii2014 UpdateRobert E.Oversight AnnualCampaign

  6. Indirect and Semi-Direct Aerosol Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to twittersupport ofCampaign

  7. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Roy Whitney; George Neil

    2007-02-01T23:59:59.000Z

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  8. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect (OSTI)

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16T23:59:59.000Z

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  9. Quantifying forested stands with the pulsed airborne laser profiler

    E-Print Network [OSTI]

    Whatley, Michael Craig

    1986-01-01T23:59:59.000Z

    ) red H. Smeins (Member) Peter T Sprinz (Member) J ~ (Head aries Lee f Departmen ) May 1986 ABSTRACT Quantifying Forested Stands with the Pulsed Airborne Laser Profiler. (May 1986) Michael Craig Whatley, B. S. , Texas A&M University...; Chairman of Advisory Committee: Dr. Robert C. Maggio The use of airborne laser technology to enumerate forested stands was explored. A ground-based simulation laser, mimicing the pulsed airborne laser profiler (PALP) was used to quantify the PALP...

  10. ccpi-airborne_r2 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen AIRBORNE PROCESS(tm)...

  11. airborne science program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subject: Nuclear Engineering AIRBORNE RADIOACTIVE MATERIAL...

  12. airborne oceanographic lidar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...

  13. airborne aura lidar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...

  14. airborne particulate threat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  15. airborne fungi particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  16. airborne particulates european: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  17. airborne aerosol prediction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling, radar, remote sensing, simulator, training. Dr. George; L. Bair; Camber Corporation 44 AIRBORNE MEASUREMENTS OF OZONE AND REACTIVE NITROGEN COMPOUNDS IN TAMPA,...

  18. airborne em system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    191 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  19. airborne radioactivity levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...

  20. airborne rhinovirus detection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    181 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  1. airborne releases estimativa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    172 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  2. airborne radioactive materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...

  3. airborne acidity estimates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    169 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  4. airborne mycobacterium parafortuitum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    223 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  5. airborne allergens assessing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    183 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  6. airborne chemical emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    187 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  7. airborne sunphotometer measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  8. airborne pollutant concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  9. airborne research canister: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    159 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  10. airborne penicillium cfu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    151 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  11. airborne stachybotrys chartarum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    125 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  12. airborne separation assistance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  13. airborne particles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    153 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  14. airborne effluent control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    175 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  15. airborne gammaspectrometric systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    166 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  16. airborne laser swath: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    191 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  17. airborne radioactive contamination: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...

  18. airborne aspergillus fumigatus: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    176 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  19. airborne refueling demonstration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    158 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  20. airborne nanoparticle exposures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    182 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  1. airborne compositae dermatitis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    150 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  2. airborne organic acids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    192 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  3. airborne toxic metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    187 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  4. airborne resistivity techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    152 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  5. airborne radiometric measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    105 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  6. airborne mixtures part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 18 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  7. airborne radionuclide monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    188 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  8. airborne laser altimeter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    211 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...

  9. Transmutation Fuel Campaign Description and Status

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01T23:59:59.000Z

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series oftechnical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, highlevel schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: • An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. • A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities.

  10. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National Nuclear...

  11. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  12. Human Assisted Robotic Team Campaigns for Aquatic Monitoring

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    W. J. (2007a). Autonomous robotic sensing experiments at sanand development of a wireless robotic networked aquaticHuman Assisted Robotic Team Campaigns for Aquatic Monitoring

  13. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  14. Creating an Energy Awareness Campaign - A Handbook for Federal...

    Broader source: Energy.gov (indexed) [DOE]

    to reduce energy shortages and reduce America's dependence on foreign oil. Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers More Documents &...

  15. aerosol campaign isdac: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven process where already-detached, larger particles investigation The mineral dust size distribution was compared to aircraft measurements from the SAMUM campaign Oxford,...

  16. Study and Simulation of Remote Sensing System: COMPACT Airborne Spectral Sensor (COMPASS)

    E-Print Network [OSTI]

    Salvaggio, Carl

    1 Study and Simulation of Remote Sensing System: COMPACT Airborne Spectral Sensor (COMPASS) Paper............................................................................................ 5 COMPACT Airborne Spectral Sensor (COMPASS............................................................................................... 9 (FOUO) COMPASS Megacollect Data

  17. E-Print Network 3.0 - airborne nitrogen load Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne remote sensing surveys verify vegetation and land surface... radiometry Airborne remote sensing surveys Field Experiments Spatial Modeling ET Estimation 12;Integrated......

  18. airborne experimental test-bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne acoustic...

  19. AEROSOL OPTICAL AND CHEMICAL PROPERTIES WITHIN AND WITHOUT CLOUDS DURING AN AIRBORNE FIELD CAMPAIGN IN CENTRAL OKLAHOMA

    E-Print Network [OSTI]

    , Upton, NY 11973 Alexander, M L , lizabeth.alexander@pnl.gov , PNNL, PNNL PO Box 999, Richland, WA 99352 Hubbe, J M , john.hubbe@pnl.gov , PNNL, PNNL PO Box 999, Richland, WA 99352, Ogren, J A , John

  20. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect (OSTI)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18T23:59:59.000Z

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  1. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect (OSTI)

    Not Listed

    2011-11-01T23:59:59.000Z

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  2. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull B #12;Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull to establish a manned outpost on the lunar surface, it is essential to consider the logistics of both

  3. Ris-R-1462(EN) Airborne contamination in the indoor

    E-Print Network [OSTI]

    Risø-R-1462(EN) Airborne contamination in the indoor environment and its implications for dose K. Byskov, X.L. Hou, H. Prip, S.K. Olsen, T. Roed Title: Airborne contamination in the indoor environment of contaminant aerosol were examined, and since the previous measurements had indicated that elemental iodine

  4. Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data

    E-Print Network [OSTI]

    Mayer, Helmut A.

    Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data Reinhold cartographic feature extraction by the airborne AeS--1 instrument is presented. We extract regions corresponding to cartographic features for the classes built--up area, forest, water and open area. Water

  5. airborne gamma ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne gamma ray First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic Airborne Gamma...

  6. Lightning Strikes on Airborne Grounded Systems

    E-Print Network [OSTI]

    Malinga, Gilbert Aporu

    2014-10-13T23:59:59.000Z

    LIST OF FIGURES Page Fig. 1-1 Histogram of the average wind speed over a 10 year period at an elevation of a) sH ? 100 m and b) sH ? 600 m, above the mean water level at Montauk, New York. Wind data accessed from the National Buoy Data Center.... The destructive power of lightning discharges to both land-based and airborne systems that cannot adequately dissipate large impulses of energy is well documented (Miyake et al., 1990; Sorensen et al., 1998; Uman and Rakov, 2003). Lightning discharges can...

  7. Status Report on the Development of Research Campaigns

    SciTech Connect (OSTI)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30T23:59:59.000Z

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  8. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael [Brookhaven National Laboratory; Kollias, Pavlos [McGill University; Giangrande, Scott

    2014-04-01T23:59:59.000Z

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  9. Asthmatic responses to airborne acid aerosols

    SciTech Connect (OSTI)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. (California Department of Health Services, Berkeley (USA))

    1991-06-01T23:59:59.000Z

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  10. Voter competency, information, and campaign effects in representative and direct democracy

    E-Print Network [OSTI]

    Burnett, Craig Michael

    2010-01-01T23:59:59.000Z

    and Campaign Effects in Representative and Direct Democracyand Campaign Effects in Representative and Direct Democracyand make decisions in representative and direct democracy.

  11. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2010-12-01T23:59:59.000Z

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  12. ARM - Field Campaign - Chile: Radiative Heating in Underexplored Bands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign 2 (RHUBC-II)

  13. ARM - Field Campaign - Cloudiness Inter-Comparison IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?govCampaignsCloudiness

  14. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment atgovCampaignsDeep

  15. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-Arctic Cloud

  16. ARM - Field Campaign - Fall 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-Arctic

  17. ARM - Field Campaign - Fall 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-ArcticSingle Column

  18. ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 CloudgovCampaignsGanges

  19. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997LaunchgovCampaignsIPASRC

  20. ARM - Field Campaign - LASIC: Layered Atlantic Smoke Interactions with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-Clouds govCampaignsLASIC:

  1. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-CloudsgovCampaignsLong-Term

  2. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010CampaignCampaign

  3. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaignCampaign

  4. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater CyclegovCampaignsWhole

  5. ARM - Field Campaign - Winter Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWatergovCampaignsWinter

  6. Airborne chemical baseline evaluation of the 222-S laboratory complex

    SciTech Connect (OSTI)

    Bartley, P., Fluor Daniel Hanford

    1997-02-12T23:59:59.000Z

    The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.

  7. A real-time airborne scatterometer data processor

    E-Print Network [OSTI]

    Reisor, Gary James

    1976-01-01T23:59:59.000Z

    A REAL-TIME AIRBORNE SCATTEROMETER DATA PROCES'SOR A Thesis by Gary James Reisor Submitted to the Graduate College of Texas A)M Vniversity in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major... Subject: Electrical Fngineering A REAL-TIME AIRBORNE SCATTEROMETER DATA PROCESSOR A Thesis by Gary James Reisor Approved as to style and content by: arrman o Committee Hea o Depa tment em er Mem er August 1976 ABSTRACT A Real-time Airborne...

  8. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature StoriesgovCampaignsSurface Heat Budget

  9. 12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE RADAR IN THE CONVECTIVE

    E-Print Network [OSTI]

    Geerts, Bart

    12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE, is the availability of in situ thermodynamic and kinematic observations, and the direct observation of horizontal, as part of IHOP_02 (The International Water Vapor Project, Weckwerth et al 2003). The key radar

  10. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Ice Nuclei Collections ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to...

  11. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect (OSTI)

    Hansen, R

    2012-04-05T23:59:59.000Z

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

  12. airborne laser scanner: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data Geosciences Websites...

  13. Human Occupancy as a Source of Indoor Airborne Bacteria

    E-Print Network [OSTI]

    Hospodsky, Denina

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...

  14. airborne moisture-indicating microorganisms: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF A COLD FRONT AS REVEALED BY AIRBORNE 95 GHZ RADAR Bart cold front moved through the Texas Panhandle . . The front was intercepted by an armada of mobile-defined dryline and a...

  15. Airborne coastal current survey system for difficult to access areas

    E-Print Network [OSTI]

    Pollock, Cheryl Elaine

    1994-01-01T23:59:59.000Z

    The development of an airborne current measurement system that can provide a near-synoptic view of near-bottom currents in extremely hostile wave and current environments is described. A helicopter is used as the support platform from which...

  16. Epidemiology of Airborne Virulent Rhodococcus equi at Horse Breeding Farms

    E-Print Network [OSTI]

    Kuskie, Kyle Ryan

    2012-02-14T23:59:59.000Z

    Rhodococcus equi causes severe pneumonia, resulting in disease and sometimes death of foals. Infection is thought to occur by inhalation of dust contaminated with virulent R equi. A recent study of 3 horse breeding farms in Ireland found airborne...

  17. accidental airborne releases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fred A. Kruse; Joseph W. Boardman; Jonathan F. Huntington 2003-01-01 347 AUGUST 1961 MONTHLY WEATHER REVIEW 285 ACCURACY OF THE AIRBORNE ECONOMICAL RADIOMETER CiteSeer Summary:...

  18. affects on the transport of airborne emissions. This information...

    National Nuclear Security Administration (NNSA)

    due to airborne material. Detailed analyses (CRWMS M&O 1995a, 1997b) of the local wind characteristics in the study area led to the choice of Site 1 as the meteorological...

  19. An airborne digital processor for radar scatterometer data

    E-Print Network [OSTI]

    Yeadon, David Steven

    1977-01-01T23:59:59.000Z

    AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1977... Major Subject: Electrical Engineering AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Approved as to style and content by: (Chairman o Committee) Head of epartment) ( (Member ) (Member) August 1977...

  20. Simulated performance of an airborne lidar wind shear detection system

    E-Print Network [OSTI]

    Griffith, Kenneth Scott

    1987-01-01T23:59:59.000Z

    SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Physics SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Approved as to style and content by: e . atta ar (Chair an of Committee) T omas . air, III (Member) ic...

  1. Honey Bee Behavior: A Multi-agent Approach for Multiple Campaigns Assignment Problem

    E-Print Network [OSTI]

    Cho, Sung-Bae

    simulation studies are carried out varying on the small to large scale of the customer-campaign assignment of companies ranging from small to large scale, to provide personalized services for customers. In order for a specific campaign tends to be inclined for other campaigns. If we conduct inde- pendent campaigns without

  2. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    SciTech Connect (OSTI)

    John Zack; Deborah Hanley; Dora Nakafuji

    2012-07-15T23:59:59.000Z

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Study (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.

  3. What makes some campaigns more effective than others?: An analysis of three mass media PSI HIV/AIDS campaigns in Kenya.

    E-Print Network [OSTI]

    Mabachi, Natabhona Marianne

    2008-12-15T23:59:59.000Z

    This study included interviews with campaign planners at a major social marketing organization in Kenya and an examination of three comprehensive HIV/AIDS health campaigns produced by the planners. Thematic and qualitative content analysis...

  4. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01T23:59:59.000Z

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  5. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  6. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01T23:59:59.000Z

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  7. ARM - Field Campaign - ARM Radiosondes for NPOESS/NPP Validation - NSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of thegovCampaignsARM

  8. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud ODgovCampaignsBoundary

  9. ARM - Field Campaign - COPS - Initiation of Convection and the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to hear

  10. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES) -

  11. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES)

  12. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES)(CARES)

  13. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would

  14. ARM - Field Campaign - Characterization of Black Carbon Mixing State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We

  15. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at StormVEx ARM

  16. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at StormVEx

  17. ARM - Field Campaign - Evaluation of Routine Atmospheric Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2

  18. ARM - Field Campaign - Fall 1997 Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP

  19. ARM - Field Campaign - IRSI Inter-Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall

  20. ARM - Field Campaign - ISDAC - NASA ARCTAS Coordination with ARM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux- NASA ARCTAS

  1. ARM - Field Campaign - ISDAC / RISCAM - Humidified Tandem Differential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux- NASA

  2. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-Clouds

  3. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACEgovCampaignsMWR

  4. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010Campaign

  5. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaign

  6. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision Gas

  7. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision

  8. ARM - Field Campaign - RAdiative Divergence using AMF, GERB and AMMA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecisionSTations

  9. ARM - Field Campaign - SUbsonic Aircraft: Contrail & Cloud Effects Special

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP IcegovCampaignsSITACStudy

  10. ARM - Field Campaign - Spring Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCMgovCampaignsSpring

  11. ARM - Field Campaign - Summer 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer 1994 Single

  12. ARM - Field Campaign - Summer 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer 1994

  13. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE)govCampaignsThin

  14. ARM - Field Campaign - Unmanned Aerospace Vehicle (UAV) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSPgovCampaignsUnmanned Aerospace

  15. ARM - Field Campaign - Winter 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater

  16. Development of a new airborne humidigraph system.

    SciTech Connect (OSTI)

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06T23:59:59.000Z

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (?sp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the ?sp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  17. BioSAR Airborne Biomass Sensing System

    SciTech Connect (OSTI)

    Graham, R.L.; Johnson, P.

    2007-05-24T23:59:59.000Z

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  18. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils

    E-Print Network [OSTI]

    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils Mario Zanon, S´ebastien Gros, Joel Andersson and Moritz Diehl Abstract--The Airborne Wind Energy paradigm Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated

  19. Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation

    E-Print Network [OSTI]

    Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil], [3], the Airborne Wind Energy (AWE) paradigm shift proposes to get rid of the structural elements

  20. Airborne Infrared Target Tracking with the Nintendo Wii Remote Sensor

    E-Print Network [OSTI]

    Beckett, Andrew 1984-

    2012-11-12T23:59:59.000Z

    AIRBORNE INFRARED TARGET TRACKING WITH THE NINTENDO WII REMOTE SENSOR A Thesis by ANDREW WILSON BECKETT Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER... of UAS in use today and provide invaluable capabilities to both the military and civil services. UAS are well-suited to the ISR role: large UAS can remain airborne for far longer than the limits of human endurance without needing to be large enough...

  1. Remote monitoring of soil moisture using airborne microwave radiometers

    E-Print Network [OSTI]

    Kroll, Charles Lindsey

    1973-01-01T23:59:59.000Z

    REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY J(ROLL Submitted to the Graduate College of Texas A)M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1973 Major Subject: Electrical Engineering REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY KROLL Approved as to style and content by: man o Co mrtt Hca o D artmc c Ill l c r Mem e Member...

  2. Airborne asbestos fiber evaluation: a comparison of three methods

    E-Print Network [OSTI]

    Studinka, Emil

    1979-01-01T23:59:59.000Z

    AIRBORNE ASBFSTOS FIBER EVALUATION-A CONPARISON OF TliR'E NETHODS A Thesis EYiIL STUDINKA Submitted to the Graduate Co'ilege of Texas ALN University in partial fulfillment of the requirement for the degree of HASTER OF SCIEtiCE December 1979... Najor Subject: Industrial Hygiene AIRBORNE ASBESTOS FIBER EVALUATION-A COMPARISON OF THRFE METHODS A Thesis by EMIL STUDI NKA Approved as to style and content by: ichard B. onzen air ar, of Committee) llaymon L. Johnston (Member) hlilliam P...

  3. The development of a passive dosimeter for airborne benzene vapors

    E-Print Network [OSTI]

    Hager, David William

    1978-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BENZENE VAPORS A Thesis DAVID NII LIAM HAGER Submitted to the Graduate Colleqe of Texas ASM University in partial fulfillment of the requirement for the d"gree of MASTER OF SC. IENCE May IB...7B Major Subject: Indus t& ial Hyqiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BFNZENE VAPORS A Thesis by DAVID NILLIAM HAGER Approved as to style and content by: Z Chairman of Commi t e~ ~'g C'S~ Head of Department~ Member...

  4. The development of a passive dosimeter for airborne aniline vapors

    E-Print Network [OSTI]

    Campbell, James Evan

    1977-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James Evan Campbell Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE I...'iay 1977 Major Subject: Industrial Hygiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James E van Campbe1 1 Approved as to style and content by: Chairm of Com itt ea of De rtment Member Member May 1977...

  5. Recycling Campaign Award Prizes for best project proposal to improve

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling. Recycling bins contain inappropriate waste that cannot be recycled and thus are not picked up. THE REASON for picking up the waste. 60% of the waste budget. Your task: - To develop a new project to improve recycling

  6. 1-pin blanket mockup: Results of the extended test campaign

    SciTech Connect (OSTI)

    Ferrari, M.; Talarico, C. [EURATOM-ENEA, Frascati (Italy); Furrer, M.; Simbolotti, G. [ENEA, S. Maria in Galeria (Italy)

    1996-12-31T23:59:59.000Z

    Following a preliminary test campaign (200 thermal cycles) on a solid breeder blanket mockup, an extended test campaign (about 1000 thermal cycles) has been carried out by ENEA. The duration of the test campaign represents a significant fraction of the blanket module lifetime in the ITER device. In particular, these out-of-pile experiments have been performed in order to test (both functional and endurance testing) the thermal-hydraulic and thermo-mechanical performance of a water cooled breeder-in-tube blanket mockup (1-PIN) using Li{sub 2}ZrO{sub 3} pebbles as a breeder material. The test campaign has been completed and the resulting data concerning thermal and thermal-hydraulic parameters have been elaborated and analyzed by means of a comparison with theoretical predictions based on a proper thermal-hydraulic model. The post test examination of the pebbles is in progress in order to investigate the thermo-mechanical behavior of the breeder material under cycling. The paper deals with the first part of the results. 6 refs., 11 figs., 1 tab.

  7. THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS INSTITUTE #12;OVERVIEW The UC Santa Cruz Genomics Institute provides the framework for the next great leap in the science of genomics. ensured it would genomic science and speed the benefits of discoveries that improve and save lives. Cancer, autoimmune

  8. Evaluation of 2012/13 programme Mentor recruitment campaign begins

    E-Print Network [OSTI]

    Pym, David J.

    May 2013 · Evaluation of 2012/13 programme June 2013 · Mentor recruitment campaign begins July 2013 · Mentor applications open online · Supporting companies identified and recruited (Law and Engineering streams) Aug 2013 · Mentor and mentee resources for 2013-2014 programme developed · Menu of supporters

  9. The Combined Federal Campaign: Scoring a Touchdown in Giving

    Broader source: Energy.gov [DOE]

    It has been said that Federal employees are big-hearted people. We could not agree more, and nothing demonstrates that caring spirit year after year better than the Combined Federal Campaign (CFC), the Federal government’s annual giving drive.

  10. ARM - Field Campaign - ARESE II IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of the Madden

  11. ARM - Field Campaign - ARM LBNL Carbon Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of the

  12. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract:...

  13. CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS

    E-Print Network [OSTI]

    Liu, Taosheng

    CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS - GUIDELINES - Michigan State University encourages students to be informed about and participate in the political process campaigning, canvassing and petitioning drives on the Michigan State University campus. These statements

  14. Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS

    E-Print Network [OSTI]

    Calgary, University of

    Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS S. Skone Department and tropospheric effects on GPS. She has developed software for mitigation of atmospheric effects and is currently in this frequency band must be modeled, or measured, and mitigated. Despite reduction of many error sources for MAD

  15. Passive Remote Sensing of Clouds from Airborne Platforms

    E-Print Network [OSTI]

    Toohey, Darin W.

    instrument: the Solar Spectral Flux Radiometer (SSFR) · Some spectrometry/radiometry basics · How can we Airborne Measurements? · For climate studies, the high temporal and spatial variability of aerosols vertical profiles of radiative flux: where is radiative energy being deposited? · Combined with in situ

  16. airborne high energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne high energy First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Department of Geomatics...

  17. The study of cirrus clouds using airborne and satellite data

    E-Print Network [OSTI]

    Meyer, Kerry Glynne

    2004-09-30T23:59:59.000Z

    Cirrus clouds are known to play a key role in the earth's radiation budget, yet are one of the most uncertain components of the earth-atmosphere system. With the development of instruments such as the Airborne Visible/Infrared Imaging Spectrometer...

  18. airborne carbon 14c: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne carbon 14c First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 PERSPECTIVE PERSPECTIVE Blowin'...

  19. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Vance, L.M.

    1993-07-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  20. airborne differential absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne differential absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Department of...

  1. Message in a Bottle: An Advertising Campaign's Appropriation of Obama's Inclusive Rhetoric, and What This Reveals About National Identity

    E-Print Network [OSTI]

    Naman, Tyler

    2011-01-01T23:59:59.000Z

    Message in a Bottle: An Advertising Campaign’s Appropriationtitle of my research is “Message in a Bottle: An Advertisingthese advertisements’ messages, as conveyed through text,

  2. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect (OSTI)

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31T23:59:59.000Z

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  3. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

    1997-12-31T23:59:59.000Z

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  4. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links

  5. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation

  6. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS

  7. ARM - Field Campaign - Spring 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles

  8. ARM - Field Campaign - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model

  9. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    SciTech Connect (OSTI)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16T23:59:59.000Z

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  10. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    SciTech Connect (OSTI)

    Christopher Hodge, Raymond Keegan

    2007-08-01T23:59:59.000Z

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  11. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    SciTech Connect (OSTI)

    Chris A. Hodge

    2007-07-12T23:59:59.000Z

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  12. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirborne Carbon

  13. ARM - Field Campaign - Enhanced Soundings for Local Coupling Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirborne

  14. Airborne Data Processing and Analysis Software Package

    E-Print Network [OSTI]

    Delene, David J.

    The practice of conducting quality control and quality assurance in the construction of data sets is often perceptions, but rather on the reliability of the practices and assumptions that went into the observation

  15. The 2nd campaign of Pohang No. 2 B.F. and its relining plan for the 3rd campaign

    SciTech Connect (OSTI)

    Lee, Y. [POSCO, Pohang (Korea, Republic of). Ironmaking Dept.

    1997-12-31T23:59:59.000Z

    Pohang No. 2 blast furnace will be relined on April 1997. This project will spend 105 days in preparation for the next campaign. Pohang No. 2 blast furnace started all-coke consuming operation from the birth of the 2nd campaign, and started PCI operation 10 years later in 1993 in pursuit of energy-saving and cut-down manufacturing cost. However, in 1994, the furnace condition got worse than ever before due to unbalanced gas flow in the blast furnace. The main reason was that worn-out refractories disturbed the gas flow in the upper shaft wall area. There was no choice but to repair the worn-out refractories by castable gunning with pre-inserted supporting bars (POSCO-originated). The paper describes the process.

  16. A 100-micron polarimeter for the Kuiper Airborne Observatory

    SciTech Connect (OSTI)

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.

    1989-02-01T23:59:59.000Z

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.

  17. National Airborne Field Experiments for Prediction in Ungauged Basins

    E-Print Network [OSTI]

    Walker, Jeff

    , such as validation of these data products from new sensors, maturing retrieval algorithms, developing techniques with thermal infrared, near infrared, visible and lidar data. Passive microwave data will be collected in both if there is sufficient interest. A trial campaign to evalu

  18. Conventional and synthetic aperature processing for airborne ground penetrating radar

    SciTech Connect (OSTI)

    Cameron, R.M. [Airborne Environmental Surveys, Santa Maria, CA (United States); Simkins, W.L.; Brown, R.D. [MSB Technologies, Inc., Rome, NY (United States)

    1994-12-31T23:59:59.000Z

    For the past four years Airborne Environmental Surveys (AES), a Division of Era Aviation, Inc. has used unique and patented airborne Frequency-Modulated, Continuous Wave (FM-CW) radars and processes for detecting and mapping subsurface phenomena. Primary application has focused on the detection of man-made objects in landfills, hazardous waste sites (some of which contain unexploded ordinance), and subsurface plumes of refined free-floating hydrocarbons. Recently, MSB Technologies, Inc. (MSB) has developed a form of synthetic aperture radar processing (SAR), called GPSAR{trademark}, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars` coherent transmission and produces imagery that is better focused and more accurate in determining an object`s range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  19. Effectiveness of bomber deployed autonomous airborne vehicles in finding rail mobile SS-24s

    SciTech Connect (OSTI)

    Abey, A.E.; Erickson, S.A.; Norquist, P.D.

    1990-08-01T23:59:59.000Z

    Computer simulation predictions of the effectiveness of autonomous airborne vehicles in finding rail mobile SS-24s are presented. Effectiveness is discussed for several autonomous airborne vehicle endurances and survivabilities for the search area southwest of Moscow. The effect of where the Soviets place the SS-24s on the rail network was also investigated. The simulation predicts significant variations in the ability of a multi-autonomous airborne vehicle system to find SS-24s with these parameters. 12 figs., 1 tab.

  20. The NIF x-ray spectrometer calibration campaign at Omega

    SciTech Connect (OSTI)

    Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2014-11-15T23:59:59.000Z

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  1. ARM - Cloud and Land Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments?History OrganizationTwist OutreachCampaign

  2. ARM - Field Campaign - Year of Tropical Convection (YOTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature StoriesgovCampaignsSurface Heat

  3. ARM - Field Campaign - AIRS Validation Soundings - Phases 6 and 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under52govCampaignsAIRS

  4. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRS Validation

  5. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRS

  6. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRSIII ARM Data

  7. ARM - Field Campaign - Arctic Winter Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft Integration

  8. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft IntegrationIslandMarine

  9. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor TWST Cloud

  10. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor TWST

  11. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor

  12. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD SensorSnowfall

  13. ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data Discovery

  14. ARM - Field Campaign - M-PACE HSR Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data DiscoveryHSR

  15. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM

  16. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARMField(MASRAD)

  17. ARM - Field Campaign - MWR Inter-Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE

  18. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High Sensitivity Aerosol

  19. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High Sensitivity

  20. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High SensitivityBridge

  1. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High SensitivityBridgeCloud

  2. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High

  3. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-HighParsivel Disdrometer

  4. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogrammetry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-HighParsivel

  5. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer

  6. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer(MC3E):

  7. ARM - Field Campaign - Millimeter-wave Radiometric Arctic Winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave

  8. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic Cloud Experiment

  9. ARM - Field Campaign - NSF-Sponsored Aerosonde Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase

  10. ARM - Field Campaign - PGS Validation 2011-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM Data

  11. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems PACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM

  12. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign(RHUBC)2008)

  13. ARM - Field Campaign - Rain Microphysics Study with Disdrometer and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics Study with

  14. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics Study

  15. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics

  16. ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP Ice Nuclei

  17. ARM - Field Campaign - Semi-Continuous OCEC Particulate Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP

  18. ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGPObservation Periods

  19. ARM - Field Campaign - Small Particles in Cirrus (SPartICus)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles in Cirrus (SPartICus)

  20. ARM - Field Campaign - Solmirus' All Sky Infrared Visible Analyzer (ASIVA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles in Cirrus

  1. ARM - Field Campaign - Spring 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles in

  2. ARM - Field Campaign - Spring 2014 Nocturnal Avian Migration Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP

  3. ARM - Field Campaign - Summer Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data Discovery Browse Data

  4. ARM - Field Campaign - The MOSAiC Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE)

  5. ARM - Field Campaign - Tropical Ocean Global Atmosphere Coupled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP

  6. ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP(TWP-ICE)

  7. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K.

    2011-04-14T23:59:59.000Z

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  8. CLOUD LIFE CYCLE OBSERVED DURING THE 2009 CLOUD TOMOGRAPHY FIELD CAMPAIGN

    E-Print Network [OSTI]

    -month experiment, five scanning microwave radiometers were deployed along an eight-kilometer line and programmed cover conditions. The high-resolution tomographic retrievals provide a unique opportunity- 98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript

  9. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect (OSTI)

    Southern Company Services

    2004-11-30T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  10. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect (OSTI)

    Southern Company Services

    2004-08-24T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  11. Current concepts on airborne particles and health

    SciTech Connect (OSTI)

    Mauderly, J.L.

    1994-11-01T23:59:59.000Z

    Epidemiological evidence of associations between environmental particulate concentrations and both acute and chronic health effects has grown with numerous recent studies conducted in the US and other countries. An association between short-term changes in particulate levels and acute mortality now seems certain. The association is consistent among studies and coherent among indicators of mortality and morbidity. Effects observed at surprisingly low pollution levels have raised concern for current exposures even in modestly polluted cities. Toxicology did not predict the acute mortality effect, and causal mechanisms are difficult to rationalize. Present data suggest that the fine fraction of particulate pollution is more toxic than larger particles, but the contribution of specific particulate species is poorly understood.

  12. A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data

    E-Print Network [OSTI]

    Kerschner, Hanns

    A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data Christoph KNOLL-mail: christoph.knoll@uibk.ac.at ABSTRACT. A new approach to glacier inventory, based on airborne laser supervision. Earlier inventories, from 1983 and 1997, are used to compare changes in area, volume

  13. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  14. Entwicklung eines Qualittsmodells fr die Generierung von Digitalen Gelndemodellen aus Airborne Laser Scanning

    E-Print Network [OSTI]

    Giger, Christine

    Laser Scanning Dr. sc. ETH Jürg Lüthy Zürich, 2008 #12;#12;Diese Publikation ist eine editierte Version Geländemodellen aus Airborne Laser Scanning A B H A N D L U N G zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN Qualitätsmodells für die Generierung von Digitalen Geländemodellen aus Airborne Laser Scanning Copyright © 2008

  15. Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer

    E-Print Network [OSTI]

    Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the nature of these relationships as they varied between sensors

  16. airborne gamma-ray spectra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne gamma-ray spectra First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic Airborne...

  17. Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high

    E-Print Network [OSTI]

    Mason, Andrew

    Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

  18. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01T23:59:59.000Z

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  19. Review of the National Ignition Campaign 2009-2012

    SciTech Connect (OSTI)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Collaboration: NIC Team

    2014-02-15T23:59:59.000Z

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

  20. A Relaxation Strategy for the Optimization of Airborne Wind Energy Sebastien Gros, M. Zanon and Moritz Diehl

    E-Print Network [OSTI]

    A Relaxation Strategy for the Optimization of Airborne Wind Energy Systems S´ebastien Gros, M. Zanon and Moritz Diehl Abstract-- Optimal control is recognized by the Airborne Wind Energy (AWE problem. Keywords : airborne wind energy, optimal control, non- convex optimization, flight control I

  1. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect (OSTI)

    Southern Company Services

    2008-12-01T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  2. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009), Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

  3. Even if it's not Bribery: The Case for Campaign Finance Reform

    E-Print Network [OSTI]

    Jensen, Grant J.

    Even if it's not Bribery: The Case for Campaign Finance Reform Brendan Daley Erik Snowberg Duke reform alleviates this phenomenon and improves voter welfare at the expense of politicians. Thus, we expect successful politicians to oppose true campaign finance reform. We also show our model

  4. USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS

    E-Print Network [OSTI]

    Kamat, Vineet R.

    USE OF UNIVERSITY OF MICHIGAN NAME AND MARKS IN POLITICAL CAMPAIGNS OR BY POLITICAL ORGANIZATIONS and political organizations may not use the trademarks of the University of Michigan as part of their campaign materials or communications. For instance, they may not use the Block-M, the University seal, the Michigan

  5. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

  6. A network-based modeling framework for stakeholder analysis of China's energy conservation campaign

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A network-based modeling framework for stakeholder analysis of China's energy conservation campaign Available online 13 July 2011 Keywords: Energy conservation Policy-making Stakeholder analysis Network, the stakeholder analysis of China's energy conservation campaign still has been under-developed. This paper

  7. Forests Campaign 2007 How the illegal timber coming into China? Case of Merbau

    E-Print Network [OSTI]

    Forests Campaign 2007 How the illegal timber coming into China? Case of Merbau How illegal timber Beijing April 2007 http://www.illegal-logging.info/item_single.php?item=presentation&item_id=132&approach_id=8 #12;Forests Campaign 2007 How the illegal timber coming into China? Case of Merbau The jewel

  8. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084

    SciTech Connect (OSTI)

    Senor, David J.

    2013-10-30T23:59:59.000Z

    Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

  9. ICRF Heating at JET: From Operations with a Metallic Wall to the Long Term Perspective of a DT Campaign

    E-Print Network [OSTI]

    ICRF Heating at JET: From Operations with a Metallic Wall to the Long Term Perspective of a DT Campaign

  10. The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

    E-Print Network [OSTI]

    Aleksi?, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T

    2015-01-01T23:59:59.000Z

    We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-corre...

  11. Airborne observations and numerical modeling of fetch- limited waves in the Gulf of Tehuantepec

    E-Print Network [OSTI]

    Romero, Leonel

    2008-01-01T23:59:59.000Z

    velocity scaling in wind wave generation. Boundary-Layerlinear theory of of wind wave generation applied to waveSource terms in a third-generation wind wave model. J. Phys.

  12. Airborne observations and numerical modeling of fetch- limited waves in the Gulf of Tehuantepec

    E-Print Network [OSTI]

    Romero, Leonel

    2008-01-01T23:59:59.000Z

    A. Sea Surface Topography . . . . . . . . . . . . . . . . B.I.5: Typical ATM sea surface topography measurements col-b), from sea surface topography measurements collected

  13. Airborne observations and numerical modeling of fetch- limited waves in the Gulf of Tehuantepec

    E-Print Network [OSTI]

    Romero, Leonel

    2008-01-01T23:59:59.000Z

    distribution of ocean wave energy. J. Phys. Oceanogr. , 13,momentum, and energy between the ocean and the atmosphere (wind provides wave energy and momentum to the ocean, some of

  14. Campaign Extraction from Social Media KYUMIN LEE, JAMES CAVERLEE, and ZHIYUAN CHENG, Texas A&M University

    E-Print Network [OSTI]

    Caverlee, James

    , campaign detection ACM Reference Format: Lee, K., Caverlee, J., Cheng, Z., and Sui, D. Z. 2013. Campaign (corresponding author), J. Caverlee, and Z. Cheng, Department of Computer Science and Engineering, Texas A9 Campaign Extraction from Social Media KYUMIN LEE, JAMES CAVERLEE, and ZHIYUAN CHENG, Texas A

  15. Miscellaneous data for the 1996--1997 sampling and analysis campaigns of the MVST, BVEST, and OHF tank complexes

    SciTech Connect (OSTI)

    Giaquinto, J.M.; Keller, J.M. [Oak Ridge National Lab., TN (United States); Mills, T.P. [Kelly Scientific Resources, Oak Ridge, TN (United States)

    1997-07-01T23:59:59.000Z

    Starting in 1996 and continuing into 1997, there were several major sampling and analysis campaigns undertaken to characterize the contents of the Active Liquid Low-Level Waste (LLLW) tanks located at ORNL and the Old Hydrofracture Facility (OHF) tanks located in Melton Valley within Waste Area Grouping (WAG) 5. The active LLLW tanks include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data obtained for these campaigns are summarized in three earlier ORNL technical reports. Included in these reports are data which addresses waste processing options, performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP), criticality concerns, and DOT requirements for transporting the waste. Also, included is an evaluation of the waste`s characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS). As part of these campaigns there were also other miscellaneous tests performed and data collected to address important engineering and remediation issues that were not included in the previous reports. These miscellaneous tests are summarized in this report and include (1) fusion preparations for total anion analysis on selected MVST, BVEST, and OHF sludges, (2) settling tests performed on the BVEST and OHF sludges, (3) dried density data for the MVST sludges, (4) particle size analysis on selected BVEST and OHF sludges, and (5) the analysis of hydroxylamine in the BVEST supernates and sludges. Also, the viscosity and flow curves for BVEST waste are restated in this report using apparent viscosity with further detail included about the flow characteristics that were observed.

  16. Final report. Electro-Seise, Inc., Airborne Survey

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-06-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of an airborne microgravity and electric field sensing technology developed by Electro-Seise, Inc. of Fort Worth, Texas. The test involved the use of a single engine airplane to gather data over the Teapot Dome oil field along a tight grid spacing and along thirty (30) survey lines. The resultant gravity structure maps, based on the field data, were found to overlay the known structure of Teapot Dome. In addition, fault maps, based on the field data, were consistent with the known fault strike at Teapot Dome. Projected hydrocarbon thickness maps corresponded to some of the known production histories at RMOTC. Exceptions to the hydrocarbon thickness maps were also found to be true.

  17. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01T23:59:59.000Z

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  18. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect (OSTI)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  19. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect (OSTI)

    Southern Company Services

    2008-11-01T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  20. Clean enough for industry? An airborne geophysical case study

    SciTech Connect (OSTI)

    Nyquist, J.E.; Beard, L.P.

    1996-02-01T23:59:59.000Z

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  1. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect (OSTI)

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01T23:59:59.000Z

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  2. ARM - Field Campaign - DigiCORA-III transition and AIRS preparation IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 DeploymentgovCampaignsDigiCORA-III

  3. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  4. Design and development of an airborne microwave radiometer for atmospheric sensing

    E-Print Network [OSTI]

    Scarito, Michael P

    2011-01-01T23:59:59.000Z

    Satellite-based passive microwave remote sensing is a valuable tool for global weather monitoring and prediction. This thesis presents the design and development of a low-cost airborne weather sensing instrument to ...

  5. The metal content of airborne particles in Edinburgh: application to epidemiological research 

    E-Print Network [OSTI]

    Hibbs, L R; Beverland, Iain J; Heal, Mathew R; Agius, Raymond M; Elton, Robert A; Fowler, D; Cape, Neil

    2002-01-01T23:59:59.000Z

    Metals are putative causative agents in the association between ill health and exposure to airborne particles. We present preliminary results from an epidemiological study using exposure metrics of metal contained in ...

  6. Modeling Plot-Level Biomass and Volume Using Airborne and Terrestrial Lidar Measurements

    E-Print Network [OSTI]

    Sheridan, Ryan D.

    2012-07-16T23:59:59.000Z

    The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program provides a diverse selection of data used to assess the status of the nation’s forested areas using sample locations dispersed throughout the country. Airborne...

  7. Multisensor Fusion of Ground-based and Airborne Remote Sensing Data for Crop Condition Assessment

    E-Print Network [OSTI]

    Zhang, Huihui

    2012-02-14T23:59:59.000Z

    In this study, the performances of the optical sensors and instruments carried on both ground-based and airborne platforms were evaluated for monitoring crop growing status, detecting the vegetation response to aerial applied herbicides...

  8. Design of a small fast steering mirror for airborne and aerospace applications

    E-Print Network [OSTI]

    Boulet, Michael Thomas

    2008-01-01T23:59:59.000Z

    This thesis presents the analysis and design of a small advanced fast steering mirror (sAFSM) for airborne and aerospace platforms. The sAFSM provides feedback-controlled articulation of two rotational axes for precision ...

  9. The Primary and Recycling Sources of OH During the NACHTT-2011 Campaign: HONO as an Important OH Primary Source in the Wintertime

    SciTech Connect (OSTI)

    Kim, S.; VandenBoer, Trevor; Young, Cora; Riedel, Theran; Thornton, Joel A.; Swarthout, Bob; Sive, B.; Lerner, Brian M.; Gilman, Jessica; Warneke, Carsten; Roberts, James M.; Guenther, Alex B.; Wagner, Nicholas; Dube, William P.; Williams, Eric; Brown, Steve

    2014-06-10T23:59:59.000Z

    We present OH observation results during the NACHTT-11 field campaign at the Boulder Atmospheric Observatory in Weld County, Colorado. The observed OH levels during the daytime (at noon) were ~ 2.7 × 106 molecules cm-3 at the ground level (2 m above ground level, AGL). HONO and ozone photolysis were the two dominant photochemical OH production pathways during the field campaign. However, alkene ozonolysis, found an important source for OH by two previous winter season OH observations, was a minor contribution to OH primary production (~5 %). To evaluate recycling sources of OH from HO2 and RO2, an observation constrained University of Washington Chemical Mechanism (UWCM) box model is employed to simulated ambient OH levels with different model scenarios. For the base run without constraining observed HONO, the model simulated OH significantly underestimates the observed OH level (20.8 times in the morning and 7.2 times in the daytime). This indicates that the known HONO sources incorporated in the UWCM model cannot explain the observed HONO level. Once HONO is constrained by the observation, the discrepancy between observation and model simulation improves (5.1 times in the morning and 2.1 times in the daytime) but still out of the measurement uncertainty range (35 %). We explore two possible reasons for the observed unexplainably high wintertime OH levels. First, potential roles of Cl atoms produce organic peroxy radicals from the reactions between Cl atmos and alkane compounds. However, the Cl levels during the observation period are estimated very low (~ 103 atoms cm-3) to explain the enhanced OH levels. Second, Impacts of higher HONO levels on the ground was evaluated. Strong HONO gradient towards ground was observed especially during the early morning (6 am to 8 am) was observed and the lowest level available for the HONO observation during the campaign is 5 m AGL. Once we assume the twice of the observed HONO levels averaged between 5 m to 15 m at 2 m AGL, model predicted OH levels agree well within the observation uncertainty range. Wintertime photochemistry has not been investigated as much as the summer season. The results of this study along with a limited number of winter OH observations clearly urge further investigation on tropospheric oxidation capacity in the winter season considering implications of tropospheric oxidation capacity to the short-lived climate forcers especially methane.

  10. Algorithms and Software Tools for Extracting Coastal Morphological Information from Airborne LiDAR Data

    E-Print Network [OSTI]

    Gao, Yige

    2010-07-14T23:59:59.000Z

    ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2009 Major Subject: Geography ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO...

  11. An investigation of three problems concerning the analysis of airborne asphalt fumes

    E-Print Network [OSTI]

    Laird, Larry Teal

    1981-01-01T23:59:59.000Z

    AN INVESTIGATION OF THREE PROBLEMS CONCERNING THE ANALYSIS OF AIRBORNE ASPHALT FUMES A Thesis by LARRY TEAL LAIRD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1981 Major Subject: Industrial Hygiene AN INVESTIGATION OF THREE PROBLEMS CONCERNING THE ANALYSIS OF AIRBORNE ASPHALT FUMES A Thesis by LARRY T. LAIRD Approved as to style and content by: (Chairm of Committee) (Head of Department...

  12. Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign

    E-Print Network [OSTI]

    Song, Jihee

    The sensitivity of ozone production to precursor emissions was investigated under five different meteorological conditions in the Mexico City Metropolitan Area (MCMA) during the MCMA-2006/MILAGRO field campaign using the ...

  13. Effective Intelligence Operations during Counterinsurgency Campaigns - Intelligence Community in Counterinsurgency: Historical Lessons and Best Practices

    E-Print Network [OSTI]

    Albers, Andrew C.; Binkley, Samuel G.; Chaudhry, Mariam F.; Craswell, Kimberly; Freeman, Jordan S.; Lytle, Carrie E.; Myers, Tristan L.; Naser, Rami; Sloan, Peter T.

    2009-01-01T23:59:59.000Z

    to an unsuccessful “hearts and minds” campaign in Vietnam) because the COIN strategy adequately addres sed the political, social, and economic effects on the Malayan population in its operations. 41 Anthony Short, The Communist Insurrection in Malaya, 1948...

  14. Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign

    SciTech Connect (OSTI)

    Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

    1997-12-31T23:59:59.000Z

    Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

  15. Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign

    E-Print Network [OSTI]

    de Foy, B.

    Accurate numerical simulations of the complex wind flows in the Mexico City Metropolitan Area (MCMA) can be an invaluable tool for interpreting the MILAGRO field campaign results. This paper uses three methods to evaluate ...

  16. Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting

    Broader source: Energy.gov [DOE]

    The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

  17. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    E-Print Network [OSTI]

    Li, Guohui

    In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

  18. The Swift X-ray monitoring campaign of the center of the Milky Way

    E-Print Network [OSTI]

    Degenaar, N; Miller, J M; Reynolds, M T; Kennea, J; Gehrels, N

    2015-01-01T23:59:59.000Z

    In 2006 February, shortly after its launch, Swift began monitoring the center of the Milky Way with the onboard X-Ray Telescope using short 1-ks exposures performed every 1-4 days. Between 2006 and 2014, over 1200 observations have been obtained, amounting to ~1.2 Ms of exposure time. This has yielded a wealth of information about the long-term X-ray behavior of the supermassive black hole Sgr A*, and numerous transient X-ray binaries that are located within the 25'x25' region covered by the campaign. In this review we highlight the discoveries made during these first nine years, which includes 1) the detection of seven bright X-ray flares from Sgr A*, 2) the discovery of the magnetar SGR J1745-29, 3) the first systematic analysis of the outburst light curves and energetics of the peculiar class of very-faint X-ray binaries, 4) the discovery of three new transient X-ray sources, 5) exposing low-level accretion in otherwise bright X-ray binaries, and 6) the identification of a candidate X-ray binary/millisecon...

  19. The communicative strategies of Church of Christ campaigning missionaries: an ethnography and comparative analysis

    E-Print Network [OSTI]

    McCormick, Charlie Taylor

    1994-01-01T23:59:59.000Z

    divided into five parts: recruitment, selection, training, on-site adjustment and productivity, and reentry (Austin l 988: 73). This is little more than the same three steps of the traditional rite of passage cast in the language of the community... in which it is being described. Recruitment and selection refer to the separation of the campaigner from the community as the campaigner agrees to participate in the mission experience. Training, on-site adjustment, and productivity refer...

  20. 2001 ''You Have the Power'' campaign [Federal Energy Management Program]. Final technical report

    SciTech Connect (OSTI)

    NONE

    2002-01-01T23:59:59.000Z

    The Tasks of 2001 ''You Have the Power'' campaign by the Federal Energy Management Program (FEMP) are: Task 1--Interagency Planning Meetings; Task 2--Ear Day Event; Task 3--Earth Day and Energy Awareness Month Activities; Task 4--Regional Target; Task 5--Outreach Tools and Campaign Products; Task 6--Private Sector Participation; Task 7--''You Have the Power'' on the FEMP Web Site; and Task 8--Effective Communications.

  1. The Clinton campaign for health-care reform: epistemology in a populist rhetoric 

    E-Print Network [OSTI]

    Leugs, Michael Edward Carpenter

    1995-01-01T23:59:59.000Z

    favored a wait-and-see approach that undermined the president's ambitious ? and activist ? agenda. Through his health-care-reform campaign, Clinton gave up his power to define political ideals and gradually rendered himself irrelevant to the discussion... on the national agenda. Like much contemporary campaign oratory, Clinton's was cast mostly in the epideictic or ceremonial mode, a type of rhetoric concerned with values; his speeches usually dealt with virtues like hard work and democracy. Within this context...

  2. Struggling to set the campaign agenda: candidates, the media, and interest groups in elections 

    E-Print Network [OSTI]

    Campbell, Kristin Lynn

    2005-02-17T23:59:59.000Z

    STRUGGLING TO SET THE CAMPAIGN AGENDA: CANDIDATES, THE MEDIA, AND INTEREST GROUPS IN ELECTIONS A Dissertation by KRISTIN LYNN CAMPBELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Political Science STRUGGLING TO SET THE CAMPAIGN AGENDA: CANDIDATES, THE MEDIA, AND INTEREST GROUPS IN ELECTIONS A Dissertation...

  3. Energy efficiency campaign for residential housing at the Fort Lewis army installation

    SciTech Connect (OSTI)

    AH McMakin; RE Lundgren; EL Malone

    2000-02-23T23:59:59.000Z

    In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

  4. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect (OSTI)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States)] [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15T23:59:59.000Z

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance. In summary, airborne exposure to manganese, mercury, and particulate matter are associated with increased risk of adjudication. Causality cannot be proven in observational studies such as this one, but the association warrants further examination in other research studies. Comprehensive epidemiologic investigations of metal exposure in pediatric populations should include social health outcomes, including measures of delinquent or criminal activity. Furthermore, the influence of metals on the neurotoxic pathway leading to delinquent activity should be further explored. - Highlights: Black-Right-Pointing-Pointer We evaluate the relationship between air pollutants and adjudication. Black-Right-Pointing-Pointer Manganese, mercury, and particulate matter are associated with risk of adjudication. Black-Right-Pointing-Pointer Further research of metal exposure should include social health outcomes.

  5. Life Cycle of a Mesoscale Circular Gust Front Observed by a C-Band Doppler Radar in West Africa

    E-Print Network [OSTI]

    Lothon, Marie

    On 10 July 2006, during the Special Observation Period (SOP) of the African Monsoon Multidisciplinary Analysis (AMMA) campaign, a small convective system initiated over Niamey and propagated westward in the vicinity of ...

  6. Airborne radioactive effluent study at the Savannah River Plant

    SciTech Connect (OSTI)

    Blanchard, R.L.; Broadway, J.A.; Sensintaffar, E.L.; Kirk, W.P.; Kahn, B.; Garrett, A.J.

    1984-07-01T23:59:59.000Z

    Under the Clean Air Act, Sections 112 and 122 as amended in 1977, the Office of Radiation Programs (OPR) of the United States Environmental Protection Agency is currently developing standards for radionuclides emitted to the air by several source categories. In order to confirm source-term measurements and pathway calculations for radiation exposures to humans offsite, the ORP performs field studies at selected facilities that emit radionuclides. This report describes the field study conducted at the Savannah River Plant (SRP), a laboratory operated by E.I. du Pont de Nemours and Company for the US Department of Energy. This purpose of the study at ARP was to verify reported airborne releases and resulting radiation doses from the facility. Measurements of radionuclide releases for brief periods were compared with measurements performed by SRP staff on split samples and with annual average releases reported by SRP for the same facilities. The dispersion model used by SRP staff to calculate radiation doses offsite was tested by brief environmental radioactivity measurements performed simultaneously with the release measurements, and by examining radioactivity levels in environmental samples. This report describes in detail all measurements made and data collected during the field study and presents the results obtained. 34 references, 18 figures, 49 tables.

  7. Design and calibration of the PHARUS polarimetric airborne SAR

    SciTech Connect (OSTI)

    Snoeij, P. [Delft Univ. of Technology, Delft (Netherlands); Hoogeboom, P.; Koomen, P.J. [and others

    1996-11-01T23:59:59.000Z

    The PHARUS system uses a phased array antenna with solid state amplifiers. The project consisted of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR research system called PHARS, which made its first successful testflight in November 1990. The research system is based on the concept of a wide beamwidth antenna, rigidly fixed to the aircraft. Pulse compression and a high PRF ensure sufficient sensitivity in this system, which is equipped with a 160 Watt peak pulse power solid state transmitter. The processing is done off-line. In the realization phase the polarimetric PHARUS system has been developed. The design is based on the experience gained with the PHARS system. The system uses a phased array with dual polarized patch radiators and is equipped with solid state amplifiers. This paper will give an overview of the PHARUS design and operational use. Apart from the use as an advanced polarimetric airborne SAR, there is the perspective of using PHARUS as a demonstrator for ESA`s future ASAR system. 2 refs., 2 figs., 1 tab.

  8. We triggered a multi-wavelength observing campaign including radio observations at RATAN-600, millimeter observations at Plateau de Bure, optical photometry at sev-

    E-Print Network [OSTI]

    Cai, Long

    source, marked as OT. Colour composite made from V, Rc and Ic band imaging at the 1.5m OSN telescope with the 0.4m WATCHER robotic telescope in South Africa starting 65s after the Swift/BAT detec- tion

  9. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29T23:59:59.000Z

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  10. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect (OSTI)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01T23:59:59.000Z

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  11. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.

    2015-03-01T23:59:59.000Z

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporatedmore »before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)« less

  12. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaoli [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Kollias, Pavlos [McGill Univ., Montreal, Quebec (Canada); Dept. of Atmospheric and Oceanic Sciences; Lewis, Ernie R. [Brookhaven National Lab., Upton, NY (United States). Biological, Environmental, and Climate Sciences Dept.

    2015-03-01T23:59:59.000Z

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporated before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)

  13. Tropospheric methanol observations from space: retrieval1 evaluation and constraints on the seasonality of biogenic2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Tropospheric methanol observations from space: retrieval1 evaluation and constraints Information1 2 3 #12; 3 1 FigureS1.Comparison of TES, IASI and airborne methanol measurements using GEOS-Chem as2 an intercomparison platform. Methanol abundance as modeled by GEOS-Chem (base-case3 simulation

  14. HOLD FOR RELEASE UNTIL PRESENTED

    E-Print Network [OSTI]

    -based radiation detection networks, and airborne field campaigns in collaboration with other agencies

  15. Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with

    E-Print Network [OSTI]

    Yu, K.N.

    Long-term determination of airborne concentrations of unattached and attached radon progeny using-term measurements Radon progeny a b s t r a c t We developed the theoretical basis for long-term determination of airborne concentrations of unattached and attached radon progeny. The work was separated into two parts

  16. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    SciTech Connect (OSTI)

    Ottley, D.B.

    1995-05-01T23:59:59.000Z

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  17. Crowdfunding Astronomy Outreach Projects: Lessons Learned from the UNAWE Crowdfunding Campaign

    E-Print Network [OSTI]

    Ashton, Abi J; Heenatigala, Thilina

    2014-01-01T23:59:59.000Z

    In recent years, crowdfunding has become a popular method of funding new technology or entertainment products, or artistic projects. The idea is that people or projects ask for many small donations from individuals who support the proposed work, rather than a large amount from a single source. Crowdfunding is usually done via an online portal or platform which handles the financial transactions involved. The Universe Awareness (UNAWE) programme decided to undertake a Kickstarter crowdfunding campaign centring on the resource Universe in a Box2. In this article we present the lessons learned and best practices from that campaign.

  18. ARM - Field Campaign - Colorado: SP2 Deployment at StormVEx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at StormVEx ARM Data

  19. ARM - Field Campaign - Fall SCM/NBL IOP in Support of CASES-99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud

  20. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997