Powered by Deep Web Technologies
Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Synthetic IR Scene Simulation of Air-borne Targets  

E-Print Network (OSTI)

IR scenes of high fidelity are needed to support the development and testing of various target detection and tracking techniques. It is impractical to test detection and tracking algorithms under all conceivable conditions. Therefore, to test the effectiveness of detection and tracking algorithms under variety of scenarios, synthetic IR scenes are generated. For air-borne targets, the presence of clouds plays an important role, since they affect most IR sensors. We propose, a mod- ification of original Gardner's Method [3], in order to generate clouds of richer spectral content. We also ex- plore an algorithm based on self-similarity [5] for cloud texture generation. Synthetic IR cloud images generated by our scene simulation software are radiometrically accurate and have typical cloud texture variations. We use Modtran J.O for radiometric calculation and VRML (Virtual Reality Modeling Language) for scene rendering.

Shankar T. More; Avinash A. Pandit; Avinash A. P; S. N. Merchant; U. B. Desai

2002-01-01T23:59:59.000Z

2

Airborne Measurements of Surface, Layer Turbulence over the Ocean during Cold Air Outbreaks  

Science Conference Proceedings (OSTI)

Airborne measurements of atmospheric turbulence spectra and cospectra made at the 50 m level above the western Atlantic Ocean during cold air outbreaks have been studied. The data cover nearshore areas of cloud streets or roll vortices. In the ...

Shu-Hsien Chou; Eueng-Nan Yeh

1987-12-01T23:59:59.000Z

3

Airborne Particulate Matter in HVAC Systems and its Influence on Indoor Air Quality  

E-Print Network (OSTI)

This paper first reviews the mechanisms governing movement of PMs in HVAC systems. Then, the basic equations governing PM deposition in ducts are introduced and investigations on airborne PMs distribution in HVAC systems are reviewed. The influence of PMs on indoor air quality and effectiveness of corresponding controlling measures is discussed extensively in the paper. Finally, recommendations for further research are given.

Fu, Z.; Li, N.; Wang, H.

2006-01-01T23:59:59.000Z

4

Horizontal Convective Rolls in Cold Air over Water: Buoyancy Characteristics of Coherent Plumes Detected by an Airborne Radar  

Science Conference Proceedings (OSTI)

Aircraft and airborne cloud radar data are used to describe the vertical structure of the convective boundary layer (CBL) during cold-air outbreaks over Lake Michigan in January 2004. Two days with mesoscale cloud street structure and a day with ...

Qiong Yang; Bart Geerts

2006-09-01T23:59:59.000Z

5

Chronic disease and early exposure to air-borne mixtures: 1. The environmental quality database  

SciTech Connect

This is the first in a continuing study examining the impact of early exposure to air-borne mixtures of chemicals from industrial sources on the etiology of cancer. The Environmental Quality Database (EQDB) contains lifetime residential histories for about 20,000 cases in 18 rare or poorly understood sites and about 5000 controls. The EQDB contains all known industrial point sources in about 50 U.S.-SIC code operating in Canada, all geolocated, from 1993 to about 1950. Cases and controls were collected in 1993-1995. Both source-centric and case-centric searching is possible. It is possible to search all instances of a source-type or only one. Three features of the design are the management of mobility and latency as epidemiological confounders and a considerable simplification of Retrospective Exposure Assessment by using the RASH relative potency methodology. 42 refs., 2 figs., 3 tabs.

James Argo [IntrAmericas Centre for Environment and Health, Wolfe Island, ON (Canada)

2007-10-15T23:59:59.000Z

6

Evaluation of Meteorological Airborne Doppler Radar. Part II: Triple-Doppler Analyses of Air Motions  

Science Conference Proceedings (OSTI)

This is Part II of a paper dealing with the capabilities and use of airborne Doppler radar to observe motions within storms. Part I deals with dual-Doppler analyses of convective storm structure, using airborne and combinations of airborne and ...

Cynthia K. Mueller; Peter H. Hildebrand

1985-09-01T23:59:59.000Z

7

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

8

Airborne Measurements of Air Mass from O2 A-Band Absorption Spectra  

Science Conference Proceedings (OSTI)

Airborne experiments to assess the feasibility of remote sensing surface pressure from a space platform are described. The data are high-resolution spectra in the O2 A band (759ľ771 nm) of sunlight reflected from the sea surface, measured by a ...

D. M. OĺBrien; R. M. Mitchell; S. A. English; G. A. Da Costa

1998-12-01T23:59:59.000Z

9

An Airborne Laser Air Motion Sensing System. Part I: Concept and Preliminary Experiment  

Science Conference Proceedings (OSTI)

Measurement of air motion relative to an aircraft by a conically scanned optical Doppler technique has advantages over measurements with conventional gust probes for many applications. Advantages of the laser air motion sensing technique ...

R. J. Keeler; R. J. Serafin; R. L. Schwiesow; D. H. Lenschow; J. M. Vaughan; A. A. Woodfield

1987-03-01T23:59:59.000Z

10

Ambient Backscatter: Wireless Communication Out of Thin Air Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall, Joshua R. Smith  

E-Print Network (OSTI)

Ambient Backscatter: Wireless Communication Out of Thin Air Vincent Liu, Aaron Parks, Vamsi Talla owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise. Request permissions from permissions@acm.org. SIGCOMM'13, August 12┬ş16, 2013, Hong Kong, China. Copyright

Hochberg, Michael

11

THE CONSTRUCTION AND OPERATION OF EXPERIMENTAL ROOMS FOR THE STUDY OF AIR-BORNE INFECTION*  

E-Print Network (OSTI)

In order to carry out adequately controlled studies on the effects of temperature and humidity on the behavior of bacteria and viruses suspended in the air under various experimental conditions, it became necessary to have available enclosed spaces in which any desired atmospheric state could be produced and maintained. The use of conventional methods of air conditioning is unsuitable for this purpose because all of these depend upon exchange of the air inside the experimental space with conditioned air. Hence, two identical air-tight, glass-walled rooms 8 feet X 10 feet and 8 feet high were built each within a separate air-conditioned shell which can be kept constantly at any temperature and relative humidity likely to be encountered in spaces occupied by human beings. Rapid circulation of the conditioned air over all surfaces of the inner room provides a sufficiently high rate of heat transfer to insure constant temperature conditions within that space. The relative humidity of the inner room can be maintained at the same level as the air of the outer shell or can be increased by the introduction of steam. Two rooms provide much greater

O. H. Robertson; Theodore T. Puck, Ph.D.; Henry Wise

1946-01-01T23:59:59.000Z

12

An Airborne Laser Air Motion Sensing System. Part II: Design Criteria and Measurement Possibilities  

Science Conference Proceedings (OSTI)

A conically scanning Doppler lidar technique for measuring air motions from an aircraft is proposed in the companion paper (Keeler et al.). A theoretical analysis of this technique shows that, assuming isotropic turbulence, the technique is ...

Leif Kristensen; Donald H. Lenschow

1987-03-01T23:59:59.000Z

13

Airborne Internet : market & opportunity  

E-Print Network (OSTI)

The purpose of this thesis to evaluate the opportunity for service provider entry and of the airborne internet, to analyze the disruptive impact technology used by AirCell and AeroSat has had on the development of an ...

Bhadouria, Anand

2007-01-01T23:59:59.000Z

14

ARM - Campaign Instrument - dri-air  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign Instrument : Desert Research Institute Airborne Aerosol Instruments (DRI-AIR) Instrument Categories Aerosols, Airborne Observations Campaigns Aerosol IOP ...

15

Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX  

E-Print Network (OSTI)

The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the Houston area. The comparisons and resulting good agreement between the separate instruments allowed for the spatial and temporal evolution of the ML height distribution to be determined across the Houston area on September 1, 2000. A benchmark method was created for determining ML heights from radiosonde data. The ML heights determined using this method were compared to ML heights determined using wind profiler data. The airborne lidar and MTP heights were also compared to the wind profiler heights. This was the first time the MTP was used for estimating ML heights. Because of this, the MTP heights were also compared to the ML heights determined by in-situ aircraft data. There was good agreement between the ML estimates when the instruments were co-located. The comparisons between the benchmark method and the wind profilers were independent of the quality of the profiler heights. The statistics for lidar and the wind profilers were better for the inland profiler comparisons. Even so, the results for coastal profilers were similar to the other comparisons. The results between the MTP and the wind profilers were comparable with the results found between the other instruments, and better, in that the statistics were similar for the both the inland and coastal profilers. The results between the MTP and in-situ aircraft data provided additional support for the use of MTP for determining ML heights. The combination of the inland and coastal wind profilers with the airborne instruments provided adequate information for the spatial and temporal evolution of the ML height to be determined across the Houston area on September 1, 2000. By analyzing the ML height distribution, major features were evident. These features included the shallow ML heights associated with the marine air from Galveston Bay and the Gulf of Mexico, and the sharp gradient of increasing ML heights north of Houston associated with the variation in the inversion depth found on this day.

Smith, Christina Lynn

2003-05-01T23:59:59.000Z

16

Cambridge in transition : regulating parking in a growing city  

E-Print Network (OSTI)

Parking is regulated today by cities to achieve a variety of goals including traffic reduction, air quality improvement, urban densification, and climate change mitigation. In the City of Cambridge, Massachusetts, parking ...

Ferrentino, Cara Elizabeth

2013-01-01T23:59:59.000Z

17

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

18

Three-Dimensional Air Circulation in a Squall Line from Airborne Dual-Beam Doppler Radar Data: A Test of Coplane Methodology Software  

Science Conference Proceedings (OSTI)

The detailed structure of a tropical squall line observed in central Florida was investigated from an airborne dual-beam Doppler radar, pointing respectively fore and aft. This allowed dual-Doppler observations from a straight flight path in a ...

Michel Chong; Jacques Testud

1996-02-01T23:59:59.000Z

19

Modeling for Airborne Contamination  

SciTech Connect

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

20

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 4, January 9, 2001 Welcome to Research Park Notes Look for tidbits of information on...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 3, December 19, 2000 Welcome to Research Park Notes Look for tidbits of information...

22

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 7, February 20, 2001 Welcome to Research Park Notes Look for tidbits of information...

23

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 9, March 20, 2001 Welcome to Research Park Notes Look for tidbits of information on...

24

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 5, January 23, 2001 Welcome to Research Park Notes Look for tidbits of information on...

25

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

26

Clean Cities National Parks Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of...

27

Parking Infrastructure and the Environment  

E-Print Network (OSTI)

A B O U T how parking infrastructure affects energy demand,the extensive parking infrastructure, including the costs ofdata on parking infrastructure. For example, consider the

Chester, Mikhail; Horvath, Aprad; Madanat, Samer

2011-01-01T23:59:59.000Z

28

Evaluation of Indoor Air Quality Parameters and Airborne Fungal Spore Concentrations by Season and Type of HVAC System in a School Building.  

E-Print Network (OSTI)

??An indoor air quality survey has been conducted in a school building. Samples were collected inone room in each wing and each level on aů (more)

McLeod, Jeffrey D.

2008-01-01T23:59:59.000Z

29

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

30

Amusement Park Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Amusement Park Physics If you have an idea for a great field trip, please click our Ideas page Amusement Park Physics, or Physics Day, is a program which seeks to teach students...

31

Energy Department and National Park Service Announce Clean Cities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks June 19, 2012 - 11:05am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the National Park Service today announced that five national parks around the country will deploy fuel efficient and alternative fuel vehicles as part of an expanded partnership, helping to protect some of America's most prized natural environments. "Through the Clean Cities partnership, the Energy Department and the

32

New Sampling Methods for Airborne Microorganisms  

NLE Websites -- All DOE Office Websites (Extended Search)

New Sampling Methods for Airborne Microorganisms New Sampling Methods for Airborne Microorganisms Speaker(s): Klaus Willeke Date: February 27, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: David Faulkner Klaus Willeke and his international team of engineers, physicists, microbiologists, industrial hygienists and environmental scientists have worked for about 15 years on the development of new methods for sampling airborne microorganisms. The following topics will be highlighted: long-term bioaerosol sampling into liquid by swirling air motion ("Biosampler"); personal aerosol sampling with low wind sensitivity and highfilter deposit uniformity ("Button Aerosol Sampler"); collection of microorganisms by electrostatic means; source testing as a predictor for microorganism release from surfaces; particle concentrating from large air

33

Human Occupancy as a Source of Indoor Airborne Bacteria  

E-Print Network (OSTI)

Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...

Hospodsky, Denina

34

A Study of Air Quality in the Southeastern HamptonľNorfolkľVirginia Beach Region with Airborne Lidar Measurements and MODIS Aerosol Optical Depth Retrievals  

Science Conference Proceedings (OSTI)

A study of air quality was performed using a compact, aircraft aerosol lidar designed in the Science Directorate at NASA Langley Research Center and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals. ...

Jasper Lewis; Russell De Young; D. Allen Chu

2010-01-01T23:59:59.000Z

35

Green Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Parks Steve Butterworth National Park Service 60 National Parks 2007 30,000 MWH $3,700,000 6,400,000 GSF 139 MWH Green 495 MWH RE 2 Green Energy Parks PARTNERSHIP Department of Interior - National Park Service Department of Energy - Office of Energy Efficiency and Renewable Energy Partnership established by  Established by Interagency MOU  Signed September 2007  Guided by interagency task force co-chaired by DOI/NPS and DOE/FEMP 3 Green Energy Parks GOALS  Serve as proving ground for emerging green energy technologies  Meet or exceed EPACT 2005 and E.O. 13423 Federal energy management mandates 4 Green Energy Parks Drivers  Improve the energy efficiency of facilities and vehicle fleets in advance of the NPS 2016

36

Preserving DOE's Research Parks  

NLE Websites -- All DOE Office Websites (Extended Search)

listed species on its re- search site. The Arid Lands Ecological Reserve at the Hanford Research Park contains the only sizable remaining fragment of shrub-steppe in...

37

Parke County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 1 per home or business Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Water Heater: $50 - $150 Refrigerator/Freezer Recycling: $35 Air-Source/Dual Fuel Heat Pump: $150 - $500 Geothermal Heat Pump: $800 Provider Parke County REMC Parke County REMC offers rebates to commercial and residential customers for purchasing and installing qualifying energy efficient water heaters, air-source heat pumps, dual fuel heat pumps, and geothermal heat pumps.

38

Premium Power Industrial Park Design  

Science Conference Proceedings (OSTI)

This report is intended to provide insights on the consideration, design, and implementation of power quality (PQ) parks -- business parks where superb electric power quality, reliability, and availability (QRA) are optimized for the businesses within the park.

2002-02-14T23:59:59.000Z

39

Free Parking or Free Markets  

E-Print Network (OSTI)

chalice, providing ample free parking while hiding the manyShoup. 2011. The High Cost of Free Parking, revised edition,Free Parking or Free Markets DONALD SHOUP It is no doubt

Shoup, Donald

2011-01-01T23:59:59.000Z

40

Research Park Notes, Issue 20  

NLE Websites -- All DOE Office Websites (Extended Search)

0, September 4, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Research Park Notes, Issue 14  

NLE Websites -- All DOE Office Websites (Extended Search)

4, May 29, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

42

Research Park Notes, Issue 17  

NLE Websites -- All DOE Office Websites (Extended Search)

7, July 24, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

43

Research Park Notes, Issue 16  

NLE Websites -- All DOE Office Websites (Extended Search)

6, July 10, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

44

Research Park Notes, Issue 22  

NLE Websites -- All DOE Office Websites (Extended Search)

2, October 2, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

45

Research Park Notes, Issue 25  

NLE Websites -- All DOE Office Websites (Extended Search)

5, November 13, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

46

Research Park Notes, Issue 15  

NLE Websites -- All DOE Office Websites (Extended Search)

5, June 12, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

47

Radionuclide Air Emission Report for 2009  

E-Print Network (OSTI)

the public from airborne radionuclide emissions. We requestfor Emissions of Radionuclides Other Than Radon FromFugitive Air Emissions of Radionuclides from Diffuse Sources

Wahl, Linnea

2010-01-01T23:59:59.000Z

48

Airborne Tracking Sunphotometer  

Science Conference Proceedings (OSTI)

An airborne tracking sunphotometer, mounted on the outside top surface of an aircraft has been developed to provide unrestricted viewing of the Sun. This instrument will substantially increase the data that scientists can gather for atmospheric ...

Tak Matsumoto; Philip Russell; Cesar Mina; William Van Ark; Victor Banta

1987-06-01T23:59:59.000Z

49

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

50

NREL: Sustainable NREL - Parking Garage  

NLE Websites -- All DOE Office Websites (Extended Search)

Parking Garage Parking Garage A photo of a grey, five-story, above-ground parking garage. Solar panels are seen installed on the roof of the structure. NREL's multi-story parking garage. NREL's parking garage proves that large garages can be designed and built sustainably-at no additional cost. And although parking garages don't qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) certification, NREL designed the parking garage to LEED Platinum standards to maximize energy savings and environmental stewardship. The structure is expected to perform 90% better than a standard garage built just to code. Fast Facts Cost: $14,172 per parking space Cost is typically $15,500 to $24,500 per parking space Square Feet: 578,320 Parking Spaces: 1,800

51

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Up with Alternative Fuels Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong in our National Parks, maintaining their air quality has become a real

52

Green Energy Parks Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Program Energy Parks Program Terry Brennan NPS Green Energy Parks Coordinator Federal Utility Partnership Working Group Meeting April 15 th , 2008 Overview ´üČ Energy Consumption in the NPS ´üČ Green Energy Parks Program ´üČ Questions and Discussion NPS Energy Consumption NPS Assets by Type and Region - The NPS is comprised of 391 units encompassing more than 8 million acres-with tens of thousands of assets within seven regions - 2,000 4,000 6,000 8,000 10,000 12,000 14,000 Intermountain 13,793 (24%) Pacific West 12,450 (21%) Southeast 10,877 (19%) Northeast 9,036 (16%) Midwest 6,351 (11%) National Capital 3,708 (6%) Alaska 1,745 (3%) Count of Assets All Other Paved/Unpaved Roads Wastewater System Water System Campgrounds Trails Housing Buildings - - - - NPS Inventory Summary

53

Won Young Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Won Park Won Park Won Young Park International Energy Studies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2144 (510) 495-2252 WYPark@lbl.gov Won Young Park is a senior research associate at Lawrence Berkeley National Laboratory (LBNL). He is working on technical analysis for televisions, computer monitors, and lighting for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative. In the studies, he assesses energy savings potential in efficiency improvement options, evaluates cost effectiveness of key technologies, and provides technical information and recommendations for policies and programs designed to accelerate the adoption of efficient technologies. He also supports a Korea project that

54

Sang-Jae Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Sang-Jae Park Sang-Jae Park Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 70-0128 (510) 495-8161 SangJaePark@lbl.gov Sang-Jae Park is a Postdoctoral Researcher at Environmental Energy Technology Division in Lawrence Berkeley National Laboratory. He received his BS and MS degrees in Chemical Engineering from Seoul National University and his PhD degree in Chemistry from University of Pennsylvania in the study of conducting polymers. In the graduate works, he studied a novel class of amphiphilic conducting block-copolymers composed of a widely studied conjugated polymer. His current research in LBNL is focused on the development of conductive polymer binders for lithium ion batteries. By

55

FORSYTHFORSYTH FOREST PARKFOREST PARK  

E-Print Network (OSTI)

Bryan Hall(195), Jolley Hall(129), Cyclotron Bldg.(113), McMillen Lab Bldg.(196), Power Plant/House(142 Garage 28 Parking lot #40, just south of Plant Growth Greenhouse Life Sciences Bldg.(243), Plant Growth

Doering, Tamara

56

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

57

Handicapped Parking Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Guidance Handicapped Parking Guidance U.S. Department of Energy Headquarters Handicapped Parking Procedures It is the policy of the Department of Energy (DOE)...

58

Oak Ridge National Environmental Research Park -- Parknotes  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Publications Oak Ridge National Environmental Research Park Research Park Notes Research Park Notes was an informal mechanism, developed by Pat Parr, the Oak Ridge...

59

Airborne Inspection Technology: Market Survey  

Science Conference Proceedings (OSTI)

This report presents findings of an investigation into various airborne inspection technologies currently used within the electric utility industry.

2002-03-04T23:59:59.000Z

60

The Source of Airborne Lead: Recycling Pb-Contaminated Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

The Source of Airborne Lead: Recycling The Source of Airborne Lead: Recycling Pb-Contaminated Soils Starting in the 1970s, federal regulatory control and eventual elimination of lead-based "anti-knock" additives in gasoline decreased the level of airborne Pb in the USA by two orders-of-magnitude [1]. Blood lead levels of the USA figure 1 Figure 1. The good, the bad, and the ugly. Ambient airborne particulate matter captured on filters of woven silica fiber (large strips) and TeflonTM (round). Clean fiber filter at bottom for comparison. Take a deep breath? population decreased correspondingly [2,3]. Despite this dramatic improvement in both exposure risk and body burden of Pb, the sources and health threat of the low levels of lead in our "unleaded" air remain topics

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

62

MIDDLE PARK Conservation Action Plan  

E-Print Network (OSTI)

MIDDLE PARK Conservation Action Plan 2011 Update Plant Species of Focus: Kremmling milkvetch Conservation Initiative Workshop dates: June 26, 2008 and July 6, 2010 Report date: August 25, 2011 Middle Park................................................................................................................... 6 A. Conservation Targets

63

Iowa Stored Energy Park | Open Energy Information  

Open Energy Info (EERE)

Stored Energy Park Stored Energy Park Jump to: navigation, search Name Iowa Stored Energy Park Place Ankeny, Iowa Zip 50021 Sector Wind energy Product Iowa Stored Energy Park is planning a 268MW wind project that would store its power as compressed air in deep underground geological formations, which could later be heated and used to drive turbines to generate electricity. Coordinates 41.73184┬░, -93.605264┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.73184,"lon":-93.605264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Bike parking LEEGHWATERSTRAATDREBBELWEG  

E-Print Network (OSTI)

Main Entrance 3mE ExitExit Exit Exit Exit Exit Exit Exit Exit Main Entrance ID SQUARE CAR PARKING CAR & Hydro Lab - F.0 Delft Haptics Lab - F.1 MT-Towing tank - D.0 Delft Biorobotics Lab - E.0 PMP= Workshop

Lindken, Ralph

65

Correcting Airborne Temperature Data for Lags Introduced by Instruments with Two-Time-Constant Responses  

Science Conference Proceedings (OSTI)

Airborne resistance wire temperature sensors can introduce a time lag before ambient air temperature changes are registered. It has been found that a second-order linear response system adequately describes the behavior of the Rosemount non-...

G. W. Inverarity

2000-02-01T23:59:59.000Z

66

Design and Sampling Characteristics of a New Airborne Aerosol Inlet for Aerosol Measurements in Clouds  

Science Conference Proceedings (OSTI)

Design of a new submicron aerosol inlet (SMAI) for airborne sampling of aerosol particles is introduced and its performance characteristics under a range of sampling conditions are presented. Analysis of inlet performance in clear-air and cloud ...

Lucas Craig; Allen Schanot; Arash Moharreri; David C. Rogers; Suresh Dhaniyala

2013-06-01T23:59:59.000Z

67

Use of the Inertial Dissipation Method for Calculating Turbulent Fluxes from Low-Level Airborne Measurements  

Science Conference Proceedings (OSTI)

Airborne measurements are currently used for computing turbulence fluxes of heat and momentum. The method generally used is the eddy correlation technique, which requires sophisticated equipments to calculate the absolute velocities of the air. ...

Pierre Durand; Leonardo De Sa; AimÚ Druilhet; FrÚdÚrique Said

1991-02-01T23:59:59.000Z

68

Detection of Ice Hydrometeor Alignment Using an Airborne W-band Polarimetric Radar  

Science Conference Proceedings (OSTI)

This paper presents airborne W-band polarimetric radar measurements at horizontal and vertical incidence on ice clouds using a 95-GHz radar on the University of Wyoming King Air research aircraft. Coincident, in situ measurements from probes on ...

J. Galloway; A. Pazmany; J. Mead; R. E. McIntosh; D. Leon; J. French; R. Kelly; G. Vali

1997-02-01T23:59:59.000Z

69

Modeling Ambient Air Quality In The Detroit-Windsor Airshed.  

E-Print Network (OSTI)

??The spatial variability of airborne contaminants in an international airshed was investigated using geostatistics and air dispersion modeling. Analyses were conducted on contaminant species measuredů (more)

Molaroni, Shannon Marie

2010-01-01T23:59:59.000Z

70

Airborne wireless communication systems, airborne communication methods, and communication methods  

SciTech Connect

An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

Deaton, Juan D. (Menan, ID); Schmitt, Michael J. (Idaho Falls, ID); Jones, Warren F. (Idaho Falls, ID)

2011-12-13T23:59:59.000Z

71

System Dynamics Simulation for Park Management: A Case Study of Glacier National Park, Montana .  

E-Print Network (OSTI)

??National park management encounters the challenge of conserving the park unimpaired for the enjoyment of future generations. Many national parks in the world are facedů (more)

[No author

2012-01-01T23:59:59.000Z

72

Architecture and Algorithms for an Airborne Network  

E-Print Network (OSTI)

The U.S. Air Force currently is in the process of developing an Airborne Network (AN) to provide support to its combat aircrafts on a mission. The reliability needed for continuous operation of an AN is difficult to achieve through completely infrastructure-less mobile ad hoc networks. In this paper we first propose an architecture for an AN where airborne networking platforms (ANPs - aircrafts, UAVs and satellites) form the backbone of the AN. In this architecture, the ANPs can be viewed as mobile base stations and the combat aircrafts on a mission as mobile clients. The combat aircrafts on a mission move through a space called air corridor. The goal of the AN design is to form a backbone network with the ANPs with two properties: (i) the backbone network remains connected at all times, even though the topology of the network changes with the movement of the ANPs, and (ii) the entire 3D space of the air corridor is under radio coverage at all times by the continuously moving ANPs. In addition to proposing an...

Sen, Arunabha; Silva, Tiffany; Das, Nibedita; Kundu, Anjan

2010-01-01T23:59:59.000Z

73

Structure analysis based parking slot marking recognition for semi-automatic parking system  

Science Conference Proceedings (OSTI)

Semi-automatic parking system is a driver convenience system automating steering control required during parking operation. This paper proposes novel monocular-vision based target parking-slot recognition by recognizing parking-slot markings when driver ...

Ho Gi Jung; Dong Suk Kim; Pal Joo Yoon; Jaihie Kim

2006-08-01T23:59:59.000Z

74

Definition: Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Jump to: navigation, search Dictionary.png Airborne Gravity Survey Airborne gravity gradiometry (AGG) surveys provide information regarding the mass distribution of the...

75

Apparatus for real-time airborne particulate radionuclide collection and analysis  

DOE Patents (OSTI)

An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

Smart, John E. (West Richland, WA); Perkins, Richard W. (Richland, WA)

2001-01-01T23:59:59.000Z

76

Report: EM Energy Park Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Energy Park Initiative EM Energy Park Initiative September 30, 2009 Submitted by the EMAB Energy Park Initiative Subcommittee Background: The Energy Park Initiative (EPI) aims to convert the Office of Environmental Management's (EM) liabilities - its contaminated sites, facilities, and materials - into reusable assets focused on providing solutions to critical national energy and environmental issues. These assets include the sites' natural resources, infrastructure, institutional controls, and human and economic capital. The EPI is a high priority for EMAB since the initiative is still in the formative planning and implementation phases. The EPI Subcommittee members are Paul Dabbar (lead), James Ajello, Lessie Price, and Robert Thompson. Recommendations:

77

Are TODs Over-Parked?  

E-Print Network (OSTI)

high level of car parking and usage at the surveyed Fremontin turn further induces car ownership and usage ľ i.e. , the

Cervero, Robert; Adkins, Arlie; Sullivan, Cathleen

2009-01-01T23:59:59.000Z

78

A second row Parking Paradox  

E-Print Network (OSTI)

We consider two variations of the discrete car parking problem where at every vertex of the integers a car arrives with rate one, now allowing for parking in two lines. a) The car parks in the first line whenever the vertex and all of its nearest neighbors are not occupied yet. It can reach the first line if it is not obstructed by cars already parked in the second line (screening). b) The car parks according to the same rules, but parking in the first line can not be obstructed by parked cars in the second line (no screening). In both models, a car that can not park in the first line will attempt to park in the second line. If it is obstructed in the second line as well, the attempt is discarded. We show that both models are solvable in terms of finite-dimensional ODEs. We compare numerically the limits of first and second line densities, with time going to infinity. While it is not surprising that model a) exhibits an increase of the density in the second line from the first line, more remarkably this is also true for model b), albeit in a less pronounced way.

S. R. Fleurke; C. Kuelske

2008-11-21T23:59:59.000Z

79

Research Park Notes, Issue 21  

NLE Websites -- All DOE Office Websites (Extended Search)

from individuals from the Department of Energy, Oak Ridge National Laboratory, BWXT-Y12, Bechtel Jacobs, TVA, Great Smoky Mountains National Park, Oak Ridge Associated...

80

Research Park Notes, Issue 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Pat Parr. PARK RESEARCH AND USERS Reservation Data for Carbon Sequestration and Energy Crop Production - Holly Gibbs (Postmasters Research Associate in the Environmental Sciences...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nellis AFB 'Sun Park' Photovoltaic Power Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Briefing is: Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOA/JACLULT Overview *Objective * Provide renewable utility service from a Contractor owned Photovoltaic (Solar Power) Array to Nellis AFB electrical distribution system * Successful offeror owns and operates the PV Array for length of lease *Legal Instruments * Nellis AFB enters into an indefinite term utility service contract with successful offeror * May cancel with one year notification * 20 year land lease * Provides land for PV array via a land lease ( land treated as"Gov't furnished equipment" in utility contract) Why PV - Why Nellis * Support renewable energy goals

82

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

83

National Parks in the U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks National Parks are natural areas that are protected by the United States Government, and controlled by the National Park Service. These parks offer a great deal of information about different habitats, wildlife, and how to plan a trip. These parks also have many educational activities that are available to both teachers and students! All links below are provided by the National Park Service (http://www.nps.gov) Acadia National Park Acadia National Park Maine Home Page : http://www.nps.gov/acad/index.htm For Teachers! For Students! American Samoa National Park American Samoa National Park American Samoa, USA Home Page : http://www.nps.gov/npsa/index.htm For Teachers! For Students! Arches National Park Arches National Park Utah Home Page : http://www.nps.gov/arch/index.htm

84

Designing for ecology : the ecological park  

E-Print Network (OSTI)

This thesis aims to define a) what an ecological park is, and b) whether it is a new model in park design. Reference to the literature on landscape ecology is used to analyze the natural ecological merit of these parks, ...

Power, Andres M

2006-01-01T23:59:59.000Z

85

Isokinetic air sampler  

DOE Patents (OSTI)

An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

Sehmel, George A. (Richland, WA)

1979-01-01T23:59:59.000Z

86

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

87

Better Buildings Neighborhood Program: University Park, Maryland...  

NLE Websites -- All DOE Office Websites (Extended Search)

Park, Maryland, Plans to STEP Into New Communities to someone by E-mail Share Better Buildings Neighborhood Program: University Park, Maryland, Plans to STEP Into New Communities...

88

Environment/Health/Safety/Security (EHSS): Parking  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Code. Temporary Handicap Parking: LBNL makes every effort to accommodate disabled drivers by making appropriate parking spaces available. Persons possessing a disabled...

89

Solar Parks of Extremadura | Open Energy Information  

Open Energy Info (EERE)

Parks of Extremadura Jump to: navigation, search Name Solar Parks of Extremadura Place Spain Sector Solar Product A joint venture by Spanish Solar company Econenergias and Deutsche...

90

Agro Business Park | Open Energy Information  

Open Energy Info (EERE)

Business Park Jump to: navigation, search Name Agro Business Park Place Denmark Sector Services Product General Financial & Legal Services ( Government Public sector ) References...

91

Wind Park Solutions Arcadia | Open Energy Information  

Open Energy Info (EERE)

Arcadia Jump to: navigation, search Name Wind Park Solutions Arcadia Place Big Sandy, Montana Sector Wind energy Product JV between Wind Park Solutions America and Arcadia...

92

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

93

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

94

Method for measuring the size distribution of airborne rhinovirus  

NLE Websites -- All DOE Office Websites (Extended Search)

Method for measuring the size distribution of airborne rhinovirus Method for measuring the size distribution of airborne rhinovirus Title Method for measuring the size distribution of airborne rhinovirus Publication Type Conference Proceedings Year of Publication 2002 Authors Russell, Marion L., Regine Goth-Goldstein, Michael G. Apte, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 1 Pagination 40-45 Publisher Indoor Air 2002, Santa Cruz, CA Abstract About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor

95

GETTING THE PRICES RIGHT: AN EVALUATION OF PRICING PARKING BY DEMAND IN SAN FRANCISCO  

E-Print Network (OSTI)

Underpriced and overcrowded curb parking creates problems for everyone except a few lucky drivers who find a cheap space; all the other drivers who cruise to find an open space waste time and fuel, congest traffic, and pollute the air. Overpriced and underoccupied parking also creates problems; when curb spaces remain empty, nearby merchants lose potential customers, workers lose jobs, and cities lose tax revenue. To address these problems, San Francisco has established SFpark, a program that adjusts parking prices to achieve a target parking availability of one or two open spaces on each block. To measure how parking prices affected parking occupancy in San Francisco we calculated the price elasticity of demand for onstreet parking revealed by 5,294 individual price and occupancy changes during the programĺs first year. Price elasticity varies greatly by time of day, location, and several other factors, with an average value of ľ0.4. The average meter price fell 1 percent during the first year, so SFpark adjusted prices up and down according to local demand without increasing prices overall. The city can improve the program by making drivers more aware of the variable prices, reducing the abuse of disabled parking placards, and introducing seasonal adjustments for parking prices.

Gregory Pierce; Donald Shoup

2013-01-01T23:59:59.000Z

96

AIRBORNE RADIATION DETECTOR  

DOE Patents (OSTI)

An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

Cartmell, T.R.; Gifford, J.F.

1959-08-01T23:59:59.000Z

97

Parke Panda Corporation aka Parke Industries | Open Energy Information  

Open Energy Info (EERE)

Panda Corporation aka Parke Industries Panda Corporation aka Parke Industries Jump to: navigation, search Name Parke Panda Corporation (aka Parke Industries) Place Glendora, California Zip 91740 Product A licensed, bonded, and fully insured C-10 design/build contractor. Coordinates 39.83977┬░, -75.074694┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83977,"lon":-75.074694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Park and chill : redesign parking garage in Hong Kong  

E-Print Network (OSTI)

What are the aesthetics of urban infrastructure? Urban infrastructure has remained isolated to human activities. We all share memory and experience with urban infrastructure, e.g. we drive on the same roads and park our ...

Ting, Sze Ngai

2011-01-01T23:59:59.000Z

99

The Practice of Parking Requirements  

E-Print Network (OSTI)

the cost of the required parking is thus $20 per square foot$40 per square foot of floor area, or twice the cost in aper 1,000 square feet in a TOD, and the developer's cost of

Shoup, Donald C.

2006-01-01T23:59:59.000Z

100

Jim Parks - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Jim Parks Group Leader, Emissions & Catalysis Research Group (T) 865-946-1283 (F) 865-946-1354 parksjeii@ornl.gov Education Ph.D., Physics, University of Tennessee, 1995 B.S.,...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Genesis Park | Open Energy Information  

Open Energy Info (EERE)

Genesis Park LP Genesis Park LP Name Genesis Park LP Address 2131 San Felipe Place Houston, Texas Zip 77019 Region Texas Area Product Private equity firm. Year founded 2000 Phone number (713) 521-1980 Website http://www.genesis-park.com/ Coordinates 29.74873┬░, -95.412815┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.74873,"lon":-95.412815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Overview of Strategies for Making Connections Between Transportation, Land Use and Air Quality  

E-Print Network (OSTI)

Land Use Regulation : Designing Parking Policies to Reduce Automotive PollutionLand Use, Air Quality Connection deals with the mobile monitoring of pollutionLand Use, Air Quality Connection The Comprehensive Behavior Alternative approach views air pollution

Shirazi, Elham; Taylor, Brian

2004-01-01T23:59:59.000Z

103

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

104

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

105

Airborne particulate discriminator  

DOE Patents (OSTI)

A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

2009-08-11T23:59:59.000Z

106

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

107

ARM Airborne Continuous carbon dioxide measurements  

SciTech Connect

The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

Sebastien Biraud

2013-03-26T23:59:59.000Z

108

ARM Airborne Continuous carbon dioxide measurements  

DOE Data Explorer (OSTI)

The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

Sebastien Biraud

109

Forrestal Garage Parking Guidelines, Revised August 12, 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines Forrestal Garage...

110

Energy Department and National Park Service Announce Clean Cities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive...

111

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Forrestal Garage Parking Procedures - The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled...

112

Texas Parks and Wildlife Department | Open Energy Information  

Open Energy Info (EERE)

Parks and Wildlife Department Jump to: navigation, search Logo: Texas Parks and Wildlife Department Name Texas Parks and Wildlife Department Address 4200 Smith School Rd Place...

113

Airborne Doppler Radar Data Analysis Workshop  

Science Conference Proceedings (OSTI)

The Airborne Doppler Radar Data Analysis Workshop, sponsored by the Atmospheric Technology Division (ATD) of the National Center for Atmospheric Research (NCAR), was the first to focus on analyzing airborne Doppler radar data. The workshop (held ...

Wen-Chau Lee; Frank D. Marks; Craig Walther

2003-08-01T23:59:59.000Z

114

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

115

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative National Parks Initiative Submit a Project, National Park Service logo Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of reducing petroleum use and greenhouse gas emissions. This initiative complements the NPS Climate Friendly Parks program by demonstrating the environmental benefits of reducing petroleum use. Glacier Greater Yellowstone Area Rocky Mountain Denali National Mall and Memorial Park Mississippi River Sleeping Bear Dunes Yellowstone Grand Teton Mammoth Cave Zion Blue Ridge Parkway Great Smoky Mountains Shenandoah Acadia San Antonio Missions Grand Canyon Golden Gate Mesa Verde Project Locations - Photo of the snow-covered Teton Mountain range in Grand Teton National Park.

116

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne...

117

Airborne remote sensing in the frozen north  

E-Print Network (OSTI)

20 Airborne remote sensing in the frozen north High level shot from 10,000 feet shows, Chief Pilot and Operations Manager for NERC's Airborne Remote Sensing Facility reports on a recent trip expert ┬ş the Airborne Remote Sensing Facility flew to the Norwegian archipelago of Svalbard on August 3

Brierley, Andrew

118

Handicapped Parking Procedures (HQ) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. Individuals with temporary or permanent mobility impairment who, because of their condition, have a need to request a handicapped parking permit for the Forrestal or Germantown facilities, should use the following procedures: Complete a Parking Application Complete the Permit Application form DOE F 1400.12. In instances when the Parking Management personnel can visually assess an applicant's mobility impairment (i.e. use of crutches, walker, etc.), a temporary parking permit may be granted. At the time of application, the

119

Nancy Sutley and Todd Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nancy Sutley and Todd Park About Us Nancy Sutley and Todd Park Most Recent Green Button Momentum June...

120

An exploration of the relationship between use of parks and access, park appeal, and communication effectiveness  

E-Print Network (OSTI)

Understanding what variables influence park use would assist park providers and policy makers in acquiring, designing, managing, and funding initiatives which encourage or support park use. Previous studies indicate that access to parks (measured by both objective and perceived distances), park appeal in terms of being well-maintained, and effective communication between constituents and park suppliers, relate positively to park use. This study explores the relationships between access, appeal, and communication and park use. Access is operationalized as four objective distances from household to nearest park using both Euclidian and Network measures, and by subjective self-reported measures of ability to access parks on foot or by bicycle. Appeal is concerned with the influence of parksĺ perceived level of maintenance and availability of amenities on the probability of park use. Effective communication is operationalized by three variables: perceptions of being well-informed, being included in the planning process, and being able to give feedback to park leaders. These variables and selected demographic data were extracted from an existing data set: the City of College Station Needs Assessment. Findings indicated that a) respondents with access to parks are more likely to use parks, b) level of maintenance and available amenities influenced use, and c) respondents who are well-informed are more likely to use parks.

Walker, Jamie Rae

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (ARB or Board) will conduct a public hearing at the time and place noted below to consider adoption of the Proposed Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products. The proposed ATCM would reduce the publicĺs current exposure to formaldehyde by reducing emissions from hardwood plywood (HWPW), particleboard (PB) and medium density fiberboard (MDF) panels. The ATCM would also apply to finished goods made with these materials.

unknown authors

2007-01-01T23:59:59.000Z

122

Exposure to airborne asbestos in buildings  

SciTech Connect

The concentration of airborne asbestos in buildings and its implication for the health of building occupants is a major public health issue. A total of 2892 air samples from 315 public, commercial, residential, school, and university buildings has been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result of exposure to the presence of asbestos containing materials (ACM). The average concentration of all asbestos structures was 0.02 structures/ml (s/ml) and the average concentration of asbestos greater than or equal to 5 microns long was 0.00013 fibers/ml (f/ml). The concentration of asbestos was higher in schools than in other buildings. In 48% of indoor samples and 75% of outdoor samples, no asbestos fibers were detected. The observed airborne concentration in 74% of the indoor samples and 96% of the outdoor samples is below the Asbestos Hazard Emergency Response Act clearance level of 0.01 s/ml. Finally, using those fibers which could be seen optically, all indoor samples and all outdoor samples are below the Occupational Safety and Health Administration permissible exposure level of 0.1 f/ml for fibers greater than or equal to 5 microns in length. These results provide substantive verification of the findings of the U.S. Environmental Protection Agency public building study which found very low ambient concentrations of asbestos fibers in buildings with ACM, irrespective of the condition of the material in the buildings.

Lee, R.J.; Van Orden, D.R.; Corn, M.; Crump, K.S. (RJ Lee Group, Inc., Monroeville, PA (United States))

1992-08-01T23:59:59.000Z

123

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

124

Woodland Park Healthy Forest Initiative  

E-Print Network (OSTI)

whether we could get Colorado Springs to take some of it. The Mayor called the head of the electric plant Healthy Forest Initiative 1 1 Colorado Forest Restoration Institute Collaboration Case Study: Woodland Park Healthy Forest Initiative Corrie Knapp Prepared for the Colorado Forest Restoration Institute

125

Congressional Addressees Subject: Air Pollution: Air Quality, Visibility, and the Potential Impacts of Coal-  

E-Print Network (OSTI)

east-central Nevada and is home to diverse geologic, topographic, and wildlife resourcesŚincluding ancient bristlecone pines, the worldĺs longest living tree species. The park was created to preserve a representative segment of the Great Basin Region and receives about 80,000 visitors annually. The park features numerous scenic areas with views of the surrounding landscape, which includes both deserts and mountains. The National Park Service (NPS), within the Department of the Interior, is responsible for managing the park, and the parkĺs management plan lists both air quality and visibility as outstanding resources. This plan identifies threats to air quality and visibilityŚincluding air pollution from the possible development of coal-fired power plants in the regionŚand states that even slight increases in air pollution could cause major decreases in visibility. In 2004 and 2006, two companies each initiated the process to build new coal-fired power plants about 55 miles northwest of Great Basin National Park, near the city of Ely, Nevada. 1 While the development of these new power plants would provide jobs,

Great Basin; National Park

2009-01-01T23:59:59.000Z

126

Comparison between the TOPAZ Airborne Ozone Lidar and In Situ Measurements during TexAQS 2006  

Science Conference Proceedings (OSTI)

The NOAA airborne ozone lidar system [Tunable Optical Profiler for Aerosol and Ozone (TOPAZ)] is compared with the fast-response chemiluminescence sensor flown aboard the NOAA WP-3D during the 2006 Texas Air Quality Study (TexAQS). TOPAZ ...

A. O. Langford; C. J. Senff; R. J. Alvarez II; R. M. Banta; R. M. Hardesty; D. D. Parrish; T. B. Ryerson

2011-10-01T23:59:59.000Z

127

Ris-R-1053(EN) Particulate Air Pollution with  

E-Print Network (OSTI)

particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne91 F Main reaction pathways in non sulphur vulcanisation 94 G Flame atomic absorption spectrometer

128

Bridgeview Park facility solar retrofit  

DOE Green Energy (OSTI)

The weatherization and insulation of a presently unheated frame park building and the installation of a Trombe wall on the south side of the structure for passive solar heating are planned. The major objectives of the project are to increase the exposure of local residents and visitors to passive solar technology and to demonstrate the applicability of passive solar technology to residential, commercial and recreational buildings. Some changes in the original plans are discussed. Five blueprints illustrate the planned improvements. (LEW)

Not Available

1981-01-01T23:59:59.000Z

129

Airborne observations of methane emissions from rice cultivation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California Title Airborne observations of methane emissions from rice cultivation in...

130

Renewable Energy Parks Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Parks Webinar Renewable Energy Parks Webinar Renewable Energy Parks Webinar March 19, 2013 1:00PM MDT Webinar This free DOE webinar on "Community Renewable Energy Success Stories: Renewable Energy Parks," will take place on Tuesday, March 19, from 1:00 p.m. to 2:15 p.m. Mountain Daylight Time. The webinar will highlight how the city of Ellensburg, Washington, and the Town of Hempstead, New York, created renewable energy parks in their areas by integrating multiple renewable energy technologies. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the

131

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ┬ş July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

132

Book review of SUPERSTITION by Robert Park  

E-Print Network (OSTI)

The 2008 book Superstition: Belief in the age of science, by Robert Park, published by Princeton University Press is briefly reviewed.

Melott, Adrian

2009-01-01T23:59:59.000Z

133

Oak Ridge National Environmental Research Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Environmental Research Park Available Data Habitat Management Invasive Species Publications Wildlife What's New Some of the documents on this page are in...

134

Low-Energy Parking Structure Design (Brochure)  

Science Conference Proceedings (OSTI)

This guide provides design teams with best practices for parking structure energy efficiency in the form of goals for each design aspect that affects energy use.

Not Available

2013-01-01T23:59:59.000Z

135

Airborne-temperature-survey maps of heat-flow anomalies for exploration geology  

DOE Green Energy (OSTI)

Airborne temperature surveys were used to depict the small surface temperature differences related to heat flow anomalies. Zones with conductive heat flow differences of 45 +- 16 ..mu..cal/cm/sup 2/(s) had predawn surface temperature differences of 1.4 +- 0.3/sup 0/C. Airborne temperature surveys were coordinated with field temperature surveys at Long Valley, California, the site of a known geothermal resource area. The airborne temperature surveys recorded redundant, predawn temperatures at two wavelengths and at two elevations. Overall temperature corrections were determined by calibrating dry soil surface temperatures with thermistor probes. The probes measured air and soil temperatures within 2 cm of the surface, every twenty minutes, during the survey overflights.

Del Grande, N.K.

1982-07-09T23:59:59.000Z

136

New Approaches to Differential Mobility Analysis for Airborne Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

to Differential Mobility to Differential Mobility Analysis for Airborne Measurements Rick Flagan Chemical Engineering and Environmental Science and Engineering California Institute of Technology Pasadena, CA 91125 Support: NSF, ONR, Davidow Foundation Differential Mobility Analysis Air Sample Aerosol Charger/Neutralizer (Atmospheric Pressure Chemical Ionization) Sheath Air Q sh ~ 10 Q a Volumetric flow rate Q s Exhaust Q ex =Q sh Differential Mobility Analyzer DMA (Aerodynamic Analog of Sector Mass Spectrometer) E F e =eE F drag = 6¤Ç┬ÁR p V C slip (╬╗ /R p ) CPC Q a =Q s Steady or Scanned Voltage Migration Velocity * Mobility * Peclet number for migration v E = Z p E Z p = n p e k B T D Pe mig = electrophoretic migration diffusive transport = bv E D = bn p eE k B T Singly Charged Particles ´üČ Radial DMA ´üČ Cylindrical DMA E = V b Pe = eV k B T E =

137

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

138

CHARTER NATIONAL ENVIRONMENTAL RESEARCH PARKS  

NLE Websites -- All DOE Office Websites (Extended Search)

selected for yield or utility. Sites representing the "regional" deposition of air- or water- borne pollutants, not subject to ground-level redistribution, should be preserved and...

139

Federal Energy Management Program: National Park Service - Chickasaw,  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Chickasaw, Oklahoma to someone by E-mail Share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Facebook Tweet about Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Twitter Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Google Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Delicious Rank Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Digg Find More places to share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

140

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utah State Parks and Recreation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah State Parks and Recreation Jump to: navigation, search Name Utah State Parks and...

142

Microsoft Word - Contractor Parking Search June 2008- website...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parking Search June 2008 Preferred Parking 1. Golden Gate Fields - this is the preferred area, as we will be validating site access at this location. Location: 1100 Eastshore...

143

Federal Energy Management Program: National Park Service - San Miguel  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - San Miguel Island, California to someone by E-mail Share Federal Energy Management Program: National Park Service - San Miguel Island, California on Facebook Tweet about Federal Energy Management Program: National Park Service - San Miguel Island, California on Twitter Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Google Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Delicious Rank Federal Energy Management Program: National Park Service - San Miguel Island, California on Digg Find More places to share Federal Energy Management Program: National Park Service - San Miguel Island, California on AddThis.com... Energy-Efficient Products

144

Before the House Subcommittee on National Parks, Forests and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks, Forests and Public Lands - Committee on Natural Resources Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources Before...

145

Before the House Subcommittee on National Parks Committee on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Committee on Energy and Commerce Before the House Subcommittee on National Parks Committee on Energy and Commerce Testimony of Ingrid Kolb, Director Office of Management...

146

Quantity versus Quality in Off-Street Parking Requirements  

E-Print Network (OSTI)

off-street parking requirements does not restrict parking orrequirements if they are con- verted to residential uses. Los Angeles, for example, does

Mukhija, Vinit; Shoup, Donald

2006-01-01T23:59:59.000Z

147

Toyota Prius Fuel Use in Yellowstone National Park - October...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Use in Yellowstone National Park - October 2006 Four 2004 Toyota Prius hybrid electric vehicles (HEVs) were introduced into the Yellowstone National Park motor pool during the...

148

Street and Parking Facility Lighting Retrofit Financial Analysis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar August 22, 2013 1:00PM...

149

Changes related to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

150

Pages that link to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

151

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

152

Parking requirements as a barrier to housing development: regulation and reform in Los Angeles  

E-Print Network (OSTI)

a residential parking requirement does not only discriminatethis does suggest that the parking requirement itself might

Manville, Michael; Shoup, Donald C

2010-01-01T23:59:59.000Z

153

Landscaping and Parking Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landscaping and Parking Renovations Landscaping and Parking Renovations Landscaping and Parking Renovations October 16, 2013 - 4:54pm Addthis Renewable Energy Options for Site and Parking Renovations Geothermal Heat Pumps (GHP) Photovoltaics (PV) Solar Water Heating Renovations to Federal facility landscaping and parking areas can provide opportunities for several renewable energy options, including geothermal heat pumps (GHP), solar water heating, photovoltaics (PV), and energy efficiency technologies. Site Landscape If any ground is going to be disturbed during renovation, the potential for laying the underground portion of a GHP system should be considered at the same time. Sometimes referred to as ground source heat pumps or Geoexchange systems, GHP systems leverage the constant temperature of the earth for

154

Driving the National Parks Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving the National Parks Forward Driving the National Parks Forward Driving the National Parks Forward June 19, 2012 - 4:02pm Addthis Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this project do? The Energy Department is partnering with the National Park Service to increase alternative fuel use of vehicle fleets at national parks around the country. Describing America's National Parks, historian Wallace Stegnar once said they were "the best idea we ever had." But like any good idea, the parks are constantly adapting to meet the needs of the present. Clean Cities,

155

SAFARI 2000 MODIS Airborne Simulator Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne Simulator Data Airborne Simulator Data The ORNL DAAC announces the release of a new SAFARI 2000 data set. The data set "SAFARI 2000 MODIS Airborne Simulator Data, Southern Africa, Dry Season 2000" contains MODIS Airborne Simulator (MAS) multispectral data collected during the SAFARI 2000 project. Twenty flights with the MAS instrument were undertaken over Southern Africa by the NASA ER-2 aircraft during August and September 2000. The MAS spectrometer collects 50 multispectral bands at 16-bit resolution with a ground resolution of 50 meters from 20,000 meters altitude and a cross track scan width of 85.92 degrees. This data set is organized by flight, and each flight consists of several straight-line segments called tracks. There is a MAS multispectral data file for each track. The data are available in Hierarchical Data Format

156

Chemistry of airborne particles from metallurgical processing  

E-Print Network (OSTI)

Airborne particles fall into one of three size ranges. The nucleation range consists of nanoparticles created from vapor atom collisions. The decisive parameter for particle size and composition is the supercooling of the ...

Jenkins, Neil Travis, 1973-

2003-01-01T23:59:59.000Z

157

An Airborne APT Weather Satellite Imaging System  

Science Conference Proceedings (OSTI)

This paper describes the development of a novel airborne system that receives a real-time imagery broadcast in the Automatic Picture Transmission (APT) format from polar-orbiting weather satellites. The availability of such real-time imagery ...

James E. Jordan; David L. Marcotte; G. W. K. Moore

1998-02-01T23:59:59.000Z

158

Mapping of Airborne Doppler Radar Data  

Science Conference Proceedings (OSTI)

Two sets of equations are derived to 1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and 2) remove the platform motion from the observed Doppler velocities. These equations ...

Wen-Chau Lee; Peter Dodge; Frank D. Marks Jr.; Peter H. Hildebrand

1994-04-01T23:59:59.000Z

159

Performance of Some Airborne Thermometers in Clouds  

Science Conference Proceedings (OSTI)

The ability of airborne instruments to measure temperature in cloud is studied using theoretical analyses and experimental data. Theoretical predictions of the effects of sensor wetting are reviewed and modified, and are then compared to ...

R. Paul Lawson; William A. Cooper

1990-06-01T23:59:59.000Z

160

Waterspout Velocity Measurements by Airborne Doppler Lidar  

Science Conference Proceedings (OSTI)

A Doppler lidar measures the line-of-sight velocity of cloud droplets in a waterspout much as a meteorological Doppler radar measures the velocity of larger hydrometeors. We discuss details of the application of an airborne Doppler lidar to ...

R. L. Schwiesow; R. E. Cupp; P. C. Sinclair; R. F. Abbey Jr.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Targeted Observations with an Airborne Wind Lidar  

Science Conference Proceedings (OSTI)

This study investigates the possibilities and limitations of airborne Doppler lidar for adaptive observations over the Atlantic Ocean. For the first time, a scanning 2-?m Doppler lidar was applied for targeted measurements during the Atlantic ô...

M. Weissmann; R. Busen; A. D÷rnbrack; S. Rahm; O. Reitebuch

2005-11-01T23:59:59.000Z

162

ABLE: Development of an Airborne Lidar  

Science Conference Proceedings (OSTI)

The acronym ABLE (Airborne Lidar Experiment) identifies a project to develop and fly an optical radar on a stratospheric platform for studies related to atmospheric radiation and composition. The prototype, ABLE 1, has been successfully flown on ...

Giorgio Fiocco; Paolo G. Calisse; Marco Cacciani; Stefano Casadio; Giandomenico Pace; Daniele Fua

1999-10-01T23:59:59.000Z

163

Airborne measurements of carbonaceous aerosols in southern Africa during  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne measurements of carbonaceous aerosols in southern Africa during Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Title Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Publication Type Journal Article LBNL Report Number LBNL-50880 Year of Publication 2003 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research - Atmospheres Keywords black carbon, evolved gas analysis, light absorption, organic carbon, positive sampling artifact, SAFARI Abstract Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18┬▒0.06) is lower than that of samples collected in the regional haze (0.25┬▒0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

164

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

165

Application of fuzzy logic for autonomous bay parking of automobiles  

Science Conference Proceedings (OSTI)

In this paper, we investigate the control problem of autonomous bay parking system. We choose a referenced parking lot and define a suitable parking spot based on some measurements at various places. A kinetic model is set up for the convenience of analysis ... Keywords: Fuzzy logic, autonomous vehicle control, bay parking, kinetic model, simulation

Zhao-Jian Wang; Jian-Wei Zhang; Ying-Ling Huang; Hui Zhang; Aryan Saadat Mehr

2011-11-01T23:59:59.000Z

166

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Parking Incentive Programs to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on AddThis.com... More in this section...

167

Clean Cities: Mammoth Cave National Park Coordinator Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Mammoth Cave National Park Coordinator Mammoth Cave National Park Coordinator Meeting to someone by E-mail Share Clean Cities: Mammoth Cave National Park Coordinator Meeting on Facebook Tweet about Clean Cities: Mammoth Cave National Park Coordinator Meeting on Twitter Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Google Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Delicious Rank Clean Cities: Mammoth Cave National Park Coordinator Meeting on Digg Find More places to share Clean Cities: Mammoth Cave National Park Coordinator Meeting on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Contacts Mammoth Cave National Park Coordinator Meeting The 2007 Clean Cities coordinator meeting at Mammoth Cave National Park

168

Noble Altona Wind Park | Open Energy Information  

Open Energy Info (EERE)

Noble Altona Wind Park Noble Altona Wind Park Jump to: navigation, search Name Noble Altona Wind Park Facility Noble Altona Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Power Developer Noble Environmental Power Location Clinton County NY Coordinates 44.831383┬░, -73.664024┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.831383,"lon":-73.664024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Oregon Trail Wind Park | Open Energy Information  

Open Energy Info (EERE)

Wind Park Wind Park Jump to: navigation, search Name Oregon Trail Wind Park Facility Oregon Trail Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power / Reunion Power Location Twin Falls County ID Coordinates 42.927683┬░, -114.919252┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.927683,"lon":-114.919252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Criterion Wind Park | Open Energy Information  

Open Energy Info (EERE)

Criterion Wind Park Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Constellation Energy Developer Constellation Energy Energy Purchaser Old Dominion Location Garrett County MD Coordinates 39.317075┬░, -79.377451┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.317075,"lon":-79.377451,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Todd Park | OpenEI Community  

Open Energy Info (EERE)

04 04 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235304 Varnish cache server Todd Park Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 October, 2012 - 12:49 Tim O'reilly interviews Todd Park OpenEI Tim O'reilly Todd Park Check out theTim O'Reilly interview of Todd Park, US Chief Technology Officer, on his innovation agenda and his tips for creating a culture of innovation inside the United States Government. Syndicate content 429 Throttled (bot load)

172

Tuana Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Tuana Gulch Wind Park Tuana Gulch Wind Park Jump to: navigation, search Name Tuana Gulch Wind Park Facility Tuana Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.89┬░, -114.98┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.89,"lon":-114.98,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Milner Dam Wind Park | Open Energy Information  

Open Energy Info (EERE)

Milner Dam Wind Park Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.495962┬░, -114.021106┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495962,"lon":-114.021106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

National Park Service | Open Energy Information  

Open Energy Info (EERE)

Park Service Park Service Jump to: navigation, search Logo: National Park Service Name National Park Service Address 1849 C Street NW Place Washington, District of Columbia Zip 20240 Year founded 1916 Website http://www.nps.gov/index.htm Coordinates 38.8936749┬░, -77.0425236┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8936749,"lon":-77.0425236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Forbes Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Forbes Park Wind Farm Facility Forbes Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Forbes Park Developer Boreal Renewable Energy Energy Purchaser Forbes Park Location Chelsea MA Coordinates 42.3917638┬░, -71.0328284┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3917638,"lon":-71.0328284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Sigel Wind Park | Open Energy Information  

Open Energy Info (EERE)

Sigel Wind Park Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Harbor Beach MI Coordinates 43.8549985┬░, -82.7925216┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8549985,"lon":-82.7925216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Independent Oversight Inspection, East Tennessee Technology Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA...

178

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452┬░, -114.828┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Lighting Energy Efficiency in Parking Campaign  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

180

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago├ó┬?┬?s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lighting Energy Efficiency in Parking Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

182

A Comparative Study for the Air Distribution System of a Cleanroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study for the Air Distribution System of a Cleanroom with High Cooling Load and Airborne Molecular Sources Speaker(s): Shih-Cheng Hu Date: June 20, 2008 - 12:00pm...

183

Cogeneration for industrial and mixed-use parks. Volume 3. A guide for park developers, owners, and tenants. Final report  

SciTech Connect

Using cogeneration in mixed-use and industrial parks can cut energy costs ad smooth out peak load demands - benefits for servicing utilities and park owners and tenants. The two handbooks developed by this project can help utilities identify existing or planned parks as potential cogeneration sites as well as help developers and park owners evaluate the advantages of cogeneration. The second handbook (volume 3) describes the benefits of cogeneration for park developers, owners, and tenants.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

184

Office for UMore Park Academic Initiatives-Summer Research 2010 UMore Park and Energy  

E-Print Network (OSTI)

effective. ┬Ě A Home Energy Rating System must be used on the improvements to determine cost effective nessOffice for UMore Park Academic Initiatives- Summer Research 2010 UMore Park and Energy Efficient Incentives...............20 Financial Incentives for Home owners.............21-30 Homeowner Energy Saving

Netoff, Theoden

185

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

186

Airborne Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Electromagnetic Survey Airborne Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Electromagnetic Survey Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: provide data on rock type and mineral content Stratigraphic/Structural: Hydrological: can be used to detect changes in density of fluids and indicate if there is salt water intrusion Thermal: Cost Information Low-End Estimate (USD): 48.274,827 centUSD 0.0483 kUSD 4.827e-5 MUSD 4.827e-8 TUSD / mile Median Estimate (USD): 317.3831,738 centUSD 0.317 kUSD

187

Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

188

Introductory Remarks: ARM AVP Workshop on Advances in Airborne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advances in Airborne Instrumentation Warren Wiscombe ARM Chief Scientist Brookhaven National Lab ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement...

189

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part II: Airborne-to-Airborne Systems  

Science Conference Proceedings (OSTI)

The dataset of the International H2O Project (IHOP_2002) gives the first opportunity for direct intercomparisons of airborne water vapor lidar systems and allows very important conclusions to be drawn for future field campaigns. Three airborne ...

Andreas Behrendt; Volker Wulfmeyer; Thorsten Schaberl; Hans-Stefan Bauer; Christoph Kiemle; Gerhard Ehret; Cyrille Flamant; Susan Kooi; Syed Ismail; Richard Ferrare; Edward V. Browell; David N. Whiteman

2007-01-01T23:59:59.000Z

190

Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

Reducing Congestion through Smart Parking Management Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary Name: Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf SFpark is a new project being implemented with federal Urban Partnership Program funds. It combines innovative technologies and strategies to redistribute the demand for parking in real-time. Goals include making parking easier, reducing congestion (by reducing circling and double parking), improving bus speed and reliability, and transferring lessons learned to other cities.

191

ARM - Campaign Instrument - rad-air  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsrad-air govInstrumentsrad-air Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Airborne Radiometers (RAD-AIR) Instrument Categories Radiometric, Airborne Observations Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Routine AAF CLOWD Optical Radiative Observations (RACORO) [ Download Data ] Southern Great Plains, 2009.01.22 - 2009.06.30 Routine AAF CLOWD Optical Radiative Observations (RACORO) [ Download Data ] Southern Great Plains, 2009.01.22 - 2009.06.30 Routine AAF CLOWD Optical Radiative Observations (RACORO) [ Download Data ] Southern Great Plains, 2009.01.22 - 2009.06.30 Primary Measurements Taken The following measurements are those considered scientifically relevant.

192

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924┬░, -113.876892┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Minden Wind Park | Open Energy Information  

Open Energy Info (EERE)

Minden Wind Park Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Minden City MI Coordinates 43.637272┬░, -82.78022┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.637272,"lon":-82.78022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

195

ARMAR: An Airborne Rain-Mapping Radar  

Science Conference Proceedings (OSTI)

A new airborne rain-mapping radar (ARMAR) has been developed by NASA and the Jet Propulsion Laboratory for operation on the NASA Ames DC-8 aircraft. The radar operates at 13.8 GHz, the frequency to be used by the radar on the Tropical Rainfall ...

S. L. Durden; E. Im; F. K. Li; W. Ricketts; A. Tanner; W. Wilson

1994-06-01T23:59:59.000Z

196

Noise from cooling towers of power parks  

SciTech Connect

A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A- weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed. (auth)

Zakaria, J.; Moore, F.K.

1975-10-14T23:59:59.000Z

197

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

198

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

199

Solarmarkt Solar Sued Park GmbH | Open Energy Information  

Open Energy Info (EERE)

Park GmbH Place Memmingen, Bavaria, Germany Zip 87700 Sector Solar Product Bavaria-based solar PV system installer. References Solarmarkt Solar Sued Park GmbH1 LinkedIn...

200

Alternative Fuels Data Center: Certified Technology Park Designation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Certified Technology Certified Technology Park Designation to someone by E-mail Share Alternative Fuels Data Center: Certified Technology Park Designation on Facebook Tweet about Alternative Fuels Data Center: Certified Technology Park Designation on Twitter Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Google Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Delicious Rank Alternative Fuels Data Center: Certified Technology Park Designation on Digg Find More places to share Alternative Fuels Data Center: Certified Technology Park Designation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Certified Technology Park Designation The Indiana Economic Development Corporation (IDEC) may designate an area

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Parking Fee Exemption to someone by E-mail Parking Fee Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

202

Urban mechanics : the parking garage as an instrument of legibility  

E-Print Network (OSTI)

No typology has fragmented urban space more than the parking garage. In fact, the city of Houston's parking contingent practice has a resulted in a garage on 30% of the downtown district.The range from a few underground ...

Martinez, Marcus E. (Marcus Eugene)

2012-01-01T23:59:59.000Z

203

Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park  

E-Print Network (OSTI)

Riding Mountain National Park, Manitoba. Journal of WildlifeMountain National Park, Manitoba. Journal of Mammalogy, 73,

Wilmers, C C; Crabtree, R L; Smith, D W; Murphy, K M; Getz, Wayne M

2003-01-01T23:59:59.000Z

204

Oak Ridge Science and Technology Park | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Development Carbon Fiber Cluster Strategy Additive Manufacturing Cluster Strategy Entrepreneurial Development Programs Oak Ridge Science and Technology Park Economic...

205

APPROVED ICE STORAGE AIR CONDITIONERS Revised as of 06-18-2008  

E-Print Network (OSTI)

APPROVED ICE STORAGE AIR CONDITIONERS Revised as of 06-18-2008 The following vendors and their ice storage air conditioners models can be used in the ice storage air conditioner compliance option. Input details are listed below for the approved equipment. Manufacturer Ice Energy, Inc 9351 Eastman Park Drive

206

Light stripe projection based parking space detection for intelligent parking assist system  

E-Print Network (OSTI)

Abstract Ś This paper proposes a novel light stripe projection based free parking space recognition method in order to overcome the common drawbacks of existing vision based target parking position designation methods in dark indoor parking site. 3D information of parking site is recognized by light stripe projection method. By analyzing the 3D information, system can recognize discontinuous points, pivot, and opposite-site reference point. Experiments show that the proposed method can successfully designate target position in spite of dark illumination condition and the black reflective surface of vehicle. Furthermore, because the proposed method can be implemented just by adding a low-cost light plane projector, it is economically practical solution. I I.

Ho Gi Jung; Dong Suk Kim; Pal Joo Yoon; Jaihie Kim

2007-01-01T23:59:59.000Z

207

Discovery Park Impact NNSA PRISM Center for  

E-Print Network (OSTI)

Discovery Park Impact NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability in PRISM. Purdue is one of 5 centers funded under NNSA's Predictive Science Academic Alliance Program Computing, a division of Information Technology at Purdue. The NNSA national laboratories will be involved

Ginzel, Matthew

208

Fossil Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Fossil Gulch Wind Park Fossil Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Development Group/United Materials Developer Exergy Development Group/United Materials Energy Purchaser Idaho Power Location Northwest of Hagerman ID Coordinates 42.814261┬░, -114.996665┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

City of Winter Park Energy Conservation Rebate Program (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Solar Water Heating Program Info State Florida Program Type Local Rebate Program Rebate Amount Varies based upon technology and eligible sector The City of Winter Park is now offering rebates to Winter Park electric residential and commercial customers for implementing energy conservation measures. Residential customers can qualify for rebates on duct repair, attic

210

Microsoft PowerPoint - Gilbertson.EnergyParksInitiative.042909  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Energy Parks Initiative Initiative " " Leveraging Assets to Increase the Taxpayer Leveraging Assets to Increase the Taxpayer ' ' s Return on Investment s Return on Investment " " April 29, 2009 2 Office of Environmental Management (EM) Economic Stimulus EM footprint reduction, small site completions, and additional investment opportunities Jobs created Lifecycle cost reduced Environment protected Footprint reduced Large tracts of land and infrastructure available Energy Parks * Clean, Diverse Energy Sources *Energy security *Establish long- term site mission *Sustainable jobs Footprint Reduction & Energy Parks Footprint Reduction & Energy Parks 3 * Focusing on "shovel ready, boots on the ground" projects contributing to footprint reduction and small site completions

211

Analyzing Options for Airborne Emergency Wireless Communications  

SciTech Connect

In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

2008-03-01T23:59:59.000Z

212

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

213

Alternative Fuels Data Center: Mammoth Cave National Park Uses Only  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mammoth Cave National Mammoth Cave National Park Uses Only Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on AddThis.com...

214

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Parking Incentive to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

215

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ÔćĹ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

216

Emissions of airborne toxics from coal-fired boilers: Mercury  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

217

Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident  

E-Print Network (OSTI)

We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

S. MacMullin; G. K. Giovanetti; M. P. Green; R. Henning; R. Holmes; K. Vorren; J. F. Wilkerson

2011-11-17T23:59:59.000Z

218

Measurement of Airborne Fission Products in Chapel Hill, NC, USA from the Kukushima Dai-ichi Reactor Accident  

SciTech Connect

We present measurement results of airborne fission products in Chapel Hill, NC, USA, from 62 d following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products 131I and 137Cs were measured with maximum activity concentrations of 4.2 0.6 mBq/m3 and 0.42 0.07 mBq/m3 respectively. Additional activity from 131,132I, 134,136,137Cs and 132Te were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

MacMullin, S. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Giovanetti, G. K. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Green, M. P. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Henning, R. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Holmes, R. [Univ. North Carolina-Chapel & Univ. of Illinois-Urbana; Vorren, K. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL

2012-01-01T23:59:59.000Z

219

GROA AIRBORNE RELEASE DISPERSION FACTOR CALCULATION  

Science Conference Proceedings (OSTI)

The purpose of this document is to calculate airborne release dispersion factors ({chi}/Q) for the surface and subsurface facilities at the Geological Repository Operations Area (GROA). The calculated {chi}/Q values may be used to estimate radiological consequences to workers for potential releases from normal operations and event sequences for License Application. The scope of this document is to provide estimates of {chi}/Q values at potential onsite receptors from facility releases, under normal operating conditions and event sequences.

J. Wang

2005-03-21T23:59:59.000Z

220

Airborne Tactical Free-Electron Laser  

Science Conference Proceedings (OSTI)

The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

Roy Whitney; George Neil

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Monitoring Speaker(s): Igor Paprotny Date: November 12, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Lara Gundel Air-microfluidic devices that monitor particles suspended in air, as opposed to liquids, can dramatically reduce the size and cost of future air-quality sensors. The use of microelectromechanical systems (MEMS) technologies and wafer-scale integration permits the inclusion of many different sensors onto a small footprint. Benefits of air-microfluidics are many. For example, air-microfluidic lab-on-a-chip devices can be used as portable sensors for tracking individual exposure to airborne pollutants. Such sensors will enable linking exposure and biometric information to

222

A long-term study of radon and airborne particulates at phosphogypsum stacks in central Florida  

SciTech Connect

The EPA is presently assessing the significance of radioactive emissions from phosphogypsum stacks to determine if they should be regulated under the Clean Air Act. As part of this assessment, a one-year study was conducted to measure the airborne radionuclide emissions from five phosphogypsum stacks in central Florida. This report provides a detailed description of this study. Measurements were conducted over a 12-month period on four active and one inactive phosphogypsum stacks. The study included the following measurements: 1260 radon-222 flux, 90 ambient radon-222, and 50 gamma-ray exposure rates. Also, radionuclide analyses were performed on 33 airborne particulate samples, 9 airborne particle-size samples, and 50 phosphogypsum samples. The annual average radon flux determined for the dry-loose material on top of active phosphogypsum stacks was 20 pCi/mS-s, and is regarded as representative of stacks in the central Florida region. The annual average flux on the top surface of the inactive stack was 4 to 5 times smaller, due to a surface crust. The data suggest that to obtain a representative annual average radon flux on a phosphogypsum stack the total number of measurements made is more important than the period of time over which the measurements are made. 11 ref., 16 figs., 24 tabs.

Horton, T.R.; Blanchard, R.L.; Windham, S.T.

1988-10-01T23:59:59.000Z

223

Gamma-analysis of airborne particulates sampled in Youzhno-Sakhalinsk town at March - April 2011  

E-Print Network (OSTI)

The experience of discovery of the radioactive products which have released into atmosphere of Sakhalin region from Fukushima Daiichi accident is presented. Sampling of airborne particulates and atmosphere fallout was carried out by means of the air ventilation set and horizontal gauze planchs, respectively. The HPGe detector was used for gamma analyses of the airborne samples. Since 23 March we confidently measured 131I in the airborne samples, after 03.04.2011 we also registered a rise of activity 137Cs and 134Cs. 132Te and 132I were discovered in ashen sample of the planch, which had exposed in Youzhno-Kurilk from 14 to 17 March. The effect of the pairs production when in the samples 208Tl presence, which emits gamma-quanta of 2615 keV, causes a rise in apparatus spectra of the peak corresponding to energy 1593 keV, which could be in error ascribed to 140La. It had been experimentally shown that the systematic reduction of 134Cs content in measuring samples due to effect of gamma - gamma coincidence did not exceed 7 % (for the detector and geometry of the measurement used).

E. G. Tertyshnik; V. P. Martynenko; F. A. Andreev; G. B. Artemyev

2012-03-22T23:59:59.000Z

224

Gamma-analysis of airborne particulates sampled in Youzhno-Sakhalinsk town at March - April 2011  

E-Print Network (OSTI)

The experience of discovery of the radioactive products which have released into atmosphere of Sakhalin region from Fukushima Daiichi accident is presented. Sampling of airborne particulates and atmosphere fallout was carried out by means of the air ventilation set and horizontal gauze planchs, respectively. The HPGe detector was used for gamma analyses of the airborne samples. Since 23 March we confidently measured 131I in the airborne samples, after 03.04.2011 we also registered a rise of activity 137Cs and 134Cs. 132Te and 132I were discovered in ashen sample of the planch, which had exposed in Youzhno-Kurilk from 14 to 17 March. The effect of the pairs production when in the samples 208Tl presence, which emits gamma-quanta of 2615 keV, causes a rise in apparatus spectra of the peak corresponding to energy 1593 keV, which could be in error ascribed to 140La. It had been experimentally shown that the systematic reduction of 134Cs content in measuring samples due to effect of gamma - gamma coincidence did no...

Tertyshnik, E G; Andreev, F A; Artemyev, G B

2012-01-01T23:59:59.000Z

225

Euro Solar Parks Inc | Open Energy Information  

Open Energy Info (EERE)

Euro Solar Parks Inc Euro Solar Parks Inc Place Ho-ho-Kus, New Jersey Zip 7423 Sector Solar Product New Jersey-based solar developer focused on development of projects in Europe, specifically Greece, and South America. Coordinates 40.998625┬░, -74.109279┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998625,"lon":-74.109279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Parks, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parks, Arizona: Energy Resources Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664┬░, -111.9487743┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2605664,"lon":-111.9487743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Bexar County Parking Garage Photovoltaic Panels  

Science Conference Proceedings (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

228

Park Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Park Electric Coop Inc Park Electric Coop Inc Place Montana Utility Id 14500 Utility Location Yes Ownership C NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Light - 100 watt HPS Lighting Outdoor Light - 200 watt HPS Lighting Residential - Large Residential Residential - Net-Metered - Base #1 Residential Residential - Net-Metered - Base #2 Residential Residential - Net-Metered - Base #3 Residential Residential - Small Residential Seasonal Power Service - Pumps Industrial Seasonal Rate Residential

229

Source Apportionment of Airborne Particulate Matter using Inorganic...  

NLE Websites -- All DOE Office Websites (Extended Search)

organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%,...

230

The Effect of Airborne Contaminants on Fuel Cell Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Institute www.hnei.hawaii.edu The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Richard Rocheleau Trent Molter William Collins Silvia Wessel Hawaii...

231

Notus Falmouth Technology Park | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon ┬╗ Notus Falmouth Technology Park Jump to: navigation, search Name Notus Falmouth Technology Park Facility Notus Falmouth Technology Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Notus Clean Energy Developer Notus Clean Energy Location East Falmouth MA Coordinates 41.605949┬░, -70.620722┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.605949,"lon":-70.620722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Operational air sampling report, July 1--December 31, 1992  

SciTech Connect

Nevada Test Site postshot and tunnel events generate beta/gamma fission products. The REECo air sampling program is designed for measurement of these radionuclides at various facilities supporting these events. Monthly radon sampling is done for documentation of working levels in the tunnel complexes, which would be expected to have the highest radon levels for on-site facilities. Out of a total of 628 air samples taken in the tunnel complexes, 24 showed airborne fission products with concentrations well below their respective Derived Air Concentrations (DAC). All of these were related to event reentry or mineback operations. Tritiated water vapor concentrations were very similar to previously reported levels. The 838 air samples taken at the Area-6 decontamination bays and laundry were again well below any DAC calculation standard and negative for any airborne fission products from laboratory analyses.

Lyons, C.L.

1993-04-01T23:59:59.000Z

233

Confinement of airborne radioactivity. Progress report, January--December 1974  

SciTech Connect

Several commercial activated carbons, marketed for iodine removal in reactor off-gas cleanup systems, were evaluated for iodine penetration at elevated temperatures (4 hr at 180$sup 0$C), and the penetration data varied widely. Subsequent chemical analysis of the samples indicated a strong correlation between the atom ratio of iodine to potassium (I/K) in the carbon and the high-temperature performance data. Iodine penetration tests were also performed on several carbons in an intense gamma radiation field (greater than 10$sup 7$ rads/hr). Test data show that carbons intentionally exposed to high concentrations of DOP aerosol performed as well as unexposed carbons. Studies of the rate of evaporation of elemental iodine from aqueous solutions indicated that significant quantities of I$sub 2$ might be expected to become airborne within a short period of time (5 hr) after release to open ponds. Addition of sodium thiosulfate to the solution substantially reduced the evaporative loss of iodine; however, the effects of high-intensity radiation fields on iodine-thiosulfate solutions remain to be evaluated. Small HEPA filters containing filter media of the type used in the Savannah River confinement system were exposed to reactor building air and a high-intensity radiation field. Following this exposure, they were tested for flow performance under simulated accident conditions. Radiation exposure slightly impaired the performance of new filters and improved the performance of service-aged filters. Service aging effects on filter performance were far more significant than radiation effects. (auth)

Dexter, A.H.; Evans, A.G.; Jones, L.R.

1974-01-01T23:59:59.000Z

234

Airborne spread of foot-and-mouth disease - model intercomparison  

SciTech Connect

Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

2008-09-04T23:59:59.000Z

235

Women @ Energy: Hye-Sook Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hye-Sook Park Hye-Sook Park Women @ Energy: Hye-Sook Park March 12, 2013 - 1:17pm Addthis Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have

236

National Parks Move Transportation Forward in America's Great Outdoors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Move Transportation Forward in America's Great Parks Move Transportation Forward in America's Great Outdoors National Parks Move Transportation Forward in America's Great Outdoors March 28, 2013 - 3:00pm Addthis Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? The five new National Parks Initiative projects will save the

237

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated August 12, 2010 Updated August 12, 2010 FORRESTAL FACILITY PARKING PROCEDURES The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. This guide applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. Requirements General. It is the policy of DOE that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. The following rules apply: a) The Office of Administration must centrally manage all Forrestal parking facilities

238

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong

239

'Neighborhood in a park' harnesses the sun | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun November 10, 2010 - 11:13am Addthis Lorelei Laird Writer, Energy Empowers The Minneapolis neighborhood of Bryn Mawr is already a "green" neighborhood in a sense. Called a "neighborhood within a park," the diverse, middle-class enclave borders on four parks, including the city's 759-acre flagship Theodore Wirth Park. Over the summer, however, the Bryn Mawr Neighborhood Association (BMNA) launched a program intended to add more metaphorical greenness. Through its Bryn Mawr Solar Program, it's granting $1,000 to $3,000 to residents and businesses installing solar photovoltaic panels or hot water heaters. Andrew Kraling, a co-representative for his area of the neighborhood, said

240

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001  

Science Conference Proceedings (OSTI)

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

2001-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010  

SciTech Connect

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. M.

2011-05-13T23:59:59.000Z

242

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007  

SciTech Connect

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP ľ U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection ľ Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

2008-01-01T23:59:59.000Z

243

Inspection of Forrestal parking permit allocation and assignments  

Science Conference Proceedings (OSTI)

The purpose of this inspection was to review the process cr allocating and assigning parking permits at the Forrestal building. Specifically, we sought to determine the roles and responsibilities of Department of Energy (DOE) officials involved in the administration of the Forrestal parking permit process during the period June 1, 1991 to February 1, 1992. We also sought to determine if the allocation and assignment of Forrestal building parking spaces was implemented in accordance with Federal and DOE requirements. For our review, we interviewed the Headquarters officials involved in the administration of the parking permit allocation and assignment process. We also reviewed parking permit files and associated documentation for the period June 1, 1991 through February 1, 1992. In addition, we conducted a limited sampling of parking permits that were revoked during July and August 1991 to assess if they were processed in compliance with applicable regulations. We found no evidence that the actions by the Special Assistant to the Secretary (White House Liaison) and the other members of the parking committee regarding the issuance and revocation of parking permits were for any reason other than a desire to ensure that only individuals having a legitimate basis for a parking permit were issued a permit. However, we found that decisions by the parking committee regarding revocation of permits and appeals of revocation decisions were not always documented, nor were there written guidelines or procedures to govern the activities of the committee. In our view, the lack of written guidelines and procedures resulted in the use of invalidated personal knowledge by the parking committee in making decisions involving the revocation of parking permits and led to inconsistencies in the notification of individuals about the associated appeal process.

Not Available

1992-12-16T23:59:59.000Z

244

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network (OSTI)

) Northern Power 100 (100 kW) Aeronautica 29-225 (225 kW) Polaris 500 (500 kW) The first four turbinesDanehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind the following five turbines for potential installation at Danehy Park: SkyStream 3.7 (2.4 kW) Polaris 20 (20 kW

245

Analysis and Processing of Airborne LIDAR Data  

E-Print Network (OSTI)

Airborne LIDAR systems have been in use for many years to measure points on the earth's surface. They can rapidly produce accurate digital surface models and offer significantly lower costs in field operations and post-processing compared to traditional survey methods. This makes the LIDAR technology an attractive alternative for a variety of mapping applications. From scattered 3-D point clouds to useful representations for end-users requires further research and development of post-processing algorithms. Up to now, the post-processing of LIDAR data is still in an early phase of development because no single technique currently is considered optimum or satisfactory for all conditions and requirements.

Yong Hu

2001-01-01T23:59:59.000Z

246

ANNOUNCEMENT OF OPPORTUNITY AIRBORNE RESEARCH & SURVEY FACILITY (ARSF)  

E-Print Network (OSTI)

channel 8-12 microns, 320 spatial pixels. Large-format RC-10 aerial survey camera with images beingANNOUNCEMENT OF OPPORTUNITY AIRBORNE RESEARCH & SURVEY FACILITY (ARSF) http://arsf.nerc.ac.uk 2010 OCTOBER 2009 The Airborne Research & Survey Facility (ARSF) invites direct access applications for UK

247

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

248

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

249

THE LABORATORY Located in Menlo Park, California, SLAC National  

NLE Websites -- All DOE Office Websites (Extended Search)

THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide...

250

LED Provides Effective and Efficient Parking Area Lighting at...  

NLE Websites -- All DOE Office Websites (Extended Search)

New LED parking area lights at the NAVFAC Engineering Service Center at Port Hueneme provide high quality, evenly distributed light. Photo courtesy of PNNL because of its long...

251

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

252

The Access Almanac: Ending the Abuse of Disabled Parking Placards  

E-Print Network (OSTI)

ALMANAC Ending the Abuse of Disabled Parking Placards DONALDtell an anecdote about disabled placard abuse. One of minenoticing that cars with disabled placards occupied almost

Shoup, Donald

2011-01-01T23:59:59.000Z

253

Berkeley Lab Transportation and Parking Demand Management Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Demand Management Committee masthead Articles Fehrs & Peers Reports FAQ FeedbackComments Contact Us Transportation Links Current Parking Impacts Due To Construction...

254

Available Data -- Oak Ridge National Environmental Research Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Environmental Research Park Home Habitat Management Invasive Species Publications Wildlife What's New Available Data Some of the documents on this page are in...

255

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

256

Green Park, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Park, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

257

Federal Energy Management Program: Outdoor Solid State Parking...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Parking Lot and Structure...

258

Protection of Public Parks and Recreational Lands (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas Parks and Wildlife Department

259

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why ┬╗ What We Monitor & Why ┬╗ Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

260

Richardson Acts to Save DOE's Research Parks  

Science Conference Proceedings (OSTI)

In ''Preserving DOE's Research Parks'' (Issues, Winter 1997-98 ), we argued that some of the nation's most irreplaceable outdoor laboratories for scientific research and education are at risk of being disposed of by the Department of Energy (DOE). We are pleased that Secretary of Energy Bill Richardson has recently acted to protect the unique values of DOE property, but we believe that more steps should be taken. Since June 1999, Richardson has set aside lands in five of the seven DOE research parks for wildlife preservation, research, education, and recreation. Management plans have been or are being established for 1,000 acres at the Los Alamos National Laboratory in New Mexico, 57,000 acres at the Hanford Nuclear Reserve in Washington, 10,000 acres at the Savannah River Site in Georgia, 74,000 acres at the Idaho National Environmental and Engineering Laboratory, and 3,000 acres at the Oak Ridge Reservation in Tennessee. These sites are to be managed as biological and wildlife preserves, allowing opportunities for research, education, and, for most of them, recreation. ''In places of rare environmental resources,'' Richardson said, ''we have a special responsibility to the states and communities that have supported and hosted America's long effort to win the Cold War and we owe it to future generations to protect these precious places so that they can enjoy nature's plenty just as we do''. The preserves are home to several rare wildlife species, including bald eagles and loggerhead shrike, as well as numerous other animal and plant species. The only population of one rare plant, the White Bluffs bladder pod, occurs at the Hanford site. Under Richardson's plan, traditional Native American cultural uses of these sites will continue. The preserves will also continue to provide a safety buffer for DOE facilities. Despite these promising moves, the long-term viability of the management arrangements that have been established varies across the sites. For example, because of various constraints, the DOE agreement with the Tennessee Wildlife Resources Agency for management of the Three Bend Scenic and Wildlife Refuge on the Oak Ridge Reservation is for only five years, compared to the 25-year agreement with the U.S. Fish and Wildlife Service at Hanford. Further, some Oak Ridge city leaders have opposed establishing the refuge, because they want the land to be used for housing and industrial development. Pressure to develop these unique lands is likely to continue to mount. Although DOE is required to identify surplus property according to the terms of Executive Order 12512, we have asked that this process occur without compromising long-term research, conservation, and education opportunities, including possible new facilities. To date, we feel that these values have not been given adequate weight and have not been integrated into national environmental goals. We also believe that retaining the research parks is a cost-effective means of bolstering President Clinton's Lands Legacy Initiative. Research park lands near communities can serve as buffers against sprawl as well as offering nearby urban residents diverse educational and recreational opportunities, such as hiking, biking, hunting, and nature walks. We further recommend that DOE develop a long-term management plan for protecting opportunities for energy-related research, conservation, and education in the DOE research parks. This plan should include an outreach program specifying ways for the community, educators, and scientists to take advantage of the user facilities of the parks. For example, local science camps could be expanded to become national opportunities for students and educators to learn about energy use, conservation, and the environment. We envision that DOE's ''EcoCamps'' could be just as popular as NASA's Space Camps.

Dale, V.H.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improved intake air filtration systems  

SciTech Connect

This report comprises the results of a project sponsored by the Pipeline Research Committee of the American Gas Association (Improved Intake Air Filtration Systems). The quality of the inlet air consumed by pipeline gas turbines plays a significant role in the performance, maintenance, and economy of turbine operations. The airborne contaminants may cause degradation of compressor blades and hot gas path components, primarily by erosion, corrosion, and fouling. Machines in the pipeline fleet have a typical average loss of 3.5% in output, chiefly caused by fouling of the gas turbine compressor. It also showed that: Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested.'' Filters which incorporated electrostatically charged fibers (achieved through the use of triboelectric [TE] effects) offered the most promising means for developing an improvement over paper media. The purpose of this program was to validate the use of new technology for self-cleaning air inlet filtration on gas turbine pumping applications. An approach utilizing triboelectrification of fabric filters was examined by testing to determine the penetration (efficiency), cleanability, pressure drop vs flow, and dust-holding capacity of seven pairs of filter cartridges: six fabric and one paper.

Lawson, C.C. (Lawson (Calvin C.), North Wildwood, NJ (United States))

1991-09-01T23:59:59.000Z

262

East Tennessee Technology Park 3-1 3. East Tennessee Technology Park  

E-Print Network (OSTI)

, the K-25 Site was named the "East Tennessee Technology Park" to reflect its new mission. DOE's long's closure plan. The cleanup approach makes land and various types of buildings (e.g., office, manufacturing and the attendant regulations, by DOE orders, and by agreements with regulatory bodies. Table 3.1 provides

Pennycook, Steve

263

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

264

Airborne-temperature-survey maps of heat-flow anomalies for exploration geology  

DOE Green Energy (OSTI)

Precise airborne temperature surveys depicted small predawn surface temperature differences related to heat flow anomalies at the Long Valley, California, KGRA. Zones with conductive heat flow differences of 45 +- 16 ..mu..cal/cm/sup 2/(s) has predawn surface temperature differences of 1.4 +- 0.3/sup 0/C. The warmer zones had hot water circulating in a shallow (less than 60-m-deep) aquifer. Hot water is a useful geochemical indicator of geothermal and mineral resource potential. The precise airborne temperature survey method recorded redundant infrared scanner signals at two wavelengths (10 to 12 ..mu..m and 4.5 to 5.5 ..mu..m) and two elevations (0.3 km and 1.2 km). Ground thermistor probes recorded air and soil temperatures during the survey overflights. Radiometric temperatures were corrected for air-path and reflected-sky-radiation effects. Corrected temperatures were displayed in image form with color-coded maps which depicted 0.24/sup 0/C temperature differences. After accounting for surficial features on the corrected predawn thermal imagery, there remained several anomalous zones. These zones had high temperature gradients at depths from 6 to 30 m, compared to the temperature gradients in nearby areas.

Del Grande, N.K.

1982-11-10T23:59:59.000Z

265

Sonnen Solar Park GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonnen Solar Park GmbH & Co KG Place Germany Sector Solar Product 1.75MW solar PV park in Bavaria, developed by Voltwerk. References Sonnen Solar Park GmbH & Co...

266

DOE Order 344.1A, Parking at the Forrestal Facility | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility DOE Order 344.1A, Parking at the Forrestal Facility Define Policies and procedures governing parking at the Forrestal facility DOE Order 344.1A, Parking at the...

267

Air Distribution Systems and Cross-Infection Risk in the Hospital Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Distribution Systems and Cross-Infection Risk in the Hospital Sector Air Distribution Systems and Cross-Infection Risk in the Hospital Sector Speaker(s): Peter V. Nielsen Date: November 28, 2012 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Rongxin Yin We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to the room by natural or mechanical ventilation. The air is distributed in the room according to different principles as e.g. mixing ventilation, downward ventilation, displacement ventilation, etc. A large amount of air is supplied to the room to ensure dilution of airborne infection. The talk discusses both the macroenvironment and the microenvironment. The macroenvironment is the conditions created by the air distribution system, and the microenvironment is the conditions created by the local flow around persons in combination

268

Recommendations for Improving LEED Transportation and Parking Credits  

E-Print Network (OSTI)

Buildings can be located, designed and managed to optimize transportation and parking efficiency. This paper describes ways to improve LEED (Leadership in Energy and Environmental Design) transportation and parking credits. Typical LEED programs reduce building energy consumption 20-60%. Cost effective mobility and parking management programs often provide similar motor vehicle trip and parking generation reductions, resulting in large economic, social and environmental benefits. However, the current LEED rating system overlooks some of the most effective mobility and parking management strategies. It encourages practitioners to choose strategies based on their ease of implementation rather than effectiveness. As a result, the current LEED rating system is unlikely to implement mobility and parking management as much as optimal. This paper recommends a different approach which defines performance targets needed to achieve LEED categories (silver, gold, platinum). Developers would establish mobility and parking management plans that indicate how targets will be met, how performance will be evaluated, and what additional strategies will be deployed if needed to achieve targets. This optimizes mobility and parking management programs, and responds to changing demands. However, it is unnecessary to wait for a major reform to improve and expand LEED transportation credits; new credits proposed in this paper could be quickly incorporated into the existing LEED rating system.

Todd Litman; Todd Alex; Er Litman

2011-01-01T23:59:59.000Z

269

B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND  

E-Print Network (OSTI)

B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

Mullins, Dyche

270

Parking and Transportation Service 1117 E. 6th  

E-Print Network (OSTI)

Parking and Transportation Service 1117 E. 6th Street Tucson, Arizona 85721 BICYCLE (AND NON-MOTORIZED TRANSPORTATION) Parking & Traffic Regulations 2011-2012 It is the responsibility of all individuals walking. For additional information, please call: Administration 621-3550 Alternative Transportation 626-RIDE Customer

Utzinger, Urs

271

Disabled Parking & Access Plan Campus Disabled Persons (DP)  

E-Print Network (OSTI)

ongoing survey service contract ┬Ě Accurate Parking Space Counts ┬ş Yearly aerial photos for review Plan Ongoing Objectives ┬Ě Keep Campus Survey and Campus-wide Access Plan Current ┬Ě Follow Up Feedback ┬ş Computer-based survey of surface features, buildings, parking lot striping, pedestrian walkways ┬ş Campus

de Lijser, Peter

272

Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service  

E-Print Network (OSTI)

National Parks hydrogen and fuel cell initiative must be education and research.and fuel cell projects in the National Parks Service must be education and research.

Eggert, Anthony

2004-01-01T23:59:59.000Z

273

"Blackfeet Belong to the Mountains": Blackfeet Relationships with the Glacier National Park Landscape and Institution.  

E-Print Network (OSTI)

??National Parks are home to many landscapes of great significance to Native American peoples. The eastern half of Glacier National Park is considered a homelandů (more)

Craig, David R.

2008-01-01T23:59:59.000Z

274

The socio-economic impact of tourism in the Karoo National Park / Madelien Ferreira.  

E-Print Network (OSTI)

??Literature on ecotourism and sustainable tourism emphasises the responsibilities and opportunities in protecting national parks through appropriate tourism development. National parks assist in addressing theů (more)

Ferreira, Madelien

2008-01-01T23:59:59.000Z

275

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

276

Independent Oversight Inspection, East Tennessee Technology Park - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park - East Tennessee Technology Park - November 2008 Independent Oversight Inspection, East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE East Tennessee Technology Park (ETTP) during August through September 2008. HSS reports directly to the Office of the Secretary of Energy, and the ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. The inspection was performed concurrently with an inspection of emergency management at the Oak Ridge National Laboratory,

277

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

278

Independent Oversight Inspection, East Tennessee Technology Park, Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, East Tennessee Technology Park, Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 Independent Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 May 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and East Tennessee Technology Park The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management

279

ISC-Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

ISC-Reducing Congestion through Smart Parking Management ISC-Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ISC-Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities (ISC) Sector: Climate, Energy Focus Area: Transportation Resource Type: Case studies/examples, Lessons learned/best practices Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf Locality: San Francisco, California Cost: Free Language: English ISC-Reducing Congestion through Smart Parking Management Screenshot References: Reducing Congestion through Smart Parking Management[1] "The transit study concluded that congestion is a primary factor reducing the reliability and speed of onroad transit, which in turn is exacerbated

280

March 19, 2013 Webinar: Renewable Energy Parks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks This webinar was held March 19, 2013, and provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable energy parks in their areas. Download the presentations below, watch the webinar (WMV 217 MB), or view the text version. Find more CommRE webinars. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the conclusion of the project the city hopes to show the benefits of

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Quantitative room-temperature mineralization of airborne formaldehyde using  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantitative room-temperature mineralization of airborne formaldehyde using Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Title Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Publication Type Journal Article Year of Publication 2011 Authors Sidheswaran, Meera A., Hugo Destaillats, Douglas P. Sullivan, Joern Larsen, and William J. Fisk Journal Applied Catalysis B - Environmental Issue 107 Pagination 34-41 Date Published 2011 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group DOI 10.1016/j.apcatb.2011.06.032 Attachment Size

282

Airborne Process Commercial Scale Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

CCPI 2) CCPI 2) contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Mustang Clean Energy, LLC, a subsidiary of Peabody Energy St. Louis, MO. Airborne Process(tm) commerciAl scAle DemonstrAtion ProgrAm (withDrAwn Prior to AwArD) Project Description Mustang Clean Energy will design, construct, and operate a full scale sodium-based multi-pollutant scrubber in conjunction with a revenue-generating fertilizer by-product processing plant at Mustang Energy Company, LLC's Mustang Generating Station. Both Mustang Clean Energy and Mustang Energy Company are subsidiaries of Peabody Energy, the world's largest coal company. The 300 MW (net) station will

283

B#: a Battery Emulator and Power Profiling Instrument Pai H. Chou, Chulsung Park, Jae Park, Kien Pham, and Jinfeng Liu  

E-Print Network (OSTI)

B#: a Battery Emulator and Power Profiling Instrument Pai H. Chou, Chulsung Park, Jae Park, Kien-sharp), a programmable power supply that emulates the behavior of a battery. It measures the current load, calls a battery simulation program to compute the voltage in real time, and controls a linear regulator to mimic

Shinozuka, Masanobu

284

Eden Park Illumination | Open Energy Information  

Open Energy Info (EERE)

Illumination Illumination Jump to: navigation, search Name Eden Park Illumination Place Champaign, Illinois Zip 61821 Product Illinois-based startup focused on the commercialisation and development of highly efficient microplasma lighting. Coordinates 40.1142┬░, -88.243499┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1142,"lon":-88.243499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

TIAX, LLC. Acorn Park Cambridge, Massachusetts  

NLE Websites -- All DOE Office Websites (Extended Search)

TIAX, LLC. TIAX, LLC. Acorn Park Cambridge, Massachusetts 02140-2390 75570-00 Structural Limitations in the Scale-up of Anode Supported SOFCs Final Report to DOE NETL October 9th, 2002 SS.75570.PARSONS.TASK1.DRFTFiNALRPT.060602.REV1 1 Outline of Final Report 2 Approach & Scope 3 Model Development 1 Background & Objectives 5 Multi Channel SOFC Results 4 Single Channel SOFC Results 6 Limitations for Cell Size 7 Summary 0 Executive Summary A Appendix SS.75570.PARSONS.TASK1.DRFTFiNALRPT.060602.REV1 2 * The SECA strategy is to develop cost-effective modular planar SOFC stack technology that could be applied to a broad range of applications: - Application of similar stack design to multiple applications would accelerate stack cost reduction - Applications range from small-capacity applications (< 10 kW) with 1-4 stacks, to

286

Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept  

Science Conference Proceedings (OSTI)

The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight ...

Abbott Terence S.; Elliott Dawn M.

2001-03-01T23:59:59.000Z

287

Accurate Airborne Surface Temperature Measurements with Chopper-stabilized Radiometers  

Science Conference Proceedings (OSTI)

The accuracy of chopper-stabilized radiometers for the meteorological measurement of surface temperatures was investigated during a series of airborne trails, including tests at high altitude using a pressurized aircraft. The significant finding ...

Dieter Lorenz

1991-06-01T23:59:59.000Z

288

Calibrations and performance of the airborne Cloud Extinction Probe  

Science Conference Proceedings (OSTI)

A new airborne instrument that measures extinction coefficient ? in clouds and precipitation has been designed by Environment Canada. The Cloud Extinction Probe (CEP) utilizes the transmissiometric method which is based on direct measurement of ...

Alexei Korolev; Alex Shashkov; Howard Barker

289

Airborne Cloud-Physics Projects From 1974 Through 1984  

Science Conference Proceedings (OSTI)

Most of the principal airborne cloud-physics projects during the ten-year period 1974-1984 are documented to provide selected information on the type and quantity of microphysical data that have beencollected. The emphasis is on measurements ...

Richard K. Jeck

1986-12-01T23:59:59.000Z

290

Feasibility Test of an Airborne Pulse-Doppler Meteorological Radar  

Science Conference Proceedings (OSTI)

A vertically scanning, airborne, pulse-Doppler radar is described. Data processing methods to yield pseudo-dual-Doppler horizontal winds are presented. Results of an intercomparison with a ground-based dual-Doppler network are presented and ...

David P. Jorgensen; Peter H. Hildebrand; Charles L. Frush

1983-05-01T23:59:59.000Z

291

Pre-EUCREX Intercomparison of Airborne Humidity Measuring Instruments  

Science Conference Proceedings (OSTI)

During the pre-EUCREX (European Cloud and Radiation Experiment) intercomparison of airborne instrumentation in January 1992, nine hygrometers mounted on three different aircraft were compared. Although the different instruments are based on ...

J. Str÷m; R. Busen; M. Quante; B. Guillemet; P. R. A. Brown; J. Heintzenberg

1994-10-01T23:59:59.000Z

292

Airborne Doppler Lidar Observations of Convective Phenomena in Oklahoma  

Science Conference Proceedings (OSTI)

On 30 June 1981, the wind fields around a variety of convective clouds, ranging from large thunderstorm complexes to isolated cumulus congestus, were observed in Oklahoma using an airborne Doppler lidar operated by the National Aeronautics and ...

Eugene W. McCaul Jr.; Howard B. Bluestein; Richard J. Doviak

1987-09-01T23:59:59.000Z

293

The NCAR Airborne Infrared Lidar System: Status and Applications  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research Airborne Infrared Lidar System is being developed for Doppler wind measurements using heterodyne detection. Its design is based on a pulsed CO2 laser transmitter and a single continuous-wave CO2 laser ...

R. L. Schwiesow; M. P. Spowart

1996-02-01T23:59:59.000Z

294

Federal Energy Management Program: Boatwright Maintenance Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

111,566 sq ft, and has an energy baseline of 62.2 KBtusq ft. It's highlights include spray foam roof with R-13 rating, air-source heat pumps for office spaces, and...

295

Hawaiian Electric Company, Inc. Photovoltaic Energy Park Master Development Planning  

Science Conference Proceedings (OSTI)

This document describes a Master Development Plan to develop, construct, and operate a photovoltaic energy park (PVEP). The central feature of the park would be a large-scale solar power plant with up to 3.0 MW (peak) capacity of single axis tracking and fixed systems. The park would be developed in phases using multiple 100 kilowatt (peak) solar power systems. The plant would utilize proven PV technology commonly available at the time of the construction. In addition, space has been set aside for resear...

2004-02-20T23:59:59.000Z

296

Light-stripe-projection-based target position designation for intelligent parking-assist system  

Science Conference Proceedings (OSTI)

This paper proposes a novel light-stripe-projection-based target position-designation method for an intelligent parking assist system, providing an economical free-space-based target position-designation method for poorly lit indoor parking spaces without ... Keywords: driver-assistant system (DAS), free-space-based target position designation, indoor parking space, light stripe projection (LSP), parking-assist system

Ho Gi Jung; Dong Seok Kim; Jaihie Kim

2010-12-01T23:59:59.000Z

297

Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Proposed Manhattan Project National Historical Park By: Ingrid Kolb, Director Office of Management

298

Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop  

Science Conference Proceedings (OSTI)

A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

Trott, Donna M.; LePage, Jane; Hebert, Vincent

2012-01-01T23:59:59.000Z

299

Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Glacier-Waterton Park Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Digg Find More places to share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on AddThis.com... Dec. 31, 2004 Glacier-Waterton Park Powers Buses With Propane F ind out how Glacier-Waterton International Peace Park uses propane buses.

300

Comparison of airborne asbestos levels determined by transmission electron microscopy (TEM) using direct- and indirect-transfer techniques. Final report  

SciTech Connect

A subset of air samples from a 1988 EPA study was reanalyzed for asbestos by TEM using an indirect transfer technique. The samples were originally analyzed using a direct transfer technique. The document presents the results of the reanalysis and extends the discussion to include data from six other studies. The development of the two techniques and their respective advantages and disadvantages are described. The data support the general opinion that TEM analysis of air samples using indirect transfer methods tends to provide estimates of total airborne asbestos structure concentration that are higher than those obtained using direct transfer methods. There is no single factor that can be used to convert measurements made by one method to a value that is comparable with measurements made by the other because the quantitative relationship is expected to depend on details of the sampling and analytical protocols and the nature of the asbestos in the air. The ratio of indirect measurements to direct measurements ranges from 3.8 to 1,700 for the studies considered. Additional research is needed to determine which transfer technique more accurately reflects biologically meaningful airborne asbestos concentrations. Breakdown of larger structures into smaller ones during indirect preparation does not appear to be sufficient to explain the difference in measured concentrations.

Chesson, J.; Hatfield, J.

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM Site Atmospheric State Best Estimates for AIRS Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

302

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

303

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

304

Mid-Atlantic Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Mid-Atlantic Wind Park Facility Mid-Atlantic Wind Park Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer NRG Bluewater Wind Location Offshore from Rehoboth Beach DE Coordinates 38.633333┬░, -74.775┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.633333,"lon":-74.775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Montana Fish, Wildlife & Parks | Open Energy Information  

Open Energy Info (EERE)

Fish, Wildlife & Parks Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name Montana Fish, Wildlife & Parks Address 1420 East 6th Ave, PO Box 200701 Place Helena, Montana Zip 59620-0701 Phone number 406-444-2535 Website http://fwp.mt.gov/doingBusines Coordinates 46.586864┬░, -112.01525┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.586864,"lon":-112.01525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

307

Enforcement Documents - East Tennessee Technology Park | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park East Tennessee Technology Park Enforcement Documents - East Tennessee Technology Park August 4, 2005 Preliminary Notice of Violation, Bechtel Jacobs Company, LLC - EA-2005-04 Preliminary Notice of Violation issued to Bechtel Jacobs Company, LLC, related to the New Hydrofracture Facility Transportation Event and the Personnel Contamination Event at the Hot Storage Garden Facility at the East Tennessee Technology Park November 19, 2003 Preliminary Notice of Violation, Bechtel Jacobs Company, LLC - EA-2003-09 Preliminary Notice of Violation issued to Bechtel Jacobs Company, LLC, related to Multiple Nuclear Safety Issues at Oak Ridge and the Paducah Gaseous Diffusion Plant July 17, 2003 Enforcement Letter, BNFL Inc - July 10, 2003 Enforcement Letter issued to BNFL, Inc. related to potential violations of

308

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

309

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083┬░, -116.419389┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

311

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819┬░, -76.941939┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Manhattan Project National Historical Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project National Historical Park Manhattan Project National Historical Park Manhattan Project National Historical Park The Department, as the direct descendent of the Manhattan Engineer District, owns and manages the Federal properties at most of the major Manhattan Project sites, including Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, New Mexico. For over a decade, the Department, in cooperation with other Federal agencies, state and local governments, and other stakeholders, has pursued the possibility of including its most significant Manhattan Project properties within a Manhattan Project National Historical Park. A panel of distinguished historic preservation experts convened in 2001 by the Advisory Council on Historic Preservation at the request of the Department of Energy recommended that the "ultimate goal" for

313

Maintenance-based design of concrete parking structures  

E-Print Network (OSTI)

The purpose of this study is to determine what type of preventative maintenance for a concrete parking structure will produce the maximum economic benefit. Existing models for concrete deterioration are analyzed for their ...

Stoakes, Christopher D. (Christopher David)

2007-01-01T23:59:59.000Z

314

Policies for parking pricing derived from a queueing perspective  

E-Print Network (OSTI)

Drivers in urban neighborhoods who cruise streets, seeking inexpensive on-street parking create a significant fraction of measured traffic congestion. The solution to this problem is to reduce the total traffic volume ...

Sasanuma, Katsunobu

2009-01-01T23:59:59.000Z

315

INDIANAPOLIS AMUSEMENT PARKS, 1903-1911: LANDSCAPES ON THE EDGE.  

E-Print Network (OSTI)

??In May 1906, Wonderland Amusement Park opened its gates on East Washington Street in Indianapolis to reveal its 125-foot tall ôElectric Tower,ö a tree-top ôSceniců (more)

Zeigler, Connie J.

2007-01-01T23:59:59.000Z

316

Photovoltaics and the National Park Service : an institutional analysis  

E-Print Network (OSTI)

This paper is one of a series resulting from institutional analysis of photovoltaic (PV) acceptance. The case reported here involves the acceptance of PV by the National Park Service. As part of the Department of the ...

Nutt-Powell, Thomas E.

1980-01-01T23:59:59.000Z

317

Automatic Parallel Parking and Returning to Traffic Maneuvers  

E-Print Network (OSTI)

This video illustrates a control approach developed to perform parallel parking and returning to traffic maneuvers for a car capable of autonomous motion. The key idea is to carry out a motion control procedure involving a "Localization-Planning-Execution" cycle until a specified location of the car relative to its environment is reached. Range measurements are used to model environmental objects around the car. The automatic maneuvers developed are demonstrated on an experimental electric autonomous car in a usual traffic environment. 1 Introduction Many drivers have difficulties or make errors while parallel parking or in pulling out of a parking place. A control approach to automatic parallel parking and pulling out maneuvers has been developed and tested on an experimental electric car capable of autonomous motion. The manual car driving is supplemented with an automatic steering and velocity control [1]. The car is equiped with: (1) - a sensor unit to measure relative distances ...

Igor Paromtchik; Christian Laugier

1998-01-01T23:59:59.000Z

318

Oregon Parks and Recreation Department | Open Energy Information  

Open Energy Info (EERE)

Recreation Department Name Oregon Parks and Recreation Department Address 725 Summer St., N.E. Suite C Place Salem, OR Zip 97301 Phone number 503-986-0707 Website http:...

319

DOE - Office of Legacy Management -- Seaway Industrial Park ...  

Office of Legacy Management (LM)

to LaGrone; Authorization for remedial Action at the Seaway Industrial Park and Ashland Oil Co. (I) Sites at Tonawanda, NY, and Mallinckrodt Chemical Co., St. Louis, MO; June 22,...

320

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar  

Energy.gov (U.S. Department of Energy (DOE))

DOE will present a live webinar titled "Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool" on Thursday, August 22, from 1:00 p.m. to 2:00 p.m. Eastern Daylight Time....

322

Energy Department and National Park Service Announce Clean Cities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities to deploy an all-electric vehicle (EV), a plug-in hybrid EV, and 12 propane lawn mowers. The park also plans to install three EV chargers, two of which will be...

323

Renewable Energy at Channel Islands National Park; Federal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and...

324

Development of a new airborne humidigraph system.  

Science Conference Proceedings (OSTI)

Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (?sp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (humidity conditioners for simultaneous measurement of the ?sp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOEĺs G-1 research aircraft during test flights over California, Oregon, and Washington.

Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

2012-12-06T23:59:59.000Z

325

Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture  

SciTech Connect

Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

2011-12-31T23:59:59.000Z

326

Tritium Room Air Monitor Operating Experience Review  

SciTech Connect

Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

L. C. Cadwallader; B. J. Denny

2008-09-01T23:59:59.000Z

327

The Social Life of Steeplechase Park: Neighborhood Dog-Park as a "Third Place  

E-Print Network (OSTI)

In the United States, there is a growing trend towards livable cities that facilitate physical, psychological, and social well-being. According to Congress of the New Urbanism, the great American suburb served by the automobile, does not fulfill all these functions. Urban sociologist Ray Oldenburg points out three realms of satisfactory life as work, home and the Ĺgreat good placeĺ as the third. The third place is one that facilitates barrier free social interaction, for example the American main-street, the English pub, French coffee house etc. Despite the ever existing need for such places, greater travel distances and the ever expanding needs of the automobile era have stripped our urban fabric of these. The Charter of the New Urbanism points out that in the American suburbs, neighborhood parks have the potential to serve as Ĺthird places.ĺ The twofold purpose of this research was to examine Steeplechase dog-park using Oldenburgĺs Third Place construct as a starting point; and then to operationalize third place by establishing relationships between social characteristics and physical environment. Participant observation, casual conversations and ethnographic interviews were methods used to examine how residents use Steeplechase Park. The observation phase was used to understand on-site behavior, user interests and then establish contacts with participants for recruitment. In-depth interviews were then conducted to examine user history, relationships and attitudes toward the place. Data was coded and analyzed in NVivo 10 utilizing Oldenburgĺs framework as a reference, the components of which were then examined for correlations to the physical elements. The findings of suggest that Steeplechase Park functions as a somewhat unique third place in terms of user motivation, companion animal/social lubricant, neutrality and inclusiveness of the place. Findings also establish useful links between the physical design of the space and the social activity; prospect-refuge supported by vegetation and layout, topography, shade, edges and access being the most important aspects. Additionally, lack of maintenance was established as a major concern to sustained use.

Gulati, Nidhi 1986-

2012-12-01T23:59:59.000Z

328

What is the purpose of our national parks?  

E-Print Network (OSTI)

A lively discussion ensues today over the ''mandate'' of America's national parks. Utilitarians say parks are for people-the forest always returns no matter what we do. Consevationists say, let's balance use between recreation and protection of natural resources. Preservationists say, the parks were created to protect the natural resources and recreation must be subordinate. In a capitalistic frenzy following Independence in 1776, Americans consumed, wasted, and sold their forests and wildlife, precipitating a host of ills upon the land such as, drought, floods, and wildlife extinctions. During this period the first 3 public reserves--Hot Springs, Mariposa Bigtree Grove with Yosemite, and Yellowstone were set apartl by Congress for the masses- particularly the poor-as national healing meccas and public playgrounds. Although the nation's timber supply was in danger of depletion by lumber barons who were rapidly harvesting virgin forests, the idea of federal forest reservles was repugnant and resisted by Congress until 1891. During this time Forest Reserves weren't deliberately enacted into law but came in as an amendment to the Timber Culture Act allowing Presidents the right to reserve forests on the headwaters of rivers to prevent seasonal flooding. This was done for conservation--not preservation-reasons, especially during the Teddy Roosevelt/Gifford Pinchot years. Sponsors of the National Park Service bill of 1916 wanted to develop the National Parks for mass use to prevent commercial exploitation by adjacent states of these areas. The law clearly wasn't passed with an environmental agenda in mind. Mather and Albright acting in concert together developed the scenic areas of the parks for recreational use, but left the rest of the park undeveloped which satisfied most environmental groups. Franklin D. Roosevelt sought to help the nation come out of a depression and develop parks with CCC funds. Park visitation improved and rapidly grew following WWII with another infusion of development during the mid-1950's to 60's. An environmental movement took the nation by storm during the period of rapid growth in park visitation. National Parks began losing their scenic appeal from over development and mass visitation. Planning frameworks were developed with names like ROS, C-CAP, VIM, LAC, and VERP to cope with the destructiveness of resource damage from mass visitation. Psychological needs to relieve stress in natural environments have been responsible for millions of visitors seeking recreation in National Parks and retirement communities surrounding them. Parks have been losing species since the 1920's when animal counts began, and will continue unless a science program of species enrichment is adopted. This will require the Park Service to abandon the failing policies of 'natural regulation' and 'nonintervention.' A new policy of natural education should be attempted by the Park Service to instill understanding and overcome fears and discomforts with fauna and flora which exist in the general public.

Manning, Orlinda D.

2001-01-01T23:59:59.000Z

329

Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

Burris, S.A.; Thomas, S.P.

1994-02-01T23:59:59.000Z

330

The Benefit of Florida State Parks  

E-Print Network (OSTI)

natalensis: large soldiers, small soldiers, and workers. They are closing off holes in the side of a mound, Pretoria. The above-ground portion (which serves mainly as an air-conditioner) of a mound of the termite M. natalensis, in an open stretch of savanna grassland. Two Pierneef woodcut prints of termite mounds in Namibia

Demers, Nora Egan

331

BioSAR Airborne Biomass Sensing System  

DOE Green Energy (OSTI)

This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

Graham, R.L.; Johnson, P.

2007-05-24T23:59:59.000Z

332

Quantitative Measurements of Path-Integrated Rain Rate by an Airborne Microwave Radiometer over the Ocean  

Science Conference Proceedings (OSTI)

Data on the airborne microwave radiometer, which is one of the sensors of the airborne microwave rain-scatterometer/radiometer (AMRS) system, are analyzed to infer path-integrated rain rate measured from topside. The equation of radiative ...

Masaharu Fujita; Ken'ichi Okamoto; Harunobu Masuko; Takeyuki Ojima; Nobuyoshi Fugono

1985-09-01T23:59:59.000Z

333

Fast Temperature and True Airspeed Measurements with the Airborne Ultrasonic AnemometerľThermometer (AUSAT)  

Science Conference Proceedings (OSTI)

An airborne thermometerľanemometer with fast response is designed and built using the well-known sonic anemometerľthermometer technique. The shape of this new airborne sonic sensor, without the conventional style probes, is a cylinder with its ...

D. Cruette; A. Marillier; J. L. Dufresne; J. Y. Grandpeix; P. Nacass; H. Bellec

2000-08-01T23:59:59.000Z

334

The Development of an Airborne Infrared Interferometer for Meteorological Sounding Studies  

Science Conference Proceedings (OSTI)

The United Kingdom Meteorological Office (UKMO) has developed an airborne interferometer to act as a simulator for future satellite-based infrared meteorological sounders. The Airborne Research Interferometer Evaluation System (ARIES) consists of ...

S. H. S. Wilson; N. C. Atkinson; J. A. Smith

1999-12-01T23:59:59.000Z

335

Airborne Doppler Lidar Measurements of Valley Flows in Complex Coastal Terrain  

Science Conference Proceedings (OSTI)

Three-dimensional winds obtained with an airborne Doppler lidar are used to investigate the spatial structure of topographically driven flows in complex coastal terrain in Southern California. The airborne Doppler lidar collected four hours of ...

S. F. J. De Wekker; K. S. Godwin; G. D. Emmitt; S. Greco

2012-08-01T23:59:59.000Z

336

Operational air sampling report. [Semiannual report], January 1--June 30, 1993  

SciTech Connect

Nevada Test Site vertical shaft and tunnel events generate beta/gamma fission products. This report discusses the REECo air sampling program which is designed to measure these radionuclides at various facilities supporting these events. The current testing moratorium and closure of the Decontamination Facility has decreased the scope of the program significantly. Of the 243 air samples collected in the only active tunnel complex, none showed any airborne fission products. Tritiated water vapor concentrations were very similar to previously reported levels. The 246 air samples collected at the Area-6 decontamination bays and laundry were again well below any Derived Air Concentration calculation standard. Laboratory analyses of these samples were negative for any airborne fission products.

Lyons, C.L.

1993-12-01T23:59:59.000Z

337

Operational air sampling report. [Semiannual report], July 1--December 31, 1993  

SciTech Connect

Nevada Test Site vertical shaft and tunnel events generate beta/gamma fission products. The REECo air sampling program is designed to measure these radionuclides at various facilities supporting these events. The current testing moratorium and closure of the Decontamination Facility has decreased the scope of the program significantly. Of the 118 air samples collected in the only active tunnel complex, only one showed any airborne fission products. Tritiated water vapor concentrations were very similar to previously reported levels. The 206 air samples collected at the Area-6 decontamination bays and laundry were again well below any Derived Air Concentration calculation standard. Laboratory analyses of these samples were negative for any airborne fission products.

Lyons, C.L.

1994-03-01T23:59:59.000Z

338

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

339

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

340

CAPTURING THE POWER OF NATURE Iowa Stored Energy Park DOE Peer Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Peer Review Fairmont Hotel Washington, DC September 29, 2008 Kent Holst, Development Director Iowa Stored Energy Park Funding: Congressional Ear-mark CAPTURING THE POWER OF NATURE Today's Presentation Past Present Future Funding CAPTURING THE POWER OF NATURE c CAPTURING THE POWER OF NATURE Iowa's municipal utilities saw this. 1. Economic feasibility studies. 2. Geologic research. 3. Computer modeling. CAPTURING THE POWER OF NATURE Will ISEP make money? 1. Missouri River Energy Services. 2. Southern Minnesota Municipal Power Agency. CAPTURING THE POWER OF NATURE Next steps: 1. Drill two test wells. 2. Pump tests, water & air. 3. Refine computer modeling. CAPTURING THE POWER OF NATURE Funding 1. Municipal utilities -$1.15 million. 2. DOE - $6 million. 3. Iowa Power Fund - $3.2 million.

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Information Resources: Using the Street and Parking Facility Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool This August 22, 2013 webinar provided a guided walk-through of the Street and Parking Facility Lighting Retrofit Financial Analysis Tool. Developed by a partnership of the DOE Municipal Solid-State Street Lighting Consortium, the Clinton Climate Initiative/C40, and the DOE Federal Energy Management Program, the Excel-based tool assists with the financial analysis of retrofitting street and parking facility lighting with more efficient alternatives. During the webinar, Doug Elliott of Pacific Northwest National Laboratory discussed how the tool can be used to evaluate costs and benefits associated with converting to more efficient street and parking facility lighting and how property owners, city and other government agencies, utilities, and energy efficiency organizations can use the tool to compute annualized energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback associated with potential lighting upgrades.

342

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network (OSTI)

The new industrial park energy supply (NIPES) concept is an attractive approach for providing a stable, long-term domestic energy source for industrial plants at reasonable cost and reasonable financial risk. The NIPES concept consists of a system of energy supply stations and steam transmission lines that supply process heat and electricity to multiple users in an industrial park(s) setting. The energy supply stations grow along with the industrial park(s) as new industries are attracted by a reliable, reasonably priced energy source. This paper describes the generic NIPES concept and summarizes the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. The economics of the specific NIPES system is compared to that of individual user-owned coal-fired facilities for new industrial plants and of individual user-owned oil-fired facilities for existing industrial plants. The results indicate substantial savings associated with the NIPES system for both new and existing users and/or a potential for high return on investment by third-party investors.

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

343

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

344

Changing the state of fairness : redeveloping Fair Park as a catalyst for the revitalization of South Dallas  

E-Print Network (OSTI)

This thesis studies Fair Park, a 277 acre public park located in Dallas, Texas. Fair Park represents prevalent planning challenges - the repurposing of sites that have outlived their initial uses and the reintegration of ...

Di Mambro, Giuliana Siena

2013-01-01T23:59:59.000Z

345

City of Lake Park, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota (Utility Company) Park, Minnesota (Utility Company) Jump to: navigation, search Name Lake Park City of Place Minnesota Utility Id 10609 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL CONTROLLED A/C CREDIT Commercial COMMERCIAL DUAL FUEL AND STORAGE HEATING Commercial COMMERCIAL SERVICE RATE Commercial COMMERCIAL WATER HEATER CREDIT Commercial PRIVATE YARD LIGHTS Lighting RESIDENTIAL CONTROLLED A/C CREDIT Residential RESIDENTIAL DUAL FUEL AND STORAGE HEATING Residential RESIDENTIAL SERVICE RATE Residential

346

Clean Cities National Parks Initiative Project Success Story Form  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative Project Success Story Form National Parks Initiative Project Success Story Form Do you know about a successful petroleum-reduction activity or clean-transportation project that should be featured with the National Parks Initiative projects? In addition to being on the Clean Cities website, these success stories can be featured in U.S. Department of Energy and U.S. Department of Interior publications and in videos with potential national television coverage. These success stories should be related to alternative fuels, advanced vehicle technologies, and smart driving practices, and they must be projects at NPS units. To submit a success story idea, complete the form below and click the "Submit by E-Mail" button in the upper-right corner of this page or save the form and e-mail it to andrew.hudgins@nrel.gov.

347

SolarPark Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

SolarPark Engineering Co Ltd SolarPark Engineering Co Ltd Jump to: navigation, search Name SolarPark Engineering Co Ltd Place Bucheon, Gyeonggi-do, Korea (Republic) Sector Solar Product Korean solar project developer, currently building a 15MW PV plant in Gochang County. Coordinates 37.500069┬░, 126.792229┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.500069,"lon":126.792229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270┬░C) that boils to feed steam to the high-temperature

349

Estes Park Light and Power Department - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estes Park Light and Power Department - Commercial and Industrial Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Custom Energy Incentive: $0.10 per annual kWh saved Demand Incentive: $500 per kW saved during Summer Peak Period Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum

350

Town of Estes Park, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Estes Park, Colorado (Utility Company) Estes Park, Colorado (Utility Company) Jump to: navigation, search Name Town of Estes Park Place Colorado Utility Id 5997 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE COMMERCIAL Commercial LARGE COMMERICIAL TIME OF DAY Commercial MUNICIPAL RATE Commercial OUTDOOR AREA LIGHTING Lighting RENEWABLE ENERGY CHARGE Commercial RESIDENTIAL Residential RESIDENTIAL DEMAND Residential RESIDENTIAL ENERGY BASIC TIME-OF-DAY Residential

351

National Park Service - Chickasaw, Oklahoma | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chickasaw, Oklahoma Chickasaw, Oklahoma National Park Service - Chickasaw, Oklahoma October 7, 2013 - 9:56am Addthis Photo of Comfort Station at the Chickasaw National Recreation Area The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations. The decision to use solar water heating at the site was the result of a collaborative effort between the National Renewable Energy Laboratory (NREL) Federal Energy Management Program (FEMP) and Solar Process Heat Program in support of NPS. Chickasaw visitors wanted hot showers, and park personnel wanted an alternative to conventional water heaters. The facility

352

Oversight Reports - East Tennessee Technology Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park East Tennessee Technology Park Oversight Reports - East Tennessee Technology Park December 30, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center September 20, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes June 24, 2013 Independent Oversight Review, URS CH2M Oak Ridge - June 2013 Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation August 25, 2011 Independent Activity Report, Oak Ridge Office - June 2011

353

McKinley Wind Park | Open Energy Information  

Open Energy Info (EERE)

McKinley Wind Park McKinley Wind Park Facility McKinley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Pigeon MI Coordinates 43.87277698┬░, -83.26126099┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.87277698,"lon":-83.26126099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Community Renewable Energy Success Stories Webinar: Renewable Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Below is the text version of the webinar titled "Renewable Energy Parks," originally presented on March 19, 2013. Operator: The broadcast is now starting. All attendees are in Listen Only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar. It is sponsored by the U.S. Department of Energy (DOE) . Sorry. We're moving some slides around. We'll go right back to the front one there. Thanks, Devin. This is Sarah Busche and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and log on, but while we do this Devin is going to run

355

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

356

Village of Hyde Park, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hyde Park, Vermont (Utility Company) Hyde Park, Vermont (Utility Company) Jump to: navigation, search Name Hyde Park Village of Place Vermont Service Territory Vermont Website www.hydeparkvt.com/watera Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9144 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric (AE) Residential General Service (GS) Commercial Large General Service Industrial Residential (RS) Residential Security Lights - Ded. Pole Lighting

357

Climate Leadership in Parks (CLIP) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon ┬╗ Climate Leadership in Parks (CLIP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Leadership in Parks (CLIP) Agency/Company /Organization: National Park Service Phase: Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

358

Denver Federal Center Solar Park | Open Energy Information  

Open Energy Info (EERE)

Center Solar Park Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser Xcel Energy Address West 6th Ave & Kipling Street Location Lakewood, Colorado Zip 80225 Coordinates 39.7247982353┬░, -105.118432045┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7247982353,"lon":-105.118432045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Parke County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Parke County Rural E M C Parke County Rural E M C Jump to: navigation, search Name Parke County Rural E M C Place Indiana Utility Id 14471 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RATE SCHEDULE C (Rate 3 and 4) Commercial RATE SCHEDULE LG-OP (Rate 5) Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 1 Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 2 Commercial Rate Rider P (Rate 66) Prepaid Service Commercial Rate Rider RE(RATE 66) Residential

360

Florham Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florham Park, New Jersey: Energy Resources Florham Park, New Jersey: Energy Resources (Redirected from Florham Park, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.787878┬░, -74.3882072┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.787878,"lon":-74.3882072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Methods to determine the size distribution of airborne rhinovirus  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods to determine the size distribution of airborne rhinovirus Methods to determine the size distribution of airborne rhinovirus Title Methods to determine the size distribution of airborne rhinovirus Publication Type Report Year of Publication 2004 Authors Russell, Marion L., Regine Goth-Goldstein, Michael G. Apte, and William J. Fisk Publisher Lawrence Berkeley National Laboratory Abstract About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Prior research has demonstrated that rhinovirus infections can be transmitted via person-to-person contact and via inhalation of infectious aerosols. Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. To detect airborne HRV, we developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine the assay detection limit of 5 fg of HRV RNA with a linear range over 10,000-fold. This assay was used to quantify the size distribution of an artificially-produced HRV aerosol captured with an Andersen six-stage cascade impactor. In future studies, we hope to use the methods developed here to characterize the size distribution of naturally occurring viral-aerosols

362

Geolocation of Multiple Targets from Airborne Video Without Terrain Data  

Science Conference Proceedings (OSTI)

The task of geolocating targets from airborne video is required for many applications in surveillance, law enforcement, reconnaissance, etc. The usual approaches to target geolocation involve terrain data, single target tracking, gimbal control of camera ... Keywords: Geolocation, IMU-Camera calibration, Tracking, Unmanned aerial vehicle

Kyung Min Han; Guilherme N. Desouza

2011-04-01T23:59:59.000Z

363

Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS  

E-Print Network (OSTI)

Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS S. Skone Department, a limiting factor remains ┬ş the small-amplitude variations caused by geomagnetic pulsations arising from the correlation of TEC variations with geomagnetic pulsations. Variations in TEC during intervals of Pc 3

Calgary, University of

364

Quality assurance program plan for radionuclide airborne emissions monitoring  

SciTech Connect

This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

Boom, R.J.

1995-12-01T23:59:59.000Z

365

Quality Assurance Program Plan for radionuclide airborne emissions monitoring  

SciTech Connect

This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

Vance, L.M.

1993-07-01T23:59:59.000Z

366

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

367

EA-1212: Lease of Land for the Development of a Research Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1212: Lease of Land for the Development of a Research Park at...

368

Parking Permit Application, Form HQ F 1400.12 rev 02-10 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application, Form HQ F 1400.12 rev 02-10 More Documents & Publications DOE HQ F 1400.12 Forrestal Garage Parking Guidelines, Revised August 12, 2010 Handicapped Parking Guidance...

369

Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness  

Science Conference Proceedings (OSTI)

The current study tests applications of the Comfort Formula (COMFA) energy budget model by assessing the moderating effects of urban parks in contrast to streets, and it also looks at the influence of park types (ôopenö or ôtreedö). Exploration ...

Jennifer K. Vanos; Jon S. Warland; Terry J. Gillespie; Graham A. Slater; Robert D. Brown; Natasha A. Kenny

2012-09-01T23:59:59.000Z

370

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network (OSTI)

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation, chosen by EPRI to support the industrial parks study. Cogeneration benefits for park owners, tenants and the local utilities are presented. A method developed for selecting industrial park sites for cogeneration facilities and design and financing options are also discussed.

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

371

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

372

UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 [1] UMore Park Wind Turbine Project Loggerhead Shrike Survey Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 Project Area The University of Minnesota owns approximately 5,000 acres in Dakota County, known as the University of Minnesota Outreach, Research and Education (UMore) Park. A concept master plan was developed

373

Alternative Fueled Vehicles in the Great Smoky Mountains National Park: Cades Cove  

Science Conference Proceedings (OSTI)

The Great Smoky Mountains National Park (GSMNP) -- located in a beautiful mountainous area along the southern portion of the North Carolina and Tennessee borders and largely within the Tennessee Valley Authority (TVA) service territory -- is the most visited national park in the United States. As the number of park visitors increases, so do the number of vehicles in the park at any given time. The contributing emissions that result from the enormous number of internal combustion engine vehicles supply a ...

2004-11-29T23:59:59.000Z

374

Solubility of airborne uranium compounds at the Fernald Environmental Management Project  

Science Conference Proceedings (OSTI)

The in vitro volubility of airborne uranium dusts collected at a former uranium processing facility now undergoing safe shutdown, decontamination and dismantling was evaluated by immersing air filters from high volume samplers in simulated lung fluid and measuring the {sup 238}U in sequential dissolution fractions using specific radiochemical analysis for uranium. X rays and photons from the decay of uranium and thorium remaining on the filter after each dissolution period were also directly measured using a planar germanium detector as a means for rapidly evaluating the volubility of the uranium bearing dusts. Results of these analyses demonstrate that two -distinct types of uranium bearing dusts were collected on the filters depending upon the location of the air samplers. The first material exhibited a dissolution half-time much less than one day and was most likely UO{sub 3}. The dissolution rate of the second material, which was most likely U{sub 3}O{sub 8}, exhibited two components. Approximately one-third of this material dissolved with a halftime much less than one day. The remaining two-thirds of the material dissolved with half times between 230 {+-} 16 d and 1350 {+-} 202 d. The dissolution rates for uranium determined by radiochemical analysis and by gamma spectrometry were similar. However, gamma spectrometry analysis suggested a difference between the half times of {sup 238}U and its daughter {sup 234}Th which may have important implications for in vivo monitoring of uranium.

Heffernan, T.E.; Lodwick, J.C.; Spitz, H.; Neton, J.; Soldano, M.

2000-04-04T23:59:59.000Z

375

Embedded automatic parking management system based on RFID and existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, an Embedded Automatic Parking Management System (EAPMS) that integrates the existed gate system and RFID is proposed. This system includes Embedded Gate Hardware, Gate-PC Controller, RFID System, Parking Management Platform. Most systems ... Keywords: RFID, embedded, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee; Nan-Yuan Huang

2008-07-01T23:59:59.000Z

376

Modular RFID parking management system based on existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, a Modular RFID Parking Management System that integrates the existed gate system and RFID is proposed. This system includes Modular Gate-PC Controller and Embedded Gate Hardware, RFID System, Modular Parking Management Platform. Most systems ... Keywords: RFID, embedded, modular, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee

2008-06-01T23:59:59.000Z

377

Evolution of knowledge creation and diffusion: the revisit of Taiwan's Hsinchu Science Park  

Science Conference Proceedings (OSTI)

The Hsinchu Science Park in Taiwan has been synonymous with dynamic and flourishing high-tech industries and companies since the 1980s. Using patent citation data, this empirical study shows that Taiwan's Hsinchu Science Park is a healthy and knowledge-based ... Keywords: Knowledge flows, Patent citation, R11, R58, Region innovation system, Science Park, Taiwan

Mei-Chih Hu

2011-09-01T23:59:59.000Z

378

Historical GIS as a Platform for Public Memory at Mammoth Cave National Park  

Science Conference Proceedings (OSTI)

The Mammoth Cave Historical GIS (MCHGIS) fosters new understandings of a national park landscape as a historic farming community and offers a web-based platform for public memory of pre-park inhabitants. It maps the 1920 manuscript census at the household ... Keywords: Historical GIS, Kentucky, Mammoth Cave, National Parks, Public Memory, Public Participation GIS, Virtual Community Building

Katie Algeo; Ann Epperson; Matthew Brunt

2011-10-01T23:59:59.000Z

379

Evaluating and benchmarking productive performances of six industries in Taiwan Hsin Chu Industrial Science Park  

Science Conference Proceedings (OSTI)

Science Park provides a unique environment for accelerating technological innovation. The purpose of this paper is to analyze efficiency and productivity growth of six industries in Taiwan Hsin Chu Industrial Science Park for the period 2000-2006. From ... Keywords: DEA, Hsin Chu Industrial Science Park, Malmquist Productivity Indexes, Window analysis

Chia Chi Sun

2011-03-01T23:59:59.000Z

380

Reunion at Bletchley Park, 19 October 1991 Brian Randell  

E-Print Network (OSTI)

of Newcastle upon Tyne The reunion was organized by the Bletchley Archaeological and Historical Society (BAHS: Bletchley Park was occupied by the HQ of Britain's cryptanalytic and signals intelligence organisation by English Heritage (the organization which is responsible for many historic buildings and sites in England

Newcastle upon Tyne, University of

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

District heating system, College Industrial Park, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The College Industrial Park (CIP) is located to the northwest of the Oregon Institute of Technology (OIT) campus. Waste water from the OIT campus geothermal heating system flows through an open ditch to the south of the Park. Being aware of this, city personnel have requested the Geo-Heat Center design a distribution network for the Park to eventually utilize an estimated 600 GPM of the 130/sup 0/F waste water. Geothermal water from each campus building is discharged into storm drains which also collect surface run off from parking lots, roofs and grounds. Waste water temperatures are generally between 120/sup 0/F and 130/sup 0/F, however, it may drop as low as 90/sup 0/F when mixing occurs with large amounts of surface run off. Peak heating load requirements for the OIT campus are estimated to be 17.8 x 10/sup 6/ Btu/hour for 567,000 square feet of space. Peak flow rate of geothermal fluid to satisfy this load is then 593 GPM based on a net 60/sup 0/F temperature differential. Three wells are available to supply the necessary flow. A Lithium-Bromide Absorption Chiller (185 ton) was installed in 1980 to provide space cooling. The chiller requires a constant flow rate of 550 GPM and discharges 170/sup 0/F water to the storm drains during summer months.

Not Available

1981-10-01T23:59:59.000Z

382

Comments on "Modelling the gap size distribution of parked cars"  

E-Print Network (OSTI)

In this Comment we discuss some points concerning the modeling of parked cars proposed in the article by Rawal and Rodgers, Physica A (2005). We also introduce another approach to this problem which leads to a better description of the empirical data collected by the authors.

Girardi, Mauricio

2009-01-01T23:59:59.000Z

383

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

384

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks  

E-Print Network (OSTI)

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

Paris-Sud XI, Universit├ę de

385

Chronic disease and early exposure to air-borne mixtures. 2. Exposure assessment  

Science Conference Proceedings (OSTI)

This work is part of a larger study of the impact of early exposure to releases from industry on the etiology of cancer. Releases from all kraft and sulfite mills, coke ovens, oil refineries, copper, nickel, and lead/zinc smelters operating in Canada during the exposure period of 1967-1970 have been determined. All plumes have been expressed in g BaP eq/d using the RASH methodology. The releases have been divided into process, boiler fuel, dioxin, and SO{sub 2} emissions. Combustion sources have been defined with FIREv6.23. Dioxin congenors are expected in all source types when the boiler fuel is heavy fuel oil, wood or wood bark, or coal. All about 90 communities examined have an inverted sex ratio. 53 refs., 2 figs., 4 tabs.

James Argo [IntrAmericas Centre for Environment and Health, Wolfe Island, ON (Canada)

2007-10-15T23:59:59.000Z

386

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

387

Clean Cities: Submitting Project Ideas for the Clean Cities National Parks  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitting Project Ideas for the Clean Submitting Project Ideas for the Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments

388

Solid-State Lighting: Using the Street and Parking Facility Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the Street and Parking Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Using the Street and

389

Better Buildings Neighborhood Program: STEP-UP Coaches a University Park  

NLE Websites -- All DOE Office Websites (Extended Search)

STEP-UP STEP-UP Coaches a University Park Family to Comfort and Savings to someone by E-mail Share Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Facebook Tweet about Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Twitter Bookmark Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Google Bookmark Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Delicious Rank Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Digg Find More places to share Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on

390

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

391

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

392

Air Pollution (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

393

Airborne electromagnetic surveys as a reconnaissance technique for  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Details Activities (1) Areas (1) Regions (0) Abstract: INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five Known Geothermal Resource Areas (KGRA's). AEM work has not been significantly utilized in the past for geothermal purposes because it was thought that a shallow exploration technique would not be effective. Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. INPUT responses in the form of

394

Aggregate Spray for Air Particulate  

This will assist emergency responders and aid in protecting public health. This copolymer and solvent solution is used to bind with airborne hazardous ...

395

Normandy Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Normandy Park, Washington: Energy Resources Normandy Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4362103┬░, -122.3406799┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4362103,"lon":-122.3406799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Gulivoire Park, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gulivoire Park, Indiana: Energy Resources Gulivoire Park, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6133812┬░, -86.2452839┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6133812,"lon":-86.2452839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Biscayne Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biscayne Park, Florida: Energy Resources Biscayne Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8825951┬░, -80.1806025┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8825951,"lon":-80.1806025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Woodbourne-Hyde Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodbourne-Hyde Park, Ohio: Energy Resources Woodbourne-Hyde Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.665533┬░, -84.1698908┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.665533,"lon":-84.1698908,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

MHK Projects/Reedsport OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Reedsport OPT Wave Park Reedsport OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.22,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

400

Roxborough Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roxborough Park, Colorado: Energy Resources Roxborough Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4738776┬░, -105.0852642┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4738776,"lon":-105.0852642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Schiller Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Illinois: Energy Resources Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9558637┬░, -87.8708965┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9558637,"lon":-87.8708965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Frazier Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frazier Park, California: Energy Resources Frazier Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8227556┬░, -118.9448219┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8227556,"lon":-118.9448219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Park County RE2 Wind Project | Open Energy Information  

Open Energy Info (EERE)

County RE2 Wind Project County RE2 Wind Project Jump to: navigation, search Name Park County RE2 Wind Project Facility Park County RE2 Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 110683 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

404

Clearbrook Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clearbrook Park, New Jersey: Energy Resources Clearbrook Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.309831┬░, -74.4645962┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.309831,"lon":-74.4645962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Gresham Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gresham Park, Georgia: Energy Resources Gresham Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7034405┬░, -84.3143682┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7034405,"lon":-84.3143682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Hazel Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4625362┬░, -83.1040912┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4625362,"lon":-83.1040912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

408

Cascade-Chipita Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cascade-Chipita Park, Colorado: Energy Resources Cascade-Chipita Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9498727┬░, -105.0031457┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9498727,"lon":-105.0031457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Humboldt Industrial Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Pennsylvania Wind Energy Developer Energy Unlimited Energy Purchaser Community Energy Location Hazleton PA Coordinates 40.9507┬░, -75.9735┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9507,"lon":-75.9735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Minerva Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Minerva Park, Ohio: Energy Resources Minerva Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0764526┬░, -82.9437921┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0764526,"lon":-82.9437921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Maplewood Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maplewood Park, Ohio: Energy Resources Maplewood Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1356133┬░, -80.5845173┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1356133,"lon":-80.5845173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Belvedere Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belvedere Park, Georgia: Energy Resources Belvedere Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4606984┬░, -84.9040969┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4606984,"lon":-84.9040969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004┬░, -93.0551795┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

414

Merrionette Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Merrionette Park, Illinois: Energy Resources Merrionette Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6842004┬░, -87.7003277┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6842004,"lon":-87.7003277,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Kendall Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4209391┬░, -74.560711┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4209391,"lon":-74.560711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Lake Forest Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Washington: Energy Resources Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7567644┬░, -122.2809602┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7567644,"lon":-122.2809602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Indian Head Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Head Park, Illinois: Energy Resources Head Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7703092┬░, -87.9022808┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7703092,"lon":-87.9022808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Comstock Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Comstock Park, Michigan: Energy Resources Comstock Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0386368┬░, -85.6700332┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0386368,"lon":-85.6700332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

420

St. Louis Park, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota: Energy Resources Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9482979┬░, -93.3480051┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9482979,"lon":-93.3480051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

422

Highland Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8887243┬░, -75.1079525┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8887243,"lon":-75.1079525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Severna Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Severna Park, Maryland: Energy Resources Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388┬░, -76.5452409┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.070388,"lon":-76.5452409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Loveland Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Loveland Park, Ohio: Energy Resources Loveland Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.299781┬░, -84.2632706┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.299781,"lon":-84.2632706,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Terrace Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Terrace Park, Ohio: Energy Resources Terrace Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1592269┬░, -84.3071602┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1592269,"lon":-84.3071602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Mangonia Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mangonia Park, Florida: Energy Resources Mangonia Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.760341┬░, -80.0736529┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.760341,"lon":-80.0736529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

View Park-Windsor Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Park-Windsor Hills, California: Energy Resources Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545┬░, -118.3491169┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9929545,"lon":-118.3491169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Roeland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roeland Park, Kansas: Energy Resources Roeland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0375053┬░, -94.6321795┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0375053,"lon":-94.6321795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Ingalls Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ingalls Park, Illinois: Energy Resources Ingalls Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5213┬░, -88.033882┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5213,"lon":-88.033882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Cliffside Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cliffside Park, New Jersey: Energy Resources Cliffside Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8214894┬░, -73.9876388┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8214894,"lon":-73.9876388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Plantation Mobile Home Park, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Plantation Mobile Home Park, Florida: Energy Resources Plantation Mobile Home Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.702392┬░, -80.132515┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.702392,"lon":-80.132515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

La Grange Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grange Park, Illinois: Energy Resources Grange Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8347535┬░, -87.861726┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8347535,"lon":-87.861726,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

City of Park River, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Park River Park River Place North Dakota Utility Id 14474 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Multi-Dwelling Commercial Commercial All Electric Commercial Commercial Off-Peak Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Heat Pump Residential Industrial >125,000 kWh/yr Industrial Residential Residential Residential Off Peak Residential Residential- All Electric Residential Average Rates Residential: $0.0858/kWh Commercial: $0.0905/kWh

434

Munds Park, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Munds Park, Arizona: Energy Resources Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574┬░, -111.6401551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.945574,"lon":-111.6401551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Oakland Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Florida: Energy Resources Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1723065┬░, -80.1319893┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1723065,"lon":-80.1319893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Brook Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brook Park, Ohio: Energy Resources Brook Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3983838┬░, -81.8045788┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983838,"lon":-81.8045788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

City of College Park, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Park College Park Place Georgia Utility Id 3939 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY FLAT RATE Commercial GENERAL SERVICE NON-DEMAND Commercial LARGE GENERAL SERVICE Commercial MEDIUM GENERAL SERVICE Commercial RESIDENTIAL Residential SECURITY LIGHTING SERVICE HPS 100 W Lighting SECURITY LIGHTING SERVICE, HPS 250 Lighting SECURITY LIGHTING SERVICE, HPS 400 Lighting

438

Palisades Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palisades Park, New Jersey: Energy Resources Palisades Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8481556┬░, -73.997639┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8481556,"lon":-73.997639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Harrington Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrington Park, New Jersey: Energy Resources Harrington Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9837089┬░, -73.9798601┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9837089,"lon":-73.9798601,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Baldwin Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, California: Energy Resources Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0852868┬░, -117.9608978┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0852868,"lon":-117.9608978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lincoln Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.742064┬░, -74.2440299┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.742064,"lon":-74.2440299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodlawn Park, Oklahoma: Energy Resources Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455┬░, -97.6500419┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5114455,"lon":-97.6500419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Gloria Glens Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glens Park, Ohio: Energy Resources Glens Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0583883┬░, -81.8979171┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0583883,"lon":-81.8979171,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Menlo Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Menlo Park, California: Energy Resources Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4538274┬░, -122.1821871┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4538274,"lon":-122.1821871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Laurel Park, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laurel Park, North Carolina: Energy Resources Laurel Park, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1245734┬░, -81.6809391┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1245734,"lon":-81.6809391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Deer Park, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New York: Energy Resources Park, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7617653┬░, -73.3292857┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7617653,"lon":-73.3292857,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Fern Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fern Park, Florida: Energy Resources Fern Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6491649┬░, -81.3511796┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6491649,"lon":-81.3511796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Overland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Overland Park, Kansas: Energy Resources Overland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9822282┬░, -94.6707917┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9822282,"lon":-94.6707917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Ridgefield Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgefield Park, New Jersey: Energy Resources Ridgefield Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8570442┬░, -74.0215285┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8570442,"lon":-74.0215285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Tangelo Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tangelo Park, Florida: Energy Resources Tangelo Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4558386┬░, -81.4459047┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4558386,"lon":-81.4459047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Richton Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Richton Park, Illinois: Energy Resources Richton Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.484479┬░, -87.7033787┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.484479,"lon":-87.7033787,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Sherwood Park, Alberta: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Alberta: Energy Resources Park, Alberta: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6146279 Coordinates 53.51684┬░, -113.3187┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.51684,"lon":-113.3187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Riverton-Boulevard Park, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Riverton-Boulevard Park, Washington: Energy Resources Riverton-Boulevard Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5033976┬░, -122.3094913┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5033976,"lon":-122.3094913,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Takoma Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Takoma Park, Maryland: Energy Resources Takoma Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9778882┬░, -77.0074765┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9778882,"lon":-77.0074765,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Nicoma Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nicoma Park, Oklahoma: Energy Resources Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731┬░, -97.3230893┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4911731,"lon":-97.3230893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Azalea Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Azalea Park, Florida: Energy Resources Azalea Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5411128┬░, -81.3006237┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5411128,"lon":-81.3006237,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Alondra Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alondra Park, California: Energy Resources Alondra Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8894595┬░, -118.3309073┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8894595,"lon":-118.3309073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Sunland Park, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunland Park, New Mexico: Energy Resources Sunland Park, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.796496┬░, -106.5799891┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.796496,"lon":-106.5799891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Tinley Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tinley Park, Illinois: Energy Resources Tinley Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5733669┬░, -87.7844944┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5733669,"lon":-87.7844944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Oak Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4594803┬░, -83.1827051┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4594803,"lon":-83.1827051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Village Park, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Hawaii: Energy Resources Park, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3930017┬░, -158.0253941┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3930017,"lon":-158.0253941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network (OSTI)

.0 100.0 120.0 0 10 20 30 40 Noise Level (dBA) Distance from Wind Turbine (m) SS P20, NP100, and P500 ACambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide

463

Partial Design of a Multi-Energy Park at Clarkson University: Simulating the Electrical Performance of the Multi-Energy Park  

Science Conference Proceedings (OSTI)

Clarkson University -- an independent technological university in Potsdam, New York -- is the proposed site of a multi-energy park, which would be powered mostly by two Wartsila 2.5-MVA generators using reciprocating internal combustion engines. This report documents electrical interconnection and analytical modeling studies performed to determine the electrical characteristics of the proposed Clarkson multi-energy park.

2003-12-31T23:59:59.000Z

464

NETL: News Release - Energy Department Expands Air Monitoring Efforts to  

NLE Websites -- All DOE Office Websites (Extended Search)

September 11, 2000 September 11, 2000 Energy Department Expands Air Monitoring Efforts to Deep South The Energy Department is expanding its efforts to collect data on microscopic airborne particles to the deep South. The department will award Southern Research Institute (SRI), Birmingham, AL, a $750,000 contract to augment an air monitoring station in Alabama with new capabilities to study fine particulate matter called PM2.5. The term stands for particulate matter with a diameter less than 2.5 micrometers, or about 1/30th the width of a human hair. The effort is intended to assist the Environmental Protection Agency (EPA), state agencies and the energy industry in gauging the level and sources of the tiny particles which are now regulated under new federal air quality standards.

465

AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE  

SciTech Connect

This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

John H. Pavlish; Steven A. Benson

1999-07-01T23:59:59.000Z

466

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

467

Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA  

E-Print Network (OSTI)

We report results of air monitoring started due to the recent natural catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. We measured the evolution of the activities over a period of 23 days at the end of which the activities had mostly fallen below our detection limit. The highest detected activity amounted to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.

J. Diaz Leon; D. A. Jaffe; J. Kaspar; A. Knecht; M. L. Miller; R. G. H. Robertson; A. G. Schubert

2011-03-24T23:59:59.000Z

468

Air Pollution Project: Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario Internet Links Student Pages Oak Park and River Forest High School in Oak Park, IL, is a four-year (9-12) comprehensive high school with an enrollment of approximately 2800 students. The communities of Oak Park and River Forest are located just west of Chicago. Student backgrounds vary greatly socio-economically, ethnically (63% Caucasian, 28% African-American, 4% Hispanic, 4% Asian) and culturally. Average student standardized test scores are above the state and national averages. The chemistry class is a cross section of the lower 70% of the school community. Students in Ms. Bardeen's regular chemistry class, grades 10, 11 & 12 enter the computer lab, access the Internet on their computers, and begin to work with their teams on their current project. Students are busy talking with

469

Environmental Impacts of Tourism in Khao Yai National Park, Thailand  

E-Print Network (OSTI)

Knowledge of visitor impacts is critical for sustainable tourism management in national parks. The focus of past tourism impact research on national parks is either on bio-physical impacts (conducted as recreation ecology research) or on social impacts (human dimensions, including environmental perception and crowding). Research integrating these two dimensions has been rarely conducted. This research aims to fill this gap through the integrative approach that attempts to understand current biophysical impacts of visitor activities in a national park, and it examines how visitors perceive these impacts. The primary objectives of this dissertation are 1) to provide a synthesis of existing of bio-physical impacts of visitor activities in the Khao Yai National Park (KYNP) and 2) to examine visitorsĺ perception of those impacts. Also, the factors affecting visitorsĺ perception are analyzed. Both qualitative and quantitative methods were used in this study. Previous impact studies conducted in KYNP were reviewed. A visitor survey was conducted between December 2008 and February 2009. The questionnaires were distributed to 628 domestic and 40 international visitors. The 38 KYNP official interviews were completed. Based on previous impact research in KYNP, the most common bio-physical impacts include soil compaction, removal of humus layer, erosion, plant damage, soil and root exposure, water quality deterioration, disturbance and feeding wildlife. Other environmental impacts include noise pollution and garbage accumulation. The results indicate that more than 30 percent of visitors do not recognize the negative results of their activities. With the exception of vegetation and water impacts, overall, visitors perceive the impacts as less severe than the actual impacts. Environmental impacts are rated differently by the KYNP officials, domestic, and international visitors. Also, significant differences were found among birders, hikers, and campers. The key factors influencing impact perceptions include income level, education level, residential location, park visitation experience, length of stay in KYNP, recreation activity, frequency of activity, group type, and group size. It is suggested that both the quality and the quantity of visitor impact research are needed to construct the body of knowledge of impacts in KYNP. A long-term impact monitoring is required to sustain the ecological integrity in KYNP.

Phumsathan, Sangsan

2010-08-01T23:59:59.000Z

470

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

471

New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter  

E-Print Network (OSTI)

This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size-resolved agricultural aerosols collected from a ground site at the nominally downwind and upwind edge of a feedlot in West Texas were reported. High volume cascade impactor samplers were used for the collection of the particles, and two major analytical methods were applied to characterize different components of the aerosols, ion chromatography (IC ) was used to measure ionic composition with the main targets being ammonium (NH4 ), nitrate (NO3 -), and sulfate (SO4 2-), direct thermal desorption gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) methodology was used to identify and quantify organic compounds in the aerosol particles. For the urban aerosols, I report the measurement of mass, and the chemical composition of size-resolved aerosols collected from two different locations in Houston, analyzed by the thermal desorption GC-MS/FID method. The investigation of single particle composition using RM is reported as well: RM and chemical mapping techniques have been applied for the qualitative analysis of components in the samples of air particulate matter collected in downtown Houston.

Zhou, Lijun

2010-08-01T23:59:59.000Z

472

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

473

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

474

New and Underutilized Technology: Bi-level Garage/Parking Lot/Pedestrian  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garage/Parking Garage/Parking Lot/Pedestrian Lighting New and Underutilized Technology: Bi-level Garage/Parking Lot/Pedestrian Lighting October 4, 2013 - 5:02pm Addthis The following information outlines key deployment considerations for bi-level garage/parking lot/pedestrian lighting within the Federal sector. Benefits Bi-level LED lighting uses fluorescent and LED lighting sources with bi-level motion sensors to reduce lighting levels when the parking area is not in use. Application Bi-level LED lighting is appropriate for garage, parking lot, and pedestrian areas. It can also be applied to pathway lighting where appropriate. Key Factors for Deployment Evaluate specific lighting and environmental requirements before deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

475

Pedestrian and traffic safety in parking lots at SNL/NM : audit background report.  

SciTech Connect

This report supplements audit 2008-E-0009, conducted by the ES&H, Quality, Safeguards & Security Audits Department, 12870, during fall and winter of FY 2008. The study evaluates slips, trips and falls, the leading cause of reportable injuries at Sandia. In 2007, almost half of over 100 of such incidents occurred in parking lots. During the course of the audit, over 5000 observations were collected in 10 parking lots across SNL/NM. Based on benchmarks and trends of pedestrian behavior, the report proposes pedestrian-friendly features and attributes to improve pedestrian safety in parking lots. Less safe pedestrian behavior is associated with older parking lots lacking pedestrian-friendly features and attributes, like those for buildings 823, 887 and 811. Conversely, safer pedestrian behavior is associated with newer parking lots that have designated walkways, intra-lot walkways and sidewalks. Observations also revealed that motorists are in widespread noncompliance with parking lot speed limits and stop signs and markers.

Sanchez, Paul Ernest

2009-03-01T23:59:59.000Z

476

Source Apportionment of Airborne Particulate Matter using Inorganic and  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

477

Airborne Instrumentation Needs for Climate and Atmospheric Research  

SciTech Connect

Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

2011-10-06T23:59:59.000Z

478

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents (OSTI)

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

479

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

480

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "airborne air park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Ambient Monitoring - Steubenville Comprehensive Air Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Steubenville Comprehensive Air Monitoring Project (SCAMP) Steubenville Comprehensive Air Monitoring Project (SCAMP) The National Ambient Air Quality Standards for airborne fine particles (PM2.5) are based on the mass of PM2.5 measured at outdoor monitoring stations; however, most people spend the majority of their time indoors. In order to fully understand the relationship between ambient PM2.5 and human health effects, it is important to define how ambient PM2.5 concentrations and compositions compare to those actually breathed by humans during normal daily activities. The objective of SCAMP is to measure the concentrations of PM2.5 and other potential air pollutants at ambient monitoring stations in and around Steubenville, OH, and relate them to the pollutant concentrations in air that is actually breathed by people living in the area. Steubenville was chosen by DOE for this study because of the ability to integrate its results with those of the UORVP, and also because Steubenville was one of the six cities where correlations between ambient PM2.5 mass and adverse health effects had been noted. These correlations had been cited by EPA as one of the primary justifications for its 1997 ambient PM2.5 standards. Complete characterization of the relationships between ambient PM2.5 and human exposure, including the chemical components of PM2.5 at various locations, will provide a comprehensive database for use in subsequent epidemiological studies, long-range transport studies, and State Implementation Program development. CONSOL Energy is the primary performer of SCAMP, and will provide the necessary coordination and data integration between the various components of the study.

482

GPS/INS navigation precision and its effect on airborne radio occultation retrieval accuracy  

Science Conference Proceedings (OSTI)

An airborne radio occultation (RO) system has been developed to retrieve atmospheric profiles of refractivity, moisture, and temperature. The long-term objective of such a system is deployment on commercial aircraft to increase the quantity of moisture ... Keywords: Airborne radio occultation, GPS/INS precision, Retrieval accuracy

Paytsar Muradyan; Jennifer S. Haase; Feiqin Xie; James L. Garrison; Justin Voo

2011-07-01T23:59:59.000Z

483

Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models  

Science Conference Proceedings (OSTI)

Forecasting airborne pollen concentrations is one of the most studied topics in aerobiology, due to its crucial application to allergology. The most used tools for this problem are single lineal regressions and autoregressive models (ARIMA). Notwithstanding, ... Keywords: Aerobiology, Airborne pollen, Forecasting, Neuro-fuzzy, Time series

JosÚ Luis Aznarte M.; JosÚ Manuel BenÝtez Sßnchez; Diego Nieto Lugilde; Concepciˇn de Linares Fernßndez; Consuelo DÝaz de la Guardia; Francisca Alba Sßnchez

2007-05-01T23:59:59.000Z

484

AIRBORNE RESEARCH & SURVEY FACILITY (ARSF) http://arsf.nerc.ac.uk  

E-Print Network (OSTI)

instruments can be made available for special applications: Large-format RC-10 aerial survey cameraAIRBORNE RESEARCH & SURVEY FACILITY (ARSF) http://arsf.nerc.ac.uk ANNOUNCEMENT OF OPPORTUNITY 2009 OCTOBER 2008 The Airborne Research & Survey Facility (ARSF) invites direct access applications for UK

485

NERC AIRBORNE RESEARCH & SURVEY FACILITY (ARSF) http://www.nerc.ac.uk/arsf/home.htm  

E-Print Network (OSTI)

-12 microns, 320 spatial pixels) Large-format RC-10 aerial survey camera, with images being suppliedNERC AIRBORNE RESEARCH & SURVEY FACILITY (ARSF) http://www.nerc.ac.uk/arsf/home.htm SPECIAL OF PROPOSALS: FRIDAY 9 OCTOBER 2009 The Airborne Research & Survey Facility (ARSF) invites applications

486

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646┬ş655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

487

Measurements of Ocean Surface Backscattering Using an Airborne 94-GHz Cloud RadarŚImplication for Calibration of Airborne and Spaceborne W-Band Radars  

Science Conference Proceedings (OSTI)

Backscattering properties of the ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well ...

Lihua Li; Gerald M. Heymsfield; Lin Tian; Paul E. Racette

2005-07-01T23:59:59.000Z