National Library of Energy BETA

Sample records for air-cooled electric chillers

  1. Covered Product Category: Air-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Air-Cooled Electric Chillers Covered Product Category: Air-Cooled ... chillers (i.e., none with remote condensers) are covered. b Performance ...

  2. Covered Product Category: Air-Cooled Electric Chillers

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance and Federal efficiency requirements for electric chillers, which are a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  3. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  4. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  5. Electric chiller handbook. Final report

    SciTech Connect (OSTI)

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technical and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show

  6. Energy Cost Savings Calculator for Air-Cooled Electric Chillers...

    Office of Environmental Management (EM)

    of this standard unit is based on ASHRAE Standard 90.1. Default values - The values pre-loaded into the calculator represent average operating conditions in the Federal sector. ...

  7. Chapter 14: Chiller Evaluation Protocol

    SciTech Connect (OSTI)

    Tiessen, A.

    2014-09-01

    This protocol defines a chiller measure as a project that directly impacts equipment within the boundary of a chiller plant. A chiller plant encompasses a chiller--or multiple chillers--and associated auxiliary equipment. This protocol primarily covers electric-driven chillers and chiller plants. It does not include thermal energy storage and absorption chillers fired by natural gas or steam, although a similar methodology may be applicable to these chilled water system components. Chillers provide mechanical cooling for commercial, institutional, multiunit residential, and industrial facilities. Cooling may be required for facility heating, ventilation, and air conditioning systems or for process cooling loads (e.g., data centers, manufacturing process cooling). The vapor compression cycle, or refrigeration cycle, cools water in the chilled water loop by absorbing heat and rejecting it to either a condensing water loop (water cooled chillers) or to the ambient air (air-cooled chillers).

  8. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  9. Covered Product Category: Water-Cooled Electric Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Category: Water-Cooled Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency

  10. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-co...

  11. Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    Bharathan, D.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

  12. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  14. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development status of air-cooled lithium bromide (LiBr)-water absorption chillers for cooling, heating, and power (CHP) system applications in light-commercial buildings.

  15. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  16. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado.

  17. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  18. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  19. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  20. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Advanced Air Cooling Desikan Bharathan National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 ARRA funded Project Officer: Tim Reinhardt Total Project Funding: $1079K April 22-25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Do not include any proprietary or confidential information. Your presentation is public and will be posted to the DOE Geothermal Technologies Office website. You must include the

  1. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  2. Use Low-Grade Waste Steam to Power Absorption Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Low-Grade Waste Steam to Power Absorption Chillers Use Low-Grade Waste Steam to Power Absorption Chillers This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #14 Use Low-Grade Waste Steam to Power Absorption Chillers (January 2012) (431.31 KB) More Documents & Publications Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications,

  3. Air-Cooled Condensers for Next Generation Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Cooled Condensers for Next Generation Power Plants Principal Investigator: Greg Mines ... eere.energy.gov Project focus: Air-cooled plants for EGS resource developments - Water ...

  4. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  5. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  6. Advantages and disadvantages of using absorption chillers to lower utility bills

    SciTech Connect (OSTI)

    Kistler, P.

    1997-04-01

    Absorption chillers have a proven history of providing low-cost reliable cooling and should continue to do so in the future. Absorption chiller systems can provide significant energy savings for a particular application. To maximize savings, the various system arrangements should be evaluated; for example, single effect versus double effect, chiller versus chiller/heater, straight absorption chiller or the electric/absorption hybrid.

  7. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  8. Purge needs in absorption chillers

    SciTech Connect (OSTI)

    Murray, J.G. )

    1993-10-01

    Absorption chillers are regaining a significant share of large tonnage chiller sales, such as they had 20 years ago. Gas-fired chillers are now available that have a base energy (ultimate fuel usage) consumption rate per ton comparable to that in electric units. Effective purging in an absorption chiller is an absolute necessity to achieve the low chilled water temperature needed for dehumidification and to fully benefit from the energy savings offered by double-effect cycles. Although the purge system is usually not shown on the typical cycle schematic, its proper functioning is a key requirement for satisfactory machine operation. This article discusses the effect of noncondensible (N/C) gases on the absorption cooling process and the basics of purge systems. In addition, the article discusses the rationale for the important design step of selecting the location of the N/C probe, and discusses purge systems applicable to the direct-fired, double-effect machines now entering the marketplace.

  9. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  10. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  11. Absorption chillers: Part of the solution

    SciTech Connect (OSTI)

    Occhionero, A.J. ); Hughes, P.J. ); Reid, E.A. )

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs.

  12. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect (OSTI)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  13. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  14. Hybrid Air-Cooled Condenser - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Air-Cooled Condenser National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal energy has been a viable energy source...

  15. Covered Product Category: Air-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, which are covered by the ENERGY STAR program.

  16. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  17. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  18. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  19. Absorption chillers: Technology for the future

    SciTech Connect (OSTI)

    Garland, P.W.; Garland, R.W.

    1997-12-31

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries worldwide are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side-effects. The refrigeration and air-conditioning industry, due to its reliance on CFCs and HCFCs, has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. Additionally, gas-fired absorption chillers can save significant amounts in energy costs when used in combination with a vapor compression chiller in a hybrid system. The hybrid system can take advantage of the comparatively low price of natural gas (per unit ton) and rely on the high performance of vapor compression when electricity prices are lower. The purpose of this article is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles, a discussion on the technology of coupling absorption with vapor compression systems to form a hybrid system, and the environmental impacts of absorption.

  20. Nanolubricants to Improve Chiller Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanolubricants to Improve Chiller Performance Nanolubricants to Improve Chiller Performance Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer ...

  1. Purchasing Energy-Efficient Air-Cooled Ice Machines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  2. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  3. Automated Centrifugal Chiller Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Automated Centrifugal Chiller Diagnostician Pacific Northwest National Laboratory Contact PNNL About This Technology Centrifugal chiller display Centrifugal chiller display Typical diagnostic display Typical diagnostic display Technology Marketing Summary Researchers and engineers at PNNL have developed an automated, sophisticated, multi-level, real-time centrifugal chiller diagnostician with diagnostics available under partial

  4. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP...

  6. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  7. Air-Cooled Condensers for Next Generation Power Plants | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Air-Cooled Condensers for Next Generation Power Plants Air-Cooled Condensers for Next Generation Power Plants Power plants presentation by Greg Mines at the 2013 Annual Peer Review in Colorado. aircooledcondensers_peerreview2013.pdf (1.56 MB) More Documents & Publications Hybrid and Advanced Air Cooling Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in Next-generation Conversion Systems

  8. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  9. The rediscovery of absorption chillers

    SciTech Connect (OSTI)

    Katzel, J.

    1992-04-23

    Absorption chillers are back - and for two very good reasons: they are environmentally sound and, in many cases, economically attractive. One factor fueling this resurgence is the outlook for natural gas, the energy source of most absorption systems. Deregulation has spurred exploration, and forecasts indicate an abundant supply and relatively low prices through 2050. Threats of global warming and depletion of the ozone layer also are forces driving the absorption chiller market. Being a good corporate citizen today means minimizing or eliminating the use of chlorofluorocarbons (CFCs), the basis of many refrigerants used in mechanical chillers. Even as chemical and chiller manufacturers alike work to develop substitute refrigerants, the perfect alternative has yet to be found. Absorption units are free of these problems, a benefit that appeals to many people.

  10. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  11. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  12. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  13. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computing Center | Department of Energy Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Study evaluates the energy efficiency of a new, liquid-cooled computing system applied in a retrofit project compared to the previously used air-cooled system. Download the study. (1.25 MB) More Documents & Publications Energy Efficiency Opportunities in Federal High

  14. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal ORC system | Department of Energy Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with

  15. Purchasing Energy-Efficient Air-Cooled Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Categories » Purchasing Energy-Efficient Air-Cooled Ice Machines Purchasing Energy-Efficient Air-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides acquisition guidance for air-cooled ice machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition

  16. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - ...

  17. Compact Absorption Chiller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Compact Absorption Chiller Pacific Northwest National Laboratory Contact PNNL About This...

  18. Investigation of the part-load performance of an absorption chiller

    SciTech Connect (OSTI)

    Radermacher, R.; Didion, D.A.; Klein, S.A.

    1983-01-01

    An experimental investigation designed to determine the part-load performance of an ammonia-water absorption water chiller is described. The steady-state and cyclic performance of the chiller were measured under controlled conditions in an environmental chamber. Two valves were installed in the chiller to separate high- and low-pressure regions during off times, and insulation was applied to the chiller components. By these measures, losses due to cyclic operation were reduced by over 50%, resulting in a 6% to 7% increase in the calculated seasonal performance factor for typical northern and southern climates in the United States. The use of the valves eliminated the need of the ''spindown'' period, thereby reducing the consumption of parasitic electrical energy.

  19. Cost reductions in absorption chillers. Final report, June 1984-May 1985

    SciTech Connect (OSTI)

    Leigh, R.W.

    1986-05-01

    Absorption chillers have great difficulty competing with the electric-driven compression alternative, due in part to modest operating efficiencies and largely to high first costs. This project is an assessment of the possibility of lowering the costs of absorption chillers dramatically by the use of low material intensity in the design of a new generation of these machines. Breakeven costs for absorption chillers, their heat exchangers and heat exchanger materials were established which will allow commercial success. Polymeric and metallic materials appropriate to particular components and which meet the cost goals were identified. A subset of these materials were tested and ordered by success in tolerating conditions and materials found in absorption chiller applications. Conceptual designs which indicate the practicality of the low material intensity approach were developed. The work reported here indicates that there is a high probability that this apporach will be successful.

  20. Investigation of vessel exterior air cooling for an HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    2000-07-01

    The secure transportable autonomous reactor (STAR) concept under development at Argonne National Laboratory provides a small [300-MW(thermal)] reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100% + natural-circulation heat removal from the low-power-density/low-pressure-drop ultralong lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the reactor exterior cooling system (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the reactor vessel auxiliary cooling system (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  1. Investigation of vessel exterior air cooling for a HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J. J.; Spencer, B. W.

    2000-01-13

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  2. Residential solar-absorption chiller thermal dynamics

    SciTech Connect (OSTI)

    Guertin, J.M.; Wood, B.D.; McNeill, B.W.

    1981-03-01

    Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

  3. United States Department of Energy large commercial absorption chiller development program

    SciTech Connect (OSTI)

    Garland, P.W.; DeVault, R.C.; Zaltash, A.

    1998-11-01

    The US Department of Energy (DOE) is working with partners from the gas cooling industry to improve energy efficiency and US competitiveness by using advanced absorption technologies that eliminate the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), refrigerants that contribute to ozone depletion and global warming. Absorption cooling uses natural gas as the heat source, which produces much lower NO{sub x} emissions than oil- or coal-generated electricity. Gas-fired chillers also have the advantage of helping reduce peak electrical usage during summer months. To assist industry in developing advanced absorption cooling technologies, DOE sponsors the Large Commercial Chiller Development Program. The goal of the program is to improve chiller cooling efficiency by 30--50% compared with the best currently available absorption systems.

  4. Healthcare Energy: Spotlight on Chiller Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chiller Plants Healthcare Energy: Spotlight on Chiller Plants The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring chiller plant energy. Image of a chiller plant. Chiller Energy Annual site energy use intensities (EUIs) for chiller energy were estimated to be 27.7 kBtu/ft2-yr for the the Massachusetts General Hospital (MGH) Gray Building and 26.8 kBtu/ft2-yr for the State

  5. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect (OSTI)

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  6. Institutional project summary University of Redlands direct fired gas absorption chiller system

    SciTech Connect (OSTI)

    Tanner, G.R.

    1996-05-01

    The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

  7. Air-cooled condensers eliminate plant water use

    SciTech Connect (OSTI)

    Wurtz, W.; Peltier, R.

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  8. Lithium bromide chiller technology in gas processing

    SciTech Connect (OSTI)

    Huey, M.A.; Leppin, D.

    1995-12-31

    Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

  9. Gas engine driven chiller development and economics

    SciTech Connect (OSTI)

    Koplow, M.D.; Searight, E.F.; Panora, R.

    1986-03-01

    The TECOGEN Division of Thermo Electron Corporation has developed a nominal 150 ton engine driven chiller system under the sponsorship of the Gas Research Institute. The system incorporates an engine directly driving a screw compressor to produce about 130 tons of cooling capacity and a single effect absorption chiller driven by hot water recovered from engine heat to produce another 30 tons of cooling capacity. An economic analysis shows that it will be possible to recover the cost premium of engine driven chiller systems in most US cities in 3 years or less with the O and M savings of these systems when this cost premium is $30 per ton. 4 references, 13 figures, 5 tables.

  10. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect (OSTI)

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  11. Assessment and economic analysis of the MOD III Stirling-engine driven chiller system. Final report, October 1989-July 1990

    SciTech Connect (OSTI)

    Moryl, J.

    1990-07-01

    The Stirling engine is an inherently clean and efficient engine. With the requirements for environmentally benign emissions and high energy efficiency, the Stirling engine is an attractive alternative to both internal combustion (IC) engines and electric motors. The study evaluated a Stirling-engine-driven chiller package. Technically, the Stirling engine is a good selection as a compressor drive, with inherently low vibrations, quiet operation, long life, and low maintenance. Exhaust emissions are below the projected 1995 stringent California standards. Economically, the Stirling-engine-driven chiller is a viable alternative to both IV-engine and electric-driven chillers, trading off slightly higher installed cost against lower total operating expenses. The penetration of a small portion of the projected near-term stationary engine market opportunity will provide the volume production basis to achieve competitively priced engines.

  12. Magnetic-Bearing Chiller Compressors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Magnetic-Bearing Chiller Compressors Magnetic-Bearing Chiller Compressors Centrifugal, two-stage, magnetic-bearing chiller compressors equipped with variable-speed drives are a relatively new technology that operates at a high efficiency. Based on this case study, independent analysis by the U.S. Department of the Navy has verified that magnetic bearing compressors operate more efficiently than reciprocating and screw compressors, especially during partial load

  13. Chiller-heater unit nets building 2-yr payback

    SciTech Connect (OSTI)

    Duffy, J.

    1983-05-09

    A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

  14. Simulating a 4-effect absorption chiller

    SciTech Connect (OSTI)

    Grossman, G.; Zaltash, A.; Adcock, P.W.; DeVault, R.C.

    1995-06-01

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  15. Heavy absorption chillers: The Tortoise technology that can win

    SciTech Connect (OSTI)

    Irwin, F.E.

    1995-06-01

    Why has Absorption taken over 200 years to become a viable technology and secondarily what is the long term potential for heavy absorption technology? A third interesting question may be as some knowledgeable people in the North America industry have professed, is there a Window of Opportunity which was presented by the electric vapor compressor refrigerant issue which will be the last chance for absorption? Of course we know that absorption is not a new technology in 1994. It is however being rediscovered in many parts of the world by specifiers and engineers who are otherwise totally familiar with HVAC systems technology. As has been well documented in Japan, absorption heavy systems have been dominant for some time to the point that over 90% of the new units installed in the heavy systems category are absorption. Further by now 50% of the installed heavy systems tonnage in the country are absorption chillers. It did not take the electric vapor compressor refrigerant issue to make this huge market for absorption and there aren`t too many people in the HVAC business in Japan that view absorption as the {open_quotes}Tortoise technology.{close_quotes} If we only understood what the drivers were in Japan to create this absorption market then perhaps we could understand and possibly predict the long term potential for the technology in other markets of the world. We could actually go to work and look for markets that mirror the prevailing conditions in Japan. There will be those amongst us who will tell you that Japan is a unique market in almost every product category and most certainly with respect to heavy chiller systems.

  16. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  17. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  18. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOE Patents [OSTI]

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  19. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  20. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  1. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  2. Energy savings potential in air conditioners and chiller systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  3. Energy savings potential in air conditioners and chiller systems

    SciTech Connect (OSTI)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  4. Use Low-Grade Waste Steam to Power Absorption Chillers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  5. Commercial absorption chiller models for evaluation of control strategies

    SciTech Connect (OSTI)

    Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.

    1995-08-01

    A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates with the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.

  6. Final TEchnical REport Two 175 ton geothermal chiller heat pumps...

    Office of Scientific and Technical Information (OSTI)

    ... was generated by coal-fired plants, producing approximately 900 grams of C02 per kWh. ... Exposure to the working chiller plant (see images 1, 4, and 5) provided valuable ...

  7. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  8. Advanced Low Temperature Absorption Chiller Module Integrated with a CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 | Department of Energy Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Presentation on Develop & Demonstrate an Advanced Low Temp Heat

  9. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOE Patents [OSTI]

    Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  10. Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers

    SciTech Connect (OSTI)

    Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

    2011-07-17

    There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical

  11. QuikChill software for efficient chiller upgrade assessment

    SciTech Connect (OSTI)

    Rose, R.J.; Anderson, D.

    1998-07-01

    Chiller upgrades, required by recent CFC legislation, have not occurred in most large US facilities. Opportunities for compliance via efficient, correctly-sized chillers is significant, but there is little industry infrastructure encouraging downsizing and maximum efficiency, nor are changeouts approached as investments. Upgrade performance analysis is either too simplistic (missing integration and downsizing opportunities) or too difficult, detailed, and expensive. A niche exists for dedicated tools that can be used for both early screening and more detailed final design analysis, including downsizing, system integration, and staging. QuickChill, a chiller upgrade analysis software tool, as developed by EPA's ENERGY STAR Buildings Program to address these issues. It performs economic and energy analyses of potential centrifugal chiller upgrades using minimal information, and performs more accurate calculations as the quality and detail or inputs are increased. QuikChill assesses the consolidation of existing chillers, integration/staging of new chillers, and refrigerant conversion retrofits. QuikChill was designed for facility managers and consulting engineers facing CFC phaseouts. Rather than require time-consuming, detailed building shell and operational inputs, QuikChill estimates loads using DOE2-generated curves which plot the relationship between cooling load and outdoor temperature. Surprisingly, these curves reasonably predict annual cooling system operating requirements when used with local hourly temperatures and the peak load met by the existing system. Hourly temperature data is available for over 240 locations and users can easily supply peak information. QuikChill's combination of simplified inputs, investment-orientation, and unique approach to hourly cooling load estimation help fill an analytical void for the post-CFC chiller industry.

  12. Cost reduction in absorption chillers: Phase 2

    SciTech Connect (OSTI)

    Leigh, R.W.

    1989-02-01

    A research program at Brookhaven National Laboratory (BNL) has addressed the possibility of dramatically lowering the first costs of absorption chillers through lowered material intensity and the use of lower cost materials, primarily in the heat exchangers which make up the bulk of the operating components of these systems. This must be done while retaining the best performance characteristics available today, a gross design point coefficient of performance (COP) of 1.3 and a net design (seasonal) average COP of 1.0 (0.90) in a directly fired, double effect unit. We have investigated several possible routes to these goals, and here report on these findings, focusing on the areas that appear most promising. The candidate technologies include the use of polymer film heat exchangers in several applications, the use of thin strips of new, corrosion resistant alloys to replace thicker, less impervious metals in applications exposed to gas flames, and copper or cupro-nickel foils in contact with system water. The use of such materials is only possible in the context of new heat exchanger and system designs, which are also discussed. To lend focus, we have concentrated on a directly fired double effect system providing capacity only. If successful, these techniques will also find wide applicability in heat pumps, cogeneration systems, solar cooling, heat recovery and chemical process heat transfer. 46 refs., 24 figs., 22 tabs.

  13. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect (OSTI)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  14. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect (OSTI)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  15. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume II: Chiller test data

    SciTech Connect (OSTI)

    Keuper, E.F.

    1996-03-01

    The data presented here were taken under Trane Laboratory Test Order 23127 between May and October 1995. The chiller was a 200 nominal ton three stage direct drive centrifugal chiller with two economizers. Three sets of impellers, three refrigerants and two oils were tested in the chiller according to the following matrix. Trane 22 is a mineral oil and Solest 68 is a polyolester oil. Runs 1 through 6 were to optimize the refrigerant charge using CFC-11. This was determined to be 360 lbm (163.3 Kg) and this value was used for all three refrigerants. The chiller takes a charge of six gallons of oil (22.7 liters). These data which follow are divided into Large Impeller, Medium Impeller and Small Impeller sets further subdivided by Imperial and Metric presentation. The data were taken in Imperial Units. These data are presented in four-page sets. Page 1 shows the reduced chiller test data. Page 2 shows some supporting calculations by curve fit, such as motor efficiency and motor speed. Pages 3 and 4 show the raw data as delivered by the laboratory. All following four-page sets are repetition of the form but for successive test runs.

  16. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  17. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  18. An approach for assessing the economics of sorption chillers

    SciTech Connect (OSTI)

    Summerer, F.; Ziegler, F.F.

    1998-10-01

    Two methods are presented to optimize sorption chillers with respect to economics. To this end, the investment that is necessary for the heat exchangers is balanced with the achievable COP. The numerical tools available today allow for an exact calculation of thermodynamic processes. However, the thermophysical property data these calculations are based on are often not reliable. Moreover, the economic data that have to be taken into account are very rough guesses in most cases. Consequently, a detailed thermodynamic calculation often is too much effort if quick economic decisions have to be made. This paper shows how, based on the main irreversibilities of the process, quite strong economic statements can be made with limited effort. For detailed engineering and optimization, however, a sound cycle calculation is required. In this respect, an economic optimization can only be performed when all relevant parameters determining the process (e.g., pump flow rates and heat exchanger areas) are varied simultaneously while keeping constant the external temperatures of heat sources and sinks. The result of this parameter variation is the chiller COP, which is dependent on the overall heat exchanger area invested in the chiller. This result can be translated into running cost vs. first cost. Consequently, an economic optimum can be found. In most cases, only chillers that perform near the optimum are economically competitive.

  19. Hybrid Air-Cooled Condenser for Power Plants and other applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The thermal efficiency of geothermal power plants is relatively low, e.g. in the range of 10 to 23 ... when extracting useful energy during the generation of electricity. ...

  20. Chiller condition monitoring using topological case-based modeling

    SciTech Connect (OSTI)

    Tsutsui, Hiroaki; Kamimura, Kazuyuki

    1996-11-01

    To increase energy efficiency and economy, commercial building projects now often utilize centralized, shared sources of heat such as district heating and cooling (DHC) systems. To maintain efficiency, precise monitoring and scheduling of maintenance for chillers and heat pumps is essential. Low-performance operation results in energy loss, while unnecessary maintenance is expensive and wasteful. Plant supervisors are responsible for scheduling and supervising maintenance. Modeling systems that assist in analyzing system deterioration are of great benefit for these tasks. Topological case-based modeling (TCBM) (Tsutsui et al. 1993; Tsutsui 1995) is an effective tool for chiller performance deterioration monitoring. This paper describes TCBM and its application to this task using recorded historical performance data.

  1. Triple effect absorption chiller utilizing two refrigeration circuits

    SciTech Connect (OSTI)

    DeVault, R.C.

    1988-03-22

    This patent describes a heat absorption method for an absorption chiller. It comprises: providing a firs absorption system circuit for operation within a first temperature range, providing a second absorption system circuit for operation within a second temperature range; heat exchanging refrigerant and absorber solution; thermal communication with an external heat load. This patent describes a heat absorption apparatus for use as an absorption chiller. It includes: a first absorption system circuit for operation within a first temperature range; a second absorption system circuit for operation within a second temperature range which has a lower maximum temperature relative to the first temperature range; the first circuit having generator means, condenser means, evaporator means, and absorber means operatively connected together; the second circuit having generator means condenser means, evaporator means, and absorber means operative connected together; and the first circuit condenser means and the first circuit absorber means being in heat exchange communication with the second circuit generator means.

  2. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commissioned LEED Platinum Building | Department of Energy Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature

  3. Transient effects on the performance of a residential solar absorption chiller

    SciTech Connect (OSTI)

    Guertin, J.M.; Wood, B.D.

    1980-01-01

    The transient performance of a commercial residential 3 ton lithium-bromide/water absorption chiller is studied. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Isolation of the absorption chiller from system effects showed time to steady state performance to be a linear function of steady state water supply temperatures. These findings summarized in computer algorithms were used to map the integrated performance of a 3 ton absorption chiller.

  4. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    SciTech Connect (OSTI)

    Sulaiman, S. A. Dominguez-Ontiveros, E. E. Alhashimi, T. Budd, J. L. Matos, M. D. Hassan, Y. A.

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  5. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  6. Aging assessment of essential HVAC chillers used in nuclear power plants

    SciTech Connect (OSTI)

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  7. Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1

    SciTech Connect (OSTI)

    Blahnik, D.E.; Klein, R.F.

    1993-09-01

    The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

  8. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  9. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  10. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect (OSTI)

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  11. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect (OSTI)

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  12. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  13. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  14. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect (OSTI)

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  15. Use Low-Grade Waste Steam to Power Absorption Chillers - Steam Tip Sheet #14

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  16. Development of a gas engine-driven chiller. Annual report, January 1988-November 1988

    SciTech Connect (OSTI)

    Koplow, M.; Morgan, J.

    1989-10-01

    The report covers the third and final year of activity in a program to develop a natural gas engine-driven chiller with a nominal capacity of 150 tons. During the period covered by the report the field testing of six chillers continued, and a seventh and the final field test chiller was installed and started (April 1988). Field test hours for the period totalled 17,299, bringing the total field test hours to 24,247. The reliability and serviceability of the chiller have met expectations and have proven to be within the bounds of acceptability for this type of equipment. A ton-hour weighted coefficient of performance of 1.26 was obtained for the year.

  17. In-situ gamma-PHA measurements to support unconditional release of 235-F chiller units

    SciTech Connect (OSTI)

    Salaymeh, S.R.

    2000-02-17

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facility Decommission Division (FDD) to conduct in-situ gamma-ray pulse height analysis measurements to support the unconditional release of 235-F chiller units. The chiller units were used to cool process water in the 235-F facility. The measurements' main goal is to confirm that there is no process-related contaminants present on the chillers. For each of the two F-area clean water chillers, the authors have acquired ten gamma-ray pulse height analysis spectra. This report will discuss the purpose of the measurements, the experimental setup, data acquisition, calculations and results, and a conclusion of the study.

  18. Two 175 ton geothermal chiller heat pumps for leed platinum building

    Office of Scientific and Technical Information (OSTI)

    technology demonstration project. Operation data, data collection and marketing (Technical Report) | SciTech Connect Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing Citation Details In-Document Search Title: Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing The activities funded by this grant

  19. Comparison of chiller models for use in model-based fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya; Haves, Philip

    2001-06-07

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

  20. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  1. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  2. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum ... Installation of a chiller and cooling tower or an air-cooled chiller may also be an ...

  3. Chiller Controls-related Energy Saving Opportunities in FederalFacilities

    SciTech Connect (OSTI)

    Webster, Tom

    2003-01-01

    Chillers are a significant component of large facility energy use. The focus of much of the development of chilled water systems in recent years has been on optimization of set point and staging controls, improvements in chiller design to increase efficiency and accommodate chlorofluorocarbon (CFC) refrigerant replacements. Other improvements have been made by upgrading controls to the latest digital technologies, improving access and monitoring via communications and sophisticated liquid crystal displays (LCD), more robust fault diagnostics and operating and maintenance information logging. Advances have also been made in how chiller plant systems are designed and operated, and in the diversity of chiller products that are available to support innovative approaches. As in many industries, these improvements have been facilitated by advances in, and lower costs for, enabling technologies, such as refrigerants, compressor design, electronics for controls and variable frequency drives (VFD). Along with the improvements in electronics one would expect that advances have also been made in the functionality of unit controls included with chillers. Originally, the primary purpose of this project was to investigate the state of practice of chiller unit controllers in terms of their energy saving capabilities. However, early in the study it was discovered that advances in this area did not include incorporation of significantly different capabilities than had existed 10-15 years ago. Thus the scope has been modified to provide an overview of some of the basic controls-related energy saving strategies that are currently available along with guideline estimates of their potential and applicability. We have minimized consideration of strategies that could be primarily implemented via design practices such as chiller selection and plant design, and those that can only be implemented by a building management system (BMS). Also, since most of the floor space of federal buildings

  4. Performance of a double-effect absorption chiller driven by ICPC solar collectors

    SciTech Connect (OSTI)

    Bergquam, J.B.; Duff, W.S.; Brezner, J.M.; Henkel, E.T.; Winston, R.; O'Gallagher, J.; Sethi, P.

    1999-07-01

    This paper presents experimental data and analytical results describing the performance of a 70 kW (20 ton), water-fired, double-effect absorption chiller. The chiller is driven by a 106 m{sup 2} array of integrated compound parabolic concentrator (ICPC) solar collectors. For this project, an existing gas-fired chiller was modified to operate on hot water. The water was heated by an array of 336 evacuated ICPC tubes. Each tube has an effective area of 0.317 m{sup 2}. The chiller and collector array are part of a complete solar HVAC system that provides air conditioning and space heating for a 743 m{sup 2} (8,000 ft{sup 2}) commercial building in Sacramento, CA. The other components of the HVAC system are a high temperature storage tank, a cooling tower, a gas-fired back-up boiler and five 14 kW (4 ton) cooling/heating fan coil units. The experimental data are used to determine; (1) the efficiency of the collectors; (2) the coefficient of performance of the chiller; and (3) the overall energy balance on the system. Computer models have also been developed to predict the performance and to optimize the design and operating characteristics of the HVAC system.

  5. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect (OSTI)

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  6. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  7. Model-based chiller energy tracking for performance assurance at a university building

    SciTech Connect (OSTI)

    Piette, M.A.; Carter, G.; Meyers, S.; Sezgen, O.; Selkowoitz, S.

    1997-09-01

    Buildings and their various subsystems often do not perform as well as intended at the design stage. Building energy performance suffers from insufficient documentation of design intent, inadequate building commissioning, and a lack of robust methods for short term and continuous performance tracking. This paper discusses how calibrated models can be used to track building systems and component performance from design, through commissioning, and into operations. Models of the chillers energy use and efficiency were developed and used to evaluate energy performance and control changes to minimize energy use. The example discussed is based on an actual university building. A detailed discussion of the extrapolation and associated uncertainty of using six months of data to develop annual energy use scenarios from various chiller models is included. An important lesson concerning the design is that there was significant oversizing of the chillers resulting in poor part load performance and over $3,000 year of annual energy cost increases. The oversizing is related to extremely high estimates of office equipment loads. The oversizing also causes frequent cycling of chillers, which shortens chiller life. Due to the lack of careful start-up procedures, it appears construction debris fouled one of the new chillers, resulting in about $5,200 year in energy increases. Additional comments on design and commissioning issues are included. The monitoring, modeling, and software development efforts were developed to demonstrate the value of collecting and organizing information regarding design, commissioning, and ongoing performance. This case study is part of a larger effort to examine methods and technologies to improve buildings performance and develop interoperable Building Life-Cycle Information Systems (BLISS).

  8. Evaluation of chiller modeling approaches and their usability for fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya

    2001-05-01

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as

  9. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect (OSTI)

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  10. Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986

    SciTech Connect (OSTI)

    Kubasco, A.J.

    1986-07-01

    A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

  11. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect (OSTI)

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  12. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect (OSTI)

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  13. Model-based performance monitoring: Review of diagnostic methods and chiller case study

    SciTech Connect (OSTI)

    Haves, Phil; Khalsa, Sat Kartar

    2000-05-01

    The paper commences by reviewing the variety of technical approaches to the problem of detecting and diagnosing faulty operation in order to improve the actual performance of buildings. The review covers manual and automated methods, active testing and passive monitoring, the different classes of models used in fault detection, and methods of diagnosis. The process of model-based fault detection is then illustrated by describing the use of relatively simple empirical models of chiller energy performance to monitor equipment degradation and control problems. The CoolTools(trademark) chiller model identification package is used to fit the DOE-2 chiller model to on-site measurements from a building instrumented with high quality sensors. The need for simple algorithms to reject transient data, detect power surges and identify control problems is discussed, as is the use of energy balance checks to detect sensor problems. The accuracy with which the chiller model can be expected! to predict performance is assessed from the goodness of fit obtained and the implications for fault detection sensitivity and sensor accuracy requirements are discussed. A case study is described in which the model was applied retroactively to high-quality data collected in a San Francisco office building as part of a related project (Piette et al. 1999).

  14. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect (OSTI)

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  15. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    SciTech Connect (OSTI)

    Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

  16. Evaluation of potential performance additives for the advanced lithium bromide chiller

    SciTech Connect (OSTI)

    Reiner, R.H.; Del Cul, W.; Perez-Blanco, H.; Ally, M.R.; Zaltash, A.

    1991-04-01

    The effectiveness and stability of potential heat-and-mass transfer (performance) additives for an advanced lithium bromide (LiBr) chiller were evaluated in a series of experimental studies. These studies of additive effectiveness and stability were necessary because many currently used performance additives decompose at the high generator temperatures (220{degrees}C to 260{degrees}C) desired for this particular advanced LiBr chiller. For example, one common performance additive, 2-ethyl-l-hexanol (2EH), reacts with the corrosion inhibitor, lithium chromate (Li{sub 2}CrO{sub 4}), even at moderate generator temperatures ({ge}180{degrees}C). These stability problems can be mitigated by using less reactive corrosion inhibitors such as lithium molybdate (Li{sub 2}MoO{sub 4}) and by using more stable performance additives such as 1-heptanol (HEP) or 1H,1H,7H-dodecafluoro-1-heptanol (DFH). There seems to be a trade-off between additive stability and effectiveness: the most effective performance additives are not the most stable additives. These studies indicate that HEP or DFH may be effective additives in the advanced LiBr chiller if Li{sub 2}MoO{sub 4} is used as a corrosion inhibitor.

  17. Air Cooling R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  19. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. 2014-09-18 Issuance: Energy Conservation Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Notice of Proposed Rulemaking and Public Meeting regarding Energy Conservation Standards for Small, large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  2. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  3. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... heat-island effects High efficiency, gas-fired hot water boilers, air-cooled chillers, thermal storage systems and variable frequency drives for compressors, fans and pumps ...

  4. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat-island effects * High efficiency, gas-fired hot water boilers, air-cooled chillers, thermal storage systems and variable frequency drives for compressors, fans and pumps * ...

  5. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect (OSTI)

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  6. Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State

    SciTech Connect (OSTI)

    Winiarski, David W.

    2004-08-15

    The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

  7. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect (OSTI)

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  8. Simulation and performance analysis of a 4-effect lithium bromide-water absorption chiller

    SciTech Connect (OSTI)

    Grossman, G.; Zaltash, A.; DeVault, R.C.

    1995-02-01

    Performance simulation has been conducted for a 4-effect lithium bromide-water chiller, capable of substantial performance improvement over state-of-the-art double-effect cycles. The system investigated includes four condensers and four desorbers coupled together, forming an extension of the conventional double-effect cycle; based on prior analytical studies, a parallel flow system was preferred over series flow, and double-condenser coupling was employed, to further improve performance. A modular computer code for simulation of absorption systems (ABSIM) was used to investigate the performances of the cycle. The simulation was carried out to investigate the influence of some major design parameters. A coefficient of performance around 2.0 (cooling) was calculated at the design point, with a heat supply temperature of 600{degrees}F (315{degrees}C) at the solution outlet from the high temperature desorber. With some optimization of the weak (pumped) solution flowrate and of the solution split among the four desorbers, this COP may be raised above 2.2.

  9. Effect of fins and repeated-rib roughness on the performance characteristics of a reactor vessel air cooling system for LMFBR shutdown heat removal

    SciTech Connect (OSTI)

    Cheung, F.B.; Chawla, T.C.; Pedersen, D.R.; Tessier, J.H.; Webb, R.L.

    1986-01-01

    The use of a totally passive cooling system for shutdown heat removal that rejects heat from the reactor vessel by radiation to the guard vessel and from the guard vessel to a circulating air stream driven by natural convection is a key feature of the US Department of Energy's liquid-metal reactor advanced design study concepts. General Electric refers to the system as the Reactor Vessel Auxiliary Cooling System (RVACS) and Rockwell International as the Reactor Auxiliary Cooling System (RACS). The circulating air stream is contained in the annular passage formed with guard vessel wall and the duct wall surrounding the guard vessel. Specifically, the RVACS/RACS is designed to assure adequate cooling of the reactor vessel under abnormal operational conditions associated with loss of heat removal through the normal heat transport path via the steam generator system or the DRACS, if available. To enhance the heat transfer, longitudinal radial fins or repeated ribs can be attached to the duct wall and/or the guard vessel. The purpose of the present paper is to summarize the status of the analytical work on the development of an optimum design configuration for the RVACS/RACS.

  10. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    SciTech Connect (OSTI)

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  11. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect (OSTI)

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  12. Demonstration of a new ICPC design with a double-effect absorption chiller in an office building in Sacramento, California[Integrated Compound Parabolic Concentrator

    SciTech Connect (OSTI)

    Duff, W.S.; Winston, R.; O'Gallagher, J.J.; Henkel, T.; Muschaweck, J.; Christiansen, R.; Bergquam, J.

    1999-07-01

    In 1998 two new technologies, a new ICPC solar collector and the solar operation of a double effect chiller, have been demonstrated for the first in an office building in Sacramento, California. This paper describes the demonstration project and reports on component and system performance.

  13. Air-Cooled Traction Drive Inverter

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Chapter 14: Chiller Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Chiller Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62431 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  15. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  16. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect (OSTI)

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  17. Dependence of electric strength on the ambient temperature

    SciTech Connect (OSTI)

    ?aja, Alexander, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of ilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitn 1, 010 26 ilina (Slovakia)

    2014-08-06

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling.

  18. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  19. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  20. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  1. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  2. Chillers | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  3. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  4. Alliant Energy Interstate Power and Light (Electric) - Business...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters Lighting Lighting ControlsSensors Chillers Heat Pumps Air conditioners Programmable Thermostats CaulkingWeather-stripping DuctAir sealing Building Insulation...

  5. Ameren Illinois (Electric) - Custom, HVAC and Motor Business...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters Chillers Heat Pumps Air conditioners Heat recovery Compressed air Motor VFDs Agricultural Equipment CustomOthers pending approval Other EE Tankless Water...

  6. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Insulation filter Dishwasher (12) Apply Dishwasher filter Windows (12) Apply Windows filter Chillers (10) Apply Chillers filter Geothermal Electric (10) Apply...

  8. Hybrid and Advanced Air Cooling Geothermal Lab Call Project ...

    Open Energy Info (EERE)

    various strategies for boosting the performance of air coolers in hot weather. Computer modeling and experimental measurements have been done on the use of evaporative media...

  9. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Clean Air-Cool Planet Community Toolkit | Open Energy Information

    Open Energy Info (EERE)

    conservation, renewable energy (the resource focuses on wind power, solar power, and methane recovery), green power, transportation, waste, and land-use programs. Each topic is...

  11. Air cooled turbine component having an internal filtration system

    DOE Patents [OSTI]

    Beeck, Alexander R.

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  12. Flow directing means for air-cooled transformers

    DOE Patents [OSTI]

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  13. High-Temperature, Air-Cooled Traction Drive Inverter Packaging

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Air Cooling Technology for Power Electronic Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  17. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  18. Electrical Engineer

    Broader source: Energy.gov [DOE]

    Transmission Field Services is responsible for field switching operation and maintenance of Bonneville Power Administration's high-voltage electrical transmission system to provide safe, reliable,...

  19. Electrical Safety

    Office of Environmental Management (EM)

    Handbook that was originally issued in 1998, and revised in 2004. DOE handbooks are ... the National Fire Protection Association (NFPA) 70, the National Electrical Code (NEC), ...

  20. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  1. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  2. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  3. Electric avenues

    SciTech Connect (OSTI)

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  4. Nanolubricants to Improve Chiller Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office eere.energy.gov Approach * Pool-boiling rig used to measure heat transfer performance of R134ananolubricant mixtures with nanoparticle of varied ...

  5. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  6. FORGING THE FUTURE STAY CONNECTED: In This Issue Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    summit. The device, referred to as an adsorption chiller, serves as an alternative to heat pumps and air conditioners. It houses a new sorbent - three times more absorbent than...

  7. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fig. 1-1. Flow down of Electrical AHJ and worker responsibility. 3 DOE-HDBK-1092-2013 2.0 ... When equipment contains storage batteries, workers should be protected from the various ...

  8. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  9. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  10. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S....

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics,...

  12. Electrical machine

    DOE Patents [OSTI]

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  13. Electrical receptacle

    DOE Patents [OSTI]

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  14. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  15. Record of Decision for the Electrical Interconnection of the COB Energy Facility (DOE/EIS-0343)

    SciTech Connect (OSTI)

    N /A

    2004-08-20

    The COB Energy Facility would be constructed on a site near the rural community of Bonanza, in Klamath County, Oregon. Generating components of the project would be constructed in either one or two phases, including four air-cooled combustion turbine generators fueled with natural gas, four heat recovery steam generators, and two steam turbines. Additional facilities include a new 7.2-mile-long 500-kV transmission line, a new 4.1-mile-long natural gas pipeline, a 2.8-mile-long water pipeline, a 20-acre wastewater evaporation pond or a 3,770-foot-long irrigation pipeline to deliver wastewater to a 31-acre pasture, a 4.7-acre stormwater infiltration basin, a 1.5-acre stormwater retention pond, and various tanks, buildings, exhaust stacks, parking, and storage areas. Natural gas to fuel the combustion turbines would be supplied by way of a new 4.1-mile-long, 20-inch-diameter pipeline from a Gas Transmission Northwest's Bonanza Compressor Station. The new pipeline would be constructed within private easements adjacent to or near Klamath County road rights-of-way. Although COB Energy Facility generators would use air-cooled condensers, the project would use an average of 72 gallons per minute for steam production and station service, up to a maximum of 210 gallons per minute. The source of this water would be one existing and two new wells near the project site, drawing from a deep aquifer consistent with a State of Oregon water right permit expected to be incorporated into the State energy facility site certificate. Process wastewater would either be used to irrigate pasture or held in a lined pond to evaporate. Sanitary water would be routed to an onsite septic tank then discharged to a leach field. No wastewater would be discharged to surface waters. The COB Energy Facility would interconnect to the FCRTS at Captain Jack Substation, 7.2 miles south of the project site. PERC would construct a new 500-kV transmission line from the project site to Captain Jack

  16. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  17. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. ...

  18. Electric Drive Status and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaf * 75 mile electric range * 80 kW electric drive * electric drive cost:1,600 Tesla Model S * 250 mile electric range * 270 kW electric drive * electric drive ...

  19. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  20. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  1. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See all Electricity Reports Electricity Monthly Update With Data for November 2014 | Release Date: Jan. 26, 2015 | Next Release Date: Feb. 24, 2015 Previous Issues Issue:...

  3. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  4. Ohio Electricity Restructuring Active

    Gasoline and Diesel Fuel Update (EIA)

    Other Links Ohio Electricity Profile Ohio Energy Profile Ohio Web Sites Acronyms for the ... Consumer education programs were available on the Ohio Electric Choice web site, through ...

  5. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  6. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

  7. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general...

  8. Electricity Restructuring by State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Restructuring Status Status of Electricity Restructuring by State Data as of: September 2010 Next Release Date: None The map below shows information on the electric industry ...

  9. Integrated electrical connector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Integrated electrical connector Title: Integrated electrical connector An electrical ... The opening is also smaller than the diameter of an electrically conductive contact pin. ...

  10. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  11. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy

  12. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  13. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  14. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa...

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  19. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  20. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  1. 2012 National Electricity Forum

    Broader source: Energy.gov [DOE]

    At the 2012 National Electricity Forum, held February 8-9, 2012 and jointly organized by DOE's Office of Electricity Delivery & Energy Reliability (OE) and the National Association of...

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: August 2015 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

  3. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly Data for January 2016 | Release Date: March 25, 2016 | Next ... Revisions made to the March 2016 Electric Power Monthly: March 30, 2016 Tables 2.8.A-B ...

  4. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  5. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  6. Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Technical Notes This appendix describes how the U.S. Energy Information Administration collects, estimates, and reports electric power data in the Electric Power Annual. Data Quality and Submission The Electric Power Annual (EPA) is prepared by the Office of Electricity, Renewables, and Uranium Statistics (ERUS), U.S. Energy Information Administration (EIA), U.S. Department of Energy (DOE). ERUS performs routine reviews of the data collection respondent frames, survey forms, and reviews

  7. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  8. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  9. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  10. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    End Use: June 2016 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  11. EIA Electric Power Forms

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms

  12. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  13. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia High-Performance Computing Data Center Metering Protocol

  15. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  16. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect (OSTI)

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  17. Clean Air-Cool Planet Small Town Carbon Calculator | Open Energy...

    Open Energy Info (EERE)

    of New Hampshire, ICLEI, Environmental Protection Agency Sector: Climate Focus Area: Buildings, Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness...

  18. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC ...

  19. Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...

    Open Energy Info (EERE)

    expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of...

  20. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Look at the Impact of Building, Cooling, Heating, and Power (BCHP) and Innovation, June ... 2004 Photo credit: Oak Ridge National Lab Residential Absorption Heat Pump Water Heater

  1. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Open Energy Info (EERE)

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

  2. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  3. Case Study: Evaluating Liquid v. Air Cooling in the Maui High...

    Energy Savers [EERE]

    ... a holistic perspective, that energy distribution is far from optimal. ... output from the Uninterruptible Power Supply (UPS) input. While water flow was estimated using the pump ...

  4. DOE Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Committee March 2015 1 MEMORANDUM TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: March 27, 2015 RE: Recommendations on Smart Grid Research and Development Needs _________________________________________________________________________ Overview The Smart Grid is envisioned to provide the enhancements to ensure higher levels of

  5. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology 3002001181 | DEC 2013 Program Leads Jason D. Christopher Technical Lead, Cyber Security Capabilities & Risk Management Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability (OE) Annabelle Lee Senior Technical Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on the DOE's cyber security risk management programs, please contact

  6. List of Chillers Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Renewable Fuels Small Hydroelectric Wind Fuel Cells using Renewable Fuels Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant...

  7. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  8. Epcot Electric | Open Energy Information

    Open Energy Info (EERE)

    Epcot Electric Jump to: navigation, search Name: Epcot Electric Place: Texas Facebook: https:www.facebook.compagesEpcot-Electric108882552477023 References: EIA Form EIA-861...

  9. Lincoln Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Lincoln Electric Developer Lincoln Electric Energy Purchaser Lincoln...

  10. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  11. INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS The Ohio ...

  12. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? Who

  13. Small Solar Electric Systems | Department of Energy

    Energy Savers [EERE]

    Electricity & Fuel Buying & Making Electricity Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and ...

  14. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  15. Integrated electrical connector

    DOE Patents [OSTI]

    Benett, William J.; Ackler, Harold D.

    2005-05-24

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  16. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  17. Electrical system architecture

    DOE Patents [OSTI]

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  18. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  19. Electric Power Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 U.S. Energy Information Administration | Electric Power Monthly Appendix C Technical notes This appendix describes how the U. S. Energy Information Administration (EIA) collects, estimates, and reports electric power data in the EPM. Data quality The EPM is prepared by the Office of Electricity, Renewables & Uranium Statistics (ERUS), Energy Information Administration (EIA), U. S. Department of Energy. Quality statistics begin with the collection of the correct data. To assure this,

  20. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November

  1. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Editorial Lead: Chris Cassar (christopher.cassar@eia.gov) Senior Adviser: Bill Booth Core Team: Paul McCardle, Glenn McGrath, Stephen Scott, Tim Shear, April Lee

  2. EIA - Electric Power Data

    U.S. Energy Information Administration (EIA) Indexed Site

    across forms) Contains electricity generation; fuel consumption; emissions; retail sales, ... and associated revenue by end-use sector, green pricing, net ...

  3. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  4. 2015 Electricity Form Proposals

    Gasoline and Diesel Fuel Update (EIA)

    Quarterly Electricity Imports and Exports Report (EIA-111) OMB Clearance Renewal in 2015 ... Report (EIA-111) survey on August 26, 2015. The initial proposals were announced to ...

  5. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  6. Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paula Carmody Maryland People's Council Paul Centolella Centolella and Associates LLC Carlos Coe Millennium Energy Phyllis Currie Pasadena Water and Power Clark Gellings Electric ...

  7. Electricity Distribution System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... the Electricity Transmission System (available online). ... or implied, or assumes any legal responsibility for the ... Workforce development and operator training are needed for ...

  8. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy),...

  9. Electrical Circuit Tester

    DOE Patents [OSTI]

    Love, Frank

    2006-04-18

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  10. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generatorfuel...

  12. Department of Energy - Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunities and challenges that lie ahead. Secretary Moniz headed down to Florida to talk about Grid Modernization. Learn more about our nation's electric grid in this fact...

  13. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  14. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  15. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  16. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Wholesale Markets: May 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  18. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Markets: August 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

  20. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also...

  1. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  2. Electricity Advisory Committee

    Office of Environmental Management (EM)

    Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt ...

  3. 2013 Electricity Form Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Form EIA-861, "Annual Electric Power Industry Report" The EIA-861 survey has historically collected retail sales, revenue, and a variety of information related to demand response ...

  4. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... gangs Recreational Criminals Hackers 4 http:www.safetyissues.comsitecybercrimeciarevealshackerattacksonutilities.html?print 4-6 Table 4-1 (Continued) Electric Sector ...

  5. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  6. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  7. EIA - Electric Power Data

    Gasoline and Diesel Fuel Update (EIA)

    and customer counts, peak load, electric purchases, and energy efficiency and demand-side management programs, green pricing and net metering programs, and distributed ...

  8. 2012 National Electricity Forum

    Energy Savers [EERE]

    and Planning, Arizona Public Service * Jan Strack, Grid Planning, Regulatory & Economics Manager, San Diego Gas & Electric * Mario Villar, Vice President, Transmission, NV ...

  9. Estimating the Value of Electricity Storage Resources in Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets - EAC 2011 | Department of Energy Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a

  10. Forrest County, MS Geothermal Project--Final Report

    SciTech Connect (OSTI)

    Proctor, Corey

    2014-03-13

    The Forrest County Geothermal Energy Project consists of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi-Purpose Center. The project will also replace DX/gas rooftop and DX split system heat pump equipment with geothermal units for the Forrest County Jail. Each of the aforementioned projects consists of approximately 400 tons of cooling. The project also includes between 600 and 800 geothermal closed-loop wells. Building controls will be updated as well on both sites.

  11. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  12. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  18. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  19. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  20. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  1. Electric power monthly

    SciTech Connect (OSTI)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  2. Unbundling electricity: Ancillary services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.

    1996-06-01

    The US electricity industry, dominated by vertically integrated, retail-monopoly, regulated utilities, is undergoing enormous changes. The industry, within the next few years, will evolve into a deintegrated, competitive-market dominated, less regulated industry. Part of this process involves unbundling electric generation from transmission, which raises the issue of ancillary services. Since the Federal Energy Regulatory Commission (FERC) published its March 1995 proposed rule on open-access transmission, ancillary services have been an important topic. Ancillary services are those functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery. These services cost US electricity consumers about $12 billion a year. This article examines the functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery.

  3. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  4. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  6. Chapter 5 - Electricity

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 5 Electricity Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2014 Table 1. 2014 Summary statistics (Alaska) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 2,464 48 Electric utilities 2,313 39 IPP & CHP 151 50 Net generation (megawatthours) 6,042,830 50 Electric utilities 5,509,991 40 IPP & CHP 532,839 50 Emissions Sulfur dioxide (short tons) 4,129 43 Nitrogen oxide (short tons) 19,281 38 Carbon dioxide (thousand metric tons) 3,558 44 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2014 Table 1. 2014 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,325 38 Electric utilities 7,296 31 IPP & CHP 1,029 44 Net generation (megawatthours) 43,784,526 33 Electric utilities 40,741,425 28 IPP & CHP 3,043,101 44 Emissions Sulfur Dioxide (short tons) 23,646 31 Nitrogen Oxide (short tons) 57,944 16 Carbon Dioxide (thousand metric tons) 35,179 24 Sulfur Dioxide (lbs/MWh) 1.1 31 Nitrogen Oxide (lbs/MWh)

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  13. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  14. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  15. March 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    - Electrical Wiring 08J--OSHA ReportableIndustrial Hygiene - Near Miss (Electrical) 11G--Other - Subcontractor 12C--EH Categories - Electrical Safety 14D--Quality Assurance -...

  16. Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf ...

  17. Energy- and Cost-Savings Calculators for Energy-Efficient Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Efficient Products » Energy- and Cost-Savings Calculators for Energy-Efficient Products Energy- and Cost-Savings Calculators for Energy-Efficient Products Estimate energy and cost savings for energy- and water-efficient product categories using these interactive calculators provided by the Federal Energy Management Program or ENERGY STAR. Commercial Heating and Cooling Air-Cooled Chillers Boilers Commercial Heat Pumps Commercial Rooftop Air Conditioners Residential

  18. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric ...

  19. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  20. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (CAISO) due to very low natural gas prices. Hawaii's retail electricity revenue per kilowatthour fell the most of any state for the fifth month in a row, down 24%...

  1. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  2. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  3. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Sector Coal Stocks: February 2014 Stocks Extreme cold throughout the winter continued in February, leading to a 13.4 million ton decline in coal inventories from...

  4. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  5. Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    A classroom activity whereby students participate in two experiments in which they gain an appreciation for their dependency on electricity, and learn how regulating the rate of energy consumption...

  6. Activity: Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    Students participate in two experiments in which they (1) gain an appreciation for their dependency on electricity and (2) learn how regulating the rate of energy consumption makes the energy...

  7. Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  8. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System ... Can we agree on several key design attributes for the future grid? Taking Action in the ...

  9. Electricity Transmission, A Primer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the power from low-cost, mine- mouth coal power plants and wind generators in Wyoming. ... As a result, the transmission system helps to insulate electricity consumers from the ...

  10. Annual Power Electric

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Annual Update Revision Data for 2014 updated: February 16, 2016 February ... Table 8.11.A. U.S. Transmission Circuit Outages by Type and NERC region Table 8.11.B. ...

  11. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  12. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  13. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  14. Electric current locator

    DOE Patents [OSTI]

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  15. Electricity | Department of Energy

    Energy Savers [EERE]

    And we see how the city of Hoboken, New Jersey is preparing for electric emergencies. March 17, 2016 Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage ...

  16. National Electricity Delivery Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian ... Tradition Thank you Julie Ann Smith, PhD U.S. Department of Energy ...

  17. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    538,800 35 Average retail price (centskWh) 33.43 1 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    684,481 33 Average retail price (centskWh) 8.68 39 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    20,316,681 2 Average retail price (centskWh) 8.09 46 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    28,310 49 Average retail price (centskWh) 15.41 5 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  1. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,576,943 20 Average retail price (centskWh) 9.17 33 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    34,883,315 1 Average retail price (centskWh) 8.94 37 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  3. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,255,974 22 Average retail price (centskWh) 8.18 43 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    3,151,592 10 Average retail price (centskWh) 12.65 11 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  5. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    33,870 48 Average retail price (centskWh) 12.11 12 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    696,6330 32 Average retail price (centskWh) 7.65 50 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,763,652 19 Average retail price (centskWh) 9.60 27 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,364,746 13 Average retail price (centskWh) 8.15 44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,181,447 24 Average retail price (centskWh) 9.73 23 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    138,573,884 Average retail price (centskWh) 10.44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,227,421 23 Average retail price (centskWh) 8.35 42 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  12. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    253,513 39 Average retail price (centskWh) 17.46 2 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    201,071 40 Average retail price (centskWh) 10.18 19 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  14. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11,180,448 3 Average retail price (centskWh) 15.15 8 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60,865 47 Average retail price (centskWh) 10.16 20 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,388,386 21 Average retail price (centskWh) 7.76 49 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    844,760 29 Average retail price (centskWh) 12.10 13 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    2,463,339 11 Average retail price (centskWh) 9.40 29 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    944,590 27 Average retail price (centskWh) 7.13 51 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  20. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,123,692 25 Average retail price (centskWh) 9.52 28 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    use 7,958,621 4 Average retail price (centskWh) 9.06 35 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    89 51 Average retail price (centskWh) 9.05 36 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  3. Electric Power Annual 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric industry sales to ultimate customers statistics by state State Sales to ultimate customers (million kWh) Revenue (thousand dollars) Customers Alabama 90,494 8,386,390 ...

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    4,565,846 8 Average retail price (centskWh) 10.03 22 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  5. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,117,420 17 Average retail price (centskWh) 10.57 17 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    83,636 46 Average retail price (centskWh) 10.06 21 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    391,720 37 Average retail price (centskWh) 8.15 45 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,462 50 Average retail price (centskWh) 14.57 9 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,375,185 5 Average retail price (centskWh) 10.77 16 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  10. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,439,427 9 Average retail price (centskWh) 9.36 30 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  12. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  13. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  14. Electric Power Annual 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Annual 2014 February 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Electric Power Annual This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. U.S.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  16. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  17. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  18. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Resource Use: June 2016 Supply and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By fuel type By

  19. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Regional Wholesale Markets: June 2016 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England

  20. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator

  1. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  2. Salem Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Place: Oregon Phone Number: (503) 362-3601 Website: www.salemelectric.com Facebook: https:www.facebook.compagesSalem-Electric117577414968337 Outage Hotline: (503)...

  3. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  4. NREL: Electricity Integration Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL's electricity integration research is conducted in state-of-the-art ... reliable integration of renewable electricity, fuel production, storage, and building ...

  5. Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability The Office of Electricity Delivery and Energy Reliability ... to energy supply disruptions, such as electricity and fuel outages. * Smart Grid (14.4 ...

  6. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  7. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  8. Electric Metering | Department of Energy

    Office of Environmental Management (EM)

    and comparison of data on electricity consumption for overhead lighting and power outlets. ... reducing user controlled electricity consumption at Forrestal by 1,000,000 KWh per year ...

  9. Fortune Electric | Open Energy Information

    Open Energy Info (EERE)

    Fortune Electric Jump to: navigation, search Name: Fortune Electric Place: Taoyuan,Taiwan, Taiwan Product: Taiwanese transformer manufacturer is also engaged in the development of...

  10. Hartford Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Jump to: navigation, search Name: Hartford Electric Place: Wisconsin Phone Number: (262) 670-3700 Website: hartfordelectric.org Outage Hotline: (262) 670-3710 or (262)...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Passive, Solar Water Heat, Solar Space Heat, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydrogen, Daylighting, Lighting, Lighting ControlsSensors, Chillers,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Combined Heat & Power, Landfill Gas, Lighting, Chillers, Boilers, Air...

  13. A Case for Commissioning of CHP Systems - Presentation, April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hospital in Austin, Texas, was retrofitted with a combustion turbine, heat recovery steam generator, absorption and electric chillers, and thermal storage. ...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Category: Solar Water Heat, Solar Thermal Electric, Geothermal Heat Pumps, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Chillers, Heat Pumps, Air conditioners, Other EE, Tankless Water Heater OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat, Solar Space Heat, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydrogen, Daylighting, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers,...

  17. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  18. Lakes, Electricity and You | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity PDF icon Lakes, Electricity and You More Documents & ...

  19. Electric sales and revenue 1996

    SciTech Connect (OSTI)

    1997-12-01

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  20. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  1. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  2. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  3. Electric fluid pump

    DOE Patents [OSTI]

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  4. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  5. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  6. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  7. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Table 1. 2014 Summary statistics (Alabama) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 31,953 8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide (short tons) 152,225 8 Nitrogen oxide (short tons) 61,909 13 Carbon dioxide (thousand metric tons) 67,635 10 Sulfur dioxide (lbs/MWh) 2.0 19 Nitrogen oxide (lbs/MWh) 0.8 38

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  11. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  12. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  13. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  14. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Sector Coal Stocks: June 2016 Stocks In June, U.S. coal stockpiles decreased to 185 million tons, down 5.2% from the previous month. As a whole, U.S. coal stockpiles are still at relatively high levels due to the mild winter experienced earlier in the year and also becaue coal continues to lose market share to natural gas in most regions of the country. Days of burn Days of burn by coal rank Capacity by days of burn The average number of days of burn held at electric power plants

  15. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data

  16. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 8, 2011 National Electric Transmission Congestion Study Workshop - December 8, 2011 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy,

  17. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  18. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  19. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  1. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  2. Electricity Portfolio Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomore » 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy’s (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.« less

  3. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  4. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  5. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  6. Electric Power Annual 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 1999 through 2010" ,"(Megawatts and Percent)" ,"Interconnection","NERC Regional Assesment Area","Net Internal Demand (MW)[1] -- Summer" ,,,"Actual",,,,,,,,,,,,,,,,,,,,,"Projected"

  7. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  8. Geothermal Electricity Production Basics

    Broader source: Energy.gov [DOE]

    Heat from the earth—geothermal energy—heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity.

  9. Electric sales and revenue 1991

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenue, and average revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  10. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick ...

  11. Power Conversion Apparatus and Method for Hybrid Electric and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Engines - Energy Innovation Portal Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a solution to power source problems in hybrid electric vehicle (HEV) and electric vehicle (EV) engines. These engines typically use voltage source inverters. The conventional type of converter requires costly capacitors, has trouble with high

  12. Fact #874: May 25, 2015 Number of Electric Stations and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact 874: May 25, 2015 Number of Electric Stations and Electric Charging Units ...

  13. THERMO-ELECTRIC GENERATOR

    DOE Patents [OSTI]

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  14. Electrical resistivity probes

    DOE Patents [OSTI]

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  15. ELECTRIC CONTACT MEANS

    DOE Patents [OSTI]

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  16. Electricity Data Browser

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Browser - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  17. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  18. PP-18 Glacier Electric

    Office of Environmental Management (EM)

    IMPERIAL IRRIGATION DISTRICT ORDER NO. PP-174 I. BACKGROUND The Office of Fossil Energy (FE) of the Department of Energy (DOE) has the responsibility for implementing Executive Order (EO) 10485, as amended by EO 12038, which requires the issuance of Presidential permits for the construction, connection, operation, and maintenance of electric transmission facilities at the United States international border. In an application dated February 17, 1998, Imperial Irrigation District (IID) applied to

  19. Electrical grounding prong socket

    DOE Patents [OSTI]

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  20. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.