National Library of Energy BETA

Sample records for air-conditioning usage air-conditioned

  1. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  2. Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 Total.................................................................................. 111.1 7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment.................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................. 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment.................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use

  3. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it......................

  4. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  5. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  6. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  7. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air

  8. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  9. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  10. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  11. Membrane Based Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Based Air Conditioning Membrane Based Air Conditioning Lead Performer: Dais Analytic Corporation - Odessa, FL Partners: - Oak Ridge National Laboratory - Oak Ridge, TN - Xergy Inc. - Seaford, DE DOE Total Funding: $1,500,000 Cost Share: $300,000 Project Term: October 1, 2015 - September 30, 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation (BENEFIT) - 2015 Project Objective NanoAir HVAC technology transfers water molecules through a patented nanostructured

  12. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  13. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel waywith heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  14. American Society of Heating, Refrigeration, and Air Condition...

    Energy Savers [EERE]

    American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) ...

  15. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Office of Environmental Management (EM)

    HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document ...

  16. 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

  17. Saving Money During the Air Conditioning Season | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving Money During the Air Conditioning Season Saving Money During the Air Conditioning Season June 4, 2014 - 4:00pm Addthis Keeping your air conditioner maintained can help save ...

  18. Alternative non-CFC mobile air conditioning

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  19. Air Conditioning Heating and Refrigeration Institute Comment | Department

    Energy Savers [EERE]

    of Energy Air Conditioning Heating and Refrigeration Institute Comment Air Conditioning Heating and Refrigeration Institute Comment These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the July 3, 2014 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. PDF icon DOE Reg Burden

  20. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory

    Energy Savers [EERE]

    Burden RFI | Department of Energy Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its

  1. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  2. Aggregated Modeling and Control of Air Conditioning Loads for...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Citation Details In-Document Search Title: Aggregated Modeling and Control of Air...

  3. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning Eric Kozubal, Jason Woods, Jay Burch, Aaron Boranian, and Tim Merrigan NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5500-49722 January 2011 Contract No. DE-AC36-08GO28308 Desiccant Enhanced Evaporative Air-Conditioning (DEVap):

  4. American Society of Heating, Refrigeration, and Air Condition Engineers

    Energy Savers [EERE]

    (ASHRAE) 2016 Annual Conference | Department of Energy American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference June 25, 2016 9:00AM EDT to June 29, 2016 5:00PM EDT

  5. 2016 American Society of Heating, Refrigerating, and Air-Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineers (ASHRAE) Winter Conference | Department of Energy 2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference January 23, 2016 9:00AM EST to January 27, 2016 5:00PM EST Orlando Hilton, Orlando, Florida

  6. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  7. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  8. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL

    Energy Savers [EERE]

    (HARDI) | Department of Energy HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. PDF icon DOE EX Parte Memo.pdf More Documents & Publications Ex Parte Memo on CAC/Dry Charged Units 3rd Semi-Annual Report to Congress on

  9. Quantum Well Thermoelectric Truck Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Truck Air Conditioning Quantum Well Thermoelectric Truck Air Conditioning Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode PDF icon bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Fabrication of A Quantum Well Based System for Truck HVAC Recent Progress in the Development of High Efficiency

  10. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Environmental Management (EM)

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects Credit: Oak Ridge National Lab 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Advanced Ground Source Heat Pump Technology for

  11. Floor-supply displacement air-conditioning: Laboratory experiments

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Tanabe, Shinichi; Kimura, Kenichi

    1999-07-01

    The results of laboratory measurements on the performance of a floor-supply displacement air-conditioning system in comparison to a displacement ventilation system with a side-wall-mounted diffuser and a ceiling-based distribution system are described. Thermal stratification was observed, as there were greater vertical air temperature differences in both of the displacement systems than in the ceiling-based system. The floor-supply displacement air-conditioning system produced a uniformly low air velocity at each measurement height, while a rather high air velocity near the floor was observed for the displacement ventilation system with a sidewall-mounted diffuser. Local mean age of air of the floor-supply displacement air-conditioning system was lower than that of the other systems, especially in the lower part of the room. According to the simulation results, the floor-supply displacement air-conditioning system with outdoor air cooling requires 34% less energy than the conventional air-conditioning system with outdoor air cooling.

  12. Keeping Cool Without Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Keeping Cool Without Air Conditioning Keeping Cool Without Air Conditioning August 2, 2013 - 9:50am Addthis Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out these

  13. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  14. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  15. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  16. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  17. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  18. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  19. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  20. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  1. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  2. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  3. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  4. "Table HC11.6 Air Conditioning Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Coolling

  5. "Table HC13.6 Air Conditioning Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have

  6. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  7. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect (OSTI)

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  9. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  10. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  11. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  12. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  13. Table HC9.6 Air Conditioning Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    6 Air Conditioning Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use

  14. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  15. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  16. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL compiles state-of-the-art review on membrane processes for air conditioning to identify future research opportunities. Researchers are pursuing alternatives to conventional heating, ventilating, and air-conditioning (HVAC) practices, especially cool- ing and dehumidification, because of high energy use, environmentally harmful refrigerants, and a need for better humidity control. Advancements in membrane technology enable new possibilities in this area. Membranes are traditionally used for

  17. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  18. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect (OSTI)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  19. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect (OSTI)

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  20. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  1. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  2. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL)

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  3. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  4. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  5. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect (OSTI)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  6. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  7. "Table HC10.6 Air Conditioning Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Cooling Equipment",17.8,4,2.1,1.4,10.3 "Have Cooling Equipment",93.3,16.5,23.5,39.3,13.9 "Use Cooling

  8. "Table HC15.6 Air Conditioning Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Air Conditioning Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Cooling Equipment",17.8,1.8,"Q","Q",4.9 "Have Cooling Equipment",93.3,5.3,7,7.8,7.2

  9. "Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  10. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  11. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  12. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  13. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  14. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Office of Environmental Management (EM)

    GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat

  15. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technologys applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  17. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji )

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  18. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-06-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  19. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-01-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  20. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Broader source: Energy.gov [DOE]

    This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

  1. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market- ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop control system-was identified as a

  2. NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  4. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  5. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  6. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  7. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  8. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  9. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  10. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  11. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  12. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  13. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that

  14. Energy Conservation Program: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  15. "Table HC10.7 Air-Conditioning Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,2.2,3.8,5.7,3.5 "No",9.9,0.6,3,3.7,2.5 "Adjusts Temperature at Night" "Yes",15.4,2.1,4,5.8,3.5 ...

  16. "Table HC13.7 Air-Conditioning Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,5.7,3.5,0.5,1.8 "No",9.9,3.7,2.1,0.6,1 "Adjusts Temperature at Night" "Yes",15.4,5.8,3.4,0.5,1.9 ...

  17. "Table HC11.7 Air-Conditioning Usage Indicators by Northeast...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Use of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,2.2,2,0.2 "No",9.9,0.6,0.6,"Q" "Adjusts Temperature at Night" "Yes",15.4,2.1,2,0.2 ...

  18. "Table HC15.7 Air-Conditioning Usage Indicators by Four Most...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,0.6,1.1,1.6,2 "No",9.9,"Q",0.8,0.7,1.6 "Adjusts Temperature at Night" "Yes",15.4,0.6,1,1.7,2 ...

  19. "Table HC14.7 Air-Conditioning Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Use of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,3.5,1.2,2.4 "No",9.9,2.5,0.7,1.8 "Adjusts Temperature at Night" "Yes",15.4,3.5,1.2,2.4 ...

  20. "Table HC12.7 Air-Conditioning Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Use of Programmable Thermostats" "Adjusts Temperature During Day" "Yes",15.1,3.8,2.5,1.2 "No",9.9,3,2.2,0.8 "Adjusts Temperature at Night" "Yes",15.4,4,2.7,1.3 ...

  1. "Table HC4.7 Air-Conditioning Usage Indicators by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Thermostats" "Adjusts Temperature During Day" "Yes",15.1,1.8,0.6,"Q",0.4,0.6,"Q" "No",9.9,1.5,0.5,"Q","Q",0.5,"Q" "Adjusts Temperature at Night" "Yes",15.4,1.8,0.6,"Q",...

  2. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  4. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  5. Air Conditioning | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper. A pump, called the compressor, moves a heat transfer fluid (or refrigerant) between the...

  6. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  7. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  8. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  10. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MI -- Optimized Thermal Systems - College Park, MD Purdue prototype system Residential Cold Climate Heat Pump with Variable-Speed Technology Lead Performer: Unico Systems - St....

  11. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This tubing is usually made of copper. A pump, called the compressor, moves a heat transfer fluid (or refrigerant) between the evaporator and the condenser. The pump forces the ...

  12. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-Es BEETIT Project, short for Building Energy Efficiency Through Innovative Thermodevices, are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  13. Weatherking Heating & Air conditioning | Open Energy Information

    Open Energy Info (EERE)

    wholesale;Engineeringarchitecturaldesign;Installation;Investmentfinances;Maintenance and repair; Retail product sales and distribution Phone Number: 330-908-0281...

  14. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  15. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... A major N.C. Manufacturer Tested 2-17 Months (yr 1985) .052KWH (.13 EP) 2700 HoursYear 15 HP COGGED BELT 10.67 STANDARD BELT 3.33 PREMIUM BELT 7.34 BRAND A 4.4% BRAND B ...

  16. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    out at night * SA temperature reset with respect to zone needing most heatcooling * Time ... AT 4.4% THE POTENTIAL SAVINGS IS 69.50YEAR MANUFACTURERS PREDICT 2-6 TIMES LIFE DO NOT ...

  17. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect (OSTI)

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  18. Fetz Plumbing, Heating & Air Conditioning | Open Energy Information

    Open Energy Info (EERE)

    43078 Sector: Efficiency, Geothermal energy, Services, Solar Product: Installation; Maintenance and repair Phone Number: 937-652-1136 Website: fetzphc.com Coordinates:...

  19. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Broader source: Energy.gov (indexed) [DOE]

    August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. PDF ...

  20. Desiccant-Enhanced Evaporative Air Conditioning: Parametric Analysis and Design

    SciTech Connect (OSTI)

    J. Woods and E. Kozubal

    2012-10-01

    Presented at the Second International Conference on Building Energy and Environment (COBEE2012); Boulder, Colorado; August 1-4-, 2012

  1. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  2. Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo

    Broader source: Energy.gov [DOE]

    On Friday, February 13, 2015, AHRI staff met telephonically with the Department of Energy to discuss issues pertaining to the ongoing efficiency standards rulemaking for single package vertical air...

  3. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  4. Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions

    SciTech Connect (OSTI)

    Chang, Chin-Yao; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2013-02-24

    Demand-side control is playing an increasingly important role in smart grid control strategies. Modeling the dynamical behavior of a large population of appliances is especially important to evaluate the effectiveness of various load control strategies. In this paper, a high accuracy aggregated model is first developed for a population of HVAC units. The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. Furthermore, the model takes into account the lockout effect of the compressor in order to represent the dynamics of the system under control more accurately. Then, a novel closed loop load control strategy is designed to track a desired demand curve and to ensure a stable and smooth response.

  5. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect (OSTI)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  6. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    SciTech Connect (OSTI)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.

  7. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect (OSTI)

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  8. "Table HC14.6 Air Conditioning Characteristics by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "20 Years or More",6.5,1.3,0.3,1 "Don't Know",4.5,0.6,"Q",0.5 "Used by Two or More ... "20 Years or More",0.3,"Q","N","Q" "Don't Know",0.7,"Q","N","Q" "Household Pays for ...

  9. "Table HC12.6 Air Conditioning Characteristics by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "20 Years or More",6.5,1.5,1,0.5 "Don't Know",4.5,1.3,0.7,0.6 "Used by Two or More ... "20 Years or More",0.3,"Q","Q","N" "Don't Know",0.7,"Q","Q","Q" "Household Pays for ...

  10. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  11. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  12. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  13. Usage Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demographics Usage Demographics NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849...

  14. Usage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

  15. NERSC Usage Demographics 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2015-03-02 16:21:16...

  16. Usage Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports Usage Reports Batch Job Statistics See queue wait times, hours used, top users and other summary statistics for jobs run at NERSC (login required). Read More Parallel...

  17. HSI Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HSI Usage HSI is a flexible and powerful command-line utility to access the NERSC HPSS storage systems. Like FTP, you can use it to store and retrieve files but it has a much larger set of commands for listing your files and directories, creating directories, changing file permissions, etc. The command set has a UNIX look and feel (e.g. mv, mkdir, rm, cp, cd, etc.) so that moving through your HPSS directory tree is almost identical to what you would find on a UNIX file system. HSI can be

  18. HTAR Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HTAR Usage HTAR is a command line utility that creates and manipulates HPSS-resident tar-format archive files. It is ideal for storing groups of files in HPSS. Since the tar file is created directly in HPSS, it is generally faster and uses less local space than creating a local tar file then storing that into HPSS. Furthermore, HTAR creates an index file that (by default) is stored along with the archive in HPSS. This allows you to list the contents of an archive without retrieving it to

  19. Usage Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Summaries PDSF Group Batch Summary Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 SGE62 SGE62 SGE62 Partial SGE62 2015 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2014 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2013 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2012 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2011 SGE62 SGE62 SGE62 SGE62 SGE62

  20. December 2015 Most Viewed Documents for Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    methods for environmental pollution monitoring Gilbert, R.O. (1987) 116 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States ...

  1. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is controlled, repeatable, and accounts for a variety of real-world conditions for the average driver, like air conditioning usage and a variety of speed and temperature...

  2. NERSC Usage and User Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Demographics Users and Projects Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics NERSC Usage and User Demographics Usage...

  3. NERSC Usage Demographics 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 NERSC Usage Demographics 2011 Last edited: 2016-02-01 08:07:19

  4. NERSC Usage Demographics 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NERSC Usage Demographics 2012 Last edited: 2016-02-01 08:06:52

  5. NERSC Usage Demographics 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NERSC Usage Demographics 2013 Last edited: 2016-02-01 08:06:48

  6. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC...

  7. Usage by Job Size Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Cori Carver Planck Matgen Franklin Hopper 1 Magellan Dirac...

  8. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  9. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC resources. Our users come from across the U.S. and around the globe, with 48 states and 46 countries represented. Last edited: 2016-02-01 08:06:22

  10. A Look at Retail and Service Buildings - What Type of Equipment...

    U.S. Energy Information Administration (EIA) Indexed Site

    space heaters and packaged heating; they are most likely to use packaged air conditioning, followed by central air conditioning and individual air conditioning units....

  11. usage_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5

  12. Advanced Usage Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More » HSI Shell Script This example shows a batch script containing HSI actions. Read More » PFTP Shell Script This example shows a batch script containing PFTP actions. Read More » HSI Tape Ordering A procedure for generating an ordered list of files to store on HPSS. This allows efficient retrieval of large numbers of

  13. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  14. CBECS 2012: Energy Usage Summary

    Gasoline and Diesel Fuel Update (EIA)

    2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary CBECS 2012 - Release date: March 18, 2016 Despite a 14% increase in total buildings and a 22% increase in total floorspace since 2003, energy use in the estimated 5.6 million U.S. commercial buildings was up just 7% during the same period, according to new analysis from the 2012 Commercial Buildings Energy Consumption Survey (CBECS). Slower growth in commercial building energy demand since 2003 is explained in part by

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for rebates on programmable thermostats, air source heat pumps, add-on heat pumps, ground-source heat pumps, central air conditioning units and room air conditioning units....

  16. Space Heating and Cooling Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Air Conditioning Research Institute A directory listing air conditioning and heat pump products that meet energy performance tiers established by the Consortium for Energy...

  17. High Performance Sustainable Building Design RM

    Office of Environmental Management (EM)

    ... ASHRAE American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. ... ANSI, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. ...

  18. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  19. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics ...

  20. NREL Transportation Project to Reduce Fuel Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Project to Reduce Fuel Usage For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Mar. 23, 2001 - The Jefferson County Seniors Resource Center (SRC) Paratransit Service has become an important part of Eulalia Gaillard's life since her stroke in 1996. She calls on SRC to drive her to cardiologist, neurologist and chiropractor appointments each week. "It's wonderful," Gaillard says. "I'd give this program 150 plus in regards

  1. Guideline For Retrieving Customer Usage Data From Utilities

    Broader source: Energy.gov [DOE]

    This webinar, held on Dec. 16, 2010, provides information for utilities interested in retrieving data on customer usage.

  2. Parallel File Systems at HPC Centers: Usage,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems at HPC Centers: Usage, Experiences, and Recommendations William ( Bill) E . A llcock ALCF D irector o f O pera:ons Production Systems: ALCF-2 2 Mira - B G/Q s ystem - 49,152 nodes / 786,432 cores - 786 TB of memory - Peak fl op r ate: 1 0 P F - Linpack fl op r ate: 8 .1 P F Vesta --- B G/Q s ystem - 2,048 nodes / 3 2,768 c ores - 32 TB of memory - Peak fl op r ate: 4 19 T F Cetus --- B G/Q s ystem - 1,024 n odes / 1 6,384 c ores - 16 TB of memory - Peak fl op r ate: 2 09 T F Tukey -

  3. Ethanol Usage in Urban Public Transportation - Presentation of...

    Open Energy Info (EERE)

    - Presentation of Results Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ethanol Usage in Urban Public Transportation - Presentation of Results AgencyCompany...

  4. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2

  5. S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]

    Gasoline and Diesel Fuel Update (EIA)

    Million U.S. Households; 24 pages, 78 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 1997 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 1997 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 1997 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 1997 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 1997 2 HC4-6a. Air Conditioning by

  6. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Earl D Mattson; Larry Hull 02 PETROLEUM water water A system dynamic model was construction to...

  7. Form EIA-457E (2001) -- Household Bottled Gas Usage

    U.S. Energy Information Administration (EIA) Indexed Site

    F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 ... This report is required by law. The timely submission of Form EIA-457F by those required ...

  8. Cielo Computational Environment Usage Model With Mappings to ACE

    Office of Scientific and Technical Information (OSTI)

    Requirements for the General Availability User Environment Capabilities Release Version 1.1 (Technical Report) | SciTech Connect Technical Report: Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1 Citation Details In-Document Search Title: Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release

  9. Cielo Computational Environment Usage Model With Mappings to ACE

    Office of Scientific and Technical Information (OSTI)

    Requirements for the General Availability User Environment Capabilities Release Version 1.1 (Technical Report) | SciTech Connect Technical Report: Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1 Citation Details In-Document Search Title: Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release

  10. RECS Propane Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457D OMB No. 1905-0092 Expires 1/31/13 2009 RECS Propane (Bottled Gas or LPG) Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / /

  11. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information

  12. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    G (2001) -- Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Fuel Oil or Kerosene Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already

  13. "Table HC4.13 Lighting Usage Indicators by Renter-Occupied Housing...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005" " Million U.S. ... in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached...

  14. "Table HC11.13 Lighting Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing ... Division" ,,"Total Northeast" "Lighting Usage Indicators",,,"Middle ...

  15. "Table HC15.13 Lighting Usage Indicators by Four Most Populated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Lighting Usage ...

  16. "Table HC12.13 Lighting Usage Indicators by Midwest Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ... ,,,"Census Division" ,,"Total Midwest" "Lighting Usage Indicators",,,"East North ...

  17. "Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. ... in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached...

  18. "Table HC14.13 Lighting Usage Indicators by West Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ... ,,,"Census Division" ,,"Total West" "Lighting Usage Indicators",,,"Mountain","Pacific" ...

  19. "Table HC13.13 Lighting Usage Indicators by South Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ... ,,,"Census Division" ,,"Total South" "Lighting Usage Indicators",,,"South ...

  20. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

  1. Commercial Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  2. Ground-Source Heat Pumps Applied to Federal Facilities - Second Edition

    SciTech Connect (OSTI)

    2001-03-01

    Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition, technology for reducing heating and air-conditioning costs.

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ... Eligibility: Commercial,...

  4. Northfield, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Northfield, Ohio Weatherking Heating & Air conditioning References US Census Bureau Incorporated place and minor civil division...

  5. HVAC Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Heating Ventilation and Air Conditioning Energy efficient Heating Ventilation and...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ... Eligibility:...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    businesses. This includes lighting, heating, irrigators, insulation, VFDs, refrigeration, air conditioning, appliances, and water heating incentives. Equipment requirements and...

  8. Summary of Input to DOE Request for Information DE-PS36-08GO38002...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Greenpower Trap Mufflerl System BILIWG: Consistent "Figures of Merit" (Presentation) Heating Ventilation and Air Conditioning Efficiency...

  9. Better Buildings Neighborhood Program Business Models Guide: Contractor/Retailer Business Models

    Broader source: Energy.gov [DOE]

    Business models information focused on remodelers, HVAC (heating, ventilation, and air conditioning) contractors, home performance contractors, or retailers.

  10. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

  11. US Department of Energys Regulatory Negotiations Convening...

    Broader source: Energy.gov (indexed) [DOE]

    on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment PDF icon regnegonacconfidentiality.pdf More Documents & Publications ...

  12. Microsoft Word - BMPPlan Botts

    National Nuclear Security Administration (NNSA)

    ... Administration HVAC -- Heating Ventilation Air Conditioning ISO -- International Standards ... & Countermeasures SWPPP -- Storm Water Pollution Prevention Plan 5S -- sort, store, ...

  13. Fuel bundle design for enhanced usage of plutonium fuel

    DOE Patents [OSTI]

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  14. Edison-PhaseI-Science-and-usage.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o n the s ystem 0 0.5 1 1.5 2 2.5 3 3.5 Machine h ours u sed ( million hours) Binary n ame Top a pplicaFons o n E dison Largest Project Usage of Edison Phase 1 PI Project...

  15. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect (OSTI)

    Sand, J R; Grossman, G; Rice, C K; Fairchild, P D; Gross, I L

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  16. Microsoft Word - DOE-ID-10-005.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: CPP-663 HVAC Systems Upgrade SECTION B. Project Description The scope of work will be to repair and/or replace the existing heating, ventilation, and air conditioning system located in building CPP-663 at the Idaho National Engineering Laboratory. The scope will be to repair the existing system or identify an energy efficient replacement to the existing system and place an NFPA 70E code compliant electrical metering system that will monitor building electrical usage.

  17. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies

  18. December 2015 Most Viewed Documents for Environmental Sciences | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept of Energy, Office of Scientific and Technical Information Environmental Sciences Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 452 Building a secondary containment system Broder, M.F. (1994) 171 Statistical methods for environmental pollution monitoring Gilbert, R.O. (1987) 116 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States Fairchild, P.D.; Baxter, V.D. (1995) 101

  19. Eco-AC - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Eco-AC National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Air conditioning of building spaces consumes large amounts of energy in the United States, drives electricity usage during peak electricity demand, and is the single largest user of electricity in U.S. buildings. Thus, reducing our nation's energy consumption requires innovative and cost-effective

  20. July 2013 Most Viewed Documents for Environmental Sciences | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Environmental Sciences Science Subject Feed Building a secondary containment system Broder, M.F. (1994) 98 /> Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 76 /> Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States Fairchild, P.D.; Baxter, V.D. (1995) 58 /> Mitigation options for

  1. Fuel bundle design for enhanced usage of plutonium fuel

    DOE Patents [OSTI]

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  2. Residential Lighting Usage Estimate Tool, v1.0

    Broader source: Energy.gov [DOE]

    By improving our understanding of residential lighting-energy usage and quantifying it across many different parameters, the new study will be of use to anyone doing energy estimates – such as utilities, market and investment analysts, and government agencies. It will also help manufacturers design products that not only better serve consumers' needs, but that maximize the energy savings that technologies like SSL make possible.

  3. "Table HC10.13 Lighting Usage Indicators by U.S. Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Lighting Usage Indicators",,"Northeast","Midw...

  4. Energy Department Announces $4.5 Million to Expand Usage of Alternativ...

    Energy Savers [EERE]

    5 Million to Expand Usage of Alternative Fuels Energy Department Announces 4.5 Million to Expand Usage of Alternative Fuels July 16, 2014 - 11:00am Addthis In support of President ...

  5. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics ...

  6. Red Storm usage model :Version 1.12.

    SciTech Connect (OSTI)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  7. Residential Lighting Usage Estimate Tool, v1.0, MacOS version | Department

    Energy Savers [EERE]

    of Energy MacOS version Residential Lighting Usage Estimate Tool, v1.0, MacOS version MacOS version of the Residential Lighting Usage Estimate Tool, v1.0. File Spreadsheet More Documents & Publications Residential Lighting Usage Estimate Tool, v1.0, Windows

  8. Residential Lighting Usage Estimate Tool, v1.0, Windows version |

    Energy Savers [EERE]

    Department of Energy Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. File Spreadsheet More Documents & Publications Residential Lighting Usage Estimate Tool, v1.0, MacOS

  9. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  10. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  11. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  12. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  13. Usage based indicators to assess the impact of scholarly works: architecture and method

    DOE Patents [OSTI]

    Bollen, Johan (Santa Fe, NM); Van De Sompel, Herbert (Santa Fe, NM)

    2012-03-13

    Although recording of usage data is common in scholarly information services, its exploitation for the creation of value-added services remains limited due to concerns regarding, among others, user privacy, data validity, and the lack of accepted standards for the representation, sharing and aggregation of usage data. A technical, standards-based architecture for sharing usage information is presented. In this architecture, OpenURL-compliant linking servers aggregate usage information of a specific user community as it navigates the distributed information environment that it has access to. This usage information is made OAI-PMH harvestable so that usage information exposed by many linking servers can be aggregated to facilitate the creation of value-added services with a reach beyond that of a single community or a single information service.

  14. Commercial Building Tenant Energy Usage Data Aggregation and Privacy: Technical Appendix

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    2014-11-12

    This technical appendix accompanies report PNNL23786 Commercial Building Tenant Energy Usage Data Aggregation and Privacy. The objective is to provide background information on the methods utilized in the statistical analysis of the aggregation thresholds.

  15. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

  16. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Earl D. Mattson; Larry Hull; Kara Cafferty 02 PETROLEUM Water Water A system dynamic model was construction...

  17. API for current energy usage data per consumer | OpenEI Community

    Open Energy Info (EERE)

    API for current energy usage data per consumer Home > Groups > Developer Hello, I'm a web application developer working on an app to determine an individuals environmental impact,...

  18. RECS Fuel Oil Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / /

  19. Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of

  20. Green Button Helps More Consumers Click with Their Energy Usage Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Helps More Consumers Click with Their Energy Usage Data Green Button Helps More Consumers Click with Their Energy Usage Data September 12, 2013 - 2:41pm Addthis At the White House Energy Datapalooza in October 2012, developers showcased new apps that help consumers harness and interpret their energy use data. The expanding Green Button movement will make apps like these more ubiquitous. | Photo by Sarah Gerrity, Energy Department. At the White House Energy Datapalooza in

  1. Microsoft Word - DOE-ID-INL-12-013.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Idaho National Laboratory (INL) Administration Building (IAB) Communication Room Heating, Ventilation, and Air Conditioning (HVAC) Upgrade SECTION B. Project Description: The proposed project would install new server equipment with associated uninterruptible power supplies (UPS's) and an additional air conditioning unit in the data room at the IAB (IF-606). The additional air conditioning (A/C) unit is needed to keep up with the load the new equipment requires.

  2. Microsoft Word - DOE-ID-INL-12-019.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 SECTION A. Project Title: INL Administration Building (IAB)Telephone Room 112 Heating, Ventilating, and Air Conditioning (HVAC) Upgrade SECTION B. Project Description: The proposed project will install a new air conditioning unit in the INL Administration Building room 112. The new air conditioning system will handle the equipment heat loads within this room. Room 112 is an unclassified telephone room that is not normally occupied. This room has one supply air diffuser and one return air

  3. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOE Patents [OSTI]

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  4. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking | Department of Energy Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking This document is

  5. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment | Department of Energy 1: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment PDF icon CUAC TP Final Rule.pdf More Documents & Publications ISSUANCE 2015-07-27:

  6. Next Generation Rooftop Unit | Department of Energy

    Energy Savers [EERE]

    Unit Next Generation Rooftop Unit A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab Interior of lab prototype RTU under construction, taken during 2nd quarter of FY 14. Credit: Oak Ridge National Lab Interior of lab prototype RTU under construction, taken during 2nd quarter of FY 14. Credit: Oak Ridge National Lab A typical commercial rooftop air-conditioning unit (RTU)

  7. Common Air Conditioner Problems | Department of Energy

    Energy Savers [EERE]

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  8. Home Cooling Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Cooling Systems Home Cooling Systems When it comes to cooling your house, there are a number of options beyond air conditioning. | Photo courtesy of ©iStockphoto/chrisgramly. When it comes to cooling your house, there are a number of options beyond air conditioning. | Photo courtesy of ©iStockphoto/chrisgramly. Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. A combination of proper insulation,

  9. 2014-09-18 Issuance: Energy Conservation Standard for Small, Large, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting | Department of Energy 9-18 Issuance: Energy Conservation Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting 2014-09-18 Issuance: Energy Conservation Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating

  10. Empire District Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ...

  11. ISSUANCE 2015-12-17: Energy Conservation Program for Certain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    air source, and ductless heat pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners vary based upon system efficiency. All...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    rebates to residences for heat pump water heaters, central air conditioning systems, washers, refrigerators, ceiling fans, CFL light bulbs and equipment maintenance. These...

  15. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning: See Energy End Use, Cooling. Authorization Form: A form signed by the respondent authorizing energy supplier companies that serve the building to release...

  16. 2013 Federal Energy and Water Management Award Winner 4th Civil...

    Energy Savers [EERE]

    e ciency was gained through the installation's first variable refrigerant flow heating, ventilation, and air conditioning (HVAC) system, which provides highly e cient heat and...

  17. 2013 Federal Energy and Water Management Award Winner 4th Civil...

    Energy Savers [EERE]

    efficiency was gained through the installation's first variable refrigerant flow heating, ventilation, and air conditioning (HVAC) system, which provides highly efficient heat and...

  18. Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research

    SciTech Connect (OSTI)

    Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

    2007-06-01

    This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

  19. Chromasun | Open Energy Information

    Open Energy Info (EERE)

    Name: Chromasun Place: San Jose, California Sector: Solar Product: California rooftop linear Fresnel optic-based solar thermal air conditioning systems maker. References:...

  20. EERE Success Story-Tennessee: Ground-Source Heat Pump Receives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or small commercial building, was recently awarded a 2013 AHR Expo Innovation Award at the International Air-Conditioning and Refrigerating Expo (AHR Expo) in Dallas, Texas. ...

  1. Electric Power Monthly ? March 2010 Data issue

    Gasoline and Diesel Fuel Update (EIA)

    Examples include high-efficiency appliances, efficient lighting programs, high-efficiency heating, ventilating and air conditioning (HVAC) systems or control...

  2. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low activity waste facility (LA3W) heating, ventilation, and air conditioning systems and met with responsible Bechtel National, Incorporated (BNI) personnel to discuss comments. ...

  3. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  4. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    weather, which reduced the volume of natural gas used for electricity generation (power burn) for air conditioning and heating. Natural gas production: Natural gas production...

  5. Sheltering in Place | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    everyone inside (including pets). Close all doors and windows. Turn off and close all ventilation systems, including: Air conditioning Attic & exhaust fans Furnaces Fireplace...

  6. Trane Inc | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Zip: 8855 Product: New Jersey-based supplier and installer of heating, ventilation and air conditioning (HVAC) systems, also involved in the installation of...

  7. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and Air-Conditioning (HVAC) Systems Laboratory. The testing provided unique...

  8. CX-100251 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air conditioning (HVAC) system that utilizes ultra-small centrifugal compression for low global warming potential (GWP) in building technology. PDF icon 100251.pdf More Documents...

  9. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1982 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  10. Appliance Standard Program - The FY 2003 Priority -Setting Summary...

    Energy Savers [EERE]

    Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting ISSUANCE...

  11. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1980 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy provides rebates to residences for heat pump water heaters, central air conditioning systems, washers, refrigerators, ceiling fans, CFL light bulbs and equipment...

  13. Tempronics | Open Energy Information

    Open Energy Info (EERE)

    cooling and heat conversion devices that have applications for solar, as well as air conditioning, automobiles, aviation, refrigeration, and thermal management for electronics and...

  14. BROAD | Open Energy Information

    Open Energy Info (EERE)

    Name: BROAD Place: Beijing, China Zip: 100086 Product: BROAD specializes in air conditioning systems powered by clean and recyclable energies. Coordinates: 39.90601,...

  15. Ohio's 4th congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    American Tower Company Energy Technologies, Inc. Fetz Plumbing, Heating & Air Conditioning Greater Ohio Ethanol LLC GO Ethanol LP Hoying, LLC MetoKote Corporation Minster...

  16. Shenzhen Coolead Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Shenzhen Coolead Industry Co. Ltd. Place: China Product: Air conditioning R&D, equipment manufacture and sales. References: Shenzhen Coolead Industry Co....

  17. Spatial and temporal variations in indoor environmental conditions...

    Office of Scientific and Technical Information (OSTI)

    beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals...

  18. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1981 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    offers a variety of incentives to commercial and industrial customers in the New Mexico service territory. Rebates are available for central air conditioning systems, heat...

  20. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  1. Jefferson Lab Weekly Briefs - November 5, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the tunnel air conditioning was performed the week of Oct. 12. During commissioning, a control programming issue with the chilled water temperature in relationship to the dew...

  2. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1984 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  3. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1987 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  4. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    absorbed some of the growth in production, as low natural gas prices and high electricity demand, in response to warmer temperatures and increased air conditioning load, led to...

  5. Concord Municipal Light Plant- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers residential customers rebates on home weatherization, air conditioning system upgrades, and the purchase of LED bulbs.

  6. September 2013 Most Viewed Documents for Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    in vapor compression for refrigeration and air-conditioning in the United States ... Statistical methods for environmental pollution monitoring Gilbert, R.O. (1987) 26 > ...

  7. Momentum-Savings-Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Room Air Conditioning Residential Ceiling Fan Light Kits Electric Clothes Dryers Electric Cooktops Electric Ovens Residential Furnace Fans Microwave Ovens...

  8. EA-1673: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment

  9. Enercome | Open Energy Information

    Open Energy Info (EERE)

    Enercome Jump to: navigation, search Name: Enercome Place: Spain Sector: Solar Product: Production and maintenence of solar powered air conditioning systems, that can also be used...

  10. ISSUANCE 2015-06-30: Energy Conservation Program for Certain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating ...

  11. Incorporate Minimum Efficiency Requirements for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and ENERGY STAR-qualified heating, ventilating, and air conditioning (HVAC) and water heating products into tables that mirror American Society of Heating, Refrigerating and ...

  12. ISSUANCE 2014-12-23: Energy Conservation Program for Certain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking ISSUANCE 2014-12-23: Energy Conservation ...

  13. DOE Issues Final Rule for Alternative Efficiency Determination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air-conditioning, water heating, and refrigeration equipment. ...

  14. US Mnt(N) CO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    residents do not commonly use electricity for main space heating, air conditioning, or water heating. * Colorado homes are typically newer than homes in other parts of the country. ...

  15. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1

  16. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1

  17. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.4 1.2 1.7 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 10.7 3.4 7.2 7.1 Air Conditioners Not Used ........................... 2.1 1.1 0.2 0.9 15.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 9.6 3.2

  18. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1

  19. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4

  20. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and natural gas equipment. Eligible equipment includes a variety of appliances, central air conditioning, heat pumps, boilers, furnaces, water heaters, lighting, ceiling fans,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air conditioning system upgrades, and the purchase of LED bulbs. Eligibility: Construction, Residential Savings Category: Air conditioners, CaulkingWeather-stripping,...

  3. Cool Roofing Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air- conditioning use *Indirect Effect - Light-colored surfaces in a neighborhood alter surface energy balance; result in lower ambient temperature 6 7 Methodology: Energy and ...

  4. Kansas City Power & Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Standard incentives are available for lighting and controls; air conditioning, heat pumps, and chillers; pumps and variable frequency drives; appliances; business computing; food service and refr...

  5. EECBG Success Story: Grant Improves Comfort for Nevada City's Employees

    Broader source: Energy.gov [DOE]

    Caliente, Nevada, has a unique city hall: a historic railroad depot. There was just one problem: it was built before central heating or air-conditioning. Learn more.

  6. CX-001919: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    retrofits that are limited to: installation of insulation; installation of efficient lighting; heating, venting, and air conditioning (HVAC) and associated controls and...

  7. Garland Power & Light- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Residential customers also qualify for rebates when they install high efficiency window air conditioning units with an ENERGY STAR Rating or make weatherization improvements to already existing...

  8. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  9. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and...

  10. Style Guide | Department of Energy

    Energy Savers [EERE]

    V | W | X | Y | Z A a and an abbreviations academic degrees acronyms active voice and passive voice addresses affect and effect air conditioning American Recovery and Reinvestment...

  11. 1999 Commercial Buildings Characteristics--Cooling Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey Packaged air conditioning units were the main cooling system for 20,504 million square feet of cooled floorspace, more than twice the...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for air-conditioning needs). As a result, industry begins the process of building storage inventories in anticipation for higher demand levels later in the year. This...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    for air-conditioning needs). As a result, industry begins the process of building storage inventories in anticipation for higher demand levels later in the year. This...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Loans The City of Tallahassee Utilities offers loans with an interest rate of 5% for 29 different energy-saving measures, including energy-efficient central air conditioning...

  15. Trinity Thermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Texas Zip: 75028 Product: Trinity Thermal Systems provides power storage products aimed a shifting energy use from air conditioning systems to off-peak times....

  16. Dehumidifying Heat Pipes | Department of Energy

    Energy Savers [EERE]

    claims that your thermostat can be set higher with the low humidity air, allowing a net energy savings. Related Information Home Cooling Systems Air Conditioning Heat Pump Systems...

  17. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  18. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  19. Evaporative Coolers | Department of Energy

    Office of Environmental Management (EM)

    Home Cooling Systems Air Conditioning Evaporative Coolers Fans Radiant Cooling Ventilation for Cooling Whole-House Fans Home Heating Systems Heat Pump Systems Water Heating...

  20. EERE Is Working with Industry to Make the U.S. the Leader in...

    Broader source: Energy.gov (indexed) [DOE]

    clean energy technologies, from 3D printed motors to dramatically more efficient and zero global-warming potential solid state air conditioning technologies. Since we launched CEMI...

  1. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  2. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. ...

  3. Tecumseh Products Company | Open Energy Information

    Open Energy Info (EERE)

    Manufacturer of hermetic compressors for air conditioning and refrigeration products, gasoline engines and power train components. References: Tecumseh Products Company1 This...

  4. Makatec GmbH | Open Energy Information

    Open Energy Info (EERE)

    Makatec GmbH Place: Sindelfingen, Germany Zip: 71065 Product: Production of porous membranes for cooling, air conditioning purposes and heat pumps. References: Makatec GmbH1...

  5. NREL Reduces Climate Control Loads in Electric Vehicles (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation. When the climate control system in an...

  6. Building America Whole-House Solutions for Existing Homes: Inverted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC)...

  7. HVAC Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: As of January 1, 2016, rebates for unitary air conditioning and split systems and integrated dual enthalpy economizer controls are no longer available.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Kansas City Power & Light- CommercialIndustrial Energy Efficiency Rebate Program Standard incentives are available for lighting and controls; air conditioning, heat pumps, and...

  9. January2005 NNSANews | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency A Review of Cost Estimation in New Technologies - Implications for Energy Process Plants...

  10. Enforcement Policy Statement Regarding Walk-in Cooler/Walk-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Air-Conditioning, Heating and Refrigeration Institute filed a petition for review ... applicable to dedicated condensing refrigeration systems operating at medium ...

  11. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Environmental Management (EM)

    for 15 products, including commercial refrigeration equipment, electric motors, general ... the Air-Conditioning, Heating, and Refrigeration Institute. 3 Represents undiscounted ...

  12. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Energy Savers [EERE]

    loss, including: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. ...

  13. DOE Announces $37 Million for Small Business Research and Technology...

    Energy Savers [EERE]

    Applications are currently being accepted for topic areas related to improving energy efficiency including: Advanced building air conditioning and refrigeration, thermal load ...

  14. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: Energy.gov (indexed) [DOE]

    cost) across a variety of thermal insulating applications, such as building foundations and walls, and refrigeration and heating, ventilation, and air conditioning applications. ...

  15. DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification...

    Energy Savers [EERE]

    certification violations in return for a 5000 voluntary contribution that will be made on Mitsubishi's behalf by the Air-Conditioning, Heating and Refrigeration Institute (AHRI). ...

  16. Ex parte communication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo Mitsubishi Electric: Consent Decree (2011-CE-010202) AHRIAdvocate Ex Parte Memo ...

  17. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Broader source: Energy.gov (indexed) [DOE]

    ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a sustainable world through research, standards ...

  18. LENNOX HEARTH PRODUCTS

    Energy Savers [EERE]

    LHP, based in Nashville, TN, is a business unit of Lennox International Inc. (NYSE: LII), a global leader in the heating, ventilation, air conditioning and refrigeration markets. ...

  19. Comments on DOE's Verification Testing in Support of ENERGY STAR®...

    Broader source: Energy.gov (indexed) [DOE]

    Consumers Union Association of Home Appliance Manufacturers (AHAM) Air Conditioning, Heating and Refrigeration Institute (AHRI) A. O. Smith Corporation Alliance for Water ...

  20. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Lead Performer: Sandia ...

  1. Scientist Honored by DOE for Outstanding Research Accomplishments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The American Society of Heating, Refrigeration and Air Conditioning Engineer's design manual, Passive Solar Heating Analysis, is an outgrowth of this method. Dr. Balcomb's ...

  2. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating, irrigators, insulation, VFDs, refrigeration, air conditioning, appliances, and water heating incentives. Equipment requirements and specific rebate amounts can be found...

  4. Energy Office Grant Helps the Virgin Islands Environmental Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% More Documents & Publications Heating Ventilation and Air Conditioning Efficiency SITN Regional Outreach Map ...

  5. Sorption Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oxford, England, United Kingdom Zip: OX1 2AY Product: Oxford-based firm developing adsorption air-conditioning and heating systems for domestic-scale products. Coordinates:...

  6. ASHRAE 169-2006 | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Standard for Weather Data for Building Design Standards created by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc....

  7. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but ...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of its Residential rebate program, Hawaii Energy provides rebates to residences for heat pump water heaters, central air conditioning systems, washers, refrigerators, ceiling...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    air source, and ductless heat pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners vary...

  10. Pacific Power - Residential Energy Efficiency Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    up to 35 Dishwasher: 20 Freezer: 20 Room Air Conditioner: 25 Water Heaters: 75 Heat Pump Water Heater: 150 Refrigerator Recycling: 30 Central Air Conditioning: 250...

  11. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking ISSUANCE 2015-07-27: Energy Conservation Program:...

  12. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    33 Q Q Q 6 7 6 4 Central Chillers ... 111 Q Q 10 29 20 22 14 Packaged Air Conditioning Units ... 1,613 619...

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Q 9 Q 3 Q 6 Central Chillers ... 111 3 6 18 11 31 8 11 6 16 Packaged Air Conditioning Units ... 1,613 42...

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    397 79 Central Chillers ... 111 11,636 17,545 105.1 663 81 Packaged Air Conditioning Units ... 1,613...

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Chillers ... 11,636 Q Q 456 729 1,722 2,366 3,023 3,278 Packaged Air Conditioning Units ... 29,969...

  16. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Chillers ... 11,636 Q Q 294 1,243 1,736 2,436 5,590 Packaged Air Conditioning Units ... 29,969...

  17. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Q Q 6 5 6 2 1 Central Chillers ... 111 Q Q 26 19 24 17 10 3 Packaged Air Conditioning Units ... 1,613 678...

  18. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Q 4 4 5 5 8 Q Central Chillers ... 111 4 8 11 22 24 19 16 8 Packaged Air Conditioning Units ... 1,613 81...

  19. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    28.5 Central Chillers ... 111 11,636 17,545 48.0 889 60 30.5 Packaged Air Conditioning Units ... 1,613...

  20. the Y-12 Times, a newsletter for employees and friends of the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exterior and provided landscaping work using equipment donated by an apprentice's personal business. Tim Milligan, air conditioning and refrigeration mechanic and an apprentice...

  1. Amir Roth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Computing Machinery (ACM), the Instititute of Electrical and Electronics Engineers (IEEE), the American Society of Heating, Refrigeration, and Air-conditioning Engineers ...

  2. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for lighting and controls; air conditioning, heat pumps, and chillers; pumps and variable frequency drives; appliances; business computing; food service and refr......

  4. CX-007372: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to commercial buildings, 5) exterior lighting retrofits in city buildings, 6) energy efficient retrofits to city buildings including heating, ventilating, and air conditioning...

  5. Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning technologies.

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on geothermal heat pumps, air source heat pumps, central air conditioning, a variety of dairy equipment, heat lamps and pads, equipment controls, recovery ventilators, circulation...

  7. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking, and running a variety of other...

  8. Categorical ExclusIon Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB .5 - Cooling water system...

  9. Project Title: LIFE Center West (4498) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 104 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  10. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collected and analyzed. iv Acronyms and Abbreviations AC Air conditioning AQMD Air Quality Management District ATA American Trucking Association AVTA Advanced Vehicle Testing...

  11. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  12. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compared to vapor compression air condition- ers, DEVAP's novel design improves air quality by independently controlling temperature and humidity and increasing ventilation....

  13. Project Title: Tin Whisker Mitigation (4532) Program or Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation OBI.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  14. Categorical Exclusion I)etermination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation OB 1.3 - Routine maintenance and custodial services OB IA - Air conditioning installation for existing equipment OB I.S - Cooling water system...

  15. Project Title: Plant Lab Capabilities Project (4512) Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB I ,4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  16. Update and Overview of the U.S. Department of Energy's Rulemakings...

    Office of Environmental Management (EM)

    Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking EA-1673: Finding of No Significant...

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    living quarters. Common uses of energy associated with this sector include space heating, water heating, air conditioning, lighting, refrigeration, cooking and running a wide...

  18. Partner with DOE and Emerging Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC),...

  19. Making the Most Out of the End of Summer | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the winter. | Photo courtesy of iStockphotoblackie Keeping Cool Without Air Conditioning Winter Is Coming. Get Busy Saving Energy Save Money with Your Very Own Drapes

  20. Program Update: 2nd Quarter 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CERTIFIED REALTY SPECIALIST Heating Ventilation and Air Conditioning Efficiency Taking It from Brown to Green: Renewable Energy on Contaminated Lands

  1. NREL Expert Honored for Energy Systems Innovations - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expert Honored for Energy Systems Innovations Analyst named to editorial board; green data center and window air conditioning analysis also lauded January 6, 2014 Photo of Dr. Ben ...

  2. University of Central Florida Students' Energy Saving Work Showcased...

    Broader source: Energy.gov (indexed) [DOE]

    encouraging college students to help America save energy, save money and cut pollution. ... unplugging your electronics, raising the air conditioning temperature when in class, and ...

  3. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    evident in the third quarter, as refineries return from second-quarter maintenance and electricity demand for cooling and air conditioning ramps up seasonally in the northern...

  4. CX-009303: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide new heating, ventilation and air conditioning, roofing, insulation, level concrete floor surface, utilities, furniture, gas cabinets and a lab hood, and siding and...

  5. Draft Environmental Assessment for Direct Final Rule, 10 CFR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation, and air-conditioning ICC International Code Council IECC International Energy ... nervous system, irritation to the eyes and respiratory tract, and liver and kidney damage. ...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    part of its Residential rebate program, Hawaii Energy provides rebates to residences for heat pump water heaters, central air conditioning systems, washers, refrigerators, ceiling...

  7. CX-003011: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    retrofits to replace a 50 ton heating, ventilating, and air conditioning chiller at the 1984 Town Hall, and 5) building retrofits including replacinginstalling LED exit signs,...

  8. Risk Management Tool Attributes: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management Tool Attributes: Risk Management Tool Attributes: PDF icon Risk Management Tool Attributes: More Documents & Publications Heating Ventilation and Air Conditioning...

  9. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  10. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  11. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  12. Documentation of INL's In Situ Oil Shale Retorting Water Usage System

    Office of Scientific and Technical Information (OSTI)

    Dynamics Model (Technical Report) | SciTech Connect Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an in

  13. Jefferson Lab's Education Web Site Hits New High-Usage Record | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Web Site Hits New High-Usage Record April 22, 2002 Jefferson Lab's Science Education web site hit a new high in usage yesterday. In a 24-hour-period nearly 125,000 pages were viewed, according to Steve Gagnon, JLab Education technician. "Our previous record was 114,094 pages viewed in a single day," Gagnon explained. "On April 18 a total of 124,900 pages were viewed. Our previous record was set last week. Before that our high was around 89,000 pages. It has been exciting

  14. Jefferson Lab's Education web site hits new high-usage record during 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOL season | Jefferson Lab web site hits new high-usage record during 2003 SOL season April 2, 2003 Jefferson Lab's Science Education web site is hitting new highs in usage - on a daily basis. Just yesterday - in a 24-hour-period - nearly 212,000 pages were viewed, according to Steve Gagnon, JLab Science Education technician. "It has been exciting to see the level of use our web site has gotten recently," Gagnon said. "Most of the pages accessed were from our Virginia

  15. Documentation of INL's In Situ Oil Shale Retorting Water Usage System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Model (Technical Report) | SciTech Connect Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an in

  16. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an insitu retort were consider; a construction

  17. Energy Department Announces $4.5 Million to Expand Usage of Alternative

    Office of Environmental Management (EM)

    Fuels | Department of Energy 5 Million to Expand Usage of Alternative Fuels Energy Department Announces $4.5 Million to Expand Usage of Alternative Fuels July 16, 2014 - 11:00am Addthis In support of President Obama's all-of-the-above energy strategy, the Energy Department today announced up to $4.5 million in funding to expand the use of alternative fuels through the Clean Cities program, which works with nearly 100 local coalitions and thousands of stakeholders across the country to

  18. HSI Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmdir Delete an HPSS directory Local File and Directory Commands Command Function lcd Change local directory lls List local directory lmkdir Make a local directory lpwd...

  19. HTAR Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Create an HTAR Archive Rather than specifying the list of files and directories on the command line when creating an HTAR archive, you can place the list of file and directory...

  20. Relative concordance of human immunodeficiency virus oligomeric and monomeric envelope in CCR5 coreceptor usage

    SciTech Connect (OSTI)

    Teeravechyan, Samaporn; Suphaphiphat, Pirada; Essex, Max; Lee, Tun-Hou

    2008-01-20

    A major difference between binding and fusion assays commonly used to study the human immunodeficiency virus (HIV) envelope is the use of monomeric envelope for the former assay and oligomeric envelope for the latter. Due to discrepancies in their readouts for some mutants, envelope regions involved in CCR5 coreceptor usage were systematically studied to determine whether the discordance is due to inherent differences between the two assays or whether it genuinely reflects functional differences at each entry step. By adding the binding inhibitor TAK-779 to delay coreceptor binding kinetics in the fusion assay, the readouts were found comparable between the assays for the mutants analysed in this study. Our finding indicates that monomeric binding reflects oligomeric envelope-CCR5 interaction, thus discordant results between binding and fusion assays do not necessarily indicate differences in coreceptor usage by oligomeric envelope and monomeric gp120.

  1. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005

  2. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590

  3. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Selected Subsectors and Industry Establishments(b) In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know Total United States 311 Food 13,271 1,849 10,454 968

  4. Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005

    Gasoline and Diesel Fuel Update (EIA)

    0 Home Appliances Usage Indicators by Four Most Populated States, 2005 Total.................................................................................... 111.1 7.1 7.0 8.0 12.1 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 0.6 0.5 0.8 1.4 2 Times A Day.............................................................. 24.6 1.4 1.5 2.0 3.1 Once a Day...................................................................

  5. Determination of usage patterns and emissions for propane/LPG in California. Final report

    SciTech Connect (OSTI)

    Sullivan, M.

    1992-05-01

    The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

  6. Y-12 reduces water usage and wins award | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration reduces water usage and wins award | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  7. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  8. S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]

    Gasoline and Diesel Fuel Update (EIA)

    Percent of U.S. Households; 24 pages, 81 kb) Contents Pages HC4-1b. Air Conditioning by Climate Zone, Percent of U.S. Households, 1997 2 HC4-2b. Air Conditioning by Year of Construction, Percent of U.S. Households, 1997 2 HC4-3b. Air Conditioning by Household Income, Percent of U.S. Households, 1997 2 HC4-4b. Air Conditioning by Type of Housing Unit, Percent of U.S. Households, 1997 2 HC4-5b. Air Conditioning by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 1997 2 HC4-6b. Air

  9. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  10. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  11. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total.............................................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day........................................... 8.2 1.4 1.9 1.4 1.0 2.4 2 Times A Day........................................................ 24.6 4.3 7.6 4.3 4.8 3.7 Once a Day............................................................ 42.3 9.9

  12. Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model.....................................................

  13. Label Building Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our

  14. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  15. "Table HC9.10 Home Appliances Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8

  16. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOE Patents [OSTI]

    Bitensky, M.W.; Yoshida, Tatsuro

    1998-08-04

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials. 8 figs.

  17. Prolonged cold storage of red blood cells by oxygen removal and additive usage

    DOE Patents [OSTI]

    Bitensky, Mark W. (Boston, MA); Yoshida, Tatsuro (Newton, MA)

    1998-01-01

    Prolonged cold storage of red blood cells by oxygen removal and additive usage. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. The improved in vivo survival and the preservation of adenosine triphosphate levels, along with reduction in hemolysis and membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time, is achieved by reducing the oxygen level therein at the time of storage; in particular, by flushing the cells with an inert gas, and storing them in an aqueous solution which includes adenine, dextrose, mannitol, citrate ion, and dihydrogen phosphate ion, but no sodium chloride, in an oxygen-permeable container which is located in an oxygen-free environment containing oxygen-scavenging materials.

  18. Buildings Energy Data Book: 8.5 Federal Government Water Usage

    Buildings Energy Data Book [EERE]

    5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury

  19. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer

  20. "Table HC10.10 Home Appliances Usage Indicators by U.S. Census Regions, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by U.S. Census Regions, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Home Appliances Usage Indicators",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,1.2,1.4,3,2.6 "2 Times A

  1. "Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ," U.S. Housing Units (millions) " ,,,"Census Division" ,,"Total Northeast" "Home Appliances Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A

  2. "Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Home Appliances Usage Indicators",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A

  3. "Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Home Appliances Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Cooking Appliances" "Frequency of Hot Meals Cooked"

  4. "Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Home Appliances Usage Indicators",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.6,0.7,1.9 "2

  5. "Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Home Appliances Usage Indicators",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,0.6,0.5,0.8,1.4 "2 Times

  6. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  7. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  8. "Table HC8.10 Home Appliances Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.7,1.6,1.4,1.5 "2

  9. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.

  10. Characterization of population and usage of unvented kerosene space heaters. Final report, May 1988-January 1989

    SciTech Connect (OSTI)

    Barnes, J.; Holland, P.; Mihlmester, P.

    1990-01-01

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector. The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unvented appliances, one of a number of synergistic factors affecting indoor air quality. UKSHs can be a significant source of such emissions. UKSH usage patterns were also investigated. Annual sales of UKSHs are estimated at 825,000 units. Leading brands include convective units marketed by Toyotomi USA (kero-Sun) and Corona USA. Some units contain built-in catalytic filters for odor control. Add-on catalytic filters are available from at least one manufacturer. It is believed that 15-17 million portable UKSHs have been sold in the U.S. since the early 1970s. However, it is estimated that, in the 1986-87 heating season, there were only about 7 million units in use. About half of these units are in the South. Depending on whether UKSHs are used as primary or secondary heating sources, they may be used anywhere from 1 to 17 hours a day. Eighty percent of UKSHs are used in multi-family dwellings and mobile homes.

  11. A study in the application of energy management at a table service restaurant

    SciTech Connect (OSTI)

    Balmer, A.; Nodolf, K.M.

    1985-01-01

    This paper describes a study of the application of energy management including electric demand limit control in a 6656 ft/sup 2/ table service restaurant located in Minneapolis, which contained 30 tons of rooftop air conditioning, a 74 kW electric dishwasher, and natural gas space heating. Strategies were developed for applying demand-limit and time-of-day controls on rooftop air-conditioning units, refrigeration equipment, ventilation equipment, and a dishwasher electric booster heater. This study was conducted over a one-year period using a week-on/week-off test procedure in which the energy management controls were in operation alternately for one week and then manually disconnected for the following week. This testing method was chosen to reduce the effects of changes in the business operating procedures, changes in the connected electrical loads and irregularities in the climate that tend to distort results based on a year-to-year comparison. Extensive instrumentation was installed to monitor the operation of controlled loads, the impact on the space temperature, the operation of overrides and limit controls on critical loads, peak electric demand, and total energy consumption. The study demonstrated that electric demand charges were reduced 19.7% and that electric energy usage charges were reduced 8.7%. The total annual savings was $2440 which represented a 13% savings on the total energy bill and a 48% return-on-investment on a system installed cost of $5083.

  12. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  13. S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]

    Gasoline and Diesel Fuel Update (EIA)

    1997 Air Conditioning Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.2 1.9 1.1 1.0 Households With Electric Air-Conditioning Equipment ...................... 73.6 4.3 4.8 6.4 5.7 3.5 Central Equipment Not Used ....................... 0.3 Q 0.1 (*) 0.1 29.0 Room Air Conditioners Not Used ................ 0.7 Q Q Q 0.1 43.1 Households Using Electric Air-Conditioning 1 ........................................ 72.6 4.2 4.6

  14. S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]

    Gasoline and Diesel Fuel Update (EIA)

    b. Air Conditioning by Four Most Populated States, Percent of U.S. Households, 1997 Air Conditioning Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.3 1.4 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 100.0 100.0 100.0 100.0 100.0 0.0 Central Equipment Not Used ....................... 0.5 Q 2.9 0.6 1.2 28.9 Room Air Conditioners Not Used ................ 1.0 Q Q Q 1.2 40.5 Households

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  16. Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Technical Information Exchange on Pyrolysis Oil May 9-10, 2012 Manchester, NH Dr. Jani Lehto VTT Technical Research Centre of Finland 2 07/05/2012 Outline  Introduction  Main challenges today in general  More details on challenges associated with  Feedstock processing  Pyrolysis oil production  Transportation and storage  Use of pyrolysis

  17. Midea: Proposed Penalty (2013-SE-1505)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that GD Midea Air-Conditioning Equipment Co. Ltd. manufactured and distributed noncompliant room air conditioner basic model MWJ1-08ERN1-BI8 in the U.S.

  18. National Comfort Products: Proposed Penalty (2014-SE-16014)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that National Comfort Products failed to certify space constrained central air conditioners and central air conditioning heat pumps as compliant with the applicable energy conservation standards.

  19. CX-008347: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    West Hackberry Building 301 Air Handling Unit-1 Heating, Ventilation, and Air Conditioning Replacement CX(s) Applied: B1.4 Date: 04/16/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  20. CX-007813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bayou Choctaw Building 401 Air Handling Unit-3 Heating, Ventilation and Air Conditioning Replacement CX(s) Applied: B1.4 Date: 02/01/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  1. Heat Distribution Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That...

  2. CX-000098: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Churchill County's Heating, Ventilating, and Air Conditioning RetrofitCX(s) Applied: B5.1Date: 11/24/2009Location(s): Churchill County, NevadaOffice(s): Energy Efficiency and Renewable Energy

  3. CX-008320: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

  4. CX-008322: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  5. CX-008323: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: A9 Date: 04/18/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  6. Control and Diagnostics for Rooftop Units- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Jim Braun, Purdue University (The Pennsylvania State University Consortium for Building Energy Innovation) This project aims to develop and validate cost-effective methods for rooftop air conditioning unit (RTU) coordination and diagnostics in small commercial buildings.

  7. CX-100247 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Membrane Based Air Conditioning Award Number: DE-EE0007041 CX(s) Applied: A9, B3.6 Building Technologies Office Date: 05/20/2015 Location(s): FL Office(s): Golden Field Office

  8. Fans for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of...

  9. SolarAire LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Folsom, California Sector: Solar Product: Developing a solar thermal air conditioning unit. References: SolarAire LLC1 This article is a stub. You can help OpenEI by...

  10. Sopogy LLC | Open Energy Information

    Open Energy Info (EERE)

    STEG projects and equipment and maker of solar thermal process heat and solar air-conditioning systems. References: Sopogy LLC1 This article is a stub. You can help OpenEI by...

  11. CX-012063: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Heating Ventilation and Air Conditioning Unit for Room D-007 in 735-A CX(s) Applied: B1.3 Date: 03/11/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. GPM Inc Solcool One LLC | Open Energy Information

    Open Energy Info (EERE)

    One LLC) Place: California Product: Developer of PV-powered, energy-efficient air conditioning units. References: GPM Inc (Solcool One LLC)1 This article is a stub. You can...

  13. DOE Requires Air-Con International to Cease Sales of Inefficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in the United States and proposing a civil penalty of ...

  14. CX-008321: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6, B5.1 Date: 04/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  15. CX-006628: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning SystemCX(s) Applied: B1.5Date: 08/01/2011Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  16. CX-006625: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning SystemCX(s) Applied: B1.5Date: 07/29/2011Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  17. Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems

    Broader source: Energy.gov [DOE]

    This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

  18. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2

  19. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning

  20. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central

  1. DOE/EP-0108

    Broader source: Energy.gov [DOE]

    Fire Protection of DOE Electronic Computer/Data Processing Systems Formerly Wash 1245-1 This standard applies to all essential electronic computer data processing equipment as well as the storage facilities, associated utilities, and air conditioning systems.

  2. Appliance Standards and Rulemaking Federal Advisory Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning and Heat Pumps Working Group is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between...

  3. Energy Efficiency Tax Credits, Rebates and Financing: What Options...

    Energy Savers [EERE]

    Advanced main air circulating fan Air-source heat pump Central air conditioning Gas, propane, or oil hot water boiler Natural gas, propane, or oil furnace Insulation Roofs (metal...

  4. AeroSys: Proposed Penalty (2010-CE-01/0201)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that AeroSys, Inc. failed to certify residential central air conditioners and air conditioning heat pumps as compliant with the applicable energy conservation standards.

  5. Aspen: Noncompliance Determination (2010-SE-0305)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that a variety of basic models of split-system air conditioning heat pumps do not comport with the energy conservation standards.

  6. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    cooler than average in both New York City and Boston, which reduced the demand for power to support air conditioning load. According to data from the electric grid operator...

  7. Table 2.5 Household Energy Consumption and Expenditures by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity ...

  8. FEMP Focus - Winter/Spring 2005

    SciTech Connect (OSTI)

    2005-04-04

    Features information about technical assistance, distibuted energy, energy efficiennt products, alternative financing, solar air conditioning, solar heating and lighting, wastewater digester, T5 fluorescent technology, and more for federal agencies.

  9. National Certification Standard

    Broader source: Energy.gov [DOE]

    This project will create a national certification standard for all primary personnel involved in the installation of geothermal heat pump (GHP) systems; including drillers; plumbers; electricians; heating and air conditioning specialists; engineers and architects.

  10. Thermo Products: Proposed Penalty (2011-SE-1603)

    Broader source: Energy.gov [DOE]

    DOE issued this Notice of Proposed Civil Penalty Notice to Thermo Products, LLC, alleging that the company certified several models of residential air conditioning heat pumps without performing testing required by DOE regulations.

  11. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    The penetration rate for central air-conditioning is estimated by means of time series analysis of RECS survey data. Water Heating: Solar Water Heaters Market shares for solar...

  12. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water heaters and electric heating and air conditioning systems. A centralized computer system monitored the power demand and sent a radio signal to the REMS units to cycle off...

  13. CX-008732: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho National Laboratory (INL) Administration Building (IAB) Communication Room Heating, Ventilation, and Air Conditioning (HVAC) Upgrade CX(s) Applied: B1.31 Date: 05/21/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  14. DOE Publishes Supplemental Notice of Proposed Rulemaking for Alternative Efficiency Determination Methods and Alternative Rating Methods

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a supplemental notice of proposed rulemaking to revise and expand its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air-condition

  15. CX-006566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Puente City Hall Heating, Ventilation, and Air Conditioning System Date: 08/25/2011Location(s): LaPuente, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  16. Ex Parte Communication Gas Heat SPVU Question | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 20150210SPVU Ex Parte Memo021015 More Documents & Publications Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo AHRIAdvocate Ex Parte Memo 2.5.15 ...

  17. The Oak Ridge Centers for Manufacturing Technologies „ Skills...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This input comes from John Whalen, air conditioning and refrigeration (AC&R) technician. ... One of the top tasks on their agenda was to license all the refrigeration technicians in ...

  18. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+-. - Monitor for 3 years the performance of the...

  19. In the OSTI Collections: Heat Pumps | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Heat Pumps Heat-Pump Water Heaters Heat Pumps in Heating, Ventilation, and Air ... Two common uses of heat pumps are in water heaters and in heating and air-conditioning ...

  20. Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of iStockphotoblackie Keeping Cool Without Air Conditioning Trees, fans, and window treatments can keep you cool and save energy this summer. July 31, 2013 With a little...

  1. CX-001284: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Weatherization, Heating, Ventilation, Air Conditioning and Upgrade Traffic SignalsCX(s) Applied: B5.1Date: 12/04/2009Location(s): New Braunfels, TexasOffice(s): Energy Efficiency and Renewable Energy

  2. Pacific Power - Home Energy Savings Program For Builders | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.75 - 1sq. ft. Attic Insulation: 0.05sq.ft. Central Air Conditioning: 275 Heat Pump Water Heater: 250 Summary Pacific Power provides an incentive for home builders in...

  3. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment ISSUANCE 2015-12-11: Final Rule Regarding Test...

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Chillers ... 111 10 29 50 22 11,636 1,852 2,842 4,854 2,088 Packaged Air Conditioning Units ... 1,613 202...

  5. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 11,636 383 1,469 2,074 768 2,489 594 1,771 621 1,466 Packaged Air Conditioning Units ... 29,969 872...

  6. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Chillers ... 11,636 392 1,063 891 1,776 2,323 2,801 1,426 963 Packaged Air Conditioning Units ... 29,969...

  7. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  8. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  9. Recent development in green buildings

    SciTech Connect (OSTI)

    Mei, V.C.

    1996-12-31

    Because of the environmental concerns about some materials used in buildings, particularly chlorofluorocarbon (CFC) fluids used as the blowing agent for insulation materials and as refrigerants used in the air conditioning systems have led to a search for environmentally safe alternatives. For insulation materials, new non-CFC blowing agents are still under development. However, the old insulation materials in the buildings will stay because they do not pose any further environmental damage. It is a different story for refrigerants used in air conditioning systems. This study reports that the change-over from CFC to non-CFC refrigerants in the existing and future air conditioning equipment could be a chance not only to take care of the environmental concerns, but to save energy as well. Alternative air conditioning technologies, such as the desiccant dehumidification and absorption systems, and the potential of some natural substances, such as carbon dioxide, as the future refrigerants are also discussed.

  10. Project Title: NSY Drum Disposal (4504) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation B 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  11. Categorical ExclusIon DetermInation Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation gB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB I.S - Cooling water system...

  12. Project Title: C31 Deployment (4501) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment oB1.5 - Cooling water system...

  13. Categorical ExclusIon DetermInatIon J-iornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  14. Project Title: X-Ray Machine Replacement Project (4552)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB I.S - Cooling water system...

  15. Categoncal ExclusionlJetermlnation Forn1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation IBB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  16. Categorical ExclusIon DetermInation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation 8B 1.3 * Routine maintenance and custodial services DB 1.4 * Air conditioning installation for existing equipment DB I.S - Cooling water system...

  17. CategorIcal Exclusion Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  18. ~l Categorical Exclusion DetermInation Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  19. Categorical Exclusion l)etermlnatIon FornI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  20. Categorical Exclusion 4568, Crane Removal Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  1. Categorical Exclusion DetermInation Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  2. Project Title: Office Trailers for ARRA Project (4502)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  3. Categorical Exclusion Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  4. Categoncal Exclusion IJctermil1ation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling waler system...

  5. Categorical Exclusion Determination 1"orn1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation OB1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB I.S - Cooling water system...

  6. Categorical ExclusIon DetermInation Fom1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  7. Categorical ExclusIon DetermInatIon Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation I8B 1.3 . Routine maintenance and custodial services DB 1.4 Air conditioning installation for existing equipment DB 1.5 * Cooling water system...

  8. Categoncal Exclusion DeterminahonFornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation &B 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  9. Categorical ExcluSIon Determination Forn1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation I8lB 1.3 * Routine maintenance and custodial services DB 1,4 * Air conditioning installation for existing equipment DB 1.5 Cooling water system...

  10. Technology Solutions Case Study: A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort

    SciTech Connect (OSTI)

    C. Booten

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve energy efficiency, cost savings, and comfort for homeowners.

  11. Project Title: Vault Type Room Upgrade Project (4543)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation RlB 1.3 - Routine maintenance and custodial services OB 1,4 - Air conditioning installation for existing equipment OB 1.5 - Cooling water system...

  12. Project Title: New Non SNM Door (4503) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  13. Categorical ExclusIon Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation IRIB 1.3 Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  14. Categorical Exclusion Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  15. East End Scales (4499)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB I.S - Cooling water system...

  16. CX-001145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ford Thermoelectric Heating, Ventilation, and Air Conditioning ProjectCX(s) Applied: B3.6Date: 03/08/2010Location(s): Asuza, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  17. CX-004915: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    United Technologies Research Center - Water-Based Heating, Ventilation, and Air Conditioning SystemCX(s) Applied: B3.6Date: 08/16/2010Location(s): East Hartford, ConnecticutOffice(s): Advanced Research Projects Agency - Energy

  18. Stirling Air Conditioner for Compact Cooling (Program Document...

    Office of Scientific and Technical Information (OSTI)

    The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To...

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    ... Overall, 18 percent of households below the poverty line do not have any air conditioning equipment at all. About a third of households below the poverty line use room air ...

  20. Air-Con International: Order (2010-SE-0301)

    Broader source: Energy.gov [DOE]

    DOE ordered Air-Con International, Inc. to pay a $10,000 civil penalty after finding Air-Con had imported and distributed in commerce in the U.S. various models of air-conditioning units.