Powered by Deep Web Technologies
Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

2

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How...

3

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pump Basics Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

4

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

5

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pump Basics Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

6

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from ductwork that protrudes through a wall or roof. More Information Visit the Energy Saver website for more information about the selection and performance of air-source...

7

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

8

Air source heat pump system for drying application  

Science Conference Proceedings (OSTI)

This paper investigates the performance of an air source heat pump for drying purpose. In order to evaluate the performance analysis; a simulation study has been done. The results of simulation of heat pump dryer for different evaporator temperatures ... Keywords: air source heat pump, coefficient of performance (COP), condenser temperature and compressor work, dryer, evaporator temperature

R. Daghigh; M. H. Ruslan; A. Zaharim; K. Sopian

2010-10-01T23:59:59.000Z

9

Wabash County REMC - Residential Geothermal and Air-source Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal...

10

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and...

11

Advanced Variable Speed Air-Source Integrated Heat Pump  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

12

Advanced Variable Speed Air-Source Integrated Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

13

Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

Not Available

2011-02-11T23:59:59.000Z

14

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

15

Laboratory Testing of the Heating Capacity of Air-Source Heat Pumps at Low Outdoor Temperature Conditions  

Science Conference Proceedings (OSTI)

Air-source heat pump systems offer an alternative to the common heating, ventilating, and air conditioning (HVAC) configuration of single split unitary air conditioners with gas heating. In simple terms, heat pumps are traditional air conditioning units with the added capability of running in reverse as required by the building load. Thus, where the traditional air conditioning unit has an indoor evaporator to remove heat from the space and an outdoor condenser to reject heat to the ambient environment, ...

2010-12-22T23:59:59.000Z

16

Performance analysis of a two-stage variable capacity air source heat pump and a horizontal loop coupled ground source heat pump system.  

E-Print Network (OSTI)

??The thermal performance of a new two-stage variable capacity air source heat pump (ASHP) and a horizontal ground loop ground source heat pump (GSHP) was… (more)

Safa, Amir Alizadeh

2012-01-01T23:59:59.000Z

17

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump.  

E-Print Network (OSTI)

??The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump were investigated. The base case tests used a… (more)

Parker, Brandon DeWayne

2012-01-01T23:59:59.000Z

18

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air. The most common method of air source heat pump frost removal is reverse-cycle defrost. During the defrosting operation, the heat pump runs in the cooling mode. The defrost process is accomplished by reversing the normal heating mode. In this paper, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little effect on the room temperature.

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

19

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Maximum of two rebates per household Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal System: $250 Air-Source Heat Pump: $150 Electric Water Heater: $75 - $125 Provider Kosciusko REMC Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters. For each purchase of an

20

Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash County REMC - Residential Geothermal and Air-source Heat Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal: $750 Air Source Heat Pumps: $625 One rebate per house Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Air Source Heat Pumps: $125 - $625/ton Geothermal Heat Pumps: $150 - $750/ton Water Heater: $100 Provider Wabash County REMC Wabash Rural Electric Membership Cooperative (REMC) is a member-owned electric distribution organization that provides service to customers in north-central Indiana. To encourage energy efficiency, Wabash County REMC

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

22

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

23

State of the Art of Air-source Heat Pump for Cold Regions  

E-Print Network (OSTI)

In this paper, research on air source heat pump systems for cold regions in recent years is first summarized and compared. These systems can be divided into three kinds: a single-stage compression heat pump, liquid/vapor injection heat pump, and a two-stage heat pump. Finally, our research with a two-stage compression variable frequency air source heat pump is presented. A two-control-model with the priority target as COP or heating capacity is advanced. The experimental results show that the COP of this heat pump system is over 2, the compressor discharge temperature under 120, and the heating capacity can meet the heating load needed when the condensing temperature is 50 and outdoor air temperature is over -18.

Tian, C.; Liang, N.

2006-01-01T23:59:59.000Z

24

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Air-Source Heat Pumps Residential Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

25

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

26

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

27

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

28

Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

Science Conference Proceedings (OSTI)

This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-07-01T23:59:59.000Z

29

Development of a High Performance Air Source Heat Pump for the US Market  

SciTech Connect

Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

Abdelaziz, Omar [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL; Baxter, Van D [ORNL; Iu, Ipseng [ORNL

2011-01-01T23:59:59.000Z

30

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

31

Seasonal Energy Efficiency Ratio (SEER) Investigation for Residential and Small Commercial Air-Source Heat Pumps  

Science Conference Proceedings (OSTI)

Electric utilities frequently use the seasonal energy efficiency ratio (SEER) in air conditioning–based incentive programs to categorize energy efficiency and to quantify financial value. For residential and small commercial unitary air conditioners and heat pumps, SEER is determined by the procedures outlined in ANSI/AHRI Standard 210/240. Within Standard 210/240, SEER is calculated based on laboratory test results and equations that follow specific assumptions regarding indoor temperature, ...

2012-12-21T23:59:59.000Z

32

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

33

Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design  

SciTech Connect

The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

34

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

35

The Effect of Alternate Defrost Strategies on the Reverse-Cycle Defrost of an Air-Source Heat Pump  

E-Print Network (OSTI)

The effect of alternate defrost strategies on the transient performance of the air-source heat pump during the reverse-cycle defrost was investigated. Tests of a base-case heat pump configuration and defrost strategy were completed to provide a basis for performance evaluations of the alternate defrost strategies. The compressor and indoor coil fan operated continuously in the base-case defrost strategy, and the outdoor coil fan was stopped. Alternate defrost strategies utilized variations in fan and compressor operation during and after the defrost. Pre-starting of the outdoor coil fan prior to termination of the reverse-cycle defrost reduced pressure spikes commonly seen at defrost termination in the base-case defrost strategy. A strategy in which the compressor was stopped and the outdoor coil was allowed to drain of melted frost during the last three minutes of the defrost improved overall cyclic performance. Strategies which involved stopping of the indoor fan during defrost or delaying the start of the outdoor fan following defrost termination had a negative impact on defrost performance. A final strategy involved down-sizing of the heat pump compressor from 3.0 tons (36,000 btu/hr) capacity to 2.5 tons capacity. This alternate configuration had a comparable overall performance with the base-case while having a reduced frequency of required defrost periods.

Schliesing, J. S.

1988-08-01T23:59:59.000Z

36

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon  

E-Print Network (OSTI)

from the heat stock previously produced. The air and water heat exchangers have to carry out. While producing hot water using the water condenser, the cold water tank is heated, usually from 5 to 15 during the winter sequence enables to produce hot water continuously with improved average system

37

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

38

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

39

Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regions.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed… (more)

Balasubramanian, Siddharth

2012-01-01T23:59:59.000Z

40

Rotating heat pipe for air-conditioning  

SciTech Connect

A unique rotary hermetic heat pipe is disclosed for transferring heat from an external source to an external heat sink. The heat pipe has a tapered condensing surface which is curved preferably to provide uniform pumping acceleration, the heat pipe being rotated at a velocity such that the component of centrifugal acceleration in an axial direction parallel to the tapered surface is greater than lG and so that the condensing surface is kept relatively free of liquid at any attitude. The heat pipe may be incorporated in an air conditioning apparatus so that it projects through a small wall opening. In the preferred air conditioning apparatus, a hollow hermetic air impeller is provided which contains a liquefied gaseous refrigerant, such as freon, and means are provided for compressing the refrigerant in the evaporator region of the heat pipe.

Gray, V.H.

1976-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

42

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

43

Solar assisted heat pump on air collectors: A simulation tool  

Science Conference Proceedings (OSTI)

The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

2010-01-15T23:59:59.000Z

44

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

45

Navy Heat Source Safety Tests  

SciTech Connect

The purpose of these tests was to validate the integrity of the Navy Heat Source after imposing conditions which might, in the extreme, be encountered singly or serially so that safety would be assured.

Anderson, C. G.; Cartmill, W. B.

1975-06-18T23:59:59.000Z

46

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

47

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

48

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

49

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

50

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

51

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

52

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

53

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Conference Proceedings (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

54

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

55

Optimal Design for a Hybrid Ground-Source Heat Pump  

E-Print Network (OSTI)

Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial buildings, a significant barrier to wider application of this technology is a high first cost. When used in cooling-dominated buildings, ground-source heat pumps that utilize vertical, closed-loop ground heat exchangers can experience performance degradation as the entering fluid temperature to the heat pump increases over time due to heat buildup in the borefield. In these cases, it is possible to displace a large portion of the system cost by installing a supplemental heat rejecter to balance the annual heat extraction from the ground. The paper presented has shown that the heat rejection of the GLHEs and the system energy consumption are approached to discuss the ground heat balance with different design procedures and control strategies though the system simulation.

Yu, Z.; Yuan, X.; Wang, B.

2006-01-01T23:59:59.000Z

56

Carbothermic reduction with parallel heat sources  

DOE Patents (OSTI)

Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

1984-12-04T23:59:59.000Z

57

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

58

Thulium heat sources for space power applications  

DOE Green Energy (OSTI)

Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

Alderman, C.J.

1992-05-01T23:59:59.000Z

59

Line Heat-Source Guarded Hot Plate  

Science Conference Proceedings (OSTI)

Line Heat-Source Guarded Hot Plate. Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. ...

2012-03-06T23:59:59.000Z

60

Simulation model air-to-air plate heat exchanger  

Science Conference Proceedings (OSTI)

A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

Wetter, Michael

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

62

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

63

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

64

Facility HVAC System Conversion to Ground Source Heat Pump Geothermal...  

Open Energy Info (EERE)

ventilators will utilize the hot water to "temper" outdoor air ventilation. Although the heat pump modules can provide both heating and cooling, the space requires heating only....

65

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

66

Random Analysis on Line-Heat Source Temperature Field of Ground Source Heat Pumps Buried Pipes  

Science Conference Proceedings (OSTI)

In this paper the random properties of ground-source heat pump (GSHP) system.GSHP buried pipe to Kelvin one-dimensional line source of heat transfer model are discussed. The model randomness is analyzed, and the GSHP buried pipe to random excess temperature ... Keywords: GSHP, Buriedpipe, Line-heat source, Temperature field, Correlation

Changsheng Guan; Zhuodong Liu; Kai Xia; Xuyi Chen

2009-05-01T23:59:59.000Z

67

Air-Conditioning, Heating, and Refrigeration Institute (AHRI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments...

68

Investigation on a Microwave High-Temperature Air Heat Exchanger  

Science Conference Proceedings (OSTI)

In present paper, an energy efficient air heat exchanger, based on accumulation of the heat generated by microwave absorbing materials is presented according  ...

69

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

70

Property:HeatSource | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what heats the geothermal fluid - whether it be a magmatic intrusion, a thin crust which brings the mantle closer to hydrologic systems, or only radiogenic influences (such as at Chena hot springs, Alaska). This is a property of type Page. Subproperties This property has the following 4 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Steamboat Springs Geothermal Area Pages using the property "HeatSource" Showing 9 pages using this property. C Chena Geothermal Area + Radiogenic +

71

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

72

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

73

Improving Air Conditioner and Heat Pump Modeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Air-Conditioner Improving Air-Conditioner and Heat Pump Modeling Building America Stakeholders Meeting Jon Winkler March 2, 2012 2 * How do you recommend the most cost-effective A/C? Simple Question 3 Solution Whole-House Simulation Tool A/C Information * SEER 13 * SEER 14 * SEER 15 * SEER 16 * SEER 17 * SEER 18 * SEER 21 Annualized Cooling Cost (Energy + Equipment) 4 Background * Power, capacity and SHR vary with: o Outdoor temperature o Entering wetbulb o Air mass flow rate o Part load ratio Power Sensible Capacity Latent Capacity * How to accurately and easily model A/C performance? 5 Background: Model Development * A/C modeling utilizes two types of input o Rated values (capacity, efficiency, etc.) o Performance curves Capacity 1 / Efficiency 6 Background: Manufacturer's Data

74

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

75

Multi-Source Hydronic Heat Pump System Performance Test Bed  

E-Print Network (OSTI)

An extensive independent evaluation recently was completed of the Multi-Source Hydronic Heat Pump (MSHHP) system, a proprietary heating, ventilating and air conditioning (HVAC) system developed by Meckler Systems Group. The MSHHP tests were conducted on a unique test bed designed and constructed by National Technical Systems (NTS) through a research and development grant program funded by Southern California Edison Company. This paper outlines testing methods and results, including evaluations of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates. Lower heat pump capacities are a main feature of the MSHHP. This is accomplished by pre-cooling return air from the zone space, a process that also allows the heat pump to operate at a higher Coefficient of Performance (COP), thereby contributing to further energy savings.

Meckler, M.

1984-01-01T23:59:59.000Z

76

Development of solar driven absorption air conditioners and heat pumps  

DOE Green Energy (OSTI)

The objective of this project is the development of absorption refrigeration systems for solar active heating and cooling applications. The approaches being investigated are those using air-cooled condenser-absorbers and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. The first phase of this project has been concluded and has experimentally demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling. The second phase of this project explores the commercial potential of the single-effect (SE) NH/sub 3//H/sub 2/O absorption air conditioner. (WHK)

Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

1980-03-01T23:59:59.000Z

77

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

78

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

79

Hoosac tunnel geothermal heat source. Final report  

DOE Green Energy (OSTI)

The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

Not Available

1982-06-10T23:59:59.000Z

80

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Designing, selecting and installing a residential ground-source heat pump system  

Science Conference Proceedings (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

82

Heat Deposition in Positron Sources for ILC  

Science Conference Proceedings (OSTI)

In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.

Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H.; Wang, J.W.; /SLAC

2006-03-15T23:59:59.000Z

83

Vermont Air Pollution Control Regulations, Major Stationary Sources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Stationary Sources and Major Modifications (Vermont) Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont) Eligibility Utility...

84

Heat transfer and condensation of water vapour from humid air in compact heat exchangers.  

E-Print Network (OSTI)

??In this thesis, an experimental and simulation study of heat transfer in water-to-air compact-plate heat exchanger is presented. A compact-plate heat exchanger made of polypropylene,… (more)

Saraireh, Mohammad

2012-01-01T23:59:59.000Z

85

An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry  

E-Print Network (OSTI)

of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

2004-01-01T23:59:59.000Z

86

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Energy.gov (U.S. Department of Energy (DOE))

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

87

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

88

Ceramic fuel pellets for isotopic heat sources  

DOE Green Energy (OSTI)

The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

1980-01-01T23:59:59.000Z

89

Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington  

SciTech Connect

As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

NONE

1997-06-01T23:59:59.000Z

90

Prandtl Number Dependent Natural Convection with Internal Heat Sources  

SciTech Connect

Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

2004-06-01T23:59:59.000Z

91

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

92

Central Air Conditioners","Heat Pumps","Individual Air Conditioners...  

U.S. Energy Information Administration (EIA) Indexed Site

4,89,294,9,26,327,47,4 "District Heat ...",96,77,3,4,16,39,15,35,"Q","Q" "Boilers ...",581,474,58,39,211,3,96,223,18,14 "Packaged Heating Units...

93

Energy Basics: Ductless, Mini-Split Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

94

Performance comparison between air and liquid residential solar heating systems  

SciTech Connect

Comparisons of system performance for the flat plate liquid-heating system in CSU Solar House I, the evacuated-tube collector system in Solar House I, and the flat plate air-heating system in CSU Solar House II are described for selected months of the 1976 and 1977 heating seasons. Only space and domestic water heating data are compared. The flat plate air- and liquid-heating collectors operating with complete heating systems have nearly equal efficiencies when based upon solar flux while the collector fluids are flowing, but approximately 40% more energy is collected during a heating season with the air-heating system because the air system operates over a longer period of the day. On the basis of short-term data, the evacuated tube collector array on Solar House I is about 27% more efficient than the flat plate air-heating collector array on Solar House II based on gross roof area occupied by the collectors and manifolds.

Karaki, S.; Duff, W.S.; Loef, G.O.G.

1978-01-01T23:59:59.000Z

95

Life-cycle cost and payback period analysis for commercial unitary air conditioners  

E-Print Network (OSTI)

ground water source), electrically operated, unitary central air conditioners and central air conditioning heat pumps

Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

2004-01-01T23:59:59.000Z

96

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

97

Development of a Residential Ground-Source Integrated Heat Pump  

Science Conference Proceedings (OSTI)

A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

Rice, C Keith [ORNL; Baxter, Van D [ORNL; Hern, Shawn [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL; Shen, Bo [ORNL

2013-01-01T23:59:59.000Z

98

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

99

Improving Air-Conditioner and Heat Pump Modeling (Presentation)  

SciTech Connect

A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

Winkler, J.

2012-03-01T23:59:59.000Z

100

Improving Air-Conditioner and Heat Pump Modeling (Presentation)  

SciTech Connect

A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

Winkler, J.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Self-defrosting recuperative air-to-air heat exchanger  

DOE Patents (OSTI)

A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

Drake, Richard L. (Delmar, NY)

1993-01-01T23:59:59.000Z

102

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

103

Traditional vs. alternative energy house heating source  

Science Conference Proceedings (OSTI)

The article discusses the economic analysis of two different heating systems. The first uses fossil fuel (Liquidized naphtha gas- LNG) to heat the building and domestic hot water. The second uses geothermal energy to do the same job. In both systems ... Keywords: borehole heat exchanger, economic analysis, geothermal energy, heat pump, heating system, net present value

S. Poberžnik; D. Goricanec; J. Krope

2007-05-01T23:59:59.000Z

104

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Performance of ground source heat pump system in a near-zerosimulation tool for ground- source heat pump system designflow systems and ground source heat pump systems Abstract

Hong, Tainzhen

2010-01-01T23:59:59.000Z

105

Air Permitting for Stationary Sources (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The permitting system implements the permitting requirements of RSA 125-C and 125-I to regulate the operation and modification of new and existing stationary sources, area sources, and devices to...

106

Inverse problem of time-dependent heat sources numerical reconstruction  

Science Conference Proceedings (OSTI)

Abstract: This work studies the inverse problem of reconstructing a time-dependent heat source in the heat conduction equation using the temperature measurement specified at an internal point. Problems of this type have important applications in several ... Keywords: 35R30, 49J20, Green function, Heat source, Inverse problem, Landweber iteration, Numerical results

Liu Yang; Mehdi Dehghan; Jian-Ning Yu; Guan-Wei Luo

2011-04-01T23:59:59.000Z

107

Inverter control systems in the residential heat pump air conditioner  

SciTech Connect

A compressor capacity control with an inverter has been considered from the viewpoint of high energy saving in a refrigerating cycle. However, the system has not been put into practical use because of high initial cost, technical problems of electronic parts, and complexity of system control. In this connection, we developed the new inverter-controlled heat-pump air conditioner by using the latest electronics and refrigeration technology. This paper discusses the trend of energy saving in air conditioners in Japan and the objectives of developing the inverter controlled air conditioner. It also discusses the following items with respect to the inverter controlled air conditioner and the effects of employing an inverter: 1. Inverter for air conditioning; 2. Refrigeration cycle; 3. Air conditioner control with inverter.

Shimma, Y.; Tateuchi, T.; Suglura, H.

1985-01-01T23:59:59.000Z

108

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

Air Leakage, and Heat Conduction Gains William 1. Fisk,0.75 to 0.90; thus, heat conduction decreased the coolingby air leakage or heat conduction, because these ducts are

Fisk, W.J.

2011-01-01T23:59:59.000Z

109

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

110

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

111

Combined permeable pavement and ground source heat pump systems.  

E-Print Network (OSTI)

??The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in… (more)

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

112

EVALUATION AND OPTIMIZATION RESEARCH OF GROUND SOURCE HEAT PUMP.  

E-Print Network (OSTI)

??Nowadays energy efficiency and environmental protection have got particular attention. After the sustainable development theory had been put forward decades ago. Ground source heat pump… (more)

Zhou, Taian

2011-01-01T23:59:59.000Z

113

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

114

Enhancement of heat transfer for ground source heat pump systems.  

E-Print Network (OSTI)

??Uptake of geothermal heat pump (GSHP) systems has been slow in some parts of the world due to the unpredictable operational performance, large installation space… (more)

Mori, Hiromi

2010-01-01T23:59:59.000Z

115

Control system for electric water heater with heat pump external heat source  

Science Conference Proceedings (OSTI)

A control system for an electric water heater operatively associated with an external heat source, such as a heat pump. The water heater includes a water storage tank provided with an electric tank heating unit having a tank thermostat which closes in response to water temperature in the tank, allowing a flow of current through the tank heating unit so as to turn it on to heat the water, and which opens when the tank thermostat has been satisfied, interrupting the current flow so as to turn the tank heating unit off. The control system as responsive to the initial current surge through the tank heating unit when the tank thermostat closes to interrupt the current flow to the tank heating unit so as to maintain the heating unit off and to turn on the external heat source and maintain it on until the tank thermostat opens. The initial current surge cleans the contacts of the tank thermostat by burning off any insulating oxide residues which may have formed on them. The control system includes means responsive to abnormal conditions which would prevent the external heat source from heating water effectively for turning off the external heat source and turning on the tank heating unit and maintaining the external heat source off and the tank heating unit on until the tank thermostat is satisfied.

Shaffer Jr., J. E.; Picarello, J. F.

1985-09-10T23:59:59.000Z

116

Hybrid Ground Source Heat Pump System Simulation Using Visual Modeling Tool For Hvacsim  

E-Print Network (OSTI)

This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling ponds, or pavement heating systems. HVACSIM+ capabilities have recently been extended by the addition of ground loop heat exchanger models, water-to-water and waterto-air heat pump models, pavement heating system models, and heat rejection pond models. New component models are discussed and a hybrid ground source heat pump system with heated pavement as a supplemental cooler is simulated using the visual modeling tool. First, though, an introduction to a new graphical user interface for HVACSIM+ is given. The user interface that originally came with the program could not be characterized as user-friendly. The new graphical interface allows users to develop system models by hooking components together. Provisions for controlling the simulation, setting the component parameters, editing the boundary file, and plotting the output are also included.

M. H. Khan; A. Varanasi; J. D. Spitler; D. E. Fisher; R. D. Delahoussaye

2003-01-01T23:59:59.000Z

117

Evaluation of solar-air-heating central-receiver concepts  

DOE Green Energy (OSTI)

The potential of seven proposed air-heating central receiver concepts are evaluated based on an independent, uniform of each one's performance and cost. The concepts include: metal tubes, ceramic tubes, sodium heat pipes, ceramic matrix, ceramic domes, small particles, and volumetric heat exchange. The selection of design points considered in the analysis, the method and ground rules used in formulating the conceptual designs are discussed, and each concept design is briefly described. The method, ground rules, and models used in the performance evaluation and cost analysis and the results are presented. (LEW)

Bird, S.P.; Drost, M.K.; Williams, T.A.; Brown, D.R.; Fort, J.A.; Garrett-Price, B.A.; Hauser, S.G.; McLean, M.A.; Paluszek, A.M.; Young, J.K.

1982-06-01T23:59:59.000Z

118

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

119

Anomalies of Central England Temperature Classified by Air Source  

Science Conference Proceedings (OSTI)

Daily anomalies of mean central England temperature (CET), relative to daily 1961–90 climatology, are analyzed in terms of the source of the air estimated from fields of mean sea level pressure. The average CET anomaly for a given source and ...

David E. Parker

2009-03-01T23:59:59.000Z

120

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heat-source specification 500 watt(e) RTG  

DOE Green Energy (OSTI)

This specification establishes the requirements for a /sup 90/SrF/sub 2/ heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source. (LCL)

Not Available

1983-02-01T23:59:59.000Z

122

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

123

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

124

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

125

Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water  

E-Print Network (OSTI)

The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options: switching on demand between completely air-source and completely water-coupled or using a concurrent partial water-coupled and partial air-coupled mode operation. The water supply for the water-coupled mode of operation would be the municipal water system. An estimate of the economic worth of this system concept was made by examining the incremental cost to install such a system against the expected savings associated with these systems.

Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

1992-05-01T23:59:59.000Z

126

Super Energy Saver Ground Source Heat Pump  

Source: US Energy Information Administration . 11 Managed by UT-Battelle for the U.S. Department of Energy ... GSHPs are very energy efficient, and the market is

127

Mobile Source Air Toxics Rule (released in AEO2008)  

Reports and Publications (EIA)

On February 9, 2007, the EPA released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70 percent of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

Information Center

2008-06-26T23:59:59.000Z

128

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

2013-05-24T23:59:59.000Z

129

Fetz Plumbing, Heating & Air Conditioning | Open Energy Information  

Open Energy Info (EERE)

Fetz Plumbing, Heating & Air Conditioning Fetz Plumbing, Heating & Air Conditioning Jump to: navigation, search Name Fetz Plumbing, Heating & Air Conditioning Address 115 Washington Street - P.O. Box 516 Place Urbana, Ohio Zip 43078 Sector Efficiency, Geothermal energy, Services, Solar Product Installation; Maintenance and repair Phone number 937-652-1136 Website http://fetzphc.com Coordinates 40.108862°, -83.757291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.108862,"lon":-83.757291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Artificial neural network control of a heat exchanger in a closed flow air circuit  

Science Conference Proceedings (OSTI)

This paper experimentally investigates the control of a heat exchanger in a closed flow air circuit. The temperature inside the test section of the test facility has been maintained at a set value by variation of air flow rate over the heat exchanger ... Keywords: Air circuit, Heat exchanger, Multi-layer perceptron, Neural network control, PID control

Kapil Varshney; P. K. Panigrahi

2005-07-01T23:59:59.000Z

131

Interfacing primary heat sources and cycles for thermochemical hydrogen production  

DOE Green Energy (OSTI)

Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

Bowman, M.G.

1980-01-01T23:59:59.000Z

132

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

133

Ground-Source Heat Pumps for Domestic and Commercial Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Source Heat Pumps for Domestic and Commercial Applications in Europe Speaker(s): Gran Hellstrm Date: May 2, 2006 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

134

Ground Source Heat Pump System Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

135

Ground Source Heat Pump System Data Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

136

HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+  

E-Print Network (OSTI)

incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling-to-air heat pump (Yavuzturk 2000), heated pavement systems (Chiasson, et al. 2000a), shallow cooling ponds

137

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network (OSTI)

, Singapore. ©2006, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www operating refrigerant pressure limits). A design goal must therefore be to control the rise or drop exponent is dependent on the refrigerant type; the values of the isentropic exponents are obtained from

138

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS&GSHP system can serve as cold energy thermal storage at night, produce chilled water in the daytime in summer and provide hot water for heating in winter. This is followed by its schematic and characteristic description. Then the various operation modes of such system according to different operational strategies are demonstrated in sequence. The system, firstly seen in open literature, is energy-saving, environmental-friendly and promising in the field of air-conditioning systems, and will help solve the problems currently existing with the GSHP system and ITES air conditioning system.

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

139

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal microearthquakes, and the seismic waves they generate, provide a rich source of information about physical processes associated with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we are developing several software packages to enhance the utility of microearthquake data in geothermal operations and EGS experiments. Two of these are: 1. Enhanced

140

Helium release from radioisotope heat sources  

DOE Green Energy (OSTI)

Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Block Tensor Decomposition for Source Apportionment of Air Pollution  

E-Print Network (OSTI)

The ambient particulate chemical composition data with three particle diameter sizes (2.5mmDetroit, MI is examined. Standard multiway (tensor) methods like PARAFAC and Tucker tensor decompositions have been applied extensively to many chemical data. However, for multiple particle sizes, the source apportionment analysis calls for a novel multiway factor analysis. We apply the regularized block tensor decomposition to the collected air sample data. In particular, we use the Block Term Decomposition (BTD) in rank-(L;L;1) form to identify nine pollution sources (Fe+Zn, Sulfur with Dust, Road Dust, two types of Metal Works, Road Salt, Local Sulfate, and Homogeneous and Cloud Sulfate).

Hopke, Philip K; Li, Na; Navasca, Carmeliza

2011-01-01T23:59:59.000Z

142

Heat transfer analysis of thermosiphons and U-tube ground source heat pumps.  

E-Print Network (OSTI)

??Ground source thermal energy transport systems have the potential to improve theefficiency of space heating.Two such systems, a thermosiphon and a vertical U-tube system, were… (more)

Nakaoka, Joshua

2012-01-01T23:59:59.000Z

143

Stability of thermal structures with an internal heating source  

E-Print Network (OSTI)

We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

Sanchez, Nestor

2008-01-01T23:59:59.000Z

144

Stability of thermal structures with an internal heating source  

E-Print Network (OSTI)

We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

Nestor Sanchez; Eugenio Lopez

2008-03-10T23:59:59.000Z

145

PERFORMANCE OF RESIDENTIAL AIR-TO-AIR HEAT EXCHANGERS: TEST METHODS AND RESULTS  

E-Print Network (OSTI)

Presenting Test Results Heat Exchanger Descriptions and Testof Residential Heat Exchangers Conclusions . . . . . . . .ventilation testing heat exchangers. system, a heat

Fisk, William J.

2013-01-01T23:59:59.000Z

146

Weatherking Heating & Air conditioning | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Weatherking Heating & Air conditioning Jump to: navigation, search Name Weatherking Heating & Air conditioning Address 51 Meadow Lane Place Northfield, Ohio Zip 44067 Sector Buildings, Efficiency, Geothermal energy, Renewable Energy, Services Product Business and legal services; Energy audits/weatherization; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair; Retail product sales and distribution Phone number 330-908-0281 Website http://www.weatherking1.com Coordinates 41.3340869°, -81.530299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3340869,"lon":-81.530299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

148

Mean and Variability of Air-Sea Heat Fluxes in the Indian Ocean  

E-Print Network (OSTI)

-sea heat Fluxes) Project: blended product planned activity: daily, 1º-grid, mid 1950's ­ present currently available: daily, 1º-grid, 1988-2003 #12;OAFlux (Objectively Analyzed Air-sea Heat Fluxes) For the GlobalMean and Variability of Air-Sea Heat Fluxes in the Indian Ocean Lisan Yu Woods Hole Oceanographic

Yu, Lisan

149

Life cycle assessment of base-load heat sources for district heating system options  

Science Conference Proceedings (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

150

A Study of the Source of Entrained Air in Montana Cumuli  

Science Conference Proceedings (OSTI)

Data gathered by the University of Wyoming King Air, the Atmospheric Environmental Services Twin otter and an NCAR Queen Air were used in thermodynamic analyses to determine the sources of environmental air entrained into cumulus clouds. The ...

Alan M. Blyth; William A. Cooper; Jřrgen B. Jensen

1988-12-01T23:59:59.000Z

151

Energy Saving Technology of Thermal Regenerative Compressed Air Dryer by Regenerates Adsorbent with Residual Heat  

Science Conference Proceedings (OSTI)

According to the characteristic of the compressed air dryer located at the same place with the air compressor, for the large capacity thermal regenerative compressed air dryer that the absorbent is regenerated by an electric heater, this thesis puts ... Keywords: Compressed air dryer, Regeneration, Heater, Residual heat, Energy saving

Zhang Mingzhu; Zhou Zhili; Li Hongtao; Zhang Yongbo

2009-10-01T23:59:59.000Z

152

Radiative Heating Errors in Naturally Ventilated Air Temperature Measurements Made from Buoys*  

Science Conference Proceedings (OSTI)

Solar radiative heating errors in buoy-mounted, naturally ventilated air temperature sensors are examined. Data from sensors with multiplate radiation shields and collocated, fan-aspirated air temperature sensors from three buoy deployments ...

Steven P. Anderson; Mark F. Baumgartner

1998-02-01T23:59:59.000Z

153

Performance limits of power cycles using low temperature heat sources  

Science Conference Proceedings (OSTI)

A systematic analysis of a Rankine cycle using R134a as the working fluid and a finite (314.5 kg/s) low temperature (100 °C) heat source shows that, for any fixed net power output, the evaporation pressure has upper and lower limits which depend ... Keywords: energy analysis, exergy analysis, finite size thermodynamics, optimisation

Mohammed Khennich; Nicolas Galanis

2010-02-01T23:59:59.000Z

154

Efficient energy supply from ground coupled heat transfer source  

Science Conference Proceedings (OSTI)

The increasing demands of Energy for industrial production and urban facilities, asks for new strategies for Energy sources. In recent years an important problem is to have some energy storage, energy production and energy consumption which fulfill some ... Keywords: heat, thermal aquifer, thermal energy

Maurizio Carlini; Sonia Castellucci

2010-03-01T23:59:59.000Z

155

Available Technologies: Convection Heat Pump  

APPLICATIONS OF TECHNOLOGY: Solar thermal systems; Heating and cooling systems for buildings; Refrigeration; Compressed air source; Recycling waste heat from chimneys

156

Annual, Seasonal, and Interannual Variability of Air–Sea Heat Fluxes in the Indian Ocean  

Science Conference Proceedings (OSTI)

This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed ...

Lisan Yu; Xiangze Jin; Robert A. Weller

2007-07-01T23:59:59.000Z

157

W-12: Determination of Interfacial Heat Transfer and Air-gap ...  

Science Conference Proceedings (OSTI)

It is predicted for the Nickel-based alloy when the air-gap is below 0.3mm heat conduction is the dominant heat transfer process; above 0.3mm radiation is the ...

158

An Air–Soil Layer Coupled Scheme for Computing Surface Heat Fluxes  

Science Conference Proceedings (OSTI)

An air–soil layer coupled scheme is developed to compute surface fluxes of sensible heat and latent heat from data collected at the Oklahoma Atmospheric Radiation Measurement–Cloud and Radiation Testbed (ARM–CART) stations. This new scheme ...

Qin Xu; Binbin Zhou; Stephen D. Burk; Edward H. Barker

1999-02-01T23:59:59.000Z

159

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network (OSTI)

the Annual DOE Active Solar Heating and Cooling Contractors'and Annual DOE Active Solar Heating and Cooling Contractors'refrigeration systems for solar active heating and cooling

Dao, K.

2013-01-01T23:59:59.000Z

160

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

162

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

the following heat transfer processes: conduction throughtudes of the major heat transfer processes in a typical room

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

163

POTENTIAL REQUIREMENTS FOR FISSION PRODUCTS AS HEAT AND RADIATION SOURCES  

SciTech Connect

An outline is presented of the potential applications and quantity requiremerts of fission products for the period 1964 to 1968. These applications include military, governmert, and civilian heat sources; irradiation processing; and food irradiation. The potential requirements for 1964 to 1968 are 273 MC / sup 90/Sr and 351 MC /sup 137/Cs. An evaluation is made of the applications of heat-producing isotopes in Coast Guard navigational buoys, lights, and beacons; undersea electronic systems; and weather stations. Costs were determined for conventional methods of power generation and compared to radioisotope power generation. Fuel requiremerts and break-even fuel costs for isotopic power are tabulated. (D.L.C.)

1964-01-01T23:59:59.000Z

164

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

Science Conference Proceedings (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

165

Fluidized bed heat exchanger with water cooled air distributor and dust hopper  

DOE Patents (OSTI)

A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

1981-11-24T23:59:59.000Z

166

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network (OSTI)

This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning. It establishes functions of the fin structure parameters such as height,spacing and thickness of the fin when the volume of fin is the smallest under unit temperature difference and unit quantity of heat. It uses a genetic algorithm to optimize the model of the uniform annular fin heat pipe. The calculation result shows that the method of genetic algorithm is effective.

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

167

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

168

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network (OSTI)

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related conception of underground hydrogeology and the rationale of seepage flow mechanics, a geologic conceptual model of doublet reinjection and a seepage flow model of heat transportation are proposed in this paper. The temperature distribution in the temperature field was obtained by a coupled method of the heat transportation equation and groundwater seepage flow equation fitting for the seepage-affected section. The temperature changes in aquifer and heat storage efficiency are analyzed under different working conditions. All the work referenced above provided references for the popularization and evaluation of well-water source heat pump.

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

169

Numerical Investigation of Air-Side Heat Transfer and Pressure Drop in Circular Finned-Tube Heat Exchangers.  

E-Print Network (OSTI)

??A three-dimensional numerical study is performed to investigate the heat transfer and pressure drop performance on the air-side of circular finned tube bundles in cross… (more)

Mon, Mi Sandar

2003-01-01T23:59:59.000Z

170

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

171

Modeling and Experimental Research on Ground-Source Heat Pump in Operation by Neural Network  

Science Conference Proceedings (OSTI)

Ground source Heat Pump(GSHP) is becoming the more and more focus of the worldˇŻs attention as a HVAC technique of energy saving and environment protection. This paper first introduced the experiment for Ground-Source water/water Heat Pump. The heat ... Keywords: Ground-Source Heat Pump(GSHP), Neural Network(NN) Predication modeling

Jianping Chen; Zhiwei Lian; Lizheng Tan; Weifeng Zhu; Weiqiang Zhang

2011-02-01T23:59:59.000Z

172

GHPs Save Heating Cost and Improve Air Quality in Poultry Farm  

E-Print Network (OSTI)

: 40-50' wide, 400-500' length § Bird density: 1 square foot/bird, 20,000 birds1 GHPs Save Heating Cost and Improve Air Quality in Poultry Farm per house § Heating and cooling required § Intensive ventilation to maintain air

173

Factors Regulating the Air–Sea Heat Fluxes Regime over the Aegean Sea  

Science Conference Proceedings (OSTI)

The authors examine the impact of low-frequency atmospheric forcings on the air–sea heat fluxes over the Aegean Sea. The correlation between the air–sea heat flux components and three established [North Atlantic Oscillation (NAO), east Atlantic–...

Vassilis P. Papadopoulos; Aristides Bartzokas; Themistoklis Chronis; Dimitris Georgopoulos; George Ferentinos

2012-01-01T23:59:59.000Z

174

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

175

Focus group discussions among owners and non-owners of ground source heat pumps  

SciTech Connect

This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

Roberson, B.F.

1988-07-01T23:59:59.000Z

176

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

177

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air-conditioning system including investment, operating fee and pay-back time. The results show that waste water resource heat pump air-conditioning system has a low investment, low operating fee and short payback time.

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

178

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

DOE Green Energy (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

179

Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea  

Science Conference Proceedings (OSTI)

The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange ...

Vassilis P. Papadopoulos; Yasser Abualnaja; Simon A. Josey; Amy Bower; Dionysios E. Raitsos; Harilaos Kontoyiannis; Ibrahim Hoteit

2013-03-01T23:59:59.000Z

180

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater.  

E-Print Network (OSTI)

?? The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors… (more)

Calzada, Eduard

2012-01-01T23:59:59.000Z

182

Ground-source heat pump case studies and utility programs  

DOE Green Energy (OSTI)

Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

1995-04-01T23:59:59.000Z

183

Nondestructive inspection of General Purpose Heat Source (GPHS) girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using iridium capsules, TIG welded, to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Since experience in the past had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of the capsule weld is required. A ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors that exceeded the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M.A.H.; George, T.G.; Lynch, C. [and others

1998-12-31T23:59:59.000Z

184

Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources  

E-Print Network (OSTI)

In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

Pradipta, Rezy

2012-01-01T23:59:59.000Z

185

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

186

Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows  

DOE Patents (OSTI)

The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

2001-01-01T23:59:59.000Z

187

Advanced modeling of vertical ground source heat pumps using finite element techniques.  

E-Print Network (OSTI)

??Increasing energy demand and environmental pollution in United States has been led toward using renewable energy sources over recent decades. Ground-source heat pump systems are… (more)

Komari Zadeh, Seyed Omid

2011-01-01T23:59:59.000Z

188

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

189

Group Velocity and the Linear Response of Stratified Fluids to Internal Heat or Mass Sources  

Science Conference Proceedings (OSTI)

A steadily maintained line heat or mass source turned on in an unbounded, steadily moving, uniformly stratified flow will in general create ever-increasing vertical displacements of the fluid. Lin and Smith viewed a maintained heat source as a ...

Chris Bretherton

1988-01-01T23:59:59.000Z

190

Air-Source Heat Pumps | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

such as: Thermostatic expansion valves for more precise control of the refrigerant flow to the indoor coil Variable speed blowers, which are more efficient and can compensate...

191

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the...

192

Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method  

E-Print Network (OSTI)

Based on the weather data of a standard year in Wuhan, derived from the data of the latest 15 years, the data for the BIN (temperature and humidity frequency) method of an annual and 8-hour system were calculated. Then the BIN method was adopted to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show that the energy consumption of the former was approximately less 23.3% than that of the latter in summer and 19.1% in winter.

Wen, Y.; Zhao, F.

2006-01-01T23:59:59.000Z

193

Watching Liquids Separate at White Heat | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Spin on Inducing Chirality in Pre-biological Molecules A New Spin on Inducing Chirality in Pre-biological Molecules How Ancient Rock Got Off to a Hot Start A Quantum of Vibration in an Unexpected Place A Virus That Can Infect Lung Cancer Cells Imaging Plant Viruses Could Yield New Ways to Safeguard Crops Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Watching Liquids Separate at White Heat OCTOBER 30, 2008 Bookmark and Share Floating liquid droplet (inset) imaged at white heat on APS x-ray beamline 11-ID-C (main photo). Using temperatures approaching those found on the surface of the sun and intense x-ray beams from two synchrotron x-ray facilities, including the Advanced Photon Source at Argonne National Laboratory, researchers have

194

Low Temperature Heat Source Utilization Current and Advanced Technology  

SciTech Connect

Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

Anderson, James H. Jr.; Dambly, Benjamin W.

1992-06-01T23:59:59.000Z

195

Study on Hybrid Solar Energy and Ground-Source Heat Pump System  

Science Conference Proceedings (OSTI)

Aim at the weakness of more influenced by the environment etc. factor and the heat flow density lower when the solar energy was make use of heating, so the design method of the hybrid solar energy and ground-source heat pump is proposed, and the operating ... Keywords: solar energy, ground-source, heat pump, coefficient of performance

Liu Yi; Li Bing-xi; Zhou Yi; Fu Zhong-bin; Xu Xin-hai

2009-10-01T23:59:59.000Z

196

5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...  

Open Energy Info (EERE)

5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: 5...

197

Comparison of heat pump system and boiler plant for one-family house : Heat sources in one-family house.  

E-Print Network (OSTI)

??The aim of this work is to look through, compare and choose the cheapest heat source for typical new Finnish one-family house. We will speak… (more)

Kaydalova, Natalia

2010-01-01T23:59:59.000Z

198

Air flow in a high aspect ratio heat sink  

E-Print Network (OSTI)

The increasing heat output of modern electronics requires concomitant advances in heat sinking technology: reductions in thermal resistance and required pumping power are necessary. This research covers the development of ...

Allison, Jonathan Michael

2010-01-01T23:59:59.000Z

199

Air emissions from residential heating: The wood heating option put into environmental perspective. Report for June 1997--July 1998  

SciTech Connect

The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contributions of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid precipitation impacts. The major space heating energy options are natural gas, fuel oil, kerosene, liquefied petroleum gas (LPG), electricity, coal, and wood. Residential wood combustion (RWC) meets 9% of the Nation`s space heating energy needs and utilizes a renewable resource. Wood is burned regularly in about 30 million homes. Residential wood combustion is often perceived as environmentally dirty due to emissions from older wood burners.

Houck, J.E.; Tiegs, P.E.; McCrillis, R.C.; Keithley, C.; Crouch, J.

1998-12-31T23:59:59.000Z

200

Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign  

DOE Green Energy (OSTI)

This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

Not Available

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

displacement venti- lation. ASHRAE Transactions 105(1):298–309. ASHRAE Transactionsunderfloor air supply plenums. ASHRAE Trans- actions 112(2).

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

202

Measuring important parameters for air-sea heat exchange Christoph S. Garbeab, Uwe Schimpfab and Bernd Jhneab  

E-Print Network (OSTI)

Measuring important parameters for air-sea heat exchange Christoph S. Garbeab, Uwe Schimpfab Exchange, Heat flux, Digital Image Processing, Surface Renewal 1. INTRODUCTION Thermographic techniques-water heat exchange. A driving force in air sea interactions is the net sea surface heat flux. It is a vital

Garbe, Christoph S.

203

Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC  

E-Print Network (OSTI)

With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold. It is critical and important to know how to choose the terminal and make it workable. This paper makes a technical and economic comparison of various heating terminals (with the example of a north residential district which adopts ground source heat pump as the cold and heat source) and gets the optimum scheme.

Mu, W.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

204

A capital cost comparison of commercial ground-source heat pump systems  

DOE Green Energy (OSTI)

The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

Rafferty, K.

1994-06-01T23:59:59.000Z

205

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

206

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers to Halt Sales of Heat Pumps and Air Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

207

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

208

An Analytical Model of Heating Errors in Marine Air Temperatures from Ships  

Science Conference Proceedings (OSTI)

Marine air temperature reports from ships can contain significant biases due to the solar heating of the instruments and their surroundings. However, there have been very few attempts to derive corrections. The biases can reverse the sign of the ...

David I. Berry; Elizabeth C. Kent; Peter K. Taylor

2004-08-01T23:59:59.000Z

209

HEAT PUMP AND AIR CONDITIONING SYSTEM ANALYSIS BASED ON VARIABLE SPEED COMPRESSOR.  

E-Print Network (OSTI)

??Mechanical Engineering M.S.E. Experiments were carried out to investigate the effect of ambient air temperatures on the heat pump performance using a variable speed compressor.… (more)

Zhang, Hao

2010-01-01T23:59:59.000Z

210

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

211

The Effects of Small-Scale Turbulence on Air–Sea Heat Flux  

Science Conference Proceedings (OSTI)

The air–sea exchange of heat is mainly controlled by the molecular diffusive layer adjacent to the surface. With an order of magnitude difference between the kinematic viscosity and thermal diffusivity of water, the thermal sublayer is embedded ...

Fabrice Veron; W. Kendall Melville; Luc Lenain

2011-01-01T23:59:59.000Z

212

Intercomparisons of Air–Sea Heat Fluxes over the Southern Ocean  

Science Conference Proceedings (OSTI)

Consistency and discrepancy of air–sea latent and sensible heat fluxes (LHF and SHF, respectively) in the Southern Ocean for current-day flux products are analyzed from climatology and interannual-to-decadal variability perspectives. Five flux ...

Jiping Liu; Tingyin Xiao; Liqi Chen

2011-02-01T23:59:59.000Z

213

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI  

Energy.gov (U.S. Department of Energy (DOE))

These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy’s (DOE) notice in the August 8, 2012 Federal Register...

214

Inverse Analysis Adjustment of the SOC Air–Sea Flux Climatology Using Ocean Heat Transport Constraints  

Science Conference Proceedings (OSTI)

Results are presented from a linear inverse analysis of the Southampton Oceanography Centre (SOC) air–sea flux climatology using 10 hydrographic ocean heat transport constraints distributed throughout the Atlantic and North Pacific Oceans. A ...

Jeremy P. Grist; Simon A. Josey

2003-10-01T23:59:59.000Z

215

Parameterizations of Sea-Spray Impact on the Air–Sea Momentum and Heat Fluxes  

Science Conference Proceedings (OSTI)

This paper focuses on parameterizing the effect of sea spray at hurricane-strength winds on the momentum and heat fluxes in weather prediction models using the Monin–Obukhov similarity theory (a common framework for the parameterizations of air–...

J.-W. Bao; C. W. Fairall; S. A. Michelson; L. Bianco

2011-12-01T23:59:59.000Z

216

Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations  

SciTech Connect

This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

2013-01-01T23:59:59.000Z

217

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90°F (32.2°C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

218

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application, the coolant is pumped to a heat recovery system. A water-to-air heat exchange system or water-to-water heat

Victoria, University of

219

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different influential factors, e.g., the distance between heat sources, temperature of heat source, heat characteristics of the wall and outdoor temperature. It was found that the human requirement for comfort is satisfied easily when the distance between heat sources is long. Under the conditions simulated in this paper, when the distance was more than 0.8m, the temperature distribution tended to be average and steady, and it did not change as the distance changed. Second, the temperature change of the thermal current has a large influence on the indoor temperature. The rise in thermal current temperature makes the vertical temperature gradient in the room increase. The upper temperature of the room becomes higher, as does the height of the high temperature air level that lies in the upper part of the room. Finally, both the heat loss of the surrounding structure and the change in outdoor temperature have a large influence on indoor temperature. However, it does not influence the thermal stratification characteristics of DV. The only thing that has changed is the thermal stratification height.

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

220

HVAC Technology Report: A Review of Heating, Ventilation and Air Conditioning Technology and Markets  

Science Conference Proceedings (OSTI)

For many of us, roughly 95 percent of our time is spent indoors. To enable humans to spend this much time inside, mechanical equipment is necessary to provide space conditioning to control the temperature (heating and cooling), ventilation, humidity, and indoor air quality. This report introduces the heating, ventilation, and air-conditioning (HVAC) industry to EPRI member utility employees. The document describes the most common technologies and applications and provides an overview of industry statisti...

2000-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance  

E-Print Network (OSTI)

Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time and effort. Therefore, this paper proposes a) two methods of evaluating the floor heating efficiency from the room / crawl space temperature and the energy consumption and b) method of evaluating COP of the room air conditioner from the data measured at the external unit. Case studies in which these tools were applied to actual residences are presented to demonstrate their effectiveness.

Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

2004-01-01T23:59:59.000Z

222

RESIDENTIAL AIR CONDITIONER FINNED-TUBE CONDENSER HEAT EXCHANGER OPTIMIZATION  

E-Print Network (OSTI)

With the upcoming ban on the production of R-22 in 2010, residential air-conditioning equipment will need to be redesigned with a more environmentally benign working fluid. R-410a is a strong candidate for replacing R-22. A model of an air-conditioning system with a focus on the finned-tube condenser design details using R-410a as the working fluid is developed. An optimization algorithm is implemented to find the optimal condenser design with various constraints for an efficiency figure of merit. The software developed is appropriate for engineering design use in the air-conditioning industry.

Susan W. Stewart; Kristinn A. Aspelund; Monifa F. Wright; Emma M. Sadler; Sam V. Shelton, Ph.D.

2002-01-01T23:59:59.000Z

223

Influence of air conditioning management on heat island in Paris air street temperatures  

E-Print Network (OSTI)

spatial cartography of air- cooled chillers and cooling towers in the city of Paris and surroundings have); secondly the actual situation including individual air dry coolers, wet cooling towers and an urban cooling the air cooling demand. Results of a meso-scale meteorological model (MESO-NH), coupled to an urban energy

224

Estimating Monthly Averaged Air-Sea Transfers of Heat and Momentum Using the Bulk Aerodynamic Method  

Science Conference Proceedings (OSTI)

Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that ...

Steven K. Esbensen; Richard W. Reynolds

1981-04-01T23:59:59.000Z

225

Register Closing Effects on Forced Air Heating System Performance  

E-Print Network (OSTI)

Air Handler Power - Climate Zone 16 48 hr avg 24 hr avg FarAverage Gas Power - Climate Zone 16 48 hr avg 24 hr avg NearAverage Gas Power - Climate Zone 16 48 hr avg Near Registers

Walker, Iain S.

2003-01-01T23:59:59.000Z

226

Tabulation of Fundamental Assembly Heat and Radiation Source Files  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to tabulate a set of computer files for use as input to the WPLOAD thermal loading software. These files contain details regarding heat and radiation from pressurized water reactor (PWR) assemblies and boiling water reactor (BWR) assemblies. The scope of this calculation is limited to rearranging and reducing the existing file information into a more streamlined set of tables for use as input to WPLOAD. The electronic source term files used as input to this calculation were generated from the output files of the SAS2H/ORIGIN-S sequence of the SCALE Version 4.3 modular code system, as documented in References 2.1.1 and 2.1.2, and are included in Attachment II.

T. deBues; J.C. Ryman

2006-10-25T23:59:59.000Z

227

Characterization of Pu-238 heat source granule containment  

SciTech Connect

The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.

Richardson Ii, P D [Los Alamos National Laboratory; Thronas, D L [Los Alamos National Laboratory; Romero, J P [Los Alamos National Laboratory; Sandoval, F E [Los Alamos National Laboratory; Neuman, A D [Los Alamos National Laboratory; Duncan, W S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

228

MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE  

E-Print Network (OSTI)

for cooling-dominated commercial buildings utilize supplemental heat rejecters such as cooling towers, fluid of supplemental heat rejecters for cooling dominated buildings allows the design of smaller borehole fields. Heat

229

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

SciTech Connect

World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat from hot surfaces, and man-made heat (exhaust from cars, buildings, etc.). Air is fairly transparent to light--the direct absorption of solar radiation in atmospheric air only raises the air temperature by a small amount. Typically about 90% of solar radiation reaches the Earth's surface and then is either absorbed or reflected. The absorbed radiation on the surface increases the surface temperature. And in turn the hot surfaces heat the air. This convective heating is responsible for the majority of the diurnal temperature range. The contribution of man-made heat (e.g., air conditioning, cars) is very small, compared to the heating of air by hot surfaces, except for the downtown high-rise areas.

Akbari, Hashem

2007-07-01T23:59:59.000Z

230

The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System  

E-Print Network (OSTI)

Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from the fume hood ducts at the Intalco aluminum reduction plant and transmits the energy to commercial, residential, and institutional users in Bellingham, Washington for space and hot water heating.

McCabe, J.; Olszewski, M.

1980-01-01T23:59:59.000Z

231

Characterization of crushed glass as a transpired air heating solar collector material  

DOE Green Energy (OSTI)

The use of crushed glass matrices as the heat-absorbing media in air heating solar collectors is investigated. An experimantal program was undertaken to characterize the most likely candidate glass types and sizes by measuring pressure drops, optical extinction coefficients, and volumetric heat transfer coefficients. Bed efficiencies were also measured and found to be similar to those expected for screen matrices unless critical amounts of clear glass were used as a top layer, which results in lower efficiency.

Collier, R.K.

1979-01-01T23:59:59.000Z

232

ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system  

Science Conference Proceedings (OSTI)

The aim of this study is to demonstrate the comparison of an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) for the prediction performance of a vertical ground source heat pump (VGSHP) system. The VGSHP system using ... Keywords: Adaptive neuro-fuzzy inference system, Coefficient of performance, Ground source heat pump, Membership functions, Vertical heat exchanger

Hikmet Esen; Mustafa Inalli

2010-12-01T23:59:59.000Z

233

Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger  

SciTech Connect

This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

Bohn, M.S.

1988-11-01T23:59:59.000Z

234

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

comparison of VAV and VRF air conditioning systems in anThe variable refrigerant flow (VRF) and ground source heatthe energy efficiency of VRF systems compared with GSHP

Hong, Tainzhen

2010-01-01T23:59:59.000Z

235

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source scheme in economical, technical, and environmental aspects, it is determined that the scheme of the groundwater source heat pump has better energy efficiency than others. The GHPWTS can take full advantage of the heat source from groundwater and benefit of electricity difference pricing during a day. Its character is a combination of a strength and another strength. It is the lowest cycle cost of all chide and heat source schemes. The GHPWTS has the best economic benefit and runs stably and reliably. Its advantage is clearly compared with other schemes. There is a real value for the project that is similar to the characteristic of this project and the condition of the water source.

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

236

Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

DOE Green Energy (OSTI)

The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-09-01T23:59:59.000Z

237

Analysis of Organic Rankine Cycle for Low and Medium Grade Heat Source  

Science Conference Proceedings (OSTI)

Organic Rankine cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment ... Keywords: organic Rankine cycle, new energy, waste heat recovery

Zhonghe Han, Yida Yu

2012-07-01T23:59:59.000Z

238

Evaluation of Methods to Identify Boiler Air Inleakage Sources  

Science Conference Proceedings (OSTI)

The information contained in this technical update report represents a first-of-a-kind study to evaluate different methods used to identify boiler air inleakage. The study begins to outline the cost and benefits of using those different methods in addition to describing their application. The collection and assemblage of this information will provide a reference for plant engineering and management personnel as their units experience the problems associated with boiler air inleakage. Through the use of t...

2011-09-23T23:59:59.000Z

239

ADVANCES IN MODELING OF GROUND-SOURCE HEAT  

E-Print Network (OSTI)

] K. C. Toh, X. Y. Chen, and J. C. Chai, "Numerical computation of fluid flow and heat transfer journal and conference papers. His current research interests include heat transfer and fluid-flow to substantially increase the heat transfer coefficient when a fluid is passing through microchannels. Heat sinks

240

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ground source heat storage and thermo-physical response of soft clay  

E-Print Network (OSTI)

Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

Saxe, Shoshanna Dawn

2009-01-01T23:59:59.000Z

242

Simulation of Hybrid Ground Source Heat Pump Systems and Experimental Validation  

E-Print Network (OSTI)

Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and auxiliary heat rejecters, such as cooling towers, fluid coolers, cooling ponds, or pavement heating systems. The design of the hybrid ground source heat pump system involves many degrees of freedom; e.g. the size of the cooling tower interacts with the control strategy, the ground loop heat exchanger design, and other parameters. This paper presents a simulation of such a system using a direct contact evaporative cooling tower as the supplemental heat rejecter. The simulation is performed in a component-based modeling environment using component models of a vertical ground loop heat exchanger, plate frame heat exchanger, cooling tower, circulating pumps, and heat pumps. Seven months (March to September 2005) of five-minutely experimental data from a hybrid ground source heat pump system were used for validation purposes. The source side of the system consists of two packaged water-to-water heat pumps, a three-borehole ground loop heat exchanger, and a direct contact evaporative cooling tower, isolated by a plate frame heat exchanger. The load side serves two small buildings with hydronic heating and cooling. Experimental validations of each component simulation and the entire system simulation are presented.

Jason E. Gentry; Jeffrey D. Spitler; Daniel E. Fisher; Xiaowei Xu

2006-01-01T23:59:59.000Z

243

Direct-contact air/molten salt heat exchange for solar-thermal systems  

DOE Green Energy (OSTI)

Heat exchangers employing direct contact between molten draw salt and air were studied for use in solar industrial process heat (IPH) systems. Direct-contact systems consisting of a fin-tube preheater and a spray or packed column were compared to conventional heat exchangers. Direct contact reduced the IPH system cost by 5% to 10%. The direct-contact heat exchangers cost only 15% to 30% as much as comparable conventional exchangers. However, the rate of salt degradation by CO/sup 2/ and H/sub 2/O must be determined to see if it is acceptable.

Wright, J.D.; d'Agincourt, C.

1982-05-01T23:59:59.000Z

244

Trends in "Green" Design - making ground source heat pumps the system of choice.  

E-Print Network (OSTI)

??Ground source heat pump systems have been around for nearly 50 years. The efficiencies that can be achieved today are difficult to match with any… (more)

Hasler, Fred L.

2008-01-01T23:59:59.000Z

245

Implementation and validation of a Ground Source Heat Pump model in MATLAB.  

E-Print Network (OSTI)

??The aim of the project is the implementation of a simple Ground-Source Heat Pump (GSHP) system model in MATLAB. The program is able to run… (more)

Casetta, Damien

2012-01-01T23:59:59.000Z

246

Dynamic modeling and control of hybrid ground source heat pump systems.  

E-Print Network (OSTI)

??Ground source heat pump (GSHP) systems are one of the fastest growing applications of renewable energy in the world with annual increases of 10% over… (more)

Chen, Chang

2008-01-01T23:59:59.000Z

247

Viability Of Hybrid Ground Source Heat Pump System With Solar Thermal Collectors.  

E-Print Network (OSTI)

??This thesis presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental… (more)

Rad, Farzin M.

2009-01-01T23:59:59.000Z

248

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System.  

E-Print Network (OSTI)

?? This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar… (more)

Badri, Seyed Ali Mohammad

2013-01-01T23:59:59.000Z

249

Milliwatt generator heat source. Quarterly technical progress report, April 16, 1976--July 15, 1976  

Science Conference Proceedings (OSTI)

Activities at MRC associated with the Milliwatt Generator Heat Source efforts over the period April 16, 1976, to July 15, 1976, are presented below.

Amos, W.R.

1996-07-01T23:59:59.000Z

250

Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran  

Science Conference Proceedings (OSTI)

The authors propose that a heat-driven circulation from the Zagros Plateau has a significant impact on the climate of the Middle East Plain (MEP), especially summertime winds, air temperature, and aridity. This proposal is examined in numerical ...

Benjamin F. Zaitchik; Jason P. Evans; Ronald B. Smith

2007-08-01T23:59:59.000Z

251

March 29, 2007 Mobile Source Air Toxics Analysis  

E-Print Network (OSTI)

for passenger vehicles, and evap standards for gas cans. #12;Other Recent Developments EPA's National Air Toxics that we will be performing for projects 2) EPA has expressed interest in dispersion modeling for some in a dispersion model (or the remaining steps of the risk assessment process). #12;Dispersion Modeling FHWA has

Minnesota, University of

252

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

253

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

254

Technology and fabrication of plutonium-238 radionuclide heat sources  

Science Conference Proceedings (OSTI)

This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

Malikh, Y.A.; Aldoshin, A.I. [Production Association Mayak, 31 Lenin Street, Ozyorsk, 456780 (Russia); Danilkin, E.A. [The State Scientific Center of Russia, 5 Rogov Street, Moscow (Russia)

1996-03-01T23:59:59.000Z

255

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network (OSTI)

a two-year research program in heat transfer and viscoelastic fluid flows, after working for some time Sciences), Fluid Mechanics, Heat Transfer and related (815) 753-9975 Page 1 of 2WSEAS Conferences: www on HEAT and MASS TRANSFER (HMT'09) [Download a Map of the area (16 Kbytes)] [Download a Map of the city

256

Experimental study on corrugated cross-flow air-cooled plate heat exchangers  

SciTech Connect

Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

2010-11-15T23:59:59.000Z

257

Drinking Water as a Source of Indoor Air Pollution: In-Home Formation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drinking Water as a Source of Indoor Air Pollution: In-Home Formation & Cross-Media Transfer Speaker(s): David Olson Date: April 19, 2002 - 12:00pm Location: Bldg. 90 Seminar Host...

258

Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This section of the air quality standards applies to all major sources and major modifications and outlines the required control technology to achieve the most stringent emission rate. Emission...

259

Method and apparatus for operating a self-starting air heating system  

DOE Patents (OSTI)

A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

Heinrich, Charles E. (Mentor, OH)

1983-12-06T23:59:59.000Z

260

High Levels of Winter Air Pollution under the Influence of the Urban Heat Island along the Shore of Tokyo Bay  

Science Conference Proceedings (OSTI)

A wintertime small-scale sea breeze associated with high levels of air pollution is described, in which the urban heat island plays an important role.

Hiroshi Yoshikado; Makoto Tsuchida

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bulk Formulation of the Heat and Water Vapor Fluxes at the Air–Sea Interface, Including Nonmolecular Contributions  

Science Conference Proceedings (OSTI)

Accurate prediction of the air–sea sensible and latent heat fluxes is vital for nearly all applications of atmosphere and ocean models. Existing theories of heat transfer over rough surfaces provide a starting point, but they seem incomplete ...

James A. Mueller; Fabrice Veron

2010-01-01T23:59:59.000Z

262

Thermal insulation as a source of air pollution  

SciTech Connect

Complaints about odors in buildings may be caused by penetration of moisture into mineral wool used as thermal insulation in the cavity wall or under the roof. The complaints may occur particularly during hot weather. In laboratory experiments, moist mineral wool produced the same unpleasant odor at 50{degree}C. In air samples over the moist wool, higher aliphatic aldehydes, ketones and aromatic aldehydes were detected. In air samples collected in rooms of buildings where complaints about odor had been made, higher aliphatic aldehydes (n-hexanal-n-decanal) were detected with concentrations between 1 and 50 {mu}g{center dot}m{sup {minus}3} for each of these aldehydes. Thus, the penetration of moisture into mineral wool used for thermal insulation should be avoided.

van der Wal, J.F.; Moons, A.M.M.; Steenlage, R. (TNO Division of Technology for Society, Delft (Netherlands))

1989-01-01T23:59:59.000Z

263

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network (OSTI)

A new type air heater was developed, and an experimental set-up was built to analyze its characteristics. Within the Reynolds number from 2000 to 15000, the integrated characteristics in air heater channels with and without holed baffles have been studied experimentally. The experimental results show that the average Nu number increases greatly but the friction factor increases only slightly with the Re number. The Webb performance evaluation criterion has been adopted for analysis purposes. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases with the hole density at the same hole diameter. The C type baffle has the best performance at the same heat transfer surface area and fan power consumption; its heat transfer rate improves about 44 to 69 percent.

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

264

Heat transfer and pressure drop for air flow through enhanced passages. Final report  

SciTech Connect

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

265

Heat transfer and pressure drop for air flow through enhanced passages  

SciTech Connect

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

266

The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction  

E-Print Network (OSTI)

Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed to be applied in the deep well pump so as to save energy.

Dai, X.; Song, S.

2006-01-01T23:59:59.000Z

267

An MHD heat source based on intermetallic reactions  

DOE Green Energy (OSTI)

The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))

1991-05-06T23:59:59.000Z

268

Efficiency, Economic and Environmental Assessment of Ground Source Heat Pumps in Central Pennsylvania  

Science Conference Proceedings (OSTI)

The energy use of a ground-source heat pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author's house) is analyzed, compared to a simulation of electricity and a heating-oil furnace (with electric cooling) ...

2009-01-01T23:59:59.000Z

269

Influence of Heat Source Cooling Limitation on ORC System Layout ...  

Science Conference Proceedings (OSTI)

... compensates for the temperature loss induced by a second heat exchanger. ... Abart CDS - a New Compact Multi-pollutant Pot Gas and Alumina Handling ...

270

Optimal Ground-Source Heat Pump System Design Geothermal Project...  

Open Energy Info (EERE)

design tool with a groundwater flow and heat transport modeling software allowing the modeling of vertical and pondlake loops in different climate zones and building types in the...

271

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon  

E-Print Network (OSTI)

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon Precipitating The structure and properties of ,heat and moisture sources and sinks of the Asian monsoon are reviewed. Results by the Asian monsoon, with the detailed structure of this distribution determined in large part by a wide

Johnson, Richard H.

272

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

273

Use of oxides in thermochemical water-splitting cycles for solar heat sources. Copper oxides  

DOE Green Energy (OSTI)

Several oxides can be decomposed to oxygen and a lower oxide at temperatures that might be feasible with a solar heat source. Heat might be directly transmitted to the solid through an air window, rather than quartz, with release of oxygen to the atmosphere. The cycle utilizing CuO, I/sub 2/, and Mg (OH)/sub 2/ is similar to the previous Co/sub 3/O/sub 4/ - CoO cycle. We are concentrating on the reformation of CuO. At 448 K the rate is favorable; for example, the yield rises about linearly with time to 92% at 1.17 h and more slowly thereafter. The only difficulty is the formation of CuI as a metastable intermediate. The oxidation of CuI is thermodynamically very favorable, but its rate limits completion. Excess Mg(OH)/sub 2/ appears to increase the rate but not to the point where IO/sub 3//sup -/ oxidation of CuI competes with oxidation of Cu/sub 2/O. Nevertheless, the batch runs suggest that about 98% of the maximum possible MgI/sub 2/ could be formed. Cuprous iodide complexes formed in the concentrated MgI/sub 2/ may give the necessary improvement by providing a solution path for their oxidation by iodate. Work of others pertaining to the cycle is briefly discussed.

Jones, W.M.; Bowman, M.G.

1984-01-01T23:59:59.000Z

274

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

275

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

276

Air–Sea Heat Flux Measurements from Nearly Neutrally Buoyant Floats  

Science Conference Proceedings (OSTI)

The ability of neutrally buoyant, high-drag floats to measure the air–sea heat flux from within the turbulent oceanic boundary layer is investigated using float data from four different winter and fall float deployments. Two flux estimates can be ...

Eric A. D'Asaro

2004-07-01T23:59:59.000Z

277

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air  

Energy.gov (U.S. Department of Energy (DOE))

Revised fact sheet describes the transpired solar collector that was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

278

Equatorial Waves in the Presence of Air-Sea Heat Exchange  

Science Conference Proceedings (OSTI)

Changes in propagation of free linear waves on the equatorial ?-plane associated with air-sea heat exchange are in investigated here. By using a mixed-layer model, with the waves considered as perturbations on a specified basic state, the usual ...

Howard P. Hanson

1983-07-01T23:59:59.000Z

279

Measurements of Momentum and Heat Transfer across the Air–Sea Interface  

Science Conference Proceedings (OSTI)

This study makes direct measurements of turbulent fluxes in the mixed layer in order to close heat and momentum budgets across the air–sea interface and to assess the ability of rigid-boundary turbulence models to predict mean vertical gradients ...

Gregory P. Gerbi; John H. Trowbridge; James B. Edson; Albert J. Plueddemann; Eugene A. Terray; Janet J. Fredericks

2008-05-01T23:59:59.000Z

280

Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier  

Science Conference Proceedings (OSTI)

Desiccant cooling systems have the ability to provide efficient humidity and temperature control while reducing the electrical energy requirement for air conditioning as compared to a conventional system. Naturally, the desiccant air dehumidification process greatly influences the overall performance of the desiccant system. Therefore, the effects of variables such as air and desiccant flow rates, air temperature and humidity, desiccant temperature and concentration, and the area available for heat and mass transfer are of great interest. Due to the complexity of the dehumidification process, theoretical modeling relies heavily upon experimental studies. However, a limited number of experimental studies are reported in the literature. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (triethylene glycol) and air in a packed bed absorption tower using high liquid flow rates. A high performance packing that combines good heat and mass transfer characteristics with low pressure drop is used. The rate of dehumidification, as well as the effectiveness of the dehumidification process are assessed based on the variables listed above. Good agreement is shown to exist between the experimental findings and predictions from finite difference modeling. In addition, a comparison between the findings in the present study and findings previously reported in the literature is made. The results obtained from this study make it possible to characterize the important variables which impact the system design.

Oeberg, V.; Goswami, D.Y. [Univ. of Florida, Gainesville, FL (United States)

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

282

Seasonal efficiencies of residential heat pump air conditioners with inverter-driven compressors  

SciTech Connect

This paper describes a study to experimentally determine the steady-state characteristics, cyclic effect, and frosting/defrosting effect of a inverter heat pump currently available on the Japanese market and compute its seasonal efficiency based on the local outdoor air temperature data. It has been found that the APF of this heat pump is higher by 15% than that of the conventional fixed-speed heat pump. If cyclic and frosting/defrosting losses are eliminated, the APF of the inverter heat pump will be further improved by 2% to 6%. For the evaluation of an inverter heat pump, APF alone is not sufficient, and an additional parameter such as an annual comfort factor (ACF) is needed.

Hori, M.; Akamine, I.; Sakai, T.

1985-01-01T23:59:59.000Z

283

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

284

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

285

/sup 238/PuO/sub 2/ surface contamination of radioisotopic heat sources  

DOE Green Energy (OSTI)

Surface contamination and cleaning characteristics of two radioisotopic heat sources are discussed. The Milliwatt Generator is a small (4/sup 1///sub 2/ W) heat source which is successfully cleaned by hand in a series of hot acid baths.The Multi-Hundred Watt Isotopic Heat Source presents additional problems in removing the surface contamination because of its large size (100 W) and its grit-blasted surface. A study has characterized the behavior of the Pu during aging of the surface at the heat source service temperature of 1350/sup 0/C. Results from this study show that normal decontamination effectively removes the superficial Pu but does not extract the Pu which is deep within the grit-blasted structure. Subsequent heating results in migration of microcurie amounts of Pu out of the grit-blasted surface.

Schaeffer, D.R.; Brewer, C.Q.

1978-01-01T23:59:59.000Z

286

Source Contributions to VOC's to Ozone Formation in Southeast Texas Using a Source-oriented Air Quality Model  

E-Print Network (OSTI)

Houston-Galveston-Brazoria area is in severe non-attainment status for ozone compliance. Source-oriented mechanistic modeling was used to determine the major sources of VOCs that contributes to ozone formation during the Texas Air Quality Study (TexAQS) from August 16, 2000 to September 7, 2000. Environmental Protection Agency (EPA)?s Community Scale Air Quality Model (CMAQ) version 4.6 was used as a host model to include a revised Statewide Air Pollution Research Center (SAPRC99) photochemical mechanism with source-oriented extensions to track the contributions of Volatile Organic Compounds (VOCs) emissions from diesel engines, biogenic sources, highway gasoline vehicles, fuel combustion, off-highway gasoline engines, solvent utilization and petrochemical industries to ozone formation in the atmosphere. Source-oriented emissions needed to drive the model were generated using a revised Sparse Matrix Operator Kernel Emissions (SMOKE) model version 2.4. VOC/NOx ratios are found to be a critical factor in the formation of ozone. Highest ozone formation rates were observed for ratios from 5-15. The contributions of VOC to ozone formation were estimated based on the linear relationship between the rate of NO to NO2 conversion due to radicals generated from VOC oxidation and the rate of net ozone formation. Petroleum and other industrial sources are the largest anthropogenic sources in the urban Houston region and contribute to 45% of the ozone formation in the HGB area. Highway gasoline vehicles make contributions of approximately 28% to ozone formation. Wildfires contribute to as much 11% of ozone formation on days of high wildfire activity. The model results show that biogenic emissions account for a significant amount of ozone formation in the rural areas. Both highway and off-highway vehicles contribute significantly to ozone formation especially in the downwind region. Diesel vehicles do not contribute significantly to ozone formation due to their low VOC emissions.

Krishnan, Anupama

2010-05-01T23:59:59.000Z

287

Evaluation of water source heat pumps for the Juneau, Alaska Area  

Science Conference Proceedings (OSTI)

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

288

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

289

Harvesting Energy from Abundant, Low Quality Sources of Heat  

The basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to ...

290

Harvesting Energy from Abundant, Low Quality Sources of Heat ...  

The basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to ...

291

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost of underground water has also been considered. The economics of the heat pump and other cooling and heating sources has been compared and then several simple methods to improve the thermal economics of the underground water heat pump system have been put forward.

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

292

Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition  

SciTech Connect

This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

Hadley, Donald L.

2001-03-01T23:59:59.000Z

293

The Earth-Coupled or Geothermal Heat Pump Air Conditioning System  

E-Print Network (OSTI)

As utility costs have risen despite political campaign promises and energy conserving measures implemented by the utility companies such as alternative fuel use (coal and nuclear), co-generation, etc., homeowners have begun to search for effective methods of reducing their electricity bills. In some cases homeowners are faced with utility bills That are approaching the cost of their mortgage payments. For those with fixed incomes, such as the elderly or those looking forward to retirement in the near future, this has become an alarming reality. Virtually every homeowner would like to reduce his utility bill but the question is, what items should he address in order to have a significant impact on his electricity costs? According to Houston Lighting h Power Company, 50% of an electricity bill can be attributed to the air conditioning system, and another 15-20% to the hot water heating system. Therefore, to dramatically reduce utility costs one should look first at these two "energy gulpers" and next at proper home insulation, window coverings, etc. The other electrical appliances in the home use relatively minor amounts of electricity compared to the air conditioning and hot water heating system. This paper will describe the geothermal heat pump and the desuperheater as the latest developments in energy efficient air conditioning and water heating.

Wagers, H. L.; Wagers, M. C.

1985-01-01T23:59:59.000Z

294

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

295

Estimating Air–Sea Heat Fluxes in Semienclosed Basins: The Case of the Gulf of Elat (Aqaba)  

Science Conference Proceedings (OSTI)

Meteorological and oceanographic data collected at the head of the Gulf of Elat were used to compute the air–sea heat flux components and the heat storage in the water column, which are in turn used to estimate the heat balance of this ...

Moshe Ben-Sasson; Steve Brenner; Nathan Paldor

2009-01-01T23:59:59.000Z

296

SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT  

E-Print Network (OSTI)

.7 Annual hourly building load for the office building in Tulsa, OK................ 240 Figure 6.8 Main Figure 7.1 Office building loads for El Paso, TX.16 System loads and heat pump power consumptions of office and motel #12;xx building in Tulsa, OK

297

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon  

Science Conference Proceedings (OSTI)

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and ...

Sun Wong; Eric J. Fetzer; Baijun Tian; Bjorn Lambrigtsen; Hengchun Ye

2011-08-01T23:59:59.000Z

298

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

299

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

300

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternate energy source usage for in situ heat treatment processes  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

Stone, Jr., Francis Marion (Cut-N-Shoot, TX); Goodwin, Charles R. (League City, TX); Richard, Jr., James (Kingwood, TX)

2011-03-22T23:59:59.000Z

302

Interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments. Interim summary  

DOE Green Energy (OSTI)

Observations and some conclusions made of the interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments may be used in predicting heat source behavior in the event of contact of these heat sources with land or ocean and in assessing the risk to the environment. These studies indicate that plutonium transport from the heat sources is mostly a physical process involving the movement of extremely fine particles rather than the chemical migration of plutonium ions.

Patterson, J.H.; Steinkruger, F.J.; Matlack, G.M.

1980-09-01T23:59:59.000Z

303

Application Prospect Analysis of the Surface Water Source Heat-Pump in China  

E-Print Network (OSTI)

Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval of 2~5?. The critical technical issue in the surface water heat pump is how to extract the freezing latent heat. The urban surface water supplying areas of 102 large or median cities in China are measured and counted. The supply area ratio, and mean heating or cooling need index are calculated separately and the 102 cities are classified by the three parameters. The data indicate that surface water can supply heat and cool source for 42.1% of the urban waterside buildings in China.

Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

2006-01-01T23:59:59.000Z

304

Water flow calorimetry measurements of heat loads for a volume production H/sup -/ source  

DOE Green Energy (OSTI)

The design of volume-production H/sup -/ sources requires the knowledge of heat loads on the source components. The arc and filament heater power input to a 20 cm diameter x 23 cm long source can be 50 kW or higher, practically all of which is absorbed in the cooling water. Water flow calorimetry measurements were made to determine the heat loads on the bucket walls, grid no. 1, and magnetic filter rods. The measurements are presented for two different filament locations, for three different values of arc power, and for three values of source gas pressure. 1 ref., 4 figs., 2 tabs.

Purgalis, P.; Ackerman, G.; Kwan, J.; Wells, R.P.

1987-10-01T23:59:59.000Z

305

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

306

Ground Source Heat Pump Data Mining Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Source Heat Pump Data Mining Ground Source Heat Pump Data Mining Research Project Ground Source Heat Pump Data Mining Research Project The U.S. Department of Energy is currently conducting research into ground source heat pump (GSHP) data mining. This project seeks to build public awareness of GSHP technology through the development of case studies outlining costs and benefits. Project Description This project seeks to produce in-depth case studies on the costs and benefits of American Recovery and Reinvestment Act -funded GSHP demonstration projects, including cross-cutting summaries of lessons learned and best practices for design, installation, and operation. Project Partners Research is being undertaken between the Department of Energy and Oak Ridge National Laboratory. Project Goals

307

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Source Heat Pumps Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

308

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

309

Interhemispheric teleconnections from tropical heat sources in intermediate and simple models  

Science Conference Proceedings (OSTI)

The mechanisms that control the interhemispheric teleconnections from tropical heat sources are investigated using an intermediate complexity model (a Quasi-Equilibrium Tropical Circulation Model, QTCM) and a simple linear two-level model with dry ...

X. Ji; J. D. Neelin; S.-K. Lee; C. R. Mechoso

310

A Numerical Study of Stratified Airflow over Mesoscale Heat Sources with Application to Carolina Coastal Frontogenesis  

Science Conference Proceedings (OSTI)

This paper presents the results from a numerical investigation of the responses of stratified airflow to prescribed near-surface mesoscale axisymmetric (circular) and elongated (elliptical) heat sources under uniform basic wind conditions using a ...

Lian Xie; Yuh-Lang Lin

1996-12-01T23:59:59.000Z

311

Axisymmetric Circulations Forced by Heat and Momentum Sources: A Simple Model Applicable to the Venus Atmosphere  

Science Conference Proceedings (OSTI)

The parametric behavior of an axially symmetric circulation induced by heat and momentum sources is analyzed in the context of a simple Boussinesq model. Implications for the Venus atmosphere are examined in the light of recent data.

Arthur Y. Hou

1984-12-01T23:59:59.000Z

312

Comparison of the Global Meridional Ekman Heat Flux Estimated from Four Wind Sources  

Science Conference Proceedings (OSTI)

The variability in the meridional Ekman heat flux estimated using wind data from four different sources is examined. The wind vectors are obtained from the European Remote Sensing (ERS), Quick Scatterometer (Quikscat), and Special Sensor ...

Olga T. Sato; Paulo S. Polito

2005-01-01T23:59:59.000Z

313

The Response of Balanced Hurricanes to Local Sources of Heat and Momentum  

Science Conference Proceedings (OSTI)

Eliassen's (1951) diagnostic technique is used to calculate the secondary circulation induced by point sources of heat and momentum in balanced, hurricane-like vortices. Scale analysis reveals that such responses are independent of the horizontal ...

Lloyd J. Shapiro; Huch E. Willoughby

1982-02-01T23:59:59.000Z

314

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps  

E-Print Network (OSTI)

pump water heater and ClimateMaster TrilogyTM 40 Q-ModeTM geothermal (ground- source) integrated heat buildings on the flexible research platforms. · The greatest barrier preventing wider use of geothermal

Oak Ridge National Laboratory

315

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

DOE Green Energy (OSTI)

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

316

EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

317

13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)  

Reports and Publications (EIA)

In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 States against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 2001 [3]. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 SEER, mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30-percent increase in efficiency relative to current law. The AEO2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

Information Center

2005-04-01T23:59:59.000Z

318

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

319

The Atmospheric Heat Source over the Tibetan Plateau: May–August 1979  

Science Conference Proceedings (OSTI)

Estimates of the time and space variability of the atmospheric heat source over Tibet are presented for the summer of 1979. These estimates rely on new data from the People's Republic of China allowing a better assessment of the surface heat ...

Longxun Chen; Elmar R. Reiter; Zhiqiang Feng

1985-10-01T23:59:59.000Z

320

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network (OSTI)

. The building is located near the end of the central steam distribution system. Steam from the central steam and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump, it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Linear Model Study of Cross-Equatorial Flow Forced by Summer Monsoon Heat Sources  

Science Conference Proceedings (OSTI)

A linear model of the steady response of a stratified fluid to isolated heat sources on a sphere is developed. The model is used to examine the response to diabatic heating associated with summer monsoon precipitation in India and to low-level ...

Keith D. Sashegyi; John E. Geisler

1987-07-01T23:59:59.000Z

322

The Heat Sources and Sinks of the 1986–87 El Nińo  

Science Conference Proceedings (OSTI)

The heat balance of the coupled tropical ocean–atmosphere system during the Earth Radiation Budget Experiment (ERBE) period (1985–89) is analyzed in an attempt to better understand the heat sources and sinks of the 1986–87 El Nińo. The analysis ...

De-Zheng Sun

2000-10-01T23:59:59.000Z

323

Nuclear Maintenance Applications Center: Heating, Ventilating, and Air Conditioning Specialist Guide  

Science Conference Proceedings (OSTI)

The people responsible for heating, ventilating, and air conditioning (HVAC) in the nuclear power industry are known by various titles--HVAC specialist, HVAC component engineer, HVAC system manager, and HVAC system engineer, to name a few. Although HVAC duties and responsibilities are often spread across several departments, such as maintenance, operations, engineering, and procurement, it is up to the HVAC specialist to ensure that HVAC system and component health and reliability are maintained. This re...

2011-11-28T23:59:59.000Z

324

Performance Assessment of a Variable Refrigerant Flow Heat Pump Air Conditioning System  

Science Conference Proceedings (OSTI)

Variable refrigerant flow (VRF) technology uses smart integrated controls, variable speed drives, and refrigerant piping to provide energy efficiency, flexible operation, ease of installation, low noise, zone control, and comfort through all-electric technology. This report describes and documents the construction, performance, and application of a heat pump air conditioning system that uses VRF technology8212the Daikin VRV system. This variable refrigerant volume (VRV) system is manufactured by Daikin I...

2008-12-17T23:59:59.000Z

325

Flicker Reduction Technology for Electric Heat Pumps and Central Air Conditioners  

Science Conference Proceedings (OSTI)

Electric heat pumps and air conditioners move thermal energy into and/or out of conditioned spaces. During startup, the compressor motor temporarily draws high current (inrush) from the power distribution system to accelerate the compressor from standstill to its nominal operating speed. The inrush current causes a voltage drop in the power distribution system between the compressor motor and the utility service transformer. Although very brief in durationjust fractions of a secondthe voltage drop can ca...

2011-12-28T23:59:59.000Z

326

Model for determining modular heat recovery incinerator feasibility on air force installations. Master's thesis  

Science Conference Proceedings (OSTI)

This study constructed a model to determine the feasibility of building municipal solid waste (MSW) fired modular heat recovery incinerators (HRIs) on Air Force installations. The model consisted of three gates. Gate one identified current federal regulatory air emission requirements for various HRI pollutants. It also specified two air pollution control configurations with emission reduction efficiencies capable of achieving these requirements. Gate two presented a life-cycle cost (LCC) economic analysis methodology. Operational and cost data for existing modular HRIs located in the United States facilitated the development of regression equations that estimate capital and annual operating costs for a modular HRI. Actual cost and operational information from a central heating plant at Wright-Patterson AFB, along with cost data from the regression equations, provided the basis for an example LCC analysis involving modular HRIs Results of this hypothetical evaluation showed that the LCC for the modular HRI alternatives were both less than the LCC of replacing the existing boiler. Gate three presented a Likert-scale survey to evaluate the sociopolitical acceptability of the proposed HRI. The survey results indicate the level of effort to process the HRI proposal in accordance with the National Environmental Policy Act. Heat recovery, Incinerators, Waste management, Waste treatment.

Anderson, A.H.; Munnell, P.R.

1992-09-01T23:59:59.000Z

327

Air thermosiphon solar heating system: the Jones house, Santa Fe, New Mexico  

DOE Green Energy (OSTI)

A hybrid passive/active solar heating system, featuring a passive air thermosiphon loop, is described. Heated air is supplied to a rock storage bin, coupled with blower-driven air distribution to the house. The house, of 246 m/sup 2/ (2650 ft/sup 2/) heated area and located in Santa Fe, New Mexico, also includes a greenhouse located under the planar collector array. Architectural features and construction details of the house, the solar collector, storage, and distribution system are presented. Representative results of three months of monitoring by the Los Alamos Scientific Laboratory of collector, rock bin, and greenhouse temperatures, as well as outside ambient temperature and insolation, are reported and discussed. Data recorded hourly since the system was placed in operation in early February 1978, show temperatures in the rock bin in excess of 71/sup 0/C (160/sup 0/F) and in the collector absorber mesh in excess of 93/sup 0/C (200/sup 0/F). Delivery temperatures from the charged bin, without auxiliary boost, range from 38 to 54/sup 0/C (100 to 130/sup 0/F).

Hunn, B.D.; Jones, M.M.

1978-01-01T23:59:59.000Z

328

Effect of excess air on the optimization of heating appliances for biomass combustion  

Science Conference Proceedings (OSTI)

The performance of a domestic appliance for wood logs combustion is a function of several variables, such as the geometric design of the appliance and its operating parameters. Among them, air feeding conditions are really decisive if the objective function is the maximization of the heat recovered from flue gases. Therefore, even if pollutant emissions have to be ever considered, the amount of excess air can be seen as a fundamental parameter in the definition of thermal efficiency of the appliance. In this paper the role of this parameter is analysed. The analysis is conducted by linking the results obtained from experimental data, detailed CFD simulations and a simplified mathematical model based on a network of CSTR. The derivation of an idealized schematization of the appliance was essential to realize the role of excess air variations, with more generality than with respect to a specific appliance configuration. Conversely, while the experimental data and CFD results were necessary to derive the simplified model, the indications given by this simplified model were useful to analyze results coming from both experiments and detailed numerical simulations. It has been evidenced the need to distinguish between the role of excess air in the chemical combustion and in the heat recovery in the appliance as well as to quantify the feedback between these two processes. (author)

Menghini, D. [Dipartimento di Ingegneria Chimica, Universita degli studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Marra, F.S.; Allouis, C.; Beretta, F. [Consiglio Nazionale delle Ricerche, Istituto di Ricerche sulla Combustione - CNR, via Diocleziano 328, 80124 Napoli (Italy)

2008-07-15T23:59:59.000Z

329

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due to the different heating and cooling load of a building, which will consistently deteriorate the heat pump efficiency leading even to the breakdown of the heat pump. This paper brings forward a design method of adding supplemental heat rejection equipment, a cooling tower, in the system to solve the problem in a cold area. Taking an office building in Beijing as an example, the authors simulate the GSHP system with two different connection methods between the cooling tower and vertical buried-pipe heat exchangers (in series and in parallel) using TRNSYS simulation software, and put forward several design schemes that can ensure the whole system continually operates with high efficiency. This also makes it possible to perform a more detailed economic optimization of the GSHP-based system in the future.

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

330

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

Science Conference Proceedings (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

331

Multi-heat source thermodynamic cycles and demonstrations of their power plants  

SciTech Connect

Being on the analysis of the requirements and the problems existing in the thermodynamic cycles (TC) and their power plants (PPs) using single heat source (SHS) of moderate and low grade, the paper puts forward the theory of electricity generation by using multi-heat sources (MHS), its possibility and advantages of these heat sources (HSs). Proposals of two types of MHS combination cycles, such as solar thermal energy (STE) and geothermal energy (GE), solar-geothermal and fuel burning energy (FBE) or waste heat (WH) are given. The calculation results of these PPs and their corresponding SHS-PPs are listed. MHS-PPs are superior from both technical and economic points of view.

Dai-Ji, H.

1984-08-01T23:59:59.000Z

332

New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology  

Science Conference Proceedings (OSTI)

Results from an analysis of the Southampton Oceanography Centre (SOC) global air–sea heat flux climatology, which has been calculated using in situ weather reports from voluntary observing ships covering the period 1980–93, are presented. ...

Simon A. Josey; Elizabeth C. Kent; Peter K. Taylor

1999-09-01T23:59:59.000Z

333

Estimating Regional Surface Heat and Moisture Fluxes above Prairie Cropland from Surface and Upper-Air Measurements  

Science Conference Proceedings (OSTI)

Upper-air budget methods can be used to estimate the surface sensible and latent heat flux densities on a regional scale. This study assesses the application of radiosonde-based budget methods above homogeneous cropland. Serial daytime soundings ...

Alan G. Barr; G. S. Strong

1996-10-01T23:59:59.000Z

334

Fine Adjustment of Large Scale Air-Sea Energy Flux Parameterizations by Direct Estimates of Ocean Heat Transport  

Science Conference Proceedings (OSTI)

An inverse technique is used to adjust uncertain coefficients and parameters in the bulk formulae of climatological air-sea energy fluxes in order to obtain an agreement of indirect estimates of meridional heat transport with direct estimates in ...

Hans-Jörg Isemer; Jürgen Willebrand; Lutz Hasse

1989-10-01T23:59:59.000Z

335

Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation  

SciTech Connect

Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

Akbari, Hashem

2005-08-23T23:59:59.000Z

336

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM  

DOE Green Energy (OSTI)

In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

337

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

DOE Green Energy (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

338

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

339

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

E-Print Network (OSTI)

Refrigeration, and Air conditioning Engineers, Atlanta,Refrigeration, and Air Conditioning Engineers, Atlanta,Refrigeration, and Air Conditioning Engineers, Atlanta,

Akbari, Hashem

2008-01-01T23:59:59.000Z

340

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

342

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

343

Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems  

SciTech Connect

In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow the use of this tool to perform detailed residential HVAC system simulations. The simulations have been verified by comparison to measured results in several houses over a wide range of weather conditions and HVAC system performance. After the verification was completed, more than 350 cooling and 450 heating simulations were performed. These simulations covered a range of HVAC system performance parameters and California climate conditions (that range from hot dry deserts to cold mountain regions). The results of the simulations were used to show the large increases in HVAC system performance that can be attained by improving the HVAC duct distribution systems and by better sizing of residential HVAC equipment. The simulations demonstrated that improved systems can deliver improved heating or cooling to the conditioned space, maintain equal or better comfort while reducing peak demand and the installed equipment capacity (and therefore capital costs).

Walker, I.S.; Degenetais, G.; Siegel, J.A.

2002-05-01T23:59:59.000Z

344

Outdoor Air, Heat Wheels and JCPenney: A New Approach to Retail Ventilation  

E-Print Network (OSTI)

JCPenney Construction Services department is responsible for the construction of new stores, takeover of existing facilities to create a new store, repairs to existing JCPenney facilities and the expansion and modernization of stores across the nation and the world. Each year, JCPenney Construction Services handles approximately 50 projects along these lines. After the implementation of ASHRAE 62- 1989 by JCPenney and many major building codes, including BOCA, mechanical engineers at JCPenney noticed a sharp increase in the percentage of cooling capacity required to cool the outdoor ventilation air. In an effort to limit this impact, both in first cost and in operational costs, JCPenney is beginning to make an effort to use enthalpy heat wheels in the hot and humid climate areas where it is economically feasible. This paper discusses the efforts of JCPenney to implement this option to the treatment of outdoor air in a store in Baton Rouge, LA while maintaining indoor air quality requirements as stated in ASHRAE Standard 62-1989 and maintaining energy efficiency. This paper also discusses the projected energy savings and operations of this alternative to the standard treatment of outdoor air.

Smith, C. S.; Bartlett, T. A.

1998-01-01T23:59:59.000Z

345

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

346

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

347

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

348

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

349

How refrigeration, heating, ventilation, and air conditioning service technicians learn from troubleshooting (Dissertation ABstract)  

E-Print Network (OSTI)

The purpose of this study was to understand how refrigeration, heating, ventilation, and air conditioning (RHVAC) service technicians (techs) learned from troubleshooting. This understanding resulted in instructional and curricular strategies designed to help community colleges prepare vocational students to learn more effectively from informal workplace learning. RHVAC techs were studied because they increasingly learn their trade skills through a combination of formal schooling and informal workplace learning, though many still learn their trade almost exclusively in the workplace. Even those with formal training require considerable workplace experience to become fully competent. Troubleshooting is a major job function for RHVAC service techs, and troubleshooting

Denis F. H. Green

2006-01-01T23:59:59.000Z

350

DOELEA-1211 Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOELEA-1211 DOELEA-1211 - Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington U.S. Department of Energy Richland, Washington June 1997 DOE/EA-1211 ENVIRONMENTAL ASSESSMENT FOR THE RELOCATION AND STORAGE OF ISOTOPIC HEAT SOURCES HANFORD SITE RICHLAND, WASHINGTON JUNE 1997 U.S. DEPARTMENT OF ENERGY NCHLAND, WASHINGTON Portions of this document may be iiIegiile in electronic image products. Images are produced from the best available original dornmeut DOWEA- 1 2 1 1 U.S. Department of Energy Preface PREFACE This environmental assessment (EA) has been prep- to assess potentia environmental impacts associated with the U.S. Department of Energy proposed action: Relocation and storage of the isotopic heat sources.

351

Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions  

DOE Green Energy (OSTI)

In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone.

Zielinski, R.E.; Stacy, E.; Burgan, C.E.

352

An evaluation of alternate production methods for Pu-238 general purpose heat source pellets  

DOE Green Energy (OSTI)

For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

Mark Borland; Steve Frank

2009-06-01T23:59:59.000Z

353

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network (OSTI)

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling unit of the phase change heat transfer model. It was solved numerically by an enthalpy-based finite difference method and was validated by experimental data. CaCl2•6H2O was used as the PCM in the latent heat storage system of SAGSHP system. In the tank, the PCMs are encapsulated in plastic kegs that are setting on the serpentine coil. The experiments were performed from March 12 to April 10, 2004 in the heating season of the transition period. In order to reflect the effects of the system, two days were chosen to compare the numerical results with experimental data. The inlet and outlet temperature of the water in the PCST, temperature of PCM and storage and emission heat of PCST were measured. The trends of the variation of numerical results and experimental data were in close agreement. Numerical results can reflect the operation mode of the system very well.

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

354

Clark Public Utilities - Residential Heat Pump Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Loan Program Heat Pump Loan Program Clark Public Utilities - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Air-Source Heat Pumps: $20,000 Geothermal Heat Pumps: $30,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Air-Source Heat Pump: up to $20,000 Geothermal Heat Pumps: up to $30,000 Provider Clark Public Utilities Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly efficient heat pump in a residence. All electrically heated homes, including manufactured homes, are eligible for the heat pump financing program, as long as the home has been

355

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

356

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

357

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

358

Comparing Aircraft-Based Remotely Sensed Energy Balance Fluxes with Eddy Covariance Tower Data Using Heat Flux Source Area Functions  

Science Conference Proceedings (OSTI)

In an effort to better evaluate distributed airborne remotely sensed sensible and latent heat flux estimates, two heat flux source area (footprint) models were applied to the imagery, and their pixel weighting/integrating functionality was ...

JoséL. Chávez; Christopher M. U. Neale; Lawrence E. Hipps; John H. Prueger; William P. Kustas

2005-12-01T23:59:59.000Z

359

Abatement of Air Pollution: Control of Sulfur Dioxide Emissions from Power Plants and Other Large Stationary Sources of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to fossil-fuel fired stationary sources which serve a generator with a nameplate capacity of 15 MW or more, or fossil-fuel fired boilers or indirect heat exchangers with a...

360

Application of the VRV Air-Conditioning System Heat Recovery Series in Interior Zone and Analysis of its Energy Saving  

E-Print Network (OSTI)

To reduce the energy consumption of air conditioning systems, we can use the VRV air conditioning system to supply cold loads in the winter for rooms in the construction inner zone where cold loads need to be supplied. The VRV air-conditioning system of variable frequency technology can achieve the effect of energy conservation. In this article, we analyze the application of the VRV air conditioning system heat recovery series in the construction inner zone and its energy saving characteristics via a project example.

Zhang, Q.; Li, D.; Zhang, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Municipal waste incineration; An environmentally benign energy source for district heating  

SciTech Connect

Municipal solid waste should be regarded as a good fuel. Emissions from solid waste incineration can be kept within any reasonable limit. Compared with fossil fuels, waste can be regarded as a renewable source of energy that does not contribute to the greenhouse effect. Finally, waste incineration for district heating can be very economical.

Astrand, L.E. (Uppsala Energi AB, Uppsala (SE))

1990-01-01T23:59:59.000Z

362

Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission  

SciTech Connect

General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a {sup 238}Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds.

Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

1998-12-31T23:59:59.000Z

363

Influence of External Heat Source on Transcritical CO2 Refrigeration System  

Science Conference Proceedings (OSTI)

Synthetic refrigerants such as CFCs and HCFCs are harmful to the ozone and could cause greenhouse effect. Refrigerant alternatives research is very urgent. CO2 as a natural working fluid has zero ODP and its GWP=1, is receiving more and more attention ... Keywords: Coefficient of Performance, Experimental Investigation, Heat Source, Transcritical CO2 Refrigeration System

Liu Yingfu; Xiao Jian; Jin Guangya

2012-07-01T23:59:59.000Z

364

Evaluation of a residential solar air heating system. Interim progress report, August 1976--May 1977. [Comparison of air-type and liquid-type collectors  

SciTech Connect

The comparative performance of Solar House II collectors (air heater) and Solar House I collectors (liquid heater) is presented. In the 1976 comparison year, there is no conclusive evidence that either system provides a greater fraction of the seasonal load. Both systems were designed to provide approximately 75 percent of the annual space and water heating load, and the design targets are reasonably achieved. In February, 1976, the air system provided 65 percent of the total requirement while the liquid system provided 76 percent. In March, based on a few days of data, the performance was substantially the same. In April the air system provided a greater fraction of solar heat to the total need, but the use of the heat was different, more being used for domestic water heating in Solar House I than in Solar House II. The data for 1977 have not yet been fully analyzed for both solar houses and therefore, a complete comparison cannot be made. At this stage in the evaluations, it can be stated that either system can be designed to achieve the target fraction of the total annual heat requirements. (WHK)

Karaki, S.

1977-05-01T23:59:59.000Z

365

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

E E N E R G Y M A N A G E M E N T P R O G R A M and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can

366

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and exterior to the facility, are typically less and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can usually be attributed to faulty design or

367

General-Purpose Heat Source Safety Verification Test series: SVT-7 through SVT-10  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will supply power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of /sup 238/PuO/sub 2/ ..cap alpha..-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first report (covering SVT-1 through SVT-6) described the results of flat and side-on module impacts. This report describes module impacts at angles of 15/sup 0/ and 30/sup 0/.

George, T.G.; Pavone, D.

1985-09-01T23:59:59.000Z

368

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

369

Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe  

E-Print Network (OSTI)

We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

McCarthy, Matthew

370

DOE/EA-1673: Environmental Assessment for Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment (July 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Environmental Assessment for 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment July 2009 8-i CHAPTER 8. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 8.1 INTRODUCTION ............................................................................................................... 8-1 8.2 AIR QUALITY ANALYSIS ............................................................................................... 8-1 8.3 AIR POLLUTANT DESCRIPTIONS ................................................................................ 8-1 8.4 AIR QUALITY REGULATIONS ...................................................................................... 8-3

371

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest winter nights, compared to 175% to 250% for air-source heat pumps on cool

372

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

373

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

374

General-Purpose Heat Source: Research and development program: Cold-Process Verification Test Series  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs and individual GPHS capsules fueled with {sup 238}UO{sub 2} ({sup 235}U-depleted) to a variety of explosive overpressure and impact events. In the early 1990s, Los Alamos National Laboratory (LANL) resumed fabrication of {sup 238}UO{sub 2} GPHS pellets. The Cold-Process Verification (CPV) Test Series was designed to compare the response of GPHS heat sources loaded with recently fabricated hot- and cold-pressed {sup 238}UO{sub 2} pellets to the response of urania pellets used in the Galileo and Ulysses performance tests. This report documents eleven bare-capsule impacts and one impact of a fully loaded GPHS module. All of the failures observed in the bare-clad impact tests were similar to failures observed in previous safety tests. No failures occurred in the module impact test.

Reimus, M.A.H.; George, T.G.

1996-06-01T23:59:59.000Z

375

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

376

Comparative performance of solar heating with air and liquid systems. Interim progress report, February 1, 1976--August 30, 1976  

SciTech Connect

A performance comparison between an air solar system and a liquid solar system for space heating under nearly equal conditions has been obtained. The Colorado State University Solar House I is a liquid solar system which has been in operation since August 1974. Solar House II, which stands adjacent to and has a comparable heating load to Solar House I, is equipped with an air solar system. Solar House I has been continuously monitored since August 1974 and Solar House II has been monitored since February 1976. Performance of the solar systems is reported in terms of the collector efficiency, the amount of space heating and service water heating load provided by solar energy, and the use of electrical energy to operate the solar equipment. General characteristics of the two types of systems are also compared. Information concerning installation, operation, and maintenance of the systems have been documented and are discussed.

Karaki, S.; Lof, G.O.G.; Smith, C.C.

1976-08-01T23:59:59.000Z

377

Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment  

SciTech Connect

Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

Kuntysh, V.B.; Fedotova, L.M.

1983-01-01T23:59:59.000Z

378

Calculation of Airflow over an Isolated Heat Source with Application to the Dynamics of V-Shaped Clouds  

Science Conference Proceedings (OSTI)

The stably stratified airflow over a three-dimensional elevated heat source is investigated using the linearized equations of motion. A low-level upward motion can be produced for airflow over a prescribed, isolated heat source for a wide variety ...

Yuh-Lang Lin

1986-11-01T23:59:59.000Z

379

Research on the Applicability of Solar Energy-Ground Source Heat Pump in Different Regions of China  

Science Conference Proceedings (OSTI)

The development potential of solar energy resource, cLimatic characteristics and soil temperature conditions are various in different areas of China, which brings some difficulties in the promotion and appLication of solar energy-ground source heat pump ... Keywords: Solar energy-ground source heat pump (GSHP), Solar radiation, Sharacteristics of soil thermal storage, Geographic features

Dongyi Zhou; Chu-ping Shi; Wen-hua Yuan

2011-08-01T23:59:59.000Z

380

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network (OSTI)

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

382

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

383

Development of an integrated building load-ground source heat pump model as a test bed to assess short- and long-term heat pump and ground loop performance.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) have the ability to significantly reduce the energy required to heat and cool buildings. Historically, deployment of GSHP's in the… (more)

Gaspredes, Jonathan Louis

2012-01-01T23:59:59.000Z

384

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

385

Heat source component development program. Quaterly report, January--March, 1977  

DOE Green Energy (OSTI)

This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. These reports replace the informal monthly technical letter reports previously prepared. The specific components development efforts which are described are: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. Finally, thermochemical supporting studies are reported.

Pardue, W.M. (comp.)

1977-04-01T23:59:59.000Z

386

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

387

Finite Volume Based Computer Program for Ground Source Heat Pump System  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

Menart, James A. [Wright State University] [Wright State University

2013-02-22T23:59:59.000Z

388

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

389

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

A variety of methods of sealing supply-air registers wereand sealing practices when leakage at connections to duct-mounted equipment is not considered. The measured air-

Fisk, W.J.

2011-01-01T23:59:59.000Z

390

Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission  

SciTech Connect

The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

Schock, Alfred

1993-10-01T23:59:59.000Z

391

Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes  

SciTech Connect

This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Yang, Tsun Lirng [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China)

2009-10-15T23:59:59.000Z

392

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

María José Gacto; Rafael Alcalá; Francisco Herrera

2012-03-01T23:59:59.000Z

393

Source- and Age-Resolved Mechanistic Air Quality Models: Model Development and Application in Southeast Texas  

E-Print Network (OSTI)

Ozone (O3) and particulate matter (PM) existing in the atmosphere have adverse effects to human and environment. Southeast Texas experiences high O3 and PM events due to special meteorological conditions and high emission rates of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Quantitative knowledge of the contributions of different emissions sources to O3 and PM is helpful to better understand their formation mechanisms and develop effective control strategies. Tagged reactive tracer techniques are developed and coupled into two chemical transport models (UCD/CIT model and CMAQ) to conduct source apportionment of O3, primary PM, secondary inorganic PM, and secondary organic aerosol (SOA) and aging distribution of elemental carbon (EC) and organic carbon (OC). Ozone (O3) and particulate matter (PM) existing in the atmosphere have adverse effects to human and environment. Southeast Texas experiences high O3 and PM events due to special meteorological conditions and high emission rates of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Quantitative knowledge of the contributions of different emissions sources to O3 and PM is helpful to better understand their formation mechanisms and develop effective control strategies. Tagged reactive tracer techniques are developed and coupled into two chemical transport models (UCD/CIT model and CMAQ) to conduct source apportionment of O3, primary PM, secondary inorganic PM, and secondary organic aerosol (SOA) and aging distribution of elemental carbon (EC) and organic carbon (OC). Models successfully reproduce the concentrations of gas phase and PM phase species. Vehicles, natural gas, industries, and coal combustion are important O3 sources. Upwind sources have non-negligible influences (20-50%) on daytime O3, indicating that regional NOx emission controls are necessary to reduce O3 in Southeast Texas. EC is mainly from diesel engines while majority of primary OC is from internal combustion engines and industrial sources. Open burning, road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates primary PM near fire locations. Over 80% of sulfate is produced in upwind areas and coal combustion contributes most. Ammonium ion is mainly from agriculture sources. The SOA peak values can be better predicted when the emissions are adjusted by a factor of 2. 20% of the total SOA is due to anthropogenic sources. Solvent and gasoline engines are the major sources. Oligomers from biogenic SOA account for 30-58% of the total SOA, indicating that long range transport is important. PAHs from anthropogenic sources can produce 4% of total anthropogenic SOA. Wild fire, vehicles, solvent and industries are the major sources. EC and OC emitted within 0-3 hours contribute approximately 70-90% in urban Houston and about 20-40% in rural areas. Significant diurnal variations in the relative contributions to EC are predicted. Fresh particles concentrations are high at morning and early evening. The concentrations of EC and OC that spend more than 9 hours in the air are low over land but almost accounts for 100% of the total EC and OC over the ocean.

Zhang, Hongliang

2012-05-01T23:59:59.000Z

394

Definition: Heat pump | Open Energy Information  

Open Energy Info (EERE)

pump pump Jump to: navigation, search Dictionary.png Heat pump Heating and/or cooling equipment that, during the heating season, draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside[1] View on Wikipedia Wikipedia Definition A heat pump is a device that transfers heat energy from a heat source to a heat sink against a temperature gradient. Heat pumps are designed to move thermal energy opposite the direction of spontaneous heat flow. A heat pump uses some amount of external high-grade energy to accomplish the desired transfer of thermal energy from heat source to heat sink. While compressor-driven air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to

395

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

396

AN EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTICS OF AIR AND CO2 IN MICROTUBES  

E-Print Network (OSTI)

by a cooling capacity, which is delivered in those rooms by heat exchangers where a heat transfer fluid - 2 and Fluid Science, 1-3:17. Mortada S., 2010. "Heat transfer performance of a mini-channel evaporator are mini-channel heat exchangers (MCHE) combining high heat transfer coefficients and low refrigerant

Kandlikar, Satish

397

An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps  

E-Print Network (OSTI)

This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct of a certain length, based on the unit outlet geometry, and this ducting added to the unit height may result in a test apparatus height that exceeds psychometric test room dimensions. This project attempted to alter the outlet duct in a way that reduces the test apparatus height while maintaining the reliability of the ASHRAE Standard 37 testing setup. The investigation was done in two scenarios, the first, which altered the direction of the flow after the unit with an elbow and measured static pressure downstream of the elbow, and the second which inserted a passive resistive piece in the flow to decrease the required distance between the unit and the static pressure measurement. Three air handling units were used in Scenario 1 and Scenario 2 testing, with the two smallest units additionally being tested in Scenario 1 with an over-sized duct. The scenario tests were required to be within 5% power and 2.5% airflow of a baseline test following ASHRAE Standard 37. he results for Scenario 1 have shown that ASHRAE Standard 37 can be modified to reduce testing height restrictions by using a square elbow with turning vanes, provided it is oriented in a specific way in relation to the blower. Furthermore, additional Scenario 1 testing on the over-sized outlet duct shows that possibilities exist for using a single over-sized duct to successfully meet ASHRAE Standard 37 testing conditions when testing a variety of units. Finally, the results of Scenario 2 have shown that the height constraints of the outlet duct can be reduced by installing a passive resistive device consisting of a mesh at the outlet; however, this approach applies only to those units with the heat exchanger located downstream of the blower. As a result of specific issues or problems that were encountered during the project that were beyond the scope, eleven case studies were presented and recommended for future work.

Wheeler, Grant Benson

2013-08-01T23:59:59.000Z

398

Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

399

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

400

The feasibility of retrieving nuclear heat sources from orbit with the space shuttle  

SciTech Connect

Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

Pyatt, D.W.; Englehart, R.W.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Moyer, M.W. [Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Placr, A. [Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-01T23:59:59.000Z

402

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-15T23:59:59.000Z

403

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

404

Red River Valley REA- Heat Pump Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

405

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

406

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

407

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

408

Geothermal Heat Pumps Tech Update  

Science Conference Proceedings (OSTI)

Geothermal heat pumps (GHPs; a.k.a. Ground Source Heat Pumps or GHPSM) can successfully compete with air source heat pump in performance due to their use of the ground or groundwater as a heat source or heat sink. In 1993, the U.S. Environmental Protection Agency labeled GHPs as “the most energy efficient, cost-effective and environmentally clean space conditioning technology available.” The U.S. Department of Energy, Federal Energy Management Program attested that GHPs are a “highly efficient method of ...

2008-12-19T23:59:59.000Z

409

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation… (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

410

Experimental Study of an Artificial Thermal Plume in the Boundary Layer. Part I: Flow Characteristics near the Heat Source  

Science Conference Proceedings (OSTI)

The work reported here describes the environmental impact of emitting about 1000 MW of dry heat from a concentrated source into the atmosphere. It is based on a large field program conducted jointly by the Centre de Recherches Atmosphériques and ...

B. Bénech; J. Noilhan; A. Druilhet; J. M. Brustet; C. Charpentier

1986-04-01T23:59:59.000Z

411

Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part I: Observations  

Science Conference Proceedings (OSTI)

The trend in the atmospheric heat source over the Tibetan Plateau (TP) during the last four decades is evaluated using historical observations at 74 meteorological stations in the period of 1961–2003 and satellite radiation data from 1983 to ...

Anmin Duan; Guoxiong Wu

2008-07-01T23:59:59.000Z

412

Microwave plasma source operating with atmospheric pressure air-water mixtures  

Science Conference Proceedings (OSTI)

The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O {yields} NO{sup +}+ e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO{sub 2} and nitrous acid HNO{sub 2} have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O({sup 3}P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O{sub 2}(a{sup 1}{Delta}{sub g}) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O{sub 2}(a{sup 1}{Delta}{sub g}) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M. [Institute of Plasmas and Nuclear Fusion, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisbon (Portugal); Gordiets, B. [Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow (Russian Federation)

2012-11-01T23:59:59.000Z

413

GPHS (General Purpose Heat Source) uranium oxide encapsulations supporting satellite safety tests  

SciTech Connect

General Purpose Heat Source (GPHS) simulant-fueled capsules were assembled, welded, nondestructively examined, and shipped to Los Alamos National Laboratory (LANL) for satellite safety tests. Simulant-fueled iridium capsules contain depleted uranium oxide pellets that serve as a stand-in for plutonium-238 oxide pellets. Information on forty seven capsules prepared during 1987 and 1988 is recorded in this memorandum along with a description of the processes used for encapsulation and evaluation. LANL expects to use all capsules for destructive safety tests, which are under way. Test results so far have demonstrated excellent integrity of the Savannah River capsule welds. 10 refs., 5 figs., 3 tabs.

Kanne, W.R.

1989-04-24T23:59:59.000Z

414

Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source  

Science Conference Proceedings (OSTI)

The kinetics of surface graphitization during dissociative vacuum evaporation of silicon carbide, under the effect of a scanning heat source, is studied. A model of the process is developed. The model provides a means for theoretically treating the dynamics of formation and the number of residual carbon atomic layers. The vapor stoichiometric coefficient which ensures the minimization of the number of structural defects in graphene, is optimized at the sublimation temperature: {theta} = 1/{eta}(T{sub max}). The proposed method can be used as a basis for graphene production technology.

Dmitriev, A. N.; Cherednichenko, D. I., E-mail: cheredni@fep.tti.sfedu.ru [Southern Federal University, Taganrog Technological Institute (Russian Federation)

2011-12-15T23:59:59.000Z

415

Estimation of Sensible and Latent Heat Fluxes from Soil Surface Temperature Using a Linear Air-Land Heat Transfer Model  

Science Conference Proceedings (OSTI)

The authors present a linearized model of the heat transfer between the soil layer and the atmosphere. Using this model, the moisture availability at the surface can be estimated from the diurnal variations of the soil surface temperature and ...

Fujio Kimura; Yugo Shimizu

1994-04-01T23:59:59.000Z

416

Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part II: Connection with Climate Warming  

Science Conference Proceedings (OSTI)

In Part I the authors have shown that heating sources in spring over the Tibetan Plateau (TP), and in particular the sensible heat flux (SHF), exhibit a significant weakening trend since the mid-1980s that is induced mainly by decreased surface ...

Anmin Duan; Guoxiong Wu

2009-08-01T23:59:59.000Z

417

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging tests, the indoor room conditions were 80'F (27.8'C) dry-bulb and 50% relative humidity. The outdoor conditions ranged from 95'F (350C) all the way up to 120'F (48.9'C). Charge levels ranged from 30% undercharged to 40% overcharged for the short-tube orifice unit. For the thermal expansion valve (TXV) unit, charge levels ranged from-36% charging to +27% charging. Performance was quantified with the following variables: total capacity, energy efficiency ratio (EER), and power. The performance of the orifice unit was more sensitive to charge than it was for the TXV unit. For the TXV unit on the -27% to +27% charging range, the capacity and EER changed little with charge. A TXV unit and a short-tube orifice unit were also tested for reduced evaporator airflow. As evaporator airflow decreased, the capacity and EER both decreased as expected. However, the drop was not as significant as with the charging tests. For the extreme case of 50% reduced evaporator airflow, neither unit's capacity or EER dropped more than 25%. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and EER both decreased with increased return air leakage. However, power consumption was relatively constant for all variables except outdoor temperature, which meant that for the same power consumption, the unit delivered much lower performance when there was return air leakage. The increase in sensible heat ratio (SHR) with increasing leakage showed perhaps the most detrimental effect of return air leakage on performance, which was the inability of the unit to absorb moisture from the environment.

Rodriguez, Angel Gerardo

1995-01-01T23:59:59.000Z

418

Effect of Refrigerant Charge, Duct Leakage, and Evaporator Air Flow on the High Temperature Performance of Air Conditioners and Heat Pumps  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging tests, the indoor room conditions were 80°F (27.8°C) dry-bulb and 50% relative humidity. The outdoor conditions ranged from 95°F (35°C) all the way up to 120°F (48.9°C). Charge levels ranged from 30% undercharged to 40% overcharged for the short-tube orifice unit. For the thermal expansion valve (TXV) unit, charge levels ranged from -36% charging to +27% charging. Performance was quantified with the following variables: total capacity, energy efficiency ratio (EER), and power. The performance of the orifice unit was more sensitive to charge than it was for the TXV unit. For the TXV unit on the -27% to +27% charging range, the capacity and EER changed little with charge. A TXV unit and a short-tube orifice unit were also tested for reduced evaporator airflow. As evaporator airflow decreased, the capacity and EER both decreased as expected. However, the drop was not as significant as with the charging tests. For the extreme case of 50% reduced evaporator airflow, neither unit's capacity or EER dropped more than 25%. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and EER both decreased with increased return air leakage. However, power consumption was relatively constant for all variables except outdoor temperature, which meant that for the same power consumption, the unit delivered much lower performance when there was return air leakage. The increase in sensible heat ratio (SHR) with increasing leakage showed perhaps the most detrimental effect of return air leakage on performance, which was the inability of the unit to absorb moisture from the environment.

Rodriguez, Angel Gerardo

2007-11-29T23:59:59.000Z

419

Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. The meeting took place on Thursday January 5 th , 2012 from 2pm to 3-pm. The following topics were discussed. 1.) Sell-Through. HARDI asked for clarification on the DOE's notation on the Framework Document

420

Large HVAC Codes and Standards Update 2000: American Society of Heating, Refrigerating and Air-Conditioning Engineers  

Science Conference Proceedings (OSTI)

This report documents EPRI activities in the year 2000 related to building codes and standards. The following activities are covered: attendance at the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) meetings and participation in technical committee and subcommittee meetings related to ASHRAE Standard 90.l; review of relevant U.S Department of Energy (DOE) appliance standards; review of developments of other building energy code organizations; and participation in the E...

2000-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools  

SciTech Connect

One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

Scott Hackel; Amanda Pertzborn

2011-06-30T23:59:59.000Z

422

Environmental assessment of general-purpose heat source safety verification testing  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE`s mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned.

NONE

1995-02-01T23:59:59.000Z

423

Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO/sub 2/ as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel.

Cull, T.A.; George, T.G.; Pavone, D.

1986-09-01T23:59:59.000Z

424

Performance evaluation of a solar air-heating and nocturnal cooling system in CSU Solar House II. Final report, June 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The solar heating system in Solar House II consists of 67.1 m/sup 2/ of double-glazed air-heating collectors with flat-black absorbers, 10.3 m/sup 3/ of pebble bed storage, air-to-water heat exchanger for preheating domestic water and one blower to circulate the air through the system. The nocturnal cooling system consists of an evaporative cooler and utilizes the pebble bed for cool storage. A schematic diagram of the system is shown.

Karaki, S.

1979-04-01T23:59:59.000Z

425

Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source  

SciTech Connect

Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T. [Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba, 263-8555 (Japan); Bio-Nano Electronics Research Centre, Toyo Univ., 2100 Kuzirai, Kawagoe, Saitama, 350-8585 (Japan); Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

2012-11-06T23:59:59.000Z

426

Probability Distribution Characteristics for Surface Air–Sea Turbulent Heat Fluxes over the Global Ocean  

Science Conference Proceedings (OSTI)

To analyze the probability density distributions of surface turbulent heat fluxes, the authors apply the two-parametric modified Fisher–Tippett (MFT) distribution to the sensible and latent turbulent heat fluxes recomputed from 6-hourly NCEP–NCAR ...

Sergey K. Gulev; Konstantin Belyaev

2012-01-01T23:59:59.000Z

427

Development of an air-cooled, loop-type heat pipe with multiple condensers  

E-Print Network (OSTI)

Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

Kariya, H. Arthur (Harumichi Arthur)

2012-01-01T23:59:59.000Z

428

Energy Saving Potentials and Air Quality Benefits of Urban Heat IslandMitigation  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,”

Akbari, Hashem

2005-01-01T23:59:59.000Z

429

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,”

Akbari, Hashem

2008-01-01T23:59:59.000Z

430

Acoustical prediction methods for heating, ventilating, and air?conditioning (HVAC) systems  

Science Conference Proceedings (OSTI)

The goal of this project is to compare and contrast various aspects of acoustical prediction methods for heating

2005-01-01T23:59:59.000Z

431

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Amarnath, M. Blatt, Variable refrigerant flow: where, why,simulation in the variable refrigerant flow air-conditioningsimulation of the variable refrigerant flow air conditioning

Hong, Tainzhen

2010-01-01T23:59:59.000Z

432

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

433

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

434

Lighting system with heat distribution face plate  

DOE Patents (OSTI)

Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

2013-09-10T23:59:59.000Z

435

Modeled and measured effects of compressor downsizing in an existing air conditioner/heat pump in the cooling mode  

SciTech Connect

It is not uncommon to find oversized central air conditioners in residences. HVAC contractors sometimes oversize central air conditioners for one reason or another--some to the point that they may be 100% larger than needed to meet the load. Retrofit measures done to improve house envelope and distribution system efficiency also contribute to HVAC oversizing, as they reduce house heating and cooling loads. Proper sizing of an air conditioner or heat pump allows more efficient operation and provides a more comfortable environment than a highly oversized unit. Another factor that lowers operating efficiency is an improper refrigerant charge. Field inspections have revealed that about half of the units checked were not properly charged. An option available to homeowners with oversized air conditioners is to replace the existing compressor with a smaller, more efficient compressor, rather than purchasing a new, smaller unit. Such a retrofit may be economically justified, especially during a compressor failure, provided the oversizing of the existing unit is not too great. A used, 15-year old, single-package heat pump with a capillary tube expansion device on the indoor coil was purchased and tested in a set of environmental chambers to determine its cooling performance at various conditions. The system was also modeled to estimate its existing performance, and that with two different types of retrofitted state-of-the-art (SOA) efficient compressors with about 30% less capacity than the original compressor. This reduced the overall system cooling capacity by about 25%. Modeling estimated that the retrofit would increase system EER at 95 F by 30%, SEER by 34%, and reduce power demand by 39% compared to the existing unit. Reduced cycling losses account for the higher increase in SEER.

Levins, W.P.; Rice, C.K.; Baxter, V.D.

1996-05-01T23:59:59.000Z

436

Using Transformation and Formation Maps to Study the Role of Air–Sea Heat Fluxes in North Atlantic Eighteen Degree Water Formation  

Science Conference Proceedings (OSTI)

The Walin water mass framework quantifies the rate at which water is transformed from one temperature class to another by air–sea heat fluxes (transformation). The divergence of the transformation rate yields the rate at which a given temperature ...

Guillaume Maze; Gael Forget; Martha Buckley; John Marshall; Ivana Cerovecki

2009-08-01T23:59:59.000Z

437

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

SciTech Connect

In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-10-10T23:59:59.000Z

438

Air–Sea Heat Exchanges Characteristic of a Prominent Midlatitude Oceanic Front in the South Indian Ocean as Simulated in a High-Resolution Coupled GCM  

Science Conference Proceedings (OSTI)

An integration of a high-resolution coupled general circulation model whose ocean component is eddy permitting and thus able to reproduce a sharp gradient in sea surface temperature (SST) is analyzed to investigate air–sea heat exchanges ...

Masami Nonaka; Hisashi Nakamura; Bunmei Taguchi; Nobumasa Komori; Akira Kuwano-Yoshida; Koutarou Takaya

2009-12-01T23:59:59.000Z

439

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

440

Candidate chemical systems for air cooled, solar powered, absorption air conditioner design. Part II. Solid absorbents, high latent heat refrigerants  

DOE Green Energy (OSTI)

Work done in attempting to qualify absorption refrigeration systems based on refrigerants with intermediate latent heats of vaporization is summarized. In practice, these comprise methanol, ammonia, and methylamine. A wide variety of organic substances, salts, and mixtures were evaluated in as systematic a manner as possible. Several systems of interest are described. The system, LiClO/sub 3/--LiBr--H/sub 2/O, is a good back up system to our first choice of an antifreeze additive system, and thermodynamically promising but subject to some inconvenient materials limitations. The system, LiBr/ZnBr/sub 2/--methanol, is thermodynamically promising but requires additional kinetic qualification. Chemical stability of the system, LiCNS--ammonia/methylamine with various other third components, does not appear to be adequate for a long-lived system.

Biermann, W. J.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "air source heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A combined power and ejector refrigeration cycle for low temperature heat sources  

Science Conference Proceedings (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

442

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

DOE Green Energy (OSTI)

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

443

PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE  

DOE Green Energy (OSTI)

The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

444

Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs  

SciTech Connect

The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

1995-03-16T23:59:59.000Z

445

Heat source component development program. Quarterly report, July--September, 1976  

DOE Green Energy (OSTI)

This is the first in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. These reports replace the informal monthly technical letter reports previously prepared and are being utilized so that more cohesive presentation of results can be achieved. In addition, a series of summary management monthly reports was initiated in July of 1976 to permit NRA assessment of contractual progress. The specific components development efforts which are described are: a selective vent for helium release from the fuel containment, an improved reentry member and an improved impact member; the latter two items will hopefully be combined into a single ''bifunctional'' member material concept which is designated ''RIM'' (an acronym for Reentry Impact Member). Finally, supportive studies of a thermochemical nature are reported.

Pardue, W.M. (comp.)

1976-10-01T23:59:59.000Z

446

Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs  

SciTech Connect

The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

1995-03-16T23:59:59.000Z

447

Jay County REMC- Geothermal and Air-source Heat Pump Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Jay County Rural Electric Membership Cooperative (REMC) is a member-owned electric distribution organization serving customers in central Indiana. Jay County REMC offers rebates to its customers...

448

Ground Source Heat Pump Air Conditioner Monitoring Control System Design Based on CAN Bus  

Science Conference Proceedings (OSTI)

Based on CAN bus technology, chooses ST's ARM Cortex-M3 core, new generation STM32 embedded enhanced processor STM32F103 as main control chip, designs the overall structure of system, CAN functional block diagram, CAN communication software and so on. ... Keywords: CAN bus embedded STM32F103

Tong Gang; Li Ping

2010-06-01T23:59:59.000Z

449

Elementary Heating Events - Magnetic Interactions Between Two Flux Sources. III Energy Considerations  

E-Print Network (OSTI)

The magnetic field plays a crucial role in heating the solar corona, but the exact energy release mechanism(s) is(are) still unknown. Here, we investigate in detail, the process of magnetic energy release in a situation where two initially independent flux systems are forced into each other. Work done by the foot point motions goes in to building a current sheet in which magnetic reconnection takes place. The scaling relations of the energy input and output are determined as functions of the driving velocity and the strength of fluxes in the independent flux systems. In particular, it is found that the energy injected into the system is proportional to the distance travelled not the rate of travel. Similarly, the rate of Joule dissipation is related to the distance travelled. Hence, rapidly driven foot points lead to bright, intense, but short-lived events, whilst slowly driven foot points produce weaker, but longer-lived brightenings. Integrated over the lifetime of the events both would produce the same heating if all other factors were the same. A strong overlying field has the affect of creating compact flux lobes from the sources. These appear to lead to a more rapid injection of energy, as well as a more rapid release of energy. Thus, the stronger the overlying field the more compact and more intense the heating. This means observers must know the rate of movement of the magnetic fragments involved in an events, as well as determine the strength and orientation of the surrounding field to be able to predict anything about the energy dissipated.

K. Galsgaard; C. E. Parnell

2005-01-27T23:59:59.000Z

450

Variable Refrigerant Flow Air Conditioners and Heat Pumps for Commercial Buildings  

Science Conference Proceedings (OSTI)

Multi-split heat pumps have evolved from a technology suitable for residential and light commercial buildings to variable refrigerant flow (VRF) systems that can provide efficient space conditioning for large commercial buildings. VRF systems are enhanced versions of ductless multi-split systems, permitting more indoor units to be connected to each outdoor unit and providing additional features such as simultaneous heating and cooling and heat recovery. VRF systems are very popular in Asia and Europe and...

2008-01-25T23:59:59.000Z

451

General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests  

DOE Green Energy (OSTI)

The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of STYPu -decay to an array of thermoelectric elements. Each module contains four STYPuO2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s.

George, T.G.

1987-03-01T23:59:59.000Z

452

Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers  

Science Conference Proceedings (OSTI)

More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pump systems (GHPs), sometimes called ground-source heat pump or Geo-Exchange systems, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national energy and climate strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE s request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential and other benefits, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in a report along with conclusions and recommendations. This paper summarizes the key information from the report.

Hughes, Patrick [ORNL

2009-01-01T23:59:59.000Z

453

Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers  

Science Conference Proceedings (OSTI)

More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

Hughes, Patrick [ORNL

2008-12-01T23:59:59.000Z

454

Second law analysis of advanced power generation systems using variable temperature heat sources  

SciTech Connect

Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

455

Heat transfer characteristics of a two-phase, air-water direct contact evaporator.  

E-Print Network (OSTI)

??The purpose of the research was to carry out an experimental and theoretical investigation of the heat transfer on a direct contact column for desalination… (more)

Zanette, Luca

2013-01-01T23:59:59.000Z

456

Development of an air-cooled, loop-type heat pipe with multiple condensers.  

E-Print Network (OSTI)

??Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage… (more)

Kariya, H. Arthur (Harumichi Arthur)

2012-01-01T23:59:59.000Z

457

The Study of Heat and Mass Transfer In The Generator For an Absorption Air Conditioning System.  

E-Print Network (OSTI)

??This thesis is aimed to study the heat and mass transfer performance of a generator for the absorption cooling system. Both aqueous lithium bromide (LiBr)… (more)

Hsu, Yu-lien

2012-01-01T23:59:59.000Z