Sample records for air resources laboratory

  1. NOAA Air Resources Laboratory Monthly Activity Report

    E-Print Network [OSTI]

    with GSD's Homeland Security Project. The Earth System Research Laboratory's Global Systems Division (GSD's Homeland Security Project 2. Wildfire Smoke Forecasts 3. HYSPLIT Modifications for NOAA's Homeland Security Change Science Program (CCSP) Synthesis and Assessment Product (SAP) 3.2 10. Air Quality Forecast Model

  2. Air Resources Laboratory Publications -FY 06

    E-Print Network [OSTI]

    Meeting on Air Pollution Modelling and its Application, May 15-19, Leipzig, Germany. NATO/CCMS, 58 in continental air masses. Chapter 14 in: Dynamics of Mercury Pollution on Regional and Global Scales. N. Pirrone Pollution Modelling and its Application, May 15-19, Leipzig, Germany. NATO/CCMS, 60-61 (2006). Bullock, O

  3. Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    in West Texas. The data collected and analyzed by ARL will improve forecasts of winds at heights more research and development in the fields of atmospheric dispersion, air quality, climate change, and boundary of hazardous chemicals and materials; developing, evaluating, and applying air quality models; conducting

  4. Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Training & Development Mentoring Safety Program Brochure Postdoctoral Blog Resources The resources in this section have been curated to better support you in your...

  5. Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton OH Discipline(s): Materials science/engineering, chemical. Description: We are looking for a qualified candidate to join our team at the Air Force Research Laboratory

  6. Mentoring Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Training & Development Mentoring Safety Program Brochure Postdoctoral Blog Mentoring Resources Divisional Mentoring Program Contacts Mentoring Agreement Argonne Lab-wide...

  7. Laboratory Air Handling Unit System

    E-Print Network [OSTI]

    Cui, Y.; Liu, M.

    2001-01-01T23:59:59.000Z

    balance and moisture balance are given below for the entire building. iQ G26 + hQ G26 + hgQ G26 = rQ G26 + CQ G26 + eQ G26 + ehQ G26 + envQ G26 (1) Where Ge5 = = 2 1 , j jQQ G26 Ge5 = = 2 1 , j jQQ G26 Ge5 = = 2 1 , j jQQ G26 Ge5 = = 2 1 , j... jQQ G26 Ge5 = = 2 1 , j jQQ G26 Figure 1. Schematic diagram of air handling unit system for base system ehMMMM G26G26G26G26 ++= (2) Where Ge5 = = 2 1 , j jMM G26 Ge5 = = 2 1 , j jMM G26 ehWWWWWW G26G26G26G26...

  8. Human Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010a(SC)Human Resources

  9. Human Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010a(SC)Human ResourcesHuman

  10. Sustainability Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupportingAlbedofsidentoihonors LosResources Site

  11. Media Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologies | BlandineMedia

  12. Travel Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map Organization

  13. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrownFirst martianChemical

  14. Other Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbonOther File Systems Other

  15. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACMEAccountable Property 1

  16. Teacher Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails TakingRTapeUpdatedTeachers

  17. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Julie Braun Williams

    2013-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  18. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2011-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  19. Idaho National Laboratory Cultural Resource Management Plan

    SciTech Connect (OSTI)

    Lowrey, Diana Lee

    2009-02-01T23:59:59.000Z

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

  20. Air Resources Laboratory Publications -FY 07*

    E-Print Network [OSTI]

    of nuclear-test-ban treaty verification. Atmospheric Environment 41:4520-4534 (2007). Bernacchi, C.J., S.E . Hollinger, and T.P. Meyers. The conversion of the corn/soybean ecosystem to no-till agriculture may result

  1. Air Resources Laboratory Atmospheric Tracer Technology

    E-Print Network [OSTI]

    The continuous (near real time) sulfur hexafluoride (SF6 ) analyzers are portable systems that make measurements of atmospheric SF6 concentrations with a response time of just under one second. The rapid response time in Gaussian plume transport and dispersion models. The SF6 analyzers include a computer controlled calibration

  2. NOAA Air Resources Laboratory Quarterly Activity Report

    E-Print Network [OSTI]

    's petrochemical facilities 1 km to 8 km distant. Such episodes produced sharp increases in all three species

  3. NOAA Air Resources Laboratory Quarterly Activity Report

    E-Print Network [OSTI]

    Measurement Platform (LAMP) Proposal 14. EPA Roadside Sound Barrier Tracer Study Special Operations and dispersion modeling system to reflect the state of the science. He led the successful transfer of HYSPLIT

  4. Air Resources Laboratory Publications FY 2000

    E-Print Network [OSTI]

    .F. Gross, K.K. Fuell, G. Szilagyi, and S. Maxwell. Atmospheric and oceanographic analyses and forecasts

  5. Air Resources Laboratory Publications FY 1994

    E-Print Network [OSTI]

    of Atmospheric Transport of Persistent Organic Pollutants and Heavy Metals, Durham, North Carolina, May 1993. J. CO2 exchange and water use efficiency. Agricultural and Forest Meteorology 67:291-321 (1994 Report DPG Document No. DPG/JCP-94/012, B. Grim, Project Manager, U.S. Army Dugway Proving Ground, Dugway

  6. Air Resources Laboratory Publications FY 2002

    E-Print Network [OSTI]

    . Lindberg. Contributions to Arctic Pollution 2002: Persistent Organic Pollutants, Heavy Metals.Y. Ku, and R. Clark. Boundary layer evolution and its effects on ground-level ozone concentrations to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy

  7. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28 2013 NextCalifon, NewAir

  8. Sandia National Laboratories: Employee & Retiree Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life atCareersAgreementEmployee

  9. Air Resources: Prevention and Control of Air Contamination and...

    Broader source: Energy.gov (indexed) [DOE]

    limits and permitting and operational requirements for facilities that may contribute to air emissions. General air quality standards and standards for specific contaminants are...

  10. Laboratories for the 21st Century Agency Resources

    Broader source: Energy.gov [DOE]

    Many helpful resources are available to Federal agencies about Laboratories for the 21st Century (Labs21).

  11. Optimal Airflow Control for Laboratory Air Handling Unit (LAHU) Systems

    E-Print Network [OSTI]

    Cui, Y.; Liu, M.; Conger, K.

    2002-01-01T23:59:59.000Z

    An optimal airflow control method and procedure have been developed for laboratory air handing unit (LAHU) systems using linear optimization theories. The optimal airflow control minimizes the thermal energy consumption and the cost, and improves...

  12. Sandia National Laboratories: tidal energy resource assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resource assessment Tidal Energy Resource Assessment in the East River Tidal Strait, New York On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Water...

  13. Sandia National Laboratories: Wave Energy Resource Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eECEnergyComputational Modeling & SimulationWave Energy Resource Characterization at US Test Sites Wave Energy Resource Characterization at US Test Sites Sandia Report Presents...

  14. ORE 601 Ocean and Resources Engineering Laboratory Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 601 Ocean and Resources Engineering Laboratory Designation Core course Catalog Description This course aims to provide ocean and resources engineering students with the fundamentals necessary Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 3: Ocean engineering core

  15. Ecological Resources and Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute's Urban Center for Computation and Data at the University of Chicago. Photo by Mark LopezArgonne National Laboratory. (Click to enlarge.) New sensor array...

  16. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORS

  17. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORS &8/2011,

  18. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  19. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  20. SB EE Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long-term financial savings from energy efficiency improvements. These resources include case studies, energy savings and investment calculators, technical guides and information...

  1. Resources for Small Businesses | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources for Small Businesses System for Award Management: Enables small business owners to register to do business with the federal government and self-certify as a small...

  2. Sandia National Laboratories: Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Solar Resource Assessment Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment...

  3. Los Alamos National Laboratory compliance with cultural resource management legislation

    SciTech Connect (OSTI)

    Olinger, C.E.; Rea, K.H.

    1984-01-01T23:59:59.000Z

    Cultural resources management is one aspect of NEPA-induced legislation increasingly affecting federal land managers. A number of regulations, some of them recent, outline management criteria for protecting cultural resources on federal land. Nearly all construction projects at the 11,135 hectare Los Alamos National Laboratory in northern New Mexico are affected by cultural resource management requirements. A substantial prehistoric Puebloan population occupied the Laboratory area from the 13th to the early 16th centuries. Grazing, timbering, and homesteading followed Indian occupation. Therefore, archaeological and historical ruins and artifacts are abundant. The Laboratory has developed a cultural resources management program which meets both legal and project planning requirements. The program operates in coordination with the New Mexico State Historical Preservation Office. Major elements of the Laboratory program are illustrated by a current project involving relocation of a homesteader's cabin located on land required for a major new facility. The Laboratory cultural resource management program couples routine oversight of all engineering design projects with onsite resource surveys and necessary mitigation prior to construction. The Laboratory has successfully protected major archaeological and historical ruins, although some problems remain. The cultural resource program is intended to be adjustable to new needs. A cultural resource management plan will provide long-term management guidance.

  4. DOE / Contractor Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE / Contractor Resources

  5. Curriculum Laboratory First Nations Teaching Resources

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    in a designated Program of Study B. Infusion of FNMI content across the regular curriculum A. SPECIFIC FNMI approved resources that support Aboriginal Language and Cultures instruction. B. INFUSION OF FNMI CONTENT: "Aboriginal content can be infused into the regular Kindergarten to Grade 12 programs of study. Infusion

  6. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Braun

    2009-10-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  7. Sandia National Laboratories: Intern Housing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops: Go

  8. Patrick Air Force Base integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sandusky, W.F.; Parker, S.A.; King, D.A.; Wahlstrom, R.R.; Elliott, D.B.; Shankle, S.A.

    1993-12-01T23:59:59.000Z

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL) in support of the US Department of Energy Federal Energy Management Program to identify, evaluate, and assist in acquiring all cost effective energy projects at Patrick Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Patrick AFB which is located south of Cocoa Beach, Florida. It is a companion report to Volume 1, Executive Summary, and Volume.2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance, and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost analysis indicating the net present value and value index of each ERO.

  9. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01T23:59:59.000Z

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  10. K-12 Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials CenterTechnologies |Technologies |Jupiter

  11. Midwest Forensics Resource Center | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in the PresenceEnergyMolecularMidwest

  12. Human Resources - Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010a

  13. ORISE Resources: Cytogenetic Biodosimetry Laboratory Brochure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S. OR I GI N A L SHowBrochure

  14. ORISE Resources: Cytogenetic Biodosimetry Laboratory Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S. OR I GI N A L

  15. MIT- Earth Resources Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL Jump to:MIT

  16. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    SciTech Connect (OSTI)

    INL Cultural Resource Management Office

    2010-10-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  17. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01T23:59:59.000Z

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  18. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  19. Air Quality Impact Study for UMore Park Sand and Gravel Resources

    E-Print Network [OSTI]

    Netoff, Theoden

    Air Quality Impact Study for UMore Park Sand and Gravel Resources University of Minnesota Rosemount Elliott Hendrickson Inc. Air Quality Impact Study for UMore Park Sand and Gravel Resources UOFMN 103496 ...........................................................................3 2.8 Air Emissions

  20. California Air Resources Board's "California Green Building Strategy"

    E-Print Network [OSTI]

    California Air Resources Board's "California Green Building Strategy" Collectively, energy use. Significant GHG emission reductions can be achieved through the design and construction of new green buildings $56 billion in electricity and natural gas costs. Green buildings provide a cost-effective strategy

  1. Project Sponsors: California Air Resources Board ADVANCED POWER & ENERGY

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Emissions Flow chart of STREET modeling methodology Impacts of Plug-In Hybrid Vehicles and Grid GenerationProject Sponsors: California Air Resources Board Toyota ADVANCED POWER & ENERGY PROGRAM www renewable wind energy penetrations and PHEV penetrations. The outcome of each scenario consists of spatially

  2. Cape Canaveral Air Force Station integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sandusky, W.F.; Eichman, C.J.; King, D.A.; McMordie, K.L.; Parker, S.A.; Shankle, S.A.; Wahlstrom, R.R.

    1994-03-01T23:59:59.000Z

    The U.S. Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL) in support of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Cape Canaveral Air Force Station (AFS). Projects considered can be either in the form of energy management or energy conservation. The overall efforts of this task are based on a model program PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Cape Canaveral AFS, which is located approximately 10 miles north of Cocoa Beach, Florida. It is a companion report to Volume 1: Executive Summary and Volume 2: Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance (O&M), and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. Descriptions of the evaluation methodologies and technical and cost assumptions are also provided for each ERO. Summary tables present the cost- effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis, indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

  3. Argonne Laboratory Computing Resource Center - FY2004 Report.

    SciTech Connect (OSTI)

    Bair, R.

    2005-04-14T23:59:59.000Z

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  4. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  5. Bel Aire, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPowerSunpuBeijing,Air,Aire,

  6. Argonne's Laboratory Computing Resource Center 2009 annual report.

    SciTech Connect (OSTI)

    Bair, R. B. (CLS-CI)

    2011-05-13T23:59:59.000Z

    Now in its seventh year of operation, the Laboratory Computing Resource Center (LCRC) continues to be an integral component of science and engineering research at Argonne, supporting a diverse portfolio of projects for the U.S. Department of Energy and other sponsors. The LCRC's ongoing mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting high-performance computing application use and development. This report describes scientific activities carried out with LCRC resources in 2009 and the broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. The LCRC Allocations Committee makes decisions on individual project allocations for Jazz. Committee members are appointed by the Associate Laboratory Directors and span a range of computational disciplines. The 350-node LCRC cluster, Jazz, began production service in April 2003 and has been a research work horse ever since. Hosting a wealth of software tools and applications and achieving high availability year after year, researchers can count on Jazz to achieve project milestones and enable breakthroughs. Over the years, many projects have achieved results that would have been unobtainable without such a computing resource. In fiscal year 2009, there were 49 active projects representing a wide cross-section of Laboratory research and almost all research divisions.

  7. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    SciTech Connect (OSTI)

    Julie B. Williams; Brenda Pace

    2013-10-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  8. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    SciTech Connect (OSTI)

    Brenda R. Pace

    2009-01-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  9. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    GREEN,T.ET AL.

    2003-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  10. Hanford Cultural Resources Laboratory annual report for fiscal year 1993

    SciTech Connect (OSTI)

    Last, G.V.; Wright, M.K.; Crist, M.E.; Cadoret, N.A.; Dawson, M.V.; Simmons, K.A.; Harvey, D.W.; Longenecker, J.G.

    1994-09-01T23:59:59.000Z

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Operations Office (DOE-RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Agency of 1979, the Native American Grave Protection and Repatriation Act of 1990, and the American Indian Religious Freedom Act of 1978. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the DOE-RL in compliance with federal statutes, regulations, and guidelines. For FY 1993, these tasks were to: conduct cultural resource reviews pursuant to Section 106 of the NHPA; monitor the condition of known historic properties; identify, recover, and inventory artifacts collected from the Hanford Site; educate the public about cultural resources values and the laws written to protect them; conduct surveys of the Hanford Site in accordance with Section 110 of the NHPA. Research also was conducted as a spin-off of these tasks and is reported here.

  11. Hanford Cultural Resources Laboratory annual report for fiscal year 1992

    SciTech Connect (OSTI)

    Chatters, J.C.; Gard, H.A.; Wright, M.K.; Crist, M.E.; Longenecker, J.G.; O`Neil, T.K.; Dawson, M.V.

    1993-06-01T23:59:59.000Z

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Field Office (RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site located in southcentral Washington, in a manner consistent with the National Historic Preservation Act Amended 1992 (NBPA), the Archaeological Resources Protection Act of 1979 (ARPA), the Native American Grave Protection and Repatriation Act of 1990 (NAGPRA), and the American Indian Religious Freedom Act of 1978 (AIRFA). The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the RL in compliance with federal statutes, regulations, and guidelines. For FY 1992, these tasks were to (1) ensure compliance with NBPA Section 106, (2) monitor the condition of known archaeological sites, (3) evaluate cultural resources for potential nomination to the National Register of Historic Places, (4) educate the public about cultural resources, and (5) conduct a sample archaeological survey of Hanford lands. Research was also conducted as a spin-off of these tasks and is also reported here.

  12. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    SciTech Connect (OSTI)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01T23:59:59.000Z

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  13. Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices

    E-Print Network [OSTI]

    Subbarao, Samuel P.

    We present an approach, which is compatible with both glass and polymer substrates, to in-laboratory handling and intra-laboratory shipping of air-sensitive organic semiconductors. Encapsulation approaches are presented ...

  14. A New Resource for College Distance Education Astronomy Laboratory Exercises

    E-Print Network [OSTI]

    Vogt, Nicole P; Muise, Amy Smith

    2015-01-01T23:59:59.000Z

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discuss first usage results. This General Astronomy Education Source (GEAS) exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general astronomy material. Projects are divided between hands-on activities and computer-aided analyses of modern astronomical data. The suite of online resources includes student and instructor guides, laboratory report templates, learning objectives, video tutorials, plotting tools, and web-based applications that allow students to analyze both images and spectra of astronomical objects. A pilot usage study indicates that distance learners using these materials perform as well or better than a comparison cohort of on-campus students. We are actively seeking collaborators to use these resources in astronomy courses and other educational venues.

  15. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    SciTech Connect (OSTI)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  16. Pacific Northwest National Laboratory Site Radionuclide Air Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Radionuclide Air Emissions Report for Calendar Year 2012 Re-direct Destination: This report documents radionuclide air emissions that result in the highest effective dose...

  17. Hanford Cultural Resources Laboratory annual report for fiscal year 1994

    SciTech Connect (OSTI)

    Nickens, P.R.; Wright, M.K.; Cadoret, N.A.; Dawson, M.V.; Harvey, D.W.; Simpson, E.M.

    1995-09-01T23:59:59.000Z

    The Hanford Site occupies 560 sq. miles of land along the Columbia River in SE Washington. The Hanford Reach of the river is one of the most archaeologically rich areas in the western Columbia Plateau. To manage the Hanford Site`s archaeological, historical, and cultural resources, the Hanford Cultural Resources Laboratory (HCRL) was established in 1987. HCRL ensures DOE complies with federal statutes, regulations, and guidelines. In FY 1994, HCRL conducted cultural resource reviews, conducted programs to identify and monitor historic and archaeological sites, etc. HCRL staff conducted 511 reviews, 29 of which required archaeological surveys and 10 of which required building documentation. Six prehistoric sites, 23 historic sites, one paleontological site, and two sites with historic and prehistoric components were discovered.

  18. Hanford Cultural Resources Laboratory annual report for fiscal year 1989

    SciTech Connect (OSTI)

    Chatters, J.C.; Cadoret, N.A.; Minthorn, P.E.

    1990-06-01T23:59:59.000Z

    This report summarizes activities of the Hanford Cultural Resources Laboratory (HCRL) during fiscal year 1989. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966, the Archaeological Resources Protection Act of 1979, and the American Indian Religious Freedom Act of 1978. A major task in FY 1989 was completion and publication of the Hanford Cultural Resources Management Plan, which prioritizes tasks to be undertaken to bring the US Department of Energy -- Richland Operations into compliance with federal statutes, relations, and guidelines. During FY 1989, six tasks were performed. In order of priority, these were conducting 107 cultural resource reviews, monitoring the condition of 40 known prehistoric archaeological sites, assessing the condition of artifact collections from the Hanford Site, evaluating three sites and nominating two of those to the National Register of Historic Places, developing an education program and presenting 11 lectures to public organizations, and surveying approximately 1 mi{sup 2} of the Hanford Site for cultural resources. 7 refs., 4 figs., 4 tabs.

  19. Del Aire, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDel Aire, California: Energy

  20. Air Quality/Emissions Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2 (AprilSevere drought inAir

  1. Bel Air, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPowerSunpuBeijing,Air,

  2. Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report

    SciTech Connect (OSTI)

    Cole, G.H.

    1998-04-01T23:59:59.000Z

    This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

  3. Natural Resource Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    green, T.

    2011-08-15T23:59:59.000Z

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

  4. Sandia National Laboratories: Employee & Retiree Resources: Corporate Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life

  5. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncements & Alerts

  6. Sandia National Laboratories: Employee & Retiree Resources: Remote Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncements &

  7. Sandia National Laboratories: Employee & Retiree Resources: Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncements &Library

  8. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DAVIS, M.

    2005-04-01T23:59:59.000Z

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  9. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  10. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  11. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  12. Sandia National Laboratories: National Air Space radar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space radar system Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  13. Vandenberg Air Force Base integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Halverson, M.A.; Richman, E.E.; Dagle, J.E.; Hickman, B.J.; Daellenbach, K.K.; Sullivan, G.P.

    1993-06-01T23:59:59.000Z

    The US Air Force Space Command has tasked the Pacific Northwest Laboratory, as the lead laboratory supporting the US Department of Energy Federal Energy Management Program, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is a model program PNL is designing for federal customers served by the Pacific Gas and Electric Company (PG and E). The primary goal of the VAFB project is to identify all electric energy efficiency opportunities, and to negotiate with PG and E to acquire those resources through a customized demand-side management program for its federal clients. That customized program should have three major characteristics: (1) 100% up-front financing; (2) substantial utility cost-sharing; and (3) utility implementation through energy service companies under contract to the utility. A similar arrangement will be pursued with Southern California Gas for non-electric resource opportunities if that is deemed desirable by the site and if the gas utility seems open to such an approach. This report documents the assessment of baseline energy use at VAFB located near Lompoc, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Resource Assessment. This analysis examines the characteristics of electric, natural gas, fuel oil, and propane use for fiscal year 1991. It records energy-use intensities for the facilities at VAFB by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A more complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, and applicable losses.

  14. Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York)

    Broader source: Energy.gov [DOE]

    These regulations establish emissions limits and permitting and operational requirements for facilities that may contribute to air emissions. General air quality standards and standards for...

  15. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  16. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  17. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01T23:59:59.000Z

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  18. Sandia National Laboratories, California Air Quality Program annual report.

    SciTech Connect (OSTI)

    Gardizi, Leslee P.; Smith, Richard (ERM, Walnut Creek, CA)

    2009-06-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/CA Air Quality Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Air Quality Program, one of six programs that supports environmental management at SNL/CA.

  19. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  20. Robins Air Force Base Integrated Resource Assessment. Volume 2, Baseline Detail

    SciTech Connect (OSTI)

    Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

    1993-08-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Robins Air Force Base (AFB), a US Air Force Materiel Command facility located near Macon, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins AFB. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Robins AFB. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year 1991. The results include energy-use intensities for the facilities at Robins AFB by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

  1. Cape Canaveral Air Force Station integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Wahlstrom, R.R.; McMordie, K.L.; Parker, S.A.; King, D.A.; Sandusky, W.F.

    1993-12-01T23:59:59.000Z

    The US Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL), in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to assess energy use at Cape Canaveral Air Force Station (AFS). The information obtained from this assessment will be used in identifying energy resource opportunities to reduce overall energy consumption by the station. The primary focus of this report is to assess the current baseline energy consumption at Cape Canaveral AFS. It is A companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This assessment requires that information be obtained and characterized for buildings, utilities, energy sources, energy uses, and load profiles to be used to improve the current energy system on the station. The characteristics of electricity, diesel fuel, No. 2 fuel oil, and motor vehicle gasoline (MOGAS) are analyzed for on-base facilities. The assessment examines basic regional information used to determine energy-use intensity (EUI) values for Cape Canaveral AFS facilities by building, fuel type, and energy end use. It also provides a summary of electricity consumption from Florida Power and Light Company (FPL) metered data for 1985--1991. Load profile information obtained from FPL data is presented for the North, South, and Titan Substations for the four seasons of the year, including weekdays and weekends.

  2. air resources branch: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    334 Continuous measurements of atmospheric argonnitrogen as a tracer of air-sea heat flux : models, methods, and data University of California eScholarship Repository...

  3. Sandia National Laboratories: Water, Energy, and Natural Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, and Natural Resource Systems Water, Energy, and Natural Resource Systems irrigationsiphontubes-usdasm Agricultural water use competes with urban-area...

  4. Air/water oxydesulfurization of coal: laboratory investigation

    SciTech Connect (OSTI)

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01T23:59:59.000Z

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  5. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01T23:59:59.000Z

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  6. Laboratory Performance Testing of Residential Window Mounted Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED

  7. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMaria Goeppert-Mayer, theEnergyYear

  8. The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand Water |1

  9. air resource management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN INSULAR RESOURCE DEVELOPMENT AND MANAGEMENT Biology and Medicine Websites Summary: of Technology Assessment of the U. S. Congress as part of a broader study of renewable...

  10. Sandia National Laboratories: Solar Energy Forecasting and Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  11. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Coffey, D. E.

    2002-02-28T23:59:59.000Z

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications. Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.

  12. Designing the Future Energy System for Cleaner Air: A National Laboratory Perspective

    E-Print Network [OSTI]

    Cale, J.

    2014-01-01T23:59:59.000Z

    Laboratories. Secretary of Energy, Dr. Ernest Moniz http://en.wikipedia.org/wiki/United_States_Department_of_Energy The Obama Cabinet (as of July 26, 2012) ESL-KT-14-11-23 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 3National...

  13. A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas

    E-Print Network [OSTI]

    Jaehne, Bernd

    . Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

  14. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  15. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  16. Precipitation suppression by anthropogenic air pollution: major loss of water resources where we need them most

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Precipitation suppression by anthropogenic air pollution: major loss of water resources where we inferences of air pollution suppressing precipitation lead us to investigate historical climate records precipitation, decreases with time in the polluted regions and remains unchanged where no pollution sources were

  17. Resources Referenced 4/18/2012 Laboratory Safety Colloquium

    E-Print Network [OSTI]

    Farritor, Shane

    fire. The issue at UCLA was a lack of job-specific training, not general lab safety training. Grasgreen Claims Act seeking to recover for injuries he sustained in a laboratory explosion. This lays out what grad student injured when a beaker full of mercury perchlorate hydrate caused an explosion. Martino

  18. The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers

    E-Print Network [OSTI]

    K. Louedec; J. Alvarez-Muiz; M. Blanco; M. Bohcov; B. Buonomo; G. Cataldi; M. R. Coluccia; P. Creti; I. De Mitri; C. Di Giulio; P. Facal San Luis; L. Foggetta; R. Gaor; D. Garcia-Fernandez; M. Iarlori; S. Le Coz; A. Letessier-Selvon; I. C. Mari?; D. Martello; G. Mazzitelli; M. Monasor; L. Perrone; R. Pesce; S. Petrera; P. Privitera; V. Rizi; G. Rodriguez Fernandez; F. Salamida; G. Salina; M. Settimo; P. Valente; J. R. Vazquez; V. Verzi; C. Williams

    2013-10-17T23:59:59.000Z

    The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.

  19. Buenos Aires, Argentina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy ResourcesIowa:Buenos

  20. Resources | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic PublicAdministration5,propaneRegDialogueResources Home

  1. Development of a Clean Air Act Title V permit application for Argonne National Laboratory

    SciTech Connect (OSTI)

    Barrett, G.L.

    1994-06-01T23:59:59.000Z

    The Clean Air Act Amendments (CAAA) of 1990 instituted major changes in the way that air emission sources are regulated and permitted. Along with being a major research and development laboratory owned by the US Department of Energy, Argonne National Laboratory (ANL) is also classified as a major source of oxides of nitrogen (NO{sub x}) in the Chicago metropolitan area which has been designated by the US Environmental Protection Agency (USEPA) as severe (17) for ozone. As a major source ANL is therefore required under Title V of CAAA to apply for a federally enforceable permit for all sources of air emissions at the facility. While the ANL Boiler House represents the most significant emission source at the Laboratory, there are, nevertheless, a large number of other emission sources, some of which are currently permitted by the State of Illinois and others of which are exempt from state permitting requirements. A large number of R & D related sources are of relatively small magnitude. The ability to identify, inventory, characterize and classify all sources under the various titles of CAAA constitutes a major challenge for R & D laboratories of this size.

  2. NOAA/Air Resources Laboratory ATLAS No. 1 Air Stagnation Climatology for the United States

    E-Print Network [OSTI]

    pollution problem has become more and more serious, and has attracted national and international attention be trapped by poor ventilation due to persistent light or calmwinds, and by the presence of inversions. When

  3. U.S. Air Force (USAF) Air Force Research Laboratory (AFRL)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. BERKELEY: NEGAWATT THE SERRANO- Pakistan

  4. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Ballinger, Marcel Y.

    2014-05-01T23:59:59.000Z

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation ProtectionAir Emissions. The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  5. Air Force Academy, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek,Wisconsin: Energy

  6. Future Perfect Partnering with California Air Resources Board (CARB) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulong WindFusermann

  7. The Integrated Environmental Strategies Handbook: A Resource Guide for Air

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:Uncertainty of GHGComparison

  8. Bel Air North, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPowerSunpuBeijing, China:Bel

  9. Bel Air South, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPowerSunpuBeijing,

  10. Sandia National Laboratory Photovoltaic Design Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon,

  11. Sandia National Laboratories: News: Media Resources: Media Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomelandImage GalleryMedia

  12. Sandia National Laboratory Photovoltaic Design Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSanMiguel,

  13. Human Resources at Ames Laboratory | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOE OriginsManagement

  14. Human Resources at Idaho National Laboratory | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOE

  15. Human Resources at Lawrence Livermore National Laboratory | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOEMaterials Institute

  16. Human Resources at Oak Ridge National Laboratory | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOEMaterials

  17. Introduction 1 Los Alamos National Laboratory A Resource Guide for New Mexico Businesses

    E-Print Network [OSTI]

    A Resource Guide for New Mexico Businesses Interested in Government Contracting or Utilizing Various State of New Mexico City of Albuquerque University of New Mexico D. Additional Assistance for Small throughout the state of New Mexico. Through this dedication, the Laboratory has provided the resources needed

  18. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    SciTech Connect (OSTI)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01T23:59:59.000Z

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  19. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    SciTech Connect (OSTI)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  20. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect (OSTI)

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27T23:59:59.000Z

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratorys Sequim Marine Research Operations (Sequim Site) on Washington States Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  1. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Eberhart, Craig

    2010-08-01T23:59:59.000Z

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  2. Characterization of air toxics from a laboratory coal-fired combustor

    SciTech Connect (OSTI)

    NONE

    1995-04-03T23:59:59.000Z

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  3. International Council for Laboratory Animal Science: International activities. Institute of Laboratory Animal Resources annual report, 1993--1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    In late 1987, the Interagency Research Animal Committee (IRAC) requested that the Institute of Laboratory Animal Resources (ILAR), National Research Council (NRC), National Academy of Sciences, reestablish US national membership in the International Council for Laboratory Animal Science (ICLAS). The ICLAS is the only worldwide organization whose goal is to foster the humane use of animals in medical research and testing. ILAR`s Mission Statement reflects its commitment to producing highly respected documents covering a wide range of scientific issues, including databases in genetic stocks, species specific management guides, guidelines for humane care of animals, and position papers on issues affecting the future of the biological sciences. As such, ILAR is recognized nationally and internationally as an independent, scientific authority in the development of animal sciences in biomedical research.

  4. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01T23:59:59.000Z

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this wellthe most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  5. Faculty Position: Air Resources Engineering and Sciences The Department of Civil and Environmental Engineering (CEE) at the University of Washington

    E-Print Network [OSTI]

    Faculty Position: Air Resources Engineering and Sciences The Department of Civil and Environmental and environmental engineering and science disciplines. Candidates at the rank of Assistant Professor are strongly position in the broad area of Air Resources Engineering and Sciences. Particular research areas could

  6. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01T23:59:59.000Z

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this wellthe most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  7. air medical meteorology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters during 96 h transport to SPC Boyer, Edmond 105 NOAA Air Resources Laboratory Quarterly Activity Report Geosciences Websites Summary: and Hawaii Meteorological...

  8. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01T23:59:59.000Z

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  9. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

    1997-05-01T23:59:59.000Z

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

  10. Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report

    SciTech Connect (OSTI)

    Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson; Brenda R. Pace; Julie Braun Williams

    2011-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.

  11. Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report

    SciTech Connect (OSTI)

    Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert; Christina L. Olson

    2012-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history. This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.

  12. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    SciTech Connect (OSTI)

    Brenda R. Pace

    2007-10-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodales Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location.

  13. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  14. Cultural Resource Investigations for a Multipurpose Haul Road on the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Cameron Brizzee; Hollie Gilbert; Clayton Marler; Julie Braun Williams

    2010-08-01T23:59:59.000Z

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a multipurpose haul road to transport materials and wastes between the Materials and Fuels Complex (MFC) and other Idaho National Laboratory (INL) Site facilities. The proposed road will be closed to the public and designed for limited year-round use. Two primary options are under consideration: a new route south of the existing T-25 power line road and an upgrade to road T-24. In the Spring of 2010, archaeological field surveys and initial coordination and field reconnaissance with representatives from the Shoshone-Bannock Tribes were completed to identify any resources that may be adversely affected by the proposed road construction and to develop recommendations to protect any listed or eligible for listing on the National Register of Historic Places. The investigations showed that 24 archaeological resources and one historic marker are located in the area of potential effects for road construction and operation south of the T-25 powerline road and 27archaeological resources are located in the area of potential effects for road construction and operation along road T-24. Generalized tribal concerns regarding protection of natural resources were also documented in both road corridors. This report outlines recommendations for additional investigations and protective measures that can be implemented to minimize adverse impacts to the identified resources.

  15. Lagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson

    E-Print Network [OSTI]

    Businger, Steven

    Lagrangian air-mass tracking with smart balloons during ACE-2 Randy Johnson National Oceanic and Atmospheric Administration, Air Resources Laboratory, Field Research Division, Idaho Falls, Idaho 83402 Steven Balloon designed at National Oceanic and Atmospheric Administration, Air Resources Laboratory Field

  16. Laboratory Test Report for ThermaStor Ultra-Aire XT150H Dehumidifier

    SciTech Connect (OSTI)

    Christensen, D.; Winkler, J.

    2009-12-01T23:59:59.000Z

    This report documents the performance of the ThermaStor Ultra-Aire XT150H Dehumidifier. Its performance was measured across a wide range of inlet air conditions and fit to a numerical model.

  17. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  18. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect (OSTI)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01T23:59:59.000Z

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  19. Air Chemistry in the Gulf of Mexico Oil Spill Area NOAA WP-3D Airborne Chemical Laboratory Flights of 8 and 10 June 2010

    E-Print Network [OSTI]

    Air Chemistry in the Gulf of Mexico Oil Spill Area NOAA WP-3D Airborne Chemical Laboratory Flights of Mexico near the spill site. At the time it was called on for this mission, the NOAA WP-3D aircraft and extensive survey of atmospheric loadings of hydrocarbon and other organic species air pollution in the Gulf

  20. A laboratory for instruction and research in air conditioning and refrigeration

    E-Print Network [OSTI]

    Hall, Ray Allison

    1950-01-01T23:59:59.000Z

    complicated due to the combination of many simple units into elaborate assemblies. The functional relation- ship of condmnsers, compressors, cooling towersp evaporators, air distri- bution systems~ controls, snd other parts of an installation are often...

  1. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-04-01T23:59:59.000Z

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  2. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  3. AIRNET Data from Los Alamos National Laboratory: Air Concentration Data by Site and Isotope/Element

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ambient monitoring is the systematic, long-term assessment of pollutant levels by measuring the quantity and types of certain pollutants in the surrounding, outdoor air. The purpose of AIRNET, LANL's ambient air monitoring network, is to monitor locations where people live or work. The community of Los Alamos is downwind from LANL, so there are many monitoring stations in and around the town. AIRNET stations monitor 24 hours a day, 365 days of the year. Particulates are collected on a filter and analyzed every two weeks for identification of analytes and assessment of the potential impact on the public. Emissions measurement is the process of monitoring materials vented from buildings. Air samples are taken from building exhaust units, called stacks, and are then analyzed for particulate matter, tritium, and radioactive gases and vapors. A computer model uses the emission data to determine the dispersion. Stack monitoring is also used to measure emissions that cannot be measured by AIRNET stations.

  4. Dirty Air Conditioners: Energy Implications of Coil Fouling Jeffrey Siegel, Lawrence Berkeley National Laboratory/ UC Berkeley

    E-Print Network [OSTI]

    Siegel, Jeffrey

    . For typical residential heat pump and air conditioning Residential Buildings: Technologies, Design heat pump condenser coil will foul sufficiently to cause a 20 % reduction in performance over a 4 to 7 is based on a model of heat exchanger fouling that we developed specifically for residential heat

  5. Dirty Air Conditioners: Energy Implications of Coil Fouling Jeffrey Siegel, Lawrence Berkeley National Laboratory/ UC Berkeley

    E-Print Network [OSTI]

    . For typical residential heat pump and air conditioning #12;systems, they predict a 10 ­ 25 % average energy heat pump condenser coil will foul sufficiently to cause a 20 % reduction in performance over a 4 to 7 is based on a model of heat exchanger fouling that we developed specifically for residential heat

  6. Robins Air Force Base integrated resource assessment. Volume 1: Executive summary

    SciTech Connect (OSTI)

    Larson, L.L.; Keller, J.M.

    1994-03-01T23:59:59.000Z

    Some of the most difficult problems that a federal site has in reducing its energy consumption in a cost-effective manner revolve around understanding where the energy is being used, and what technologies could be employed to decrease the energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, he or she may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This can lead to selection of suboptimal projects that prevent the site from achieving the full life-cycle cost savings. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets.

  7. Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air

    SciTech Connect (OSTI)

    Biagi, C J; Uman, M A

    2011-12-13T23:59:59.000Z

    There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

  8. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2011

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2012-06-12T23:59:59.000Z

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The EDE to the PNNL Site MEI due to routine emissions in 2011 from PNNL Site sources was 1.7E 05 mrem (1.7E-7 mSv) EDE. No nonroutine emissions occurred in 2011. The total radiological dose for 2011 to the MEI from all PNNL Site radionuclide emissions was more than 10,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  9. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2014-06-01T23:59:59.000Z

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  10. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2013-06-06T23:59:59.000Z

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  11. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor Attention: Air Filter product manufacturers

    E-Print Network [OSTI]

    in order to size and specify HVAC systems that perform properly with these filters. Our understanding link below) for your California-market filter products to the Energy Commission. Air

  12. Air quality analysis and related risk assessment for the Bonneville Power Administration's Resource Program Environmental Impact Statement

    SciTech Connect (OSTI)

    Glantz, C S; Burk, K W; Driver, C J; Liljegren, J C; Neitzel, D A; Schwartz, M N; Dana, M T; Laws, G L; Mahoney, L A; Rhoads, K

    1992-04-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) is considering 12 different alternatives for acquiring energy resources over the next 20 years. Each of the alternatives utilizes a full range of energy resources (e.g., coal, cogeneration, conservation, and nuclear); however, individual alternatives place greater emphases on different types of power-producing resources and employ different timetables for implementing these resources. The environmental impacts that would result from the implementation of each alternative and the economic valuations of these impacts, will be an important consideration in the alternative selection process. In this report we discuss the methods used to estimate environmental impacts from the resource alternatives. We focus on pollutant emissions rates, ground-level air concentrations of basic criteria pollutants, the acidity of rain, particulate deposition, ozone concentrations, visibility attenuation, global warming, human health effects, agricultural and forest impacts, and wildlife impacts. For this study, pollutant emission rates are computed by processing BPA data on power production and associated pollutant emissions. The assessment of human health effects from ozone indicated little variation between the resource alternatives. Impacts on plants, crops, and wildlife populations from power plant emissions are projected to be minimal for all resource alternatives.

  13. Ventilating characteristics of a recirculating air-curtain laboratory exhaust hood

    E-Print Network [OSTI]

    Janes, Dale Floyd

    1978-01-01T23:59:59.000Z

    on either side of the hood were energized, it was impossible to obtain any semblance of uniformity in the air-curtain velocity across the hood front. The blastgates in the supply ducts on either side of the hood were adjusted within their operating range... in Project "n~ 30 The recording voltage meter was energized at the beginning of a data run, the hour was indicated on the chart and the meter was allowed to continue recording throughout the day. Continuous moni- toring of the voltage was desired...

  14. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  15. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect (OSTI)

    Barnett, J. M.; Rhoads, Kathleen

    2009-06-11T23:59:59.000Z

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  16. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect (OSTI)

    Barnett, J. M.; Rhoads, Kathleen

    2008-09-29T23:59:59.000Z

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  17. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace

    2003-07-01T23:59:59.000Z

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  18. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    SciTech Connect (OSTI)

    Not Available

    1994-12-31T23:59:59.000Z

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  19. ARMIUnmanned Air Vehic/elSarenites J. Vitko, Jr. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&H PolicyVehic/elSarenites J. Vitko,

  20. ARMIUnmanned Air VehicielSatellites W. R. Bolton Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP UpdateRefresh ModelES&H PolicyVehic/elSarenites J.

  1. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab teamLaboratoireBuilders

  2. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab

  3. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLabperformance computer

  4. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATEDurableEGS EROIOffice

  5. Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    Collins, S. S.; Bailey, G. A.; Jackson, T. O.

    2003-02-25T23:59:59.000Z

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

  6. Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Collins, Sue S.; Jackson, Timmie Okchumpulla (Weston Solutions, Inc., Albuquerque, NM); Bailey, Glenn A.

    2003-01-01T23:59:59.000Z

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

  7. Introduction 1 Los Alamos National Laboratory A Resource Guide for New Mexico Businesses

    E-Print Network [OSTI]

    Mexico Businesses Interested in Government Contracting or Utilizing Various Resources Throughout Services Administration Department of the Interior Federal Acquisition Jumpstation State of New Mexico City of Albuquerque University of New Mexico D. Additional Assistance for Small Business

  8. Developing, implementing, and evaluating tuberculosis laboratory information systems for resource-poor settings

    E-Print Network [OSTI]

    Blaya, Joaquin A. (Joaquin Andres), 1978-

    2009-01-01T23:59:59.000Z

    Multi-drug resistant tuberculosis (MDR-TB) patients in resource-poor settings experience large delays in starting appropriate drug regimens and are often not monitored appropriately due to an overburdened health care system, ...

  9. Air Chemistry in the Gulf of Mexico Oil Spill Area NOAA WP-3D Airborne Chemical Laboratory Flights of 8 and 10 June 2010

    E-Print Network [OSTI]

    pollution in the Gulf of Mexico. During May, one of NOAA WP-3D aircraft, equipped with an extensive suite1 Air Chemistry in the Gulf of Mexico Oil Spill Area NOAA WP-3D Airborne Chemical Laboratory within and above the marine boundary layer (MBL) over the Gulf of Mexico on 8 and 10 June 2010

  10. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  11. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Williams

    2013-11-01T23:59:59.000Z

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called transient testing in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic properties is consistent with original missions related to nuclear reactor testing and is expected to result in no adverse effects to their historic significance. Cultural resource investigations also involved communication with representatives from the Shoshone-Bannock Tribes to characterize cultural resources of potential tribal concern. This report provides a summary of the cultural resources inventoried and assessed within the defined areas of potential effect for the resumption of transient testing at the INL. Based on these analyses, proposed activities would have no adverse effects on historic properties within the APEs that have been defined. Other archaeological resources and cultural resources of potential concern to the Shoshone-Bannock Tribes and others that are located near the APEs are also discussed with regard to potential indirect impacts. The report concludes with general recommendations for measures to reduce impacts to all identified resources.

  12. Geospatial Toolkits and Resource Maps for Selected Countries from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NREL developed the Geospatial Toolkit (GsT), a map-based software application that integrates resource data and geographic information systems (GIS) for integrated resource assessment. A variety of agencies within countries, along with global datasets, provided country-specific data. Originally developed in 2005, the Geospatial Toolkit was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. Toolkits are available for 21 countries and each one can be downloaded separately. The source code for the toolkit is also available. [Taken and edited from http://www.nrel.gov/international/geospatial_toolkits.html

  13. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    SciTech Connect (OSTI)

    Michael Pernice

    2010-09-01T23:59:59.000Z

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  14. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  15. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25T23:59:59.000Z

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  16. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-01-01T23:59:59.000Z

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  17. Recent Wind Resource Characterization Activities at the National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaisingRecent Publications

  18. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  19. 6 ORANGE COUNTY BUSINESS JOURNAL Local breaking news: www.ocbj.com JUNE 9, 2014 State Air Resources Board Could Move to OC Campus

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    planning stages for replacing our current motor vehicle labora- tory," said John Swanton, an air pollution-Smit Laboratory is more than 40 years old, and industry and reg- ulatory changes have led to new testing needs space, new construction, or some combination of the two. "We would be the same as a private com- pany

  20. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  1. Laboratories for the 21st Century Agency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |VesselLPODAgency

  2. Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind W

  3. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the InorganicResources Resources Policies,

  4. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource ProgramResources

  5. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  6. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  8. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear SecurityJune

  9. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 Denver West Parkway Golden, CO

  10. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M. Next8,NatureNauruEnergy

  11. Understanding Energy Impacts of Oversized Air Conditioners (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduate ProgramCenter |

  12. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements ArchiveEnergy Materials Center

  13. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  14. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-15T23:59:59.000Z

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  15. So You Have Questions About...Value of Solar Tariffs: Resources & Technical Assistance (Postcard), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are hereValue of Solar Tariffs Resources

  16. Texas Clean Air Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection...

  17. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL ProgressEnergy,

  18. So You Have Questions AboutƒRenewable Portfolio Standards: Resources & Technical Assistance (Postcard), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are hereValue of Solar TariffsRenewable

  19. Air PSE (Problem Solving Environment)

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    PSE - 1 Air PSE (Problem Solving Environment) MODELLING OF AIR POLLUTION IN THE LOS ANGELES BASIN WITH AIR PSE Developed by Prof. Donald Dabdub Computational Environmental Sciences Laboratory Mechanical COMPUTER MODELS An air pollution model is a computer program that computes how the different chemical

  20. 3M Corporation Abbott Laboratories

    E-Print Network [OSTI]

    Napier, Terrence

    . Agilent Technologies, Inc. Air Products Foundation Alaska Airlines Albemarle Corporation Alcoa Foundation Energy Group, Inc. Corning Incorporated Foundation Crayola, LLC Deloitte Foundation Delta Air Lines3M Corporation Abbott Laboratories Adage Capital Management, LP Adams Electric Cooperative, Inc

  1. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  2. ambient air samples: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient air. A small amount of these nuclei mode particles contain solid ash from lube oil) South Coast Air Quality Management District California Air Resources Board Cummins...

  3. Local air pollutants threaten Lake Tahoes clarity

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    AS (eds. ). Effects of Air Pollution on Western Forests.Air Waste Management Assoc, Transactions Ser No 16, p 279-and support. (California Air Resources Board) for their

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  5. Classroom Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Super Computers to Visualize Big Data Past 'Ask Me Anything' Online Chats Battery Science - Jeff Chamberlain Jeff Chamberlain Storify recap Modeling of Nuclear...

  6. inAir: Sharing Indoor Air Quality Measurements and Visualizations

    E-Print Network [OSTI]

    Mankoff, Jennifer

    evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

  7. Clearing the Air: "AIR" Training Session Wednesday, December 18

    E-Print Network [OSTI]

    Reed, Christopher A.

    Clearing the Air: "AIR" Training Session Wednesday, December 18 12 p.m. ­ 1:00 p.m. Human Resources/Tobacco- Free! Join us for an interactive session and learn more about "AIR" (Approach, Inform, Refer, and safe campus environment. Visit Clearing the Air website (http://tobaccofree.ucr.edu/) for more

  8. PIA - Human Resources - Personal Information Change Request ...

    Office of Environmental Management (EM)

    PIA - Human Resources - Personal Information Change Request - Idaho National Engineering Laboratory PIA - Human Resources - Personal Information Change Request - Idaho National...

  9. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    air conditioners Need to understand system trade-offs driven by air source local thermal environment which are influenced by inverter location National Renewable Energy Laboratory...

  10. LANSCE | Lujan Center | Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Resources The links below describe equipment, laboratories, capabilities, and sample environments that are available to users. Users must plan ahead and specify their needs...

  11. U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps

    E-Print Network [OSTI]

    Su, Xiao

    U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps Mission Develop Quality Leaders for the Air Force. Personnel and Resources Air Force Reserve Officer Training Corps (ROTC) includes four,796 new Second Lieutenants who entered active duty in the United States Air Force. Organization Air Force

  12. Central Air Conditioning | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPASTCentral Air Conditioning

  13. Model-based benchmarking with application to laboratory buildings

    E-Print Network [OSTI]

    Federspiel, Clifford Ph.D.; Zhang, Qiang; Arens, Edward Ph.D

    2002-01-01T23:59:59.000Z

    hydraulic elevators more than buildings with counterweighted elevators. Efficient air distribution VAV laboratories will use considerably less energy

  14. Air UCI Summer Training Program in Environmental

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Air UCI Summer Training Program in Environmental Chemistry for Science Teachers I. July 11 ­ July · Lectures by AirUCI faculty · Lab tours of AirUCI laboratories · Follow-up for several years Distribution Models and predictions. Syllabus: Lectures Every AirUCI faculty member is actively involved

  15. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  16. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  18. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air Force Research Laboratory in Albuquerque...

  19. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  20. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  1. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  2. Griffiss AFB integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  3. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Swainson, M. (2009). Indoor air quality in highly energyClayton, R. (2001). Indoor air quality: Residential cookingSacramento, CA: California Air Resources Board. Fugler, D. ,

  4. Energy efficient laboratory fume hood

    DOE Patents [OSTI]

    Feustel, Helmut E. (Albany, CA)

    2000-01-01T23:59:59.000Z

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  5. Air Pollution Control Program (South Dakota) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Provider South Dakota Department of Environment and Natural Resources South Dakota's Air Pollution Control Program is intended to maintain air quality standards through...

  6. Global climate change will affect air, water in California

    E-Print Network [OSTI]

    Weare, Bryan C.

    2002-01-01T23:59:59.000Z

    Department of Land, Air and Water Resources, UC Davis. Hechange will affect air, water in California Bryan C. Wearelikely to include reduced water availability and quality,

  7. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  8. Resource guide for electrokinetics laboratory and field processes applicable to radioactive and hazardous mixed wastes in soil and groundwater from 1992-1997

    SciTech Connect (OSTI)

    NONE

    1997-09-30T23:59:59.000Z

    This document attempted to list and describe all published work on electrokinetic remediation 1992 to 1997. This work includes electrokinetic remediation being used commercially or on a bench, pilot, field, or conceptual scale. There are three categories in this resource guide. The category, Category A, lists all electrokinetic processes that are used as the remediation tool at a contaminated site. Category B lists all electrokinetic processes that are being used on the bench, pilot, or field scale. Finally, Category C lists all electrokinetic process that are in the conceptual development stage. Electrokinetic remediation being used abroad was also included in this resource guide. Information about each electrokinetic system includes the developers` name and address, technical description, status, cost, and illustration (if available).

  9. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  10. Computer resources Computer resources

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

  11. NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear 1 NATIONALexaminesDynamic portal

  12. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNewNewEnergyAs a

  13. Environmental Assessment and Corrective Measures Study Report for Remediating Contamination at Lawrence Berkeley National Laboratory Regulated under the Resource Conservation and Recovery Act

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -RailroadEnvironmentalAssessment

  14. So You Have Questions AboutƒInterconnection & Net Metering: Resources & Technical Assistance (Postcard), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are hereValue of Solar Tariffs

  15. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13T23:59:59.000Z

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  16. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

  17. air puffs produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Databases and Resources Websites Summary: puff diffusion model. INIS descriptors: AIR POLLUTION; CLUSTER EMMISSION MODEL; DIFFUSION; GAUSSIAN PROCESSES; NUMERICAL SOLUTION;...

  18. Air Emissions Reduction Assistance Program (Iowa) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Iowa Department of Natural Resources The State of Iowa may provide financial assistance in the form of loans andor grants to projects aimed at reducing air emissions...

  19. Missouri Air Conservation Law (Missouri)

    Broader source: Energy.gov [DOE]

    This law's purpose is to maintain the purity of the air resources of the state to protect the health, general welfare and physical property of the people, maximum employment and the full industrial...

  20. Sandia National Laboratories: fuel-air mixing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  1. Sandia National Laboratories: improved air quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  2. Air Quality and Road Emission Results for Fort Stewart, Georgia

    SciTech Connect (OSTI)

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.; Barfuss, Brad C.

    2004-02-02T23:59:59.000Z

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every six days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.

  3. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  4. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  5. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  6. air conditioning technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  7. air conditioning technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  8. Air Force Announces Funding for Alternative Energy Research & Development

    Broader source: Energy.gov [DOE]

    The Air Force Research Laboratory (AFRL) has released a Broad Area Announcement (BAA) for over $25 million for Alternative Energy Research & Development.

  9. air force plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 18 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  10. air force technical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical design Texas at Austin, University of 20 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  11. air force surveys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 19 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  12. air force petroleum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 16 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  13. air force civil: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 18 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  14. air force institute: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 19 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  15. air force bench: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects for Cooling Uninsulated Basement Systems ... 13 19 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information...

  16. air force installations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 19 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  17. air force journal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Cooling Uninsulated Basement Systems ... 13 16 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information Sciences...

  18. High-Temperature, Air-Cooled Traction Drive Inverter Packaging

    Broader source: Energy.gov (indexed) [DOE]

    Air-Cooled Traction Drive Inverter Packaging Madhu Chinthavali Oak Ridge National Laboratory June 10, 2010 Project ID: APE025 This presentation does not contain any proprietary,...

  19. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    Lustbader National Renewable Energy Laboratory Tuesday May 10, 2011 Project ID: APE019 Air Cooling Technology for Power Electronics Thermal Control This presentation does not...

  20. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Desikan Bharathan National Renewable Energy Laboratory Friday May 22, 2009 Air Cooling Technology for Advanced Power Electronics and Electric Machines ape12bharathan This...

  1. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    SciTech Connect (OSTI)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

    1999-09-01T23:59:59.000Z

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  2. Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

    SciTech Connect (OSTI)

    GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

    1999-09-01T23:59:59.000Z

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  3. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Air Distribution Effectiveness for Different Mechanical Ventilation

    E-Print Network [OSTI]

    LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Effectiveness for Different Mechanical Ventilation Systems Max H. Sherman and Iain S. Walker Lawrence Berkeley National Laboratory, USA ABSTRACT The purpose of ventilation is to dilute indoor contaminants

  5. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  7. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  8. alamos national laboratory analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Multidisciplinary Databases and Resources Websites Summary: Optics and Plasma Research Department, Ris National Laboratory Required publisher statement Copyright:...

  9. argonne national laboratories: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Multidisciplinary Databases and Resources Websites Summary: Optics and Plasma Research Department, Ris National Laboratory Required publisher statement Copyright:...

  10. alamos national laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Multidisciplinary Databases and Resources Websites Summary: Optics and Plasma Research Department, Ris National Laboratory Required publisher statement Copyright:...

  11. argonne national laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Multidisciplinary Databases and Resources Websites Summary: Optics and Plasma Research Department, Ris National Laboratory Required publisher statement Copyright:...

  12. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  13. QER- Comment of California Air Resources Board

    Broader source: Energy.gov [DOE]

    Good evening - Attached is a letter regarding the subject above. If you have any questions or concerns, please contact me at 916.322.5840 or via email at mnichols@arb.ca.gov. Thank you

  14. Sandia National Laboratories: energy storage resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  15. Appendix 1.6.h Laboratory Resources

    E-Print Network [OSTI]

    Karsai, Istvan

    Varian Spectra AA-20 with graphite furnace Gas Chromatographs OIAnalytical BTEX System with tandem/MS System with autoinjector High Performance Liquid Chromatograph Waters equipped with a WISP 712 autosampler, model 486 Tunable Absorbance Detector, two model 501 HPLC pumps, a Waters SIM interfaced

  16. Renewable & Appropriate Energy Laboratory Energy & Resources Group

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ---------------------------------------------------------------------------------- 13 1.2 Forecast of Demand and Generation, 2010-2025 ------------------------------------------------------ 15 1.2.1 Demand Forecast --------------------------------------------------------------------------------------------------- 19 2.1.2 Oil & Natural Gas

  17. Land and Renewable Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a rich and thorough analysis to determine what areas of public lands are best suited for solar, wind, and geothermal project development and assess the associated environmental,...

  18. Sandia National Laboratories: distributed energy resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  19. State of California The Resources Agency of California M e m o r a n d u m

    E-Print Network [OSTI]

    , 2008 staff filed data requests in the technical areas of air quality, alternatives, biological resources, cultural resources, hazardous materials management, public health, socioeconomics, transmission and the applicant included air quality, alternatives, biological resources, cultural resources, hazardous materials

  20. A survey of an air monitoring program

    SciTech Connect (OSTI)

    Lee, M.B.

    1997-08-01T23:59:59.000Z

    The objective of this report is to compare personal air sampling data to stationary air sampling data and to bioassay data that was taken during the decontamination and decommissioning of sixty-one plutonium glove boxes at Argonne National Laboratory (ANL) in 1995. An air monitoring program administered at Argonne National Laboratory was assessed by comparing personal air sampler (PAS) data, stationary air sampler (SAS) data, and bioassay data. The study revealed that the PAS and SAS techniques were equivalent when averaged over all employees and all workdays, but the standard deviation was large. Also, large deviations were observed in individual samples. The correlation between individual PAS results and bioassay results was low. Personal air samplers and bioassay monitoring played complementary roles in assessing the workplace and estimating intakes. The PAS technique is adequate for detection and evaluation of contaminated atmospheres, whereas bioassay monitoring is better for determining individual intakes.

  1. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  2. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  3. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources For Teachers Teachers Visit the Museum We Visit You Teacher Resources Home Schoolers Plan Your School Visit invisible utility element Teacher Resources Scavenger...

  4. Pennsylvania Solid Waste- Resource Recovery Development Act

    Broader source: Energy.gov [DOE]

    This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

  5. Influence of air-filled porosity of soils on air permeability and gaseous dispersion

    E-Print Network [OSTI]

    McCarthy, Kevin P.

    1989-01-01T23:59:59.000Z

    -filled porosity. CRAPTER II LITERATURE REVIEW Previous Venting Studies A number of soil venting studies have been conducted both in the laboratory and in the field. Some interesting data have been reported, but much remains to be investigated. Laboratory... Mass balance laboratory investigations have shown that vacuum extraction of VOCs is effective under controlled conditions. Specific Data on air flow through these laboratory systems, however, aze not abundant. Barley and Hoag (1984) reported 99...

  6. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  7. Electrical Model Development and Validation for Distributed Resources

    SciTech Connect (OSTI)

    Simoes, M. G.; Palle, B.; Chakraborty, S.; Uriarte, C.

    2007-04-01T23:59:59.000Z

    This project focuses on the development of electrical models for small (1-MW) distributed resources at the National Renewable Energy Laboratory's Distributed Energy Resources Test Facility.

  8. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  9. Evaluation of workplace air monitoring locations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. (Pacific Northwest Lab., Richland, WA (United States)); Aldrich, L.K. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-10-01T23:59:59.000Z

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  10. To appear in the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 28-July 2, 1998, Puerto Vallarta, Mexico This work is supported in part by Wright Laboratory Avionics Directorate, Air Force

    E-Print Network [OSTI]

    Sorin, Daniel J.

    28-July 2, 1998, Puerto Vallarta, Mexico This work is supported in part by Wright Laboratory Avionics that are connected by a general interconnection network. Such hardware Distributed Shared Memory (DSM, [19]) systems

  11. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  12. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01T23:59:59.000Z

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  13. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  14. Brookhaven National Laboratory site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  15. air suspension system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System Texas A&M University - TxSpace Summary: Based on the heating and air-conditioning system...

  16. air suspension systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System Texas A&M University - TxSpace Summary: Based on the heating and air-conditioning system...

  17. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    www.epa.gov/cleanenergy/energy-resources/egrid. [24] Wang,Gas-Fired Distributed Energy Resource Characterizations.CO: National Renewable Energy Resource Laboratory Report TP-

  18. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    2003), Distributed Energy Resources Customer AdoptionGas-Fired Distributed Energy Resource Characterizations,National Renewable Energy Resource Laboratory, Golden, CO,

  19. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    Gas-Fired Distributed Energy Resource Characterizations,National Renewable Energy Resource Laboratory, Golden, CO,Edwards, Distributed Energy Resources Customer Adoption

  20. Air Quality: Construction Project Air Permit Requirements

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

  1. Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost of conventional systems. Outdoor air raises indoor air quality by reducing indoor air pollution, which improves the health and productivity of building occupants. This...

  2. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01T23:59:59.000Z

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  3. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  4. Quantifying emissions reductions from New England offshore wind energy resources

    E-Print Network [OSTI]

    Berlinski, Michael Peter

    2006-01-01T23:59:59.000Z

    Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

  5. Out of Thin Air | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffreyMs. LindaOffice of ScienceOut of Thin Air

  6. Air Pollution (Illinois)

    Broader source: Energy.gov [DOE]

    This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

  7. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  8. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  9. Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 Exploring the Relationship between Geothermal Resources and

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 - 1 - Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin Laboratory University of Nevada, Reno Keywords: geothermal, energy resources, Great Basin, GPS, geodesy

  10. Griffiss AFB integrated resource assessment. Volume 2, Electric baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  11. Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0

    SciTech Connect (OSTI)

    Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

    1994-02-01T23:59:59.000Z

    This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

  12. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  13. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  14. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  15. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  16. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  17. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  18. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  19. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  20. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  1. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  2. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  3. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  4. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  5. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  6. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  7. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  8. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  9. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  10. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  11. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  12. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  13. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  14. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory

  15. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,. .,3cbenetti Ames Laboratory

  16. constant | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile

  17. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter...

    Broader source: Energy.gov (indexed) [DOE]

    February 2009 study conducted by Oak Ridge National Laboratory found that for modern computer-controlled, fuel-injected engines, changing a clogged air filter has no measurable...

  18. air-to-water heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  19. E-Print Network 3.0 - air force personnel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCI-FREDERICK Summary: of service by FME Utility Alarms: Examples include air handlers, heat pumps, exhaust fans, and CO2 tanks... of laboratory personnel to identify critical...

  20. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Appendix D. Impact assessment. [Demonstration plant at Newman, KY

    SciTech Connect (OSTI)

    none,

    1980-11-21T23:59:59.000Z

    In appendix D, the air quality condition for various pollutants in the areas surrounding the proposed demonstration plant site is given with respect to attainment or non-attainment of US EPA regulations. The minimum pollutant emission rates for these regulated and for several other pollutants are given. Then the estimated emission rates from the proposed plant are given for a dozen pollutants which exceed these limits and therefore require an ambient air quality analysis. This involves taking into account the estimated emission of these pollutants from the proposed plant and from other sources in the surrounding area. Finally, background data from the surrounding area including meteorological data and sampling of regulated pollutants are given. (LTN)

  1. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs)(SC)

  2. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs)(SC)draws more

  3. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs)(SC)draws

  4. Brookhaven National Laboratory site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  5. army research laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 51 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  6. ames laboratory research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 60 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  7. ames laboratory research reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 75 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  8. ames laboratory researchers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 60 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  9. advanced research laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 89 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  10. aging research laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 36 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  11. atlantic research laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 62 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  12. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  13. Air Tightness of US Homes: Model Development

    SciTech Connect (OSTI)

    Sherman, Max H.

    2006-05-01T23:59:59.000Z

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  14. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  15. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  16. Laboratories for the 21st Century: Best Practices; Energy Recovery in Laboratory Facilities (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This guide regarding energy recovery is one in a series on best practices for laboratories. It was produced by Laboratories for the 21st Century ('Labs 21'), a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy. Laboratories typically require 100% outside air for ventilation at higher rates than other commercial buildings. Minimum ventilation is typically provided at air change per hour (ACH) rates in accordance with codes and adopted design standards including Occupational Safety and Health Administration (OSHA) Standard 1910.1450 (4 to 12 ACH - non-mandatory) or the 2011 American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Applications Handbook, Chapter 16 - Laboratories (6 to 12 ACH). While OSHA states this minimum ventilation rate 'should not be relied on for protection from toxic substances released into the laboratory' it specifically indicates that it is intended to 'provide a source of air for breathing and for input to local ventilation devices (e.g., chemical fume hoods or exhausted bio-safety cabinets), to ensure that laboratory air is continually replaced preventing the increase of air concentrations of toxic substances during the working day, direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.' The heating and cooling energy needed to condition and move this outside air can be 5 to 10 times greater than the amount of energy used in most office buildings. In addition, when the required ventilation rate exceeds the airflow needed to meet the cooling load in low-load laboratories, additional heating energy may be expended to reheat dehumidified supply air from the supply air condition to prevent over cooling. In addition to these low-load laboratories, reheat may also be required in adjacent spaces such as corridors that provide makeup air to replace air being pulled into negative-pressure laboratories. Various types of energy recovery devices and systems can substantially reduce heating and cooling energy required for conditioning spaces in laboratories. Heating and cooling systems can be downsized when energy recovery is used because these systems reduce peak heating and cooling requirements. Heating and cooling systems can also be downsized by capturing heat generated in high-load spaces and transferring it to spaces requiring reheat. There are many opportunities for energy recovery in laboratories. This guide includes descriptions of several air-to-air energy recovery devices and methods, such as using enthalpy wheels (Figure 1), heat pipes, or run-around loops in new construction. These devices generally recover energy from exhaust air. This recovered energy is used to precondition supply air during both cooling and heating modes of operation. In addition to air-to-air energy recovery options, this guide includes a description of a water-to-water heat recovery system that collects heat from high-load spaces and transfers it to spaces that require reheat. While air-to-air recovery devices provide significant energy reduction, in some laboratory facilities the amount of energy available in the exhaust air exceeds the pre-heat and pre-cooling needed to maintain supply air conditions. During these periods of time, controls typically reduce the energy recovery capacity to match the reduced load. If the energy recovered in the exhaust is not needed then it is rejected from the facility. By using a water-to-water recovery system, it is possible to significantly reduce overall building energy use by reusing heating or cooling energy generated in the building before it is rejected to the outdoors. Laboratory managers are encouraged to perform a life-cycle cost analysis of an energy-recovery technology to determine the feasibility of its application in their laboratory. Usually, the shortest payback periods occur when the heating and cooling load reduction provided by an energy recovery system allows the laboratory to install and use smaller heating (e.g., hot water or steam) and cooling (e.g., c

  17. air force pilots: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information...

  18. air force pilot: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 The Air Force Research Laboratory (AFRL) Scholars Program is currently Computer Technologies and Information...

  19. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    system on perceived air quality, Indoor Air 2008, August 17-perception of indoor air quality during immediate and longeraddressing indoor air quality, thermal environment, lighting

  20. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    in the Netherlands, Indoor Air 2, 127 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  1. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovation PortalCompositional

  2. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, adefault Sign InLeaks inWhy »

  3. COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

    E-Print Network [OSTI]

    Kirby, Carl S.

    of Pennsylvania approved "The Land and Water Conservation and Reclamation Act" on January 19, 1968. The Act authorizes the issuance of $500,000,000 in bonds for the conservation and reclamation of the state's air, water, and land resources. It provides for the control and elimination of stream and air pollution

  4. Laboratory Directed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiers Research and

  5. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS

  6. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand

  7. NATIONAL LABORATORY

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen Aerogels,AluminumApproved for

  8. Bettis Laboratory

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED( II

  9. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's Lower Mantle Print It isexisting programs

  10. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3Services and LowersSafety andNASAand North

  11. Donner Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 FederalAdministration Donald Hodel_ -

  12. Recycled Materials Resource Jeffrey S. Melton

    E-Print Network [OSTI]

    Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

  13. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01T23:59:59.000Z

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  14. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  15. Feasibility of air capture

    E-Print Network [OSTI]

    Ranjan, Manya

    2010-01-01T23:59:59.000Z

    Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

  16. Moving air for comfort

    E-Print Network [OSTI]

    Arens, Edward; Turner, Stephen; Zhang, Hui; Paliaga, Gwelen

    2009-01-01T23:59:59.000Z

    Brager, L. Zagreus. 2007, Air movement preferences observed709-731. 9. Toftum, J. 2004. Air movement good or bad? Indoor Air 14, pp 40-45. 10. Gong, N. , K. Tham, A. Melikov,

  17. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiers inAccess

  18. Air Pollution Control (Oklahoma)

    Broader source: Energy.gov [DOE]

    This chapter enumerates primary and secondary ambient air quality standards and the significant deterioration increments. Significant deterioration refers to an increase in ambient air pollution...

  19. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12T23:59:59.000Z

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  20. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  1. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  2. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

  3. Geothermal Resources Council's 36

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390dV DOE/m/10412Geothermal

  4. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  5. Perfluorocarbon tracer method for air-infiltration measurements

    DOE Patents [OSTI]

    Dietz, R.N.

    1982-09-23T23:59:59.000Z

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  6. air force materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air force materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Air Force Research Laboratory...

  7. Supply Air Temperature Control Using a VFD Pump

    E-Print Network [OSTI]

    Zheng, B.; Liu, M.

    2005-01-01T23:59:59.000Z

    Supply Air Temperature Control Using a VFD Pump Bin Zheng and Mingsheng Liu Ph.D., P.E. Energy Systems Laboratory University of Nebraska-Lincoln Abstract Traditionally, chilled water pump speed is modulated to maintain the water loop... differential pressure set point and the control valve at the air handling unit (AHU) is modulated to maintain the supply air temperature. This paper introduces a new VFD pump speed control algorithm, optimal pump head control strategy, in variable water...

  8. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Nicole Stricker

    2015-01-01T23:59:59.000Z

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energys national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratorys engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nations nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INLs Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nations premier applied science laboratories.

  9. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  10. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Sacramento quadrangle, California

    SciTech Connect (OSTI)

    Not Available

    1981-10-15T23:59:59.000Z

    Field and laboratory data are presented for 1890 sediment samples from the Sacramento Quadrangle, California. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  11. AiR surface: AiR surface 1

    E-Print Network [OSTI]

    Tanaka, Jiro

    AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

  12. EML Surface Air Sampling Program, 1989 data

    SciTech Connect (OSTI)

    Larsen, R.J.; Sanderson, C.G.

    1991-08-01T23:59:59.000Z

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1989 indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the analytical and sampling techniques that were used to measure them. During 1989, the occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. The naturally occurring radioisotopes that we measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. The 1989 annual mean concentrations of {sup 7}Be at many of the sites were lower than those previously reported during the last decade. Possible changes in the atmospheric production of {sup 7}Be, variations in atmospheric circulation and precipitation patterns, as well as modifications to our sampling procedure many all have contributed to this observed trend. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. These short-term fluctuations probably resulted from variations in meteorological factors. The data from our quality control samples indicate that the reliability of the air filter measurements are acceptable for their intended application.

  13. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  14. Integrated Technology Air Cleaners (ITAC): Design and Evaluation

    SciTech Connect (OSTI)

    Fisk, William J.; Cohn, Sebastian; Destaillats, Hugo; Henzel, Victor; Sidheswaran, Meera; Sullivan, Douglas P.

    2013-09-13T23:59:59.000Z

    The primary objective of this project was to design, build, and test an air cleaner for residential use with the potential to substantially improve indoor air quality, or maintain indoor air quality unchanged, when outdoor air ventilation rates are reduced to save energy. Two air cleaners were designed and fabricated. The design targets for airflow rate, fan power, and projected cost were met. In short term laboratory studies, both units performed as expected; however, during field studies in homes, the formaldehyde removal performance of the air cleaners was much lower than expected. In subsequent laboratory studies, incomplete decomposition of some indoor air volatile organic compounds, with formaldehyde as a product of partial decomposition of volatile organic compounds, was confirmed as the explanation for the poor formaldehyde removal performance in the field studies. The amount of formaldehyde produced per unit of decomposition of other volatile organic compounds was substantially diminished by increasing the amount of catalyst on the filter and also by decreasing the air velocity. Together, these two measures reduced formaldehyde production, per unit destruction of other volatile organic compounds, by a factor of four, while increasing the removal efficiency of volatile organic compounds by a factor of 1.4. A company with a southern California office is conducting studies in conjunction with Lawrence Berkeley National Laboratory, with the goal of incorporating the ITAC catalytic air cleaning technology in their future commercial products.

  15. Air Pollution Spring 2010

    E-Print Network [OSTI]

    ATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants and their effects on health and welfare. Review regulations governing air pollution. 3. Examine the meteorological

  16. Los Alamos National Laboratory Institutional Plan, FY 1983-FY 1988

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    The report is broken down into the following sections: director's overview; laboratory role and mission; description of the laboratory; scientific and technical activities; technology transfer program; personnel resources; university and industry interactions; site and facilities development; and resource projections and analyses. (GHT)

  17. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  18. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  19. Comprehensive Epidemiologic Data Resource (CEDR) (Poster)

    SciTech Connect (OSTI)

    Oak Ridge Institute for Science and Education (ORISE)

    2012-12-12T23:59:59.000Z

    This poster introduces the Comprehensive Epidemiologic Data Resource (CEDR), an electronic database with demographic, health outcome, and exposure information for over a million DOE nuclear plant and laboratory workers.

  20. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory May 30-June 14, 2009 Air Travel Arrangements The Argonne Division of Educational Programs has made to Argonne - June 8 through and including June 13, 2009 Daily bus transportation will be provided for School

  1. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory

    E-Print Network [OSTI]

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory June 11-25, 2011 Air Travel Arrangements The Argonne Division of Educational Programs has made at the Argonne Guest House at approximately 6:00 p.m. (CDT). Dinner will be provided upon arrival to the hotel

  2. REMOTE LABORATORIES IN AUTOMATION: AIP-PRIMECA RAO ARI PLATFORM Remote Laboratories in Automation

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    for thorough trainings in industrial We thank our sponsors : Schneider Electric which provided the automationREMOTE LABORATORIES IN AUTOMATION: AIP-PRIMECA RAO ARI PLATFORM Remote Laboratories in Automation of resources and competencies about industrial topics for many universities in Rhne-Alpes french Region. Due

  3. Oversight Board | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and BiofuelsOversight Board The Ames Laboratory Oversight

  4. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    2008-01-01T23:59:59.000Z

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Energy Systems Laboratory p. 1 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System STATEWIDE AIR EMISSIONS CALCULATIONS FROM ENERGY EFFICIENCY, WIND...

  5. Construction and operation of the Howard T. Ricketts Laboratory.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.; Stull, L.; Butler, J.; Chang, Y.; Allison, T.; O'Rourke, D.

    2006-01-01T23:59:59.000Z

    The National Institutes of Health (NIH) has proposed to partially fund the construction of the Howard T. Ricketts (HTR) regional biocontainment laboratory (RBL) by the University of Chicago at the U.S. Department of Energy's (DOE's) Argonne National Laboratory in Argonne, Illinois. The HTR Laboratory (HTRL) would be constructed, owned, and operated by the University of Chicago on land leased to it by DOE. The preferred project site is located north of Eastwood Drive and west of Outer Circle Road and is near the biological sciences building. This environmental assessment addresses the potential environmental effects resulting from construction and operation of the proposed facility. The proposed project involves the construction of a research facility with a footprint up to approximately 44,000 ft{sup 2} (4,088 m{sup 2}). The proposed building would house research laboratories, including Biosafety Level 2 and 3 biocontainment space, animal research facilities, administrative offices, and building support areas. The NIH has identified a need for new facilities to support research on potential bioterrorism agents and emerging and re-emerging infectious diseases, to protect the nation from such threats to public health. This research requires specialized laboratory facilities that are designed, managed, and operated to protect laboratory workers and the surrounding community from accidental exposure to agents. The proposed HTRL would provide needed biocontainment space to researchers and promote the advancement of knowledge in the disciplines of biodefense and emerging and re-emerging infectious diseases. Several alternatives were considered for the location of the proposed facility, as well as a no action alternative. The preferred alternative includes the construction of a research facility, up to 44,000 ft{sup 2} (4,088 m{sup 2}), at Argonne National Laboratory, a secure government location. Potential impacts to natural and cultural resources have been evaluated in this document. The proposed activities would result in the conversion of approximately 4 acres (2 ha) of old field and open woodland for the proposed facility and landscaped areas. Impacts of the proposed project on the following resources would be minor or negligible: human health, socioeconomics, air quality, noise levels, water quality, waste management, land use, the visual environment, cultural resources, soils, terrestrial biota, wetlands or aquatic biota, threatened and endangered species, transportation, utilities and services, and environmental justice. This environmental assessment has been completed to satisfy the requirements of the National Environmental Policy Act of 1969 and has been prepared in accordance with NIH guidelines and in coordination with federal, state, and local agency requirements. On the basis of the results of this assessment, impacts to environmental resources from the proposed project would be minor or negligible, provided that the project is implemented in accordance with the impact avoidance and mitigation measures described herein.

  6. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  7. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  8. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  9. Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES

    E-Print Network [OSTI]

    Elby, Andy

    Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES Epistemological resources University Maryland, College Park Trisha Kagey Montgomery County Public Schools #12;Epistemological resources are better understood as made up of finer-grained cognitive resources whose activation depends sensitively

  10. CHAPTER 5: AIR QUALITY 1998 SITE ENVIRONMENTAL REPORT5-1

    E-Print Network [OSTI]

    facility operations and ensure compliance with the federal Clean Air Act, Brookhaven National Laboratory (BNL) performs continu- ous air emission sampling at several facilities. In addition to facility emis radiological and regulated, nonradiological air releases for 1998 are tabulated in this chapter. Ambient

  11. Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource Program

  12. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01T23:59:59.000Z

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  13. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01T23:59:59.000Z

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  14. Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies (Revision)

    SciTech Connect (OSTI)

    Not Available

    2002-03-01T23:59:59.000Z

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

  15. Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies

    SciTech Connect (OSTI)

    Not Available

    2001-12-01T23:59:59.000Z

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

  16. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  17. Statewide Air Emissions Calculations from Wind and Other Renewables: Summary Report

    E-Print Network [OSTI]

    Chandrasekaran, Vivek; Turner, Dan; Yazdani, Bahman; Culp, Charles; Gilman, Don; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Haberl, Jeff S.

    Engineering Experiment Station or the Energy Systems Laboratory. Page August 2009 Energy Systems Laboratory, Texas A&M University System 3 SUMMARY REPORT Statewide Air Emissions Calculations from Wind and Other Renewables 1. EXECUTIVE SUMMARY...). The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its third annual report, ?Statewide Air Emissions Calculations from Wind and Other Renewables,? to the Texas Commission on Environmental Quality...

  18. air temperature air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air temperatures... conditions. The design of this study was based on the relation- ship of four parameters: air temperature, air velocity, radiant heat, and globe...

  19. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  20. 2010 LANL radionuclide air emissions report /

    SciTech Connect (OSTI)

    Fuehne, David P.

    2011-06-01T23:59:59.000Z

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  1. General Air Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any...

  2. Healthy Air Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

  3. Compressed Air Supply Efficiency

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    COMPRESSED AIR SUPPLY EFFICENCY Babu Joseph, Ph.D., P.E. Engineer Southern California Edison Irwindale, CA ABSTRACT This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency...

  4. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  5. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  6. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  7. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  8. on man, nature & air pollution

    E-Print Network [OSTI]

    Finlayson-Pitts, Barbara J

    2008-01-01T23:59:59.000Z

    on man, nature & air pollution About three decades ago, itand episodes of air pollution the following summer. Wetthe increase in air pollution. This hypothesis generated

  9. Cultural Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of

  10. Ventilation Air Preconditioning Systems

    E-Print Network [OSTI]

    Khattar, M.; Brandemuehl, M. J.

    1996-01-01T23:59:59.000Z

    simply and cost-effectively with a dual path arrangement that treats and controls the ventilation air independently of the recirculation air. The Electric Power Research Institute (EPRI)--the nonprofit R&D arm of the electric utility industry... particular type of application. EPRI is developing variations of the dual path concept to meet different reeofit and new construction markets. Figure 6. Ventilation Air Conditioner as a Separate Unit EPRVCALMAC System: Separate Unit for Ventilation Air...

  11. Measurements of Solid Liner Implosion for Magnetized Target Fusion IC R. Siemon, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

    E-Print Network [OSTI]

    National Laboratory, Los Alamos, New Mexico, USA rsiemon@lanl.gov Data are presented on the implosion Alamos National Laboratory, Los Alamos, New Mexico, USA 87545 E-mail: rsiemon@lanl.gov J. DEGNAN, D. GALE, W. SOMMARS, S. COFFEY, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico, USA 87117

  12. MAD-AIR

    E-Print Network [OSTI]

    Tooley, J. J.; Moyer, N. A.

    1989-01-01T23:59:59.000Z

    with stress- related illness rather than the anwr that spells RELIEF. Air flow in, through ad arourd a house is an important concern in the building we call haw. !lb enhance air flow and change the various corditions or properties of the air, a variety...

  13. Air Quality Chapter Outline

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Chapter 30 Air Quality Chapter Outline 1 Overview 2 1.1 Hazards / Impacts 2 1.2 Exposure Sources 3 Manual Chapter 30: Air Quality 7 References 20 8 Implementation 21 9 Ownership 22 1 Overview SLAC operations produce a wide range of air emissions. Sources of emissions include standard equipment

  14. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01T23:59:59.000Z

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  15. Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles

    E-Print Network [OSTI]

    Xu, K.; Liu, M.; Wang, G.; Wang, Z.

    2007-01-01T23:59:59.000Z

    temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55F for space humidity control...

  16. Coordinated dynamic planning for air and space operations

    E-Print Network [OSTI]

    Wroten, Matthew Christian

    2005-01-01T23:59:59.000Z

    Planners of military air and space operations in a battlefield environment seek to allocate resources against targets in a way that best achieves the objectives of the commander. In future conflicts, the presence of new ...

  17. air water interfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B 1999-01-01 198 Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China Texas A&M University...

  18. air conditioning desarrollo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abdalla, K. N. 2010-01-01 36 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System Texas A&M University - TxSpace Summary: Based...

  19. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  20. Clean Air Act, Section 309

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. Policy review (a)

  1. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek,Wisconsin: EnergyAir

  2. Mountain Air | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain Air Jump to:

  3. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletterAdvocateInnovations inEnergyAir

  4. Compressed air | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006)air Jump to:

  5. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air,Natural

  6. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air,Natural

  7. Air Conditioner Compressor Performance Model

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05T23:59:59.000Z

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  8. Air to Air Communication Protocol Arjan Durresi1

    E-Print Network [OSTI]

    Jain, Raj

    1 Air to Air Communication Protocol Arjan Durresi1 , Vamsi Paruchuri1 , Leonard Barolli2 and Raj. Louis, MO 63130, USA 314-935-4963, jain@cse.wustl.edu Abstract--We present Air to Air Communication (AAC........................................................2 3. AIR TO AIR COMMUNICATION..............................3 4. SIMULATIONS

  9. EML Surface Air Sampling Program, 1989 data

    SciTech Connect (OSTI)

    Larsen, R.J.; Sanderson, C.G.

    1991-08-01T23:59:59.000Z

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory's Surface Air Sampling Program (SASP) during 1989 indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the analytical and sampling techniques that were used to measure them. During 1989, the occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. The naturally occurring radioisotopes that we measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. The 1989 annual mean concentrations of {sup 7}Be at many of the sites were lower than those previously reported during the last decade. Possible changes in the atmospheric production of {sup 7}Be, variations in atmospheric circulation and precipitation patterns, as well as modifications to our sampling procedure many all have contributed to this observed trend. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. These short-term fluctuations probably resulted from variations in meteorological factors. The data from our quality control samples indicate that the reliability of the air filter measurements are acceptable for their intended application.

  10. Utility Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohnpotential-calc Sign InPages

  11. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept

  12. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOfficeAdsorptionOnline

  13. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEvents

  14. Volunteers - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 TheVolker

  15. Business Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPractices Sign In About

  16. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Markdefault

  17. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLab (NewportStudying theSubcontactor

  18. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails TakingRTapeUpdatedTeachers »

  19. Privacy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPoints of Contact

  20. Mobile Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,AMission MissionMistakesMoMobile

  1. Air Pollution- Local Air Quality (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Air Pollution regulation administered by the Ministry of the Environment enforces compliance to the standards set in the Ontario law. The law is phased in, with portions taking effect in 2010,...

  2. ORIGINAL ARTICLE Ambient Air Pollution

    E-Print Network [OSTI]

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

  3. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    SciTech Connect (OSTI)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29T23:59:59.000Z

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  4. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Pearson, Erik W.

    2000-03-01T23:59:59.000Z

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  5. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect (OSTI)

    David P. Fuehne

    2007-06-30T23:59:59.000Z

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  6. Laboratory Directed Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiersLaboratory

  7. Ames Laboratory Site Sustainability Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization forAmes Laboratory Site

  8. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  9. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  10. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  11. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  12. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it its 15 or 20 years later and they never seriously considered leaving the laboratory system.

  13. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  14. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  15. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory DirectorsRecoveryassessmentLaboratory

  16. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I | Nuclear

  17. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear

  18. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 Resilient Cities - SandiaAbout

  19. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life atCareers

  20. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) ReleaseRemote Access Ames Laboratory