National Library of Energy BETA

Sample records for air refinery gas

  1. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  2. Clean air amendments put big burden on refinery planners

    SciTech Connect (OSTI)

    Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. )

    1991-06-10

    The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

  3. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas ... 10:27:55 PM" "Back to Contents","Data 1: U.S. Refinery, Bulk Terminal, and Natural Gas ...

  4. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,243 11,231 12,001 12,021 8,782 13,405 12,734 14,373 14,999 14,661 1990's 14,973 18,055 16,732 16,724 8,935 7,568 9,354 9,746 10,900 6,781 2000's 8,684 13,085 3,817 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  6. Texas Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane-Air 1981-2005 Refinery Gas 1981-2005 Other 1999-2005

  7. Mining machinery/equipment/parts/services. Oil and gas field equipment/machinery/parts/supplies (Ecuador). Refinery equipment, parts, and accessories, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The petroleum sector in Ecuador brings in about 65 percent of the country's revenue. Three of the refineries are located in the coastal region. The other two, plus the Liquified Petroleum Gas Plant (LPG), are located in the Oriente region (Amazon jungle). The refineries operate at about 85% of their installation capacity. The Petroindustrial and Petropeninsula investment plan for 1991 comtemplates the expansion of the Esmeraldas refinery to 110,000 barrels a day, and the up-grading of the Shushufindi and Libertad refineries located near the city of Guayaquil. The United States is by far the largest supplier of refinery equipment, parts and accessories, controlling about 90% of the total market.

  8. Refinery Capacity Report - Explanatory Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration/Refinery Capacity Report 1 Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, "Annual Refinery Report," is the primary source of data in the "Refinery Capacity Report" tables. The form collects data on the consumption of purchased steam, electricity, coal, and natural gas; refinery receipts of crude oil by method of transportation; operable capacity for atmospheric crude oil distillation units and downstream

  9. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  10. National emission standards for hazardous air pollutants petroleum refineries. Background information for final standards. Summary of public comments and responses. Final report

    SciTech Connect (OSTI)

    1995-07-01

    National emission standards for hazardous air pollutants (NESHAP) are promulgated for the petroleum refinery industry under authority of section 112 of the Clean Air Act. This background information document provides technical information and analyses used in the development of the final NESHAP and Agency reponses to public comments on the proposed rule.

  11. Delaware Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    2 1 0 * * 6 1967-2014 Propane-Air 2 1 0 0 6 1980-2014 Refinery Gas 1980-2005 Other 0 1999-2014

  12. Indiana Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    1 5 1 6 69 1967-2014 Propane-Air 1 1 5 1 6 69 1980-2014 Refinery Gas 1980-2005

  13. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources

  14. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2006-10-11

    a summary of our collaborative 2005 project Opportunities for Biorenewables in Petroleum Refineries at the Rio Oil and Gas Conference this September.

  15. Shale Gas Development Challenges: Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air (921.93 KB) More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas production How is shale gas produced?

  16. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. PDF icon Displacing Natural Gas Consumption and...

  17. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mary Biddy Sue Jones NREL PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Refinery Integration 4.1.1.31 NREL 4.1.1.51 PNNL Goal Statement GOALS: Model bio-intermediates insertion points to better define costs & ID opportunities, technical risks, information gaps, research needs Publish results Review with stakeholders 2 Leveraging existing refining infrastructure

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  19. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. ...

  20. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  1. Pennsylvania Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    205 4 2 2 3 20 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 205 4 2 2 3 20 1980-2014 Refinery Gas 1980-2005

  2. Pennsylvania Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    205 4 2 2 3 20 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 205 4 2 2 3 20 1980-2014 Refinery Gas 1980-2005

  3. Massachusetts Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 * 0 * 3 8 1967-2014 Synthetic 0 1980-2014 Propane-Air 10 0 0 3 8 1980-2014 Refinery Gas 1980-2005 Other 0 2005

  4. Maryland Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    70 115 89 116 107 809 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 170 115 89 116 107 809 1980-2014 Refinery Gas 1980-2005 Other 0 0 1980

  5. Maryland Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    70 115 89 116 107 809 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 170 115 89 116 107 809 1980-2014 Refinery Gas 1980-2005 Other 0 0 1980

  6. Massachusetts Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    0 * 0 * 3 8 1967-2014 Synthetic 0 1980-2014 Propane-Air 10 0 0 3 8 1980-2014 Refinery Gas 1980-2005 Other 0 2005

  7. Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

  8. Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

  9. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  10. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Informatio...

    Open Energy Info (EERE)

    Company (SAMREF) Name: Saudi Aramco Mobile Refinery Company (SAMREF) Address: P.O. Box 30078 Place: Yanbu, Saudi Arabia Sector: Oil and Gas Product: Crude Oil Refining Phone...

  11. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2015 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 1,834 309 20 846 3,009 Distillate Fuel Oil 0 26 220 8 110 364 Residual Fuel Oil 20 18 22 2 333 395 Still Gas 15,955 50,290 112,346 8,842 44,613 232,046 Marketable Petroleum Coke 0 0 0 520 90 610 Catalyst Petroleum Coke 8,229 17,001 43,013 2,876 10,891 82,010 Natural Gas (million cubic feet) 48,181

  13. Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Quality in New York Natural Gas Street Sweepers Improve Air Quality in New York to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Google Bookmark Alternative Fuels Data Center: Natural Gas Street

  14. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    AIR PARTNERS; EXHAUST GAS RECIRCULATION; EGR; NOX; NGNGV; ACCOLD; PACCOLD; NATURAL GAS; LNG; DUAL-FUEL; Transportation Word Cloud More Like This Full Text preview image File size ...

  15. The Natural Gas Heat Pump and Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Heat Pump and Air Conditioner 2016 Building Technologies Office Peer Review ... Gas Technology Institute to optimize integration of NOx-free radiation burner. * Testing ...

  16. Independent quality assurance of refinery fugitives testing by western states petroleum association. Final audit report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Research Triangle Institute (RTI) undertook this task for the U.S. Environmental Protection Agency's (EPA's) Office of Air Quality Planning and Standards to provide third-party Quality Assurance (QA) support to a Western States' Petroleum Association (WSPA) program to measure fugitive emissions at petroleum refineries. The primary objectives of the WSPA study were to determine the correlation between screening values and true mass emission rates and to develop a relationship between liquid and gas composition. EPA's QA effort, however, focused only on the correlation objective because the number of leaking components in the California refineries cannot be expected to be representative of refineries in general. The number of components leaking at a given screening value is used in conjunction with the mass correlations to derive the average emission factors.

  17. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  18. Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

  19. Economic impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2016 | Release Date: June 22, 2016 | Next Release Date: June 23, 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  2. U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  3. Coaxial fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  4. Regulatory impact analysis for the petroleum refineries neshap. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The report analyzes the regulatory impacts of the Petroleum Refinery National Emission Standard for Hazardous Air Pollutants (NESHAP), which is being promulgated under Section 112 of the Clean Air Act Amendments of 1990 (CCA). This emission standard would regulate the emissions of certain hazardous air pollutants (HAPs) from petroleum refineries. The petroleum refineries industry group includes any facility engaged in the production of motor gasoline, naphthas, kerosene, jet fuels, distillate fuel oils, residual fuel oils, lubricants, or other products made from crude oil or unfinished petroleum derivatives. The report analyzes the impact that regulatory action is likely to have on the petroleum refining industry.

  5. The Natural gas Heat Pump and Air Conditioner

    Broader source: Energy.gov (indexed) [DOE]

    The Natural Gas Heat Pump and Air Conditioner 2015 Building Technologies Office Peer ... Summit - Best Presenter Project Integration and Collaboration Project Integration: ...

  6. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  7. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,277,500 1,245,500 32,000 1,353,000 1,318,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  9. Outlook for Refinery Outages and Available Refinery Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    level of refinery outages outlined in this report. This report does not consider the impacts of refined product logistics and distribution, which could affect the movement of...

  10. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  11. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  12. Combined-cycle cogeneration to power oil refinery

    SciTech Connect (OSTI)

    Broeker, R.J.

    1986-11-01

    A cogeneration plant now under construction at an oil refinery in Martinez, California, is an example of how the energy industry has been responding to the fundamental economic and technological challenges it has been facing over the past ten years. The industry is re-examining cogeneration as one way of meeting the requirements of the Public Utilities Regulatory Policy Act. The new plant is located at Tosco Corporation's Avon Oil Refinery, 45 miles northeast of San Francisco. It was designed by Foster Wheeler to supply process steam for the refinery as well as for a water-treatment installation that will benefit the Contra Costa Water District. Electric power produced will be used primarily by the refinery, with the balance purchased by the Pacific Gas and Electric Company.

  13. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  14. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...petpnpinpt2dcnusmbbla.htm" ,"Source:","Energy Information Administration" ,"For Help, ... Barrels)","U.S. Refinery Net Input of Hydrogen (Thousand Barrels)","U.S. Refinery Net ...

  15. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2015 a b NEW PAD District III 71,250 Buckeye Texas Processing LLC Corpus Christi, TX 46,250 11/15 Petromax Refining Co LLC Houston, TX 25,000 07/15 SHUTDOWN PAD District III 0 12,000 Pelican Refining Company LLC Lake Charles, LA 0 12,000 12/14 01/15 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 1,150 4,200 0 7,120 40 228 0 Hunt Refining Co 0 0 15,000 0 4,200 0 7,120

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, 1987 16,460 6,935 1,928 5,251 466 1,189 3,805 9,083 230 JAN 1, 1988 16,825 7,198

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  1. Refinery, petrochemical plant injuries decline

    SciTech Connect (OSTI)

    Not Available

    1994-07-25

    The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

  2. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  3. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  4. Control of gas contaminants in air streams through biofiltration

    SciTech Connect (OSTI)

    Holt, T.; Lackey, L.

    1996-11-01

    According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. The concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.

  5. Ranking environmental liabilities at a petroleum refinery

    SciTech Connect (OSTI)

    Lupo, M.

    1995-12-31

    A new computer model is available to allow the management of a petroleum refinery to prioritize environmental action and construct a holistic approach to remediation. A large refinery may have numerous solid waste management units regulated by the Resource Conservation and Recovery Act (RCRA), as well as process units that emit hazardous chemicals into the environment. These sources can impact several environmental media, potentially including the air, the soil, the groundwater, the unsaturated zone water, and surface water. The number of chemicals of concern may be large. The new model is able to rank the sources by considering the impact of each chemical in each medium from each source in terms of concentration, release rate, and a weighted index based on toxicity. In addition to environmental impact, the sources can be ranked in three other ways: (1) by cost to remediate, (2) by environmental risk reduction caused by the remediation in terms of the decreases in release rate, concentration, and weighted index, and (3) by cost-benefit, which is the environmental risk reduction for each source divided by the cost of the remedy. Ranking each unit in the refinery allows management to use its limited environmental resources in a pro-active strategic manner that produces long-term results, rather than in reactive, narrowly focused, costly, regulatory-driven campaigns that produce only short-term results.

  6. New Jersey Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    454 457 392 139 255 530 1967-2014 Synthetic 0 0 0 1980-2014 Propane-Air 0 0 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1993-2014 Other 454 457 392 139 255 530 1980-2014

  7. Illinois Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20 17 1 1 * 63 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 20 17 1 1 0 63 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1999-2014 Other 0 0 2005

  8. Illinois Supplemental Supplies of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    20 17 1 1 * 63 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 20 17 1 1 0 63 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1999-2014 Other 0 0 2005...

  9. New Jersey Supplemental Supplies of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    454 457 392 139 255 530 1967-2014 Synthetic 0 0 0 1980-2014 Propane-Air 0 0 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1993-2014 Other 454 457 392 139 255 530 1980-2014...

  10. New challenges to air/gas cleaning systems

    SciTech Connect (OSTI)

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  11. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Soil vapor extraction ...

  12. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS You ...

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2016 PAD District I 570,450 Primary Energy Corp Richmond, VA 6,100 0 a GNC Energy Corp Greensboro, NC 3,000 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Method PAD Districts I II III IV V United States Table 9. Refinery Receipts of Crude Oil by Method of Transportation by PAD District, 2015 (Thousand Barrels) a Pipeline 25,319 1,270,581 1,894,658 178,448 290,577 3,659,583 Domestic 2,766 679,552 1,624,647 86,978 222,419 2,616,362 Foreign 22,553 591,029 270,011 91,470 68,158 1,043,221 Tanker 305,663 0 941,152 0 513,584 1,760,399 Domestic 119,833 0 28,324 0 180,353 328,510 Foreign 185,830 0 912,828 0 333,231 1,431,889 Barge 22,367 4,569 227,383 0

  16. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  17. Regulatory impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    A regulatory impact analysis (RIA) of the industries affected by the Petroleum Refineries National Emissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this regulation. This (RIA) was required because the proposal is economically significant according to Executive Order 12866. The industry for which these impacts was computed was the petroleum refinery industry. Several different impact analyses were included in total or summarized in different chapters in the document. Those analyses were: the compliance cost analysis, the economic impact analysis, and the benefits analysis. Benefits and costs were then compared and discussed in the document`s last chapter.

  18. Efficiencies of free-air gas fumigation devices

    SciTech Connect (OSTI)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called fertilization'' effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  19. Efficiencies of free-air gas fumigation devices

    SciTech Connect (OSTI)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called ``fertilization`` effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  20. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect (OSTI)

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  1. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    11:34:24 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...NUS1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  2. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...RONUS1","MO9RONUS1","MBARONUS1" "Date","U.S. Refinery Net Input of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Refinery Net Input of Crude Oil (Thousand ...

  3. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:25:07 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  4. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:25:08 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  5. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOE Patents [OSTI]

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  6. Motiva Refinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some

  7. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  8. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download ... Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 View History Crude Oil and Petroleum Products ...

  9. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  10. Control of benzene waste NESHAP emissions from a petroleum refinery

    SciTech Connect (OSTI)

    Truelove, R.D. )

    1992-02-01

    This paper discusses the control of benzene emissions from a petroleum refinery as regulated by the National Emission Standards for Hazardous Air Pollutants (NESHAO) Subpart FF - National Standard for Benzene Waste Operations. This regulation is complex and confusing, but it provides flexibility to achieve compliance through various strategies to control benzene emissions. The first step to achieve compliance with the benzene waste NESHAP is understanding the regulation itself. Therefore, this paper summarizes the regulation to provide the reader with sufficient background to understand why specific controls are required for specific processes. The flexibility provided by the regulation to achieve compliance is not always readily apparent. This paper summarizes some of these subtleties. The author's involvement with an industry trade association in meetings with the Environmental Protection Agency during the development of the regulation allows some of EPA's expressions of their intent and internal interpretation to also be contained in the summary. The second step to achieve compliance with the benzene waste NESHAP is to actually design and operate a cost effective solution for a specific set of existing conditions within a refinery. This paper provides a case study of the equipment necessary to achieve compliance with the substantive requirements of the regulation at a large, integrated refinery. The retrofit requirements are very specific to the circumstances of this facility. Therefore, they will not be a universal, cost effective means of compliance for other refineries.

  11. Refinery Upgrading of Hydropyrolysis Oil from Biomass Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Upgrading of Hydropyrolysis Oil from Biomass March 25,2015 Technology Area Review PI - Terry Marker Gas Technology Institute This presentation does not contain any proprietary, confidential, or otherwise restricted information Goals * Develop a cost-effective route for converting biomass to transportation fuels by first converting biomass to hydropyrolysis oil and then upgrading the hydropyrolysis oil in existing refinery equipment - Study properties and corrosion characteristics of

  12. Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.

    SciTech Connect (OSTI)

    Wang, M.; Lee, H.; Molburg, J.

    2004-01-01

    Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation

  13. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Refinery Gases 2.8 2.0 2.0 2.1 2.6 4.0 1993-2016 Finished Motor Gasoline 45.7 46.7 47.3 49.3 47.5 46.0 1993-2016 Finished Aviation Gasoline 0.1 0.1 0.1 0.0 0.1 0.1 ...

  14. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils,

  15. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2007-02-01

    A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

  16. Congested site challenges designers of refinery IPP plant

    SciTech Connect (OSTI)

    Collins, S.

    1993-09-01

    This article describes a new IPP plant which has successfully met the challenges of an extremely congested site--including overcoming physical space constraints, meeting low air-emissions regulations, and minimizing water consumption--located next to a busy highway and near a major airport. The 650-MW Linden cogeneration plant is located on a 13.5-acre plot within the confines of Bayway Refinery Co's facility near Newark, NJ. Since starting operation one year ago, the plant has been reliably supplying steam for the refinery's process heating and mechanical drive needs and efficiently generating steam and electricity with minimal environmental impact. To achieve these goals, designers chose a combined-cycle configuration/generators, five supplementary-fired heat-recovery steam generators (HRSGs), and three 90-MW steam turbine/generators. Thus far, the facility has operated with an average availability above 90%.

  17. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect (OSTI)

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  18. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  19. Potential Vulnerability of US Petroleum Refineries to Increasing...

    Energy Savers [EERE]

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature andor Reduced Water Availability Potential Vulnerability of US Petroleum Refineries to ...

  20. NREL Refinery Process Shows Increased Effectiveness of Producing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 ...

  1. Air/fuel supply system for use in a gas turbine engine

    DOE Patents [OSTI]

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  2. Greenhouse Gas and Air Pollution Interactions and Synergies ...

    Open Energy Info (EERE)

    in five-year intervals through the year 2050. GAINS provides estimates on ambient air quality and the subsequent impacts on human health and ecosystems, as well as...

  3. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  4. Propane-air peakshaving impact on natural gas vehicles. Topical report, August 1993-January 1997

    SciTech Connect (OSTI)

    Richards, M.E.; Shikari, Y.; Blazek, C.F.

    1997-01-01

    Propane-air peakshaving activities can lead to higher-than-normal propane levels in natural gas. Natural gas vehicle (NGV) fueling station operation and NGV performance can be affected by the presence of excess propane in natural gas. To assess the impact on NGV markets due to propane-air peakshaving, a comprehensive survey of gas utilities nationwide was undertaken to compile statistics on current practices. The survey revealed that about half of the responders continue to propane-air peakshave and that nearly two-thirds of these companies serve markets that include NGV fueling stations. Based on the survey results, it is estimated that nearly 13,000 NGVs could be affected by propane-air peakshaving activities by the year 2000.

  5. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A. ...

  6. Emission factors for leaks in refinery components in heavy liquid service

    SciTech Connect (OSTI)

    Taback, H.; Godec, M.

    1996-12-31

    The objective of this program was to provide sufficient screening data so that EPA can develop an official set of emission factors (expressed in lb/hr/component) for refinery components (valves, flanged connectors, non-flanged connectors, pumps, open-ended lines, and other) in heavy liquid (BL) service. To accomplish this, 211,000 existing HL screening values from Southern California refineries were compiled and compared with 2,500 new HL screening measurements taken at two refineries in the state of Washington. Since Southern California is an area in extreme non-attainment of the National Ambient Air Quality Standards (NAAQS) and therefore has tight emission control regulations, it was felt that its screening data may not be representative of refineries without tight emission controls. Thus, the Southern California screening data were compared to screening measurements at refineries in an area that is in attainment of the NAAQS and without emissions control, which is the case for those refineries in Washington. It was found that statistically there was no significant difference in emission factors between the two areas and, therefore, there appears to be no difference in emissions from heavy liquid components in areas with and without leak detection and repair (LDAR) programs. The new emission factors range from 1/7 to 1/3 times the current EPA emission factors. This program was sponsored by the American Petroleum Institute (API) and an API report will soon be released providing complete details.

  7. Cooling air recycling for gas turbine transition duct end frame and related method

    DOE Patents [OSTI]

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  9. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  10. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect (OSTI)

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  11. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  12. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  13. Former Soviet refineries face modernization, restructuring

    SciTech Connect (OSTI)

    Not Available

    1993-11-29

    A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

  14. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect (OSTI)

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  15. Economic impact analysis for the petroleum refineries NESHAP. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The purpose of this economic impact analysis (EIA) is to evaluate the effect of the control costs associated with the Petroleum Refining National Emission Standard for Hazardous Air Pollutants (NESHAP) on the behavior of the regulated petroleum refiners. The EIA was conducted based on the cost estimates for one hybrid regulatory option above the maximum achievable control technology (MACT) 'floor' (or minimum standard). This analysis compares the quantitative economic impacts of regulation to baseline industry conditions which would occur in the absence of regulation. The economic impacts of regulation are estimated for the industry, using costs which were supplied on both a national and a refinery level.

  16. Iran to build new refinery at Arak

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper reports Iranian plans to construct a grassroots 150,000-b/d refinery in Arak. The plant, to be completed in early 1993, will be capable of producing unleaded gasoline and other light products.

  17. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley ... composition, sugar types, residue fuel value * TC models are sensitive to MC, much less ...

  18. Motiva Enterprises Refinery Expansion Groundbreaking | Department...

    Office of Environmental Management (EM)

    of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the largest in ... help America meet its petroleum needs well into the future. ...

  19. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  20. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information Myriant Succinic Acid BioRefinery DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Mark Shmorhun, Principal Investigator March 25, 2015 2 Goal Statement * Renewable Succinic Acid Production * A high value bio based chemical derived from renewable feedstocks * Validate proposed technology at a demonstration plant located in Lake Providence, LA. * Nameplate Capacity: 30 million lbs/year 3 Myriant's Succinic Acid BioRefinery (MySAB) Lake

  1. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 2012 2013 2014 2015 2016 View History Liquefied Refinery Gases 4.0 4.0 3.9 4.0 3.7 3.7 1993-2016 Finished Motor Gasoline 45.6 45.7 45.7 45.7 46.0 47.5 1993-2016 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2016 Kerosene-Type Jet Fuel 9.3 9.4 9.4 9.4 9.5 9.6 1993-2016 Kerosene 0.1 0.1 0.1 0.1 0.1 0.1 1993-2016 Distillate Fuel Oil 28.6 28.7 29.1 29.5 29.4 28.1 1993-2016 Residual Fuel Oil 3.4 3.1 2.9 2.6 2.5 2.5 1993-2016 Naphtha for Petrochemical Feedstock Use 1.3 1.3 1.5 1.2 1.1

  2. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  3. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  4. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOE Patents [OSTI]

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  5. Air separation membranes : an alternative to EGR in large bore natural gas engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Bihari, B.; McConnell, S.; Sekar, R.; Energy Systems

    2010-08-01

    Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from {Psi} :1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio {Psi} increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NO{sub x} emissions with a slight penalty in BTE.

  6. Gas chromatographic determination of C/sub 3/-C/sub 5/ aldehydes in air

    SciTech Connect (OSTI)

    Shefter, V.E.; Ivanova, N.F.; Slutskovskaya; Ushakova, V.A.

    1986-04-10

    The goal of this work is the elaboration of methods for the determination of propionic, butyric, and isovaleric aldehydes in air of work areas of the petrochemical industry. The main task is the elaboration of conditions for gas chromatographic seperation, the preparation of standard mixtures, and the working out of conditions for sample taking and preparation. Propionic, butyric, and isovaleric aldehydes were distilled througha column with efficiency of 20 t.t. (theoretical plates). For gas chromatographic determination a LKhM-8MD chromatograph with flame-ionization detector was used. The method of air sampling by preliminary concentration of aldehydes from air onto adsorbent followed by desorption by solvent allows samples to be stored 24 h and longer. In addition, the method is not difficault to carry out and requires simple apparatus and no constructional changes in the chromatograph which is very essential to practical methods.

  7. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64 ...

  8. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46 ...

  9. GreenHunter Biodiesel Refinery Grand Opening | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer ...

  10. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries...

    U.S. Energy Information Administration (EIA) Indexed Site

    as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal Cracking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Thermal ...

  11. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Aromatics Production Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Asphalt and Road Oil ...

  12. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  13. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  15. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  16. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  17. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect (OSTI)

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  18. U.S. Refinery Net Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12,813 12,516 12,287 12,009 12,148 11,916 2005-2014 Liquefied Refinery Gases 623 659 619 630 623 653 2005-2014 EthaneEthylene 19 20 20 18 7 6 2005-2014 Ethane 14 14 14 13 7 5...

  19. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  20. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  1. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  2. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  3. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  4. Soot filter in the exhaust gas flow of air-compressing internal combustion engines

    SciTech Connect (OSTI)

    Abthoff, J.; Gabler, R.; Schuster, H.

    1980-06-03

    A soot filter adapted to be arranged in an exhaust gas stream of air-compressing internal combustion engines is disclosed. The soot filter includes a cylindrical filter housing arranged in proximity of the exhaust gas stream of the internal combustion engine with inlet pipe connecting studs from outlet side of the internal combustion engine being connected to the cylindrical filter housing. A ceramic material of a hollow cylindrical shape is arranged in the filter housing at a distance from a circumferential wall of the filter housing. The ceramic material consists of an outer layer of loose ceramic fiber wadding and of inner woven ceramic fiber matting. A hollow space inside of the ceramic fiber material is connected, in an axial direction, with exhaust gas line of the internal combustion engine.

  5. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect (OSTI)

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  6. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 545,351 529,373 583,548 564,902 593,799 590,222 1981-2016 Crude Oil 495,806 460,629 499,255 478,254 504,549 492,960 1981-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 20,717 16,455 15,101 13,489 13,196 12,892 1981-2016 Pentanes Plus 4,878 3,963 4,345 4,213 4,959 4,630 1981-2016 Liquefied Petroleum Gases 15,839 12,492 10,756 9,276 8,237 8,262 1981-2016 Ethane 1981-1992 Normal Butane 9,502 6,776 4,226 2,929 1,957 1,967

  7. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 6,345,372 6,422,710 6,406,693 6,577,077 6,779,342 6,882,105 1981-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 1981-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 161,479 178,884 186,270 181,112 186,601 188,270 1981-2015 Pentanes Plus 56,686 63,385 63,596 60,394 56,037 53,404 1981-2015 Liquefied Petroleum Gases 104,793 115,499 122,674 120,718 130,564 134,866 1981-2015 Ethane 1981-1992 Normal Butane 43,802

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial

  9. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    SciTech Connect (OSTI)

    West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.50.2, 1.30.6, and 2.21.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

  10. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report

    SciTech Connect (OSTI)

    Wong, H. C.

    2003-07-01

    Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

  11. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  12. U.S. Refineries Competitive Positions

    U.S. Energy Information Administration (EIA) Indexed Site

    Refineries Competitive Positions 2014 EIA Energy Conference July 14, 2014 Joanne Shore American Fuel & Petrochemical Manufacturers Refiners competitive positions Function of optimizing feedstock costs, operating costs, and revenues through mix of products sold 2 Propane/butane Chemicals Gasoline Jet Fuel Diesel/heating oil Lubes Fuel for ships Asphalt FEEDSTOCKS Qualities: - Heavy/Light - Sweet/Sour Location (Distance) - Domestic - International PROCESSING Size Complexity Treating (sulfur)

  13. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  14. Integrating NABC bio-oil intermediates into the petroleum refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrating NABC bio-oil intermediates into the petroleum refinery Integrating NABC bio-oil intermediates into the petroleum refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory biomass13_foust_2-d.pdf (713.06 KB) More Documents & Publications NABC Webinar Opportunities for Biomass-Based Fuels

  15. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  16. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  17. Market Assessment of Refinery Outages Planned for October 2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average values for 2002-2009 excluding months in 2005, 2006, and 2008 affected by hurricanes & refinery closures. Similarly, typical historical values are average planned...

  18. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  19. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  2. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Outages: First-Half 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Outages: First-Half 2016 March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Refinery Outages: First-Half 2016 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  4. Lead exposure in a petroleum refinery during maintenance and repair activities

    SciTech Connect (OSTI)

    Booher, L.E.; Zampello, F.C.

    1994-02-01

    Exposure to inorganic lead (Pb) may result in a petroleum refinery when paints that contain Pb are disturbed. Frequently performed activities that disturb paint include welding, burning, cutting, abrasive blasting, sanding, grinding, and needle gun chipping. The purpose of the study reported in this article was: to determine the Pb content of paint on metal surfaces in a petroleum refinery; to measure air Pb concentrations during abrasive blasting, torch cutting and burning, and power disk sanding/grinding on surfaces coated with Pb paint; and to evaluate the effectiveness of worker exposure controls by monitoring worker blood Pb (PbB) levels. Pb levels on representative metal surfaces were measured, and most painted surfaces were found to contain significant amounts of Pb. Personal air samples collected indicated that abrasive blasting and torch burning/cutting resulted in elevated air Pb levels, while short duration power disk sanding (less than 30 minutes duration) did not result in elevated air Pb levels as compared to the Occupational Safety and Health Administration permissible exposure limit. Despite these elevated air Pb levels, exposure controls including personal protective equipment, housekeeping, showering, work area isolation, and training effectively prevented elevated worker PbB levels. 6 refs., 4 figs., 3 tabs.

  5. Vanadium removal from petroleum refinery wastewater

    SciTech Connect (OSTI)

    Nurdogan, Y.; Meyer, C.L.

    1996-11-01

    Although a numerical effluent limit has not been proposed for vanadium, San Francisco Bay Area refineries have been investigating reasonable source control and treatment measures to limit the discharge of vanadium as part of their National Pollution Discharge Elimination System (NPDES) permit requirements because vanadium may contribute to aquatic toxicity. The NPDES permit issued for the Shell Martinez Manufacturing Complex (MMC) by the Regional Water Quality Control Board (CRWQCB) required that in the investigation of control strategies for vanadium, consideration must be given to source control measures that would reduce the discharge to the extent practicable. This paper summarizes the results of bench- and pilot-scale studies to remove vanadium from process effluent of the Shell MMC. This study has resulted in the following conclusions: vanadium in the Shell MMC refinery wastewater is generated by two major sources--the Flexicoker and Stretford processes; ferric and ferrous salts are both effective in removing vanadium from wastewaters; there are tradeoffs between the initial vanadium concentration, the final pH, and the final dissolved vanadium concentration, for both ferrous and ferric reagents; recycle of iron hydroxide sludge can reduce the amount of reagent needed to attain a given vanadium concentration; other things being equal, less ferric than ferrous reagent is required to produce the same removal of vanadium; the dewatered sludge from the pilot plant was tested for its hazardous waste characteristics; a high pH sludge regeneration and reuse process appears to be a promising method of cleaning up the hazardous iron sludge.

  6. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  7. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  9. Texas Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    8-2014 From Gas Wells 36,820 27,421 23,791 15,953 13,650 10,924 1978-2014 From Oil Wells 991 1,153 0 552 386 299 1978-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2003-2014 Marketed Production 37,811 28,574 23,791 16,506 14,036 11,222 1992-2014 Dry Production 16,506 11,222 2012

    Propane-Air 1981-2005 Refinery Gas 1981-2005 Other 1999-2005

  10. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 337,235 321,406 357,855 343,444 362,961 360,498 2005-2016 Liquefied Refinery Gases 10,719 12,130 20,317 24,640 27,574 26,382 2005-2016 Ethane/Ethylene 165 114 141 146 170 25 2005-2016 Ethane 142 96 120 130 139 8 2005-2016 Ethylene 23 18 21 16 31 17 2005-2016 Propane/Propylene 17,998 16,402 18,157 17,729 18,884 17,690 2005-2016 Propane 8,571 8,208 9,095 9,011 10,066 9,549 2005-2016 Propylene 9,427 8,194 9,062 8,718 8,818 8,141 2005-2016

  11. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  12. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher inmore » homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  13. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect (OSTI)

    Child, C.J.

    1995-12-31

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  15. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. ); Roderick, D. ); Nastri, A. )

    1991-02-18

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  16. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA...

    Office of Scientific and Technical Information (OSTI)

    The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The ...

  17. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  18. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  19. Effective Fouling Minimization Increases the Efficiency and Productivity of Refineries

    Broader source: Energy.gov [DOE]

    This factsheet details a project to improve operating procedures, including physical and chemical methods and the use of high-temperature coatings, to allow refineries to operate equipment below threshold fouling conditions and use the most effective minimization techniques.

  20. DOE - Office of Legacy Management -- International Rare Metals Refinery Inc

    Office of Legacy Management (LM)

    - NY 38 Rare Metals Refinery Inc - NY 38 Site ID (CSD Index Number): NY.38 Site Name: International Rare Metals Refinery, Inc. Site Summary: Site Link: External Site Link: Alternate Name(s): Canadian Radium and Uranium Corporation Alternate Name Documents: NY.38-1 Location: 69 Kisco Avenue, Mt. Kisco, New York Location Documents: NY.38-1 NY.38-3 Historical Operations (describe contaminants): Manufactured and distributed radium and polonium products. Historical Operations Documents: NY.38-5

  1. Urban leakage of liquefied petroleum gas and its potential impact of Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-12-01

    Seventy eight whole air samples were collected at various park locations throughout Mexico City and later assayed for methane, carbon monoxide, 20 halocarbons and 40 C{sub 2}-C{sub 10} hydrocarbons. Propane had the highest median mixing ratio value of all assayed non-methane hydrocarbon compounds (NMHCs) with a concentration as high as 0.1 ppmv. The concentration of n-butane, i-butane, n-pentane and i-pentane were all notably elevated as well. The only significant identified source of propane in Mexico City is liquefied petroleum gas (LPG), which also has a strong component of C{sub 4} and C{sub 5} alkanes. All of these alkanes were present at concentrations well above those observed in other cities where LPG is not the main domestic fuel. Data strongly suggest that as much as 50% of total Mexico City NMHCs is a result of losses associated with the transfer, storage and delivery of LPG. Additionally, using median concentrations and laboratory determined hydroxyl reaction rate constants, LPG emissions account for about 20% of initial reactivities. This suggests that LPG losses may significantly impact photochemical oxidant levels in Mexico City.

  2. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,568,301 4,484,600 4,395,128 4,433,893 4,349,316 4,273,291 2005-2015 Liquefied Refinery Gases 240,454 225,992 230,413 227,349 238,485 223,448 2005-2015 Ethane/Ethylene 7,228 7,148 6,597 2,626 2,038 2,134 2005-2015 Ethane 5,200 5,105 4,835 2,439 1,777 1,835 2005-2015 Ethylene 2,028 2,043 1,762 187 261 299 2005-2015 Propane/Propylene 204,223 201,492 202,309 206,038 214,378 203,954 2005-2015 Propane 102,913 98,508 100,933 103,568 111,813 103,253

  3. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Stocks Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 18,525 19,638 17,733 17,607 17,525 17,252 1993-2016 PAD District 1 2,242 2,546 1,550 1,573 1,593 1,969 1993-2016 Connecticut 1993-2005 Delaware 1993-2010 Florida 926 877 835 853 781 998 1993-2016 Georgia 175 221 158 163 190 268 1993-2016 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 4 6 8 1993-2016 New Hampshire 1993-2006 New Jersey 534 804 23 60 98 16 1993-2016 New York 14 23 18 11 25 16 1993-2016 North Carolina 170

  4. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOE Patents [OSTI]

    Bland, Robert J.; Horazak, Dennis A.

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  5. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  6. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  7. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  8. EIA-820, Annual Refinery Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil that first traveled 5,000 miles by tanker and then traveled 105 miles by pipeline to the refinery, report pipeline as the method of transportation. * If the refinery...

  9. Mazheikiai refinery modernization study. Executive summary. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

  10. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental

  11. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  12. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  13. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    SciTech Connect (OSTI)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  14. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  15. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  16. Determination of carbonyl sulfide in air by derivatization with 1,3-diaminopropane and capillary gas chromatographic analysis

    SciTech Connect (OSTI)

    Leiber, M.A.; Berk, H.C.

    1985-12-01

    A method for monitoring personal exposure to carbonyl sulfide in air has been developed and validated. Carbonyl sulfide is collected on Woelm column chromatography polyamide coated with 1,3-diaminopropane as an in situ derivatizing agent. This is followed by desorption with 0.01 N NaOH solution and analysis by capillary gas chromatography with flame ionization detection. The method was laboratory validated over the range of 1-20 ppm carbonyl sulfide in air with an average recovery of 90.4% and a relative standard deviation range of 0.030-0.080. Humidity, elevated temperature, and storage effects are reported along with a comparison to a previously reported method of analysis involving titration. The results of field tests conducted at an industrial location are reported. 16 references, 2 figures, 5 tables.

  17. Low temperature thermal treatment for petroleum refinery waste sludges

    SciTech Connect (OSTI)

    Ayen, R.J.; Swanstrom, C.P. )

    1992-05-01

    Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

  18. Refinery Outages: Description and Potential Impact on Petroleum Product Prices

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that the Energy Information Administration conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

  19. Energy Efficiency Roadmap for Petroleum Refineries in California

    SciTech Connect (OSTI)

    none,

    2004-04-01

    Through the California State IOF initiative, the California Energy Commission PIER Program developed a petroleum refining roadmap to identify energy issues and priorities unique to the refining industry in California and create a plan for future R&D that could help California refineries implement energy efficient technologies.

  20. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  1. Gasification of refinery sludge in an updraft reactor for syngas production

    SciTech Connect (OSTI)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M.

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4} compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.

  2. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  3. Natural Gas Vans To Help Clear the Air In Metro Denver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SuperShuttle purchased the 10 compressed natural gas (CNG) vans to transport passengers ... Five of the 10 new vans are dedicated fuel vehicles, which means they run only on CNG. The ...

  4. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  5. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect (OSTI)

    Fisk, William J.

    2006-05-01

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  6. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 58,555 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  7. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  8. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  9. Recent federal initiatives to promote unconventional gas: High octane delivery of just hot air?

    SciTech Connect (OSTI)

    Griff, M.T.

    1995-10-01

    This paper provides an overview of recent initiatives of the United States which promote greater use of natural gas and unconventional gas as one part of this nations`s larger response to the global warming threat. Measurable increases in greenhouse gas concentrations since the beginning of the industrial revolution have led to the belief in the existence of a global warming problem. The international community has responded to the global warming threat with the United Nations Framework Convention on Climate Change which is directed toward the stabilization of greenhouse gases in the atmosphere. The Climate Change Action Plan is the Clinton Administration`s detailed response to the global warming threat. It is designed to return United States emissions of greenhouse gases to their 1990 levels by the year 2000. The Action Plan targets all greenhouse gases and emphasizes energy efficiency. Significant regulatory reformation designed to increase the efficiency of the natural gas industry has already occurred and will be continued. Recovery of methane emissions from landfills will be encouraged through indentification of suitable sites and use of existing technology and development of new technology. Recovery of methane from coal mining operations will be promoted by targeting 50 of the gassiest mines in the United States. Even if the Action Plan is fully implemented. legitimate questions arise as to whether its goals will be achieved as a result of funding shortfalls.

  10. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  11. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  12. Alternative future environmental regulatory approaches for petroleum refineries.

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

    2000-01-01

    Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

  13. Martinez Refinery Completes Plant-Wide Energy Assessment

    SciTech Connect (OSTI)

    2002-11-01

    This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

  14. Kidney cancer and hydrocarbon exposures among petroleum refinery workers

    SciTech Connect (OSTI)

    Poole, C.; Dreyer, N.A.; Satterfield, M.H.; Levin, L.

    1993-12-01

    To evaluate the hypothesis of increased kidney cancer risk after exposure to hydrocarbons, especially those present in gasoline, we conducted a case-control study in a cohort of approximately 100,000 male refinery workers from five petroleum companies. A review of 18,323 death certificates identified 102 kidney cancer cases, to each of whom four controls were matched by refinery location and decade of birth. Work histories, containing an average of 15.7 job assignments per subject, were found for 98% of the cases and 94% of the controls. Tb each job, industrial hygienists assigned semiquantitative ratings for the intensity and frequency of exposures to three hydrocarbon categories: nonaromatic liquid gasoline distillates, aromatic hydrocarbons, and the more volatile hydrocarbons. Ratings of {open_quotes}present{close_quotes} or {open_quotes}absent{close_quotes} were assigned for seven additional exposures: higher boiling hydrocarbons, polynuclear aromatic hydrocarbons, asbestos, chlorinated solvents, ionizing radiation, and lead. Each exposure had either no association or a weak association with kidney cancer. For the hydrocarbon category of principal a priori interest, the nonaromatic liquid gasoline distillates, the estimated relative risk (RR) for any exposure above refinery background was 1.0 (95% confidence interval [CI] 0.5-1.9). Analyses of cumulative exposures and of exposures in varying time periods before kidney cancer occurrence also produced null or near-null results. In an analysis of the longest job held by each subject (average duration 9.2 years or 40% of the refiner&y work history), three groups appeared to be at increased risk: laborers (RR = 1.9,95% CI 1.0-3.9); workers in receipt, storage, and movements (RR = 2.5,95% CI 0.9-6.6); and unit cleaners (RR = 2.3, 95% CI 0.5-9.9). 53 refs., 7 tabs.

  15. Renewable Fuels from Algae Boosted by NREL Refinery Process | Bioenergy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  16. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than

  17. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  18. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  19. Application of x-ray imaging to oil refinery processes

    SciTech Connect (OSTI)

    Gamblin, B.R.; Newton, D.; Smith, G.B.

    1996-12-31

    X-ray imaging is a non-intrusive method of visualizing the flow patterns of rapidly changing multiphase systems and is based on the variation in the absorbance of X-rays by the different phases. BP has applied the X-ray technique to a variety of problems encountered within the oil and petrochemical industries in which two or three phases are present e.g. Fluid Catalytic Cracking (riser, stripper, regenerator) and three phase systems such as slurry bubble column reactors. In general, to obtain the maximum productivity from these units it is essential to optimize the contacting between a catalyst and a process fluid or fluids. This work reports on laboratory experimental work in which full scale refinery components were visualized in order to characterize the existing designs. Modified designs were then tested and evaluated before implementation on the refinery unit. Economic assessments of some of the benefits which can be realized in an oil refinery as a result of such design improvements are also presented. 3 refs., 1 fig.

  20. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  1. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,178,588 4,091,601 4,007,375 4,037,265 3,954,862 3,894,471 2005-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 2005-2015 Natural Gas Plant Liquids 154,941 171,074 175,607 168,808 172,563 171,936 2005-2015 Pentanes Plus 54,697 61,059 59,432 56,153 52,853 50,850 2005-2015 Liquefied Petroleum Gases 100,244 110,015 116,175 112,655 119,710 121,086 2005-2015 Normal Butane 39,253 42,087 45,747 42,461 45,916 47,870 2005-2015

  2. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  3. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  4. Gas-phase photocatalytic oxidation: Cost comparison with other air pollution control technologies

    SciTech Connect (OSTI)

    Turchi, C S; Wolfrum, E J; Miller, R A

    1994-11-01

    Gas-phase photocatalytic oxidation (PCO) appears to be particularly well suited for waste streams with low pollutant concentrations (1000 ppm or less) and low to moderate flow rates (< 20,000 cubic feet per minute, cfm). The PCO technology is modular in nature and thus is well suited to treat dispersed or low flow rate streams. This same attribute minimizes the advantages of scale for PCO and makes the technology comparatively less attractive for high volume waste streams. Key advantages for PCO lie in its low operating cost and ability to completely destroy pollutants at ambient temperature and pressure.

  5. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    SciTech Connect (OSTI)

    MaClean, H.L.; Lave, L.B.

    2000-01-15

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

  6. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 302,955 290,718 325,588 311,454 327,623 327,323 2005-2016 Crude Oil 495,806 460,629 499,255 478,254 504,549 492,960 2005-2016 Natural Gas Plant Liquids 18,673 14,924 13,318 12,174 12,857 12,478 2005-2016 Pentanes Plus 4,389 3,616 3,922 4,036 4,765 4,354 2005-2016 Liquefied Petroleum Gases 14,284 11,308 9,396 8,138 8,092 8,124 2005-2016 Normal Butane 7,947 5,592 2,866 1,791 1,812 1,829 2005-2016 Isobutane 6,337 5,716 6,530 6,347 6,280

  7. Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery

    Reports and Publications (EIA)

    2009-01-01

    The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery.

  8. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn,...

  9. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Energy Information Administration (EIA), Energy Data Reports, Petroleum Refineries in the United States, annual reports. * 1981-2005EIA, Petroleum Supply Annual (PSA), ...

  10. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  11. Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report discusses potential impacts of increased water temperature and reductions in water availability on petroleum refining and presents case studies related to refinery water use. Report...

  12. US DOE Refinery Water Study 01-19-16 PublicE_docx

    Office of Environmental Management (EM)

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature andor Reduced Water Availability Executive Summary of Final Report Prepared for US Department of ...

  13. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOE Patents [OSTI]

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  14. Evaluation audit report. Romanian petroleum refinery, Petrobrazi, Ploiesti. A selective refinery analysis for operation, energy use, environmental impacts, and improvement opportunities, May 1992. Export trade information

    SciTech Connect (OSTI)

    Jurish, R.A.

    1992-05-01

    The objective of the report is to present opportunities for energy improvement and reduction of emissions for the Petrobrazi refinery which is located 12 kilometers southwest of Ploiesti, Romania. Other defined and specified goals of the study include a consideration of the refinery's operating flexibility; an evaluation of fuel switching including the use of coal as a substitute for energy supply; and an observation of the refinery's general condition and its maintenance practice for its effect on operations. A further objective is to characterize the modifications for achieving expected benefits in accordance with the magnitude of effort and the capital requirements anticipated.

  15. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  17. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  18. Development of a gas-promoted oil agglomeration process: Air-promoted oil agglomeration of moderately hydrophobic coals. 2: Effect of air dosage in a model mixing system

    SciTech Connect (OSTI)

    Drzymala, J.; Wheelock, T.D.

    1996-07-01

    In a selective oil agglomeration process for cleaning coal, fine-size particles are suspended in water and treated with a water-immiscible hydrocarbon which can range from pentane to heavy fuel oil. Vigorous agitation is applied to disperse the oil and to produce frequent contacts between oil-coated particles. In Part 1 of this series of papers, it was shown that a definite amount of air had to be present in a laboratory mixing unit which produced a moderate shear rate in order to form compact, spherical agglomerates in an aqueous suspension of moderately hydrophobic coal using heptane or hexadecane as an agglomerate. In this paper, the effects of different amounts of air including dissolved air are discussed. The results indicate that a small amount of air will trigger the process of agglomeration, and even the air dissolved in water under equilibrium conditions at room temperature and pressure is sufficient to promote agglomeration provided it is released from solution.

  19. Biodegradation of oil refinery wastes under OPA and CERCLA

    SciTech Connect (OSTI)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  20. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  1. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  2. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in

  3. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  4. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total 579,640 560,048 615,821 596,893 629,128 623,399 1981-2016 Liquefied Refinery Gases 10,719 12,130 20,317 24,640 27,574 26,382 1981-2016 Ethane/Ethylene 165 114 141 146 170 25 1981-2016 Ethane 142 96 120 130 139 8 1993-2016 Ethylene 23 18 21 16 31 17 1993-2016 Propane/Propylene 17,998 16,402 18,157 17,729 18,884 17,690 1981-2016 Propane 8,571 8,208 9,095 9,011 10,066 9,549 1995-2016 Propylene 9,427 8,194 9,062 8,718 8,818 8,141 1993-2016

  5. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 18,452 18,673 18,564 19,106 19,654 19,893 1983-2015 Liquefied Refinery Gases 659 619 630 623 653 612 1984-2015 Ethane/Ethylene 20 20 18 7 6 6 1985-2015 Ethane 14 14 13 7 5 5 1993-2015 Ethylene 6 6 5 1 1 1 1993-2015 Propane/Propylene 560 552 553 564 587 559 1985-2015 Propane 282 270 276 284 306 283 2004-2015 Propylene 278 282 277 281 281 276 1993-2015 Normal Butane/Butylene 83 48 56 57 70 55 1985-2015 Normal Butane 88 53 63 64 76 64 1993-2015

  6. Optimization of ferric hydroxide coprecipitation process for selenium removal from petroleum refinery stripped four water

    SciTech Connect (OSTI)

    Gerhardt, M.B.; Marrs, D.R.; Roehl, R.

    1996-12-31

    Iron coprecipitation was used in bench-scale tests to remove selenium from stripped sour water generated by two petroleum refineries. Chlorine dioxide and hydrogen peroxide were found to convert selenocyanate in the stripped sour water to selenite, which can be removed by iron coprecipitation. An iodometric titration procedure was developed to determine the required oxidant dose. Iron coprecipitation reduced selenium concentrations by 40 to 99 percent in stripped sour water after chlorine dioxide pretreatment Removal was less effective with hydrogen peroxide as the oxidant: total selenium concentrations were reduced by 28 to 92 percent in stripped sour water after hydrogen peroxide pretreatment. Highest removals were obtained at the highest oxidant and iron doses. Sludges produced in coprecipitation tests were hazardous under California regulations. Ozone oxidized selenocyanate but prevented ferric hydroxide precipitation or coagulation. Air was ineffective at selenocyanate oxidation. Repeatedly contacting iron hydroxide with stripped sour water pretreated with hydrogen peroxide, in a simulation of a countercurrent adsorption process, increased the selenium adsorbed on the solids from 32 to 147 pg selenium per mg of iron, but some of the adsorbed selenite was oxidized to selenate and desorbed back into solution.

  7. Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude oil prices decline. In its new monthly forecast, the U.S. Energy Information Administration expects pump prices will average $3.38 a gallon during the second half of this year. That's down from the current weekly price of $3.50. A recovery in oil refinery fuel production, particularly from facilities that were temporary

  8. Opportunities for Biomass-Based Fuels and Products in a Refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory biomass13_male_2-d.pdf (891.45 KB) More Documents & Publications FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds 2013

  9. Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries

    SciTech Connect (OSTI)

    1995-07-01

    The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

  10. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities