National Library of Energy BETA

Sample records for air pollution connecticut

  1. Chemiluminescent detection of organic air pollutants (Conference...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 ENVIRONMENTAL SCIENCES; POLLUTANTS; CHEMILUMINESCENCE; AIR POLLUTION; CHEMICAL COMPOSITION; ORGANIC COMPOUNDS; AIR POLLUTION MONITORING; OZONE; ...

  2. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  3. Connecticut - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Connecticut

  4. Connecticut - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Connecticut

  5. Connecticut - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Connecticut

  6. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  7. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  8. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  9. Windham County, Connecticut: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    South Windham, Connecticut South Woodstock, Connecticut Sterling, Connecticut Thompson, Connecticut Wauregan, Connecticut Willimantic, Connecticut Windham, Connecticut...

  10. Hawaii Air Pollution Control Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    Air Pollution Control Permits Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Air Pollution Control Permits Webpage Abstract Information...

  11. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  12. Air pollution transport modeling. Master's thesis

    SciTech Connect (OSTI)

    Paal, D.M.

    1993-12-01

    This research effort addresses modeling of the transportation of air pollution in the atmosphere and the numerical analysis of the partial differential equations used in such modeling. Three Gaussian models are examined and compared using example problems. Several finite difference schemes are developed to solve the partial differential equations used in air pollution transport modeling. This study examines three Gaussian models: SCREEN, AFTOX, and the program GAUSPLUM. The model GAUSPLUM is developed in this study and uses the Ada programming language and the analytic solution to the advection-diffusion equation. Numerical analysis of the partial differential equations (PDE) used in air pollution modeling is also examined. The equations are generally parabolic or hyperbolic PDE's. The following are examined in this research: the advection equation; the one-, two-, and three-dimensional advection-diffusion equations; and the two-dimensional steady-state equation. Air Pollution Transport, Modeling, Finite Difference Scheme, Stability, Consistency, Convergence, Advection-Diffusion Equations.

  13. New Haven County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Connecticut North Branford, Connecticut North Haven, Connecticut Orange, Connecticut Oxford, Connecticut Prospect, Connecticut Seymour, Connecticut Southbury, Connecticut...

  14. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  15. Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...

    Open Energy Info (EERE)

    Department of Public Health and Environment of the construction of a new source of pollution. Form Type ApplicationNotice Form Topic Air Pollutant Emission Notice &...

  16. Nevada Bureau of Air Pollution Control Permit Forms Webpage ...

    Open Energy Info (EERE)

    Bureau of Air Pollution Control Permit Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Bureau of Air Pollution Control Permit...

  17. Commonwealth of Virginia, State Air Pollution Control Board,...

    Energy Savers [EERE]

    Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air ...

  18. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  19. Substantial Contribution of Anthropogenic Air Pollution to Catastrophi...

    Office of Scientific and Technical Information (OSTI)

    Substantial Contribution of Anthropogenic Air Pollution to Catastrophic Floods in Southwest China Citation Details In-Document Search Title: Substantial Contribution of ...

  20. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  1. WAC 173-400 - General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 - General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-400 - General...

  2. Observing Emissions of Air Pollutants from Space | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study the future turnover of vehicle fleets around the world and the likely effects on air pollution and climate. This project has used satellite data to monitor CO, CO2,...

  3. WAC - 173-400 General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-400 General...

  4. Lidar techniques for chemical and aerosol air pollution studies

    SciTech Connect (OSTI)

    Hardesty, R.M.

    1993-12-31

    At the Wave Propagation Laboratory (WPL), lidar methods are being applied in several areas of air pollution research. Differential absorption lidar (DIAL) systems for measuring ozone, ethylene, and other pollutants have been recently developed. The ozone instrument profiles ozone concentration in the boundary layer and lower troposphere to study sources, sinks, and transport of ozone. A goal is to combine DIAL and Doppler lidar techniques for measurement of the vertical fluxes of ozone and other pollutants. Doppler lidars have been also used at WPL to study visibility reduction caused by aerosol pollutants at the Grand Canyon, and to investigate dispersion of hazardous emissions near the Rocky Flats nuclear plant.

  5. Tolland County, Connecticut: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    LLC Catelectric Corp Places in Tolland County, Connecticut Andover, Connecticut Bolton, Connecticut Central Somers, Connecticut Columbia, Connecticut Coventry Lake,...

  6. Solar Connecticut | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Jump to: navigation, search Name: Solar Connecticut Address: PO Box 515 Place: Higganum, Connecticut Zip: 06441 Region: Northeast - NY NJ CT PA Area Website:...

  7. Lichens as bioindicators of geothermal air pollution in central Italy

    SciTech Connect (OSTI)

    Loppi, S.

    1996-11-01

    The suitability of lichens as bioindicators of geothermal air pollution was evaluated in central Italy. Fifty-one sites were sampled in the Travale-Radicondoli geothermal field, an area of about 15 km{sup 2}. Lichens on 1-5 trees per station were sampled, using 30 x 50 cm grids on tree boles, where lichens were most dense. Index of Atmospheric Purity (IAP) was calculated as the sum of the frequencies of all lichen species present at the station. Using automatic mapping programs, the area was divided into four air quality zones and the lowest IAP values were found within about 500 m of geothermal power plants. No direct measurements of air pollution are available for the whole study area, however, other studies show that air pollution levels (mercury, boron) fall with distance from a geothermal source. Also no substrate parameter (height, circumference, bark pH, and buffer capacity of the trees) discriminates between IAP zones. This suggests that air pollution arising from geothermal emissions is responsible for the zonation shown, with values for species richness and IAP rising with distance from geothermal installations. It is concluded that lichens are reliable bioindicators of geothermal pollution. 64 refs., 1 fig., 3 tabs.

  8. A pound of prevention: Air pollution and the fuel cell

    SciTech Connect (OSTI)

    Johnson, B.L.; Rose, R.

    1996-12-31

    The expanded use of fuel cells in transportation and power generation is an exciting proposition for public health officials because of the potential of this technology to help reduce air pollution levels around the globe. Such work is about prevention -- prevention of air emissions of hazardous substances. Prevention is a key concept in public health. An example is quarantine, which aims to prevent the spread of a disease-causing organism. In the environmental arena, prevention includes cessation of pollution. Air pollution prevention policies also have a practical impact. Sooner or later ideas on technology, especially new technology, must be sold to policy makers, legislators, and eventually the public. Advocating technologies that will improve human health and welfare can be an effective marketing strategy.

  9. Commonwealth of Virginia, State Air Pollution Control Board, Order by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 | Department of Energy Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Docket No. EO-05-01: This is a Consent Order issued under the authority of Va. Code § § 10.1-1307D and 10.1-1307.1, between the

  10. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    SciTech Connect (OSTI)

    Einfeld, W.; Church, H.W.

    1995-03-01

    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  11. H.A.R. 11-60.1 - Air Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    60.1 - Air Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-60.1 - Air Pollution ControlLegal...

  12. InMAP: a new model for air pollution interventions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations the air pollution outcome generally causing the largest monetized health damages attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmorechemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The In

  13. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  14. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  15. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  16. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  17. Connecticut Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  18. A methodology for evaluating air pollution strategies to improve the air quality in Mexico City

    SciTech Connect (OSTI)

    Barrera-Roldan, A.S.; Guzman, F.; Hardie, R.W.; Thayer, G.R.

    1995-05-01

    The Mexico City Air Quality Research Initiative has developed a methodology to assist decision makers in determining optimum pollution control strategies for atmospheric pollutants. The methodology introduces both objective and subjective factors in the comparison of various strategies for improving air quality. Strategies or group of options are first selected using linear programming. These strategies are then compared using Multi-Attribute Decision Analysis. The decision tree for the Multi-Attribute Decision Analysis was generated by a panel of experts representing the organizations in Mexico that are responsible for formulating policy on air quality improvement. Three sample strategies were analyzed using the methodology: one to reduce ozone by 33% using the most cost effective group of options, the second to reduce ozone by 43% using the most cost effective group of options and the third to reduce ozone by 43% emphasizing the reduction of emissions from industrial sources. Of the three strategies, the analysis indicated that strategy 2 would be the preferred strategy for improving air quality in Mexico City.

  19. Connecticut Clean Energy Fund

    Broader source: Energy.gov [DOE]

    Connecticut's 1998 electric restructuring legislation (Public Act 98-28) created separate funds to support energy efficiency and renewable energy.* This information summarizes the renewable energ...

  20. Connecticut State Historic Preservation Programmatic Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut State Historic Preservation Programmatic Agreement Connecticut State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, ...

  1. Greenwich, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Greenwich, Connecticut Davenport Resources LLC Digital Power Capital LLC Registered Financial Organizations in Greenwich, Connecticut Asia...

  2. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nations site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale background levels or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius

  3. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  4. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  5. Health effects of fine particulate air pollution: lines that connect

    SciTech Connect (OSTI)

    Judith C. Chow; John G. Watson; Joe L. Mauderly; Daniel L. Costa; Ronald E. Wyzga; Sverre Vedal; George M. Hidy; Sam L. Altshuler; David Marrack; Jon M. Heuss; George T. Wolff; C. Aden Pope III; Douglas W. Dockery

    2006-10-15

    In the 2006 A&WMA Critical Review on 'Health Effects of fine particulate air pollution: lines that connect' Drs. C. Arden Pope III and Douglas Dockery addressed the epidemiological evidence for the effects of particulate matter (PM) on human health indicators. The review documents substantial progress since the 1997 Critical Review in the areas of: (1) short-term exposure and mortality; (2) long-term exposure and mortality; (3) time scales of exposure; (4) the shape of the concentration-response function; (5) cardiovascular disease; and (6) biological plausibility. This critical review discussion was compiled from written submissions and presentation transcripts, which were revised for conciseness and to minimize redundancy. The invited discussants were as follows were: Dr. Joe L. Mauderly, Dr. Daniel L. Costa, Dr. Ronald E. Wyzga, and Dr. Sverre Vedal. The contributing discussants were: Dr. George M. Hidy, Sam L. Altshuler, Dr. David Marrack, Jon M. Heuss, and Dr. George T. Wolff. See Coal Abstracts entry Sep 2006 00390 for the Critical Review. 80 refs.

  6. NAC 445B.287 et seq - Air Pollution Control Operating Permits...

    Open Energy Info (EERE)

    287 et seq - Air Pollution Control Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.287 et seq -...

  7. NAC 445B.3485 et seq - Air Pollution Control: Class III Operating...

    Open Energy Info (EERE)

    85 et seq - Air Pollution Control: Class III Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC...

  8. NAC 445B.3453 et seq - Air Pollution Control: Class II Operating...

    Open Energy Info (EERE)

    53 et seq - Air Pollution Control: Class II Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3453...

  9. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  10. NAC 445B.3361 et seq - Air Pollution Control: Class I Operating...

    Open Energy Info (EERE)

    361 et seq - Air Pollution Control: Class I Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3361...

  11. IDAPA 58.01.01 - Rules for the Control of Air Pollution in Idaho...

    Open Energy Info (EERE)

    1 - Rules for the Control of Air Pollution in Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.01 - Rules...

  12. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China Citation Details In-Document Search Title: Energy-Efficien...

  13. WAC 173-460 - Controls for New Sources of Toxic Air Pollutants...

    Open Energy Info (EERE)

    73-460 - Controls for New Sources of Toxic Air Pollutants Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-460 -...

  14. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_lawson.pdf (221.69 KB) More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air

  15. Greenhouse Gas and Air Pollution Interactions and Synergies ...

    Open Energy Info (EERE)

    in five-year intervals through the year 2050. GAINS provides estimates on ambient air quality and the subsequent impacts on human health and ecosystems, as well as...

  16. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ozone Formation as a Function of NOx Reductions Summary and Implications for Air Quality Impacts The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

  17. Connecticut Wells | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6751 Sector: Geothermal energy Product: A Connecticut-based geothermal heat pump installer and well driller. Coordinates: 40.04446, -80.690839 Show Map Loading...

  18. Connecticut's 5th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in Connecticut. Registered Energy Companies in Connecticut's 5th congressional district Efficiency Lighting & Maintenance Inc Electro Energy Inc FuelCell Energy Inc FuelCell...

  19. Suffield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 Registered Energy Companies in Suffield, Connecticut Infinity Fuel Cell and Hydrogen References US Census Bureau Incorporated place and minor civil...

  20. Dominion Retail Inc (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Dominion Retail Inc (Connecticut) Jump to: navigation, search Name: Dominion Retail Inc Place: Connecticut Phone Number: 1-888-216-3718 Website: www.dominionenergy.comen Outage...

  1. Connecticut's 3rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence...

  2. Connecticut's 2nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. US Recovery Act Smart Grid Projects in Connecticut's 2nd congressional district...

  3. Spark Energy, LP (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Connecticut) Jump to: navigation, search Name: Spark Energy, LP Place: Connecticut Phone Number: 1-877-547-7275 Website: www.sparkenergy.comenconnect Outage Hotline:...

  4. Liberty Power Corp. (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Connecticut) Jump to: navigation, search Name: Liberty Power Corp. Place: Connecticut Phone Number: 1-866-769-3799 Website: www.libertypowercorp.comresid Outage Hotline:...

  5. Freedom Energy (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Energy (Connecticut) Jump to: navigation, search Name: Freedom Energy Place: Connecticut Phone Number: (603)-625-2244 Website: felpower.comabout-us Outage Hotline: (603)-625-2244...

  6. Connecticut's Health Impact Study Rapidly Increasing Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts June 18, 2014 - 10:49am ...

  7. Litchfield County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Capital Energy Generation Facilities in Litchfield County, Connecticut New Milford Gas Recovery Biomass Facility Places in Litchfield County, Connecticut Bantam,...

  8. Connecticut/Incentives | Open Energy Information

    Open Energy Info (EERE)

    State Rebate Program No CL&P - Residential Heating and Cooling Rebates (Connecticut) Utility Rebate Program No CT Solar Loan (Connecticut) State Loan Program Yes Clean Energy...

  9. Stamford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Connecticut 4 References Registered Energy Companies in Stamford, Connecticut Clean Diesel Technologies Inc International Plasma Sales Group IPSG Natural State Research, Inc....

  10. Connecticut Light and Power | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Light and Power Address: P.O. Box 270 Place: Hartford, Connecticut Zip: 06141 Region: Northeast - NY NJ CT PA Area Sector: Services Product: Green Power Marketer...

  11. An empirical analysis of exposure-based regulation to abate toxic air pollution

    SciTech Connect (OSTI)

    Marakovits, D.M.; Considine, T.J.

    1996-11-01

    Title III of the 1990 Clean Air Act Amendments requires the Environmental Protection Agency to regulate 189 air toxics, including emissions from by-product coke ovens. Economists criticize the inefficiency of uniform standards, but Title III makes no provision for flexible regulatory instruments. Environmental health scientists suggest that population exposure, not necessarily ambient air quality, should motivate environmental air pollution policies. Using an engineering-economic model of the United States steel industry, we estimate that an exposure-based policy can achieve the same level of public health as coke oven emissions standards and can reduce compliance costs by up to 60.0%. 18 refs., 3 figs., 1 tab.

  12. National emmission standards for hazardous air pollutants, Submittal -- 1993

    SciTech Connect (OSTI)

    Black, S.C.

    1994-06-01

    This report discusses the effects on the environment caused by weapons testing at the Nevada Test Site. Topics include: emission of radionuclides into the air, atmospheric pumping of noble gases, tunnel operations, drillbacks, laboratories, radioactive waste management site, and plutonium contamination of surface areas.

  13. Systemic effects of urban form on air pollution and environmental quality

    SciTech Connect (OSTI)

    Okamoto, P.C.

    1997-12-31

    The form and design of cities and towns have a direct impact on the quality of the natural environment, particularly air and water quality. This paper illustrates some of the dynamic relationships between the form of urban environments and air and water pollution. Recent research suggests how urban form affects environmental quality in at least three ways: (a) how suburban development and its dependency on the private motor vehicle increases air pollution, (b) how exterior building materials help to generate urban heat islands and ozone precursors, and (c) how conventional stormwater drainage systems transport polluted urban runoff into waterways. Today`s aging urban infrastructure provides an important and timely opportunity to re-examine the design of cities and towns with a goal of enhancing overall environmental quality. Many miles of roads, freeways, bridges, and stormwater culverts and pipes are in poor condition and need to be repaired or replaced, while many cities are now failing to meet air and water quality standards designed to protect human and environmental health. This paper also explores seven urban planning and design concepts that could reduce the magnitude of air and water pollution in urban environments and help to improve the health of both cities and their residents.

  14. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  15. National Emission Standards for Hazardous Air Pollutants Calendar Year 2006

    SciTech Connect (OSTI)

    NSTec Environmental Technical Services

    2007-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

  16. Effects of air pollution on the respiratory health of children: a cross-sectional study

    SciTech Connect (OSTI)

    Spinaci, S.; Arossa, W.; Bugiani, M.; Natale, P.; Bucca, C.; de Candussio, G.

    1985-09-01

    To investigate the effects of air pollution on the respiratory health of children, a subject of some controversy, a comparative study was undertaken of 2,385 school children who lived in central urban, peripheral urban, and suburban areas. Daily monitoring of sulfur dioxide and total suspended particle concentrations in all areas showed that pollutant concentrations in central and peripheral urban areas were above commonly accepted safety levels for respiratory health, while concentrations in the suburban area were within acceptable limits. A questionnaire administered to each mother assessed environmental exposure to pollutants in the household, the occurrence of respiratory symptoms as well as lung diseases as diagnosed by a physician, and general information. Children were interviewed about smoking habits and any acute respiratory symptoms. Children also performed standard lung function tests. Results showed that children from both urban areas had lessened pulmonary function and a higher prevalence of bronchial secretion with common colds than did those from the suburban area. These differences persisted after corrections for exposure to indoor pollutants, active or passive smoking, socioeconomic status, and sex. Parental cigarette smoking was related to a fall in forced expiratory volume in 1 second and an increased incidence of acute respiratory illnesses and chronic cough in children. Although boys had higher lung volumes and lower air flow, regression analysis showed no significant influence of the interactions sex-geographic area and sex-smoking on lung function. It was concluded that air pollution has a significant effect on the respiratory health of children.

  17. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect (OSTI)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  18. Pulmonary function and respiratory symptoms of school children exposed to ambient air pollution

    SciTech Connect (OSTI)

    Kim, Yoon Shin; Ko, Ung Ring

    1996-12-31

    This study was undertaken to evaluate the health effect of air pollution on pulmonary function and respiratory symptoms of Korean school children between 7 and 10 years of age during November 1995-January 1996. A standard respiratory symptom questionnaire was administered and spirometry was performed to examine pulmonary function of 121 children in an urban polluted area, Seoul, and of 119 children in non-polluted area, Sokcho, respectively. There was significant difference in the level of pulmonary function [forced expiratory volume in second (FEV{sub 1.0}) and forced vital capacity (FVC)] between exposed groups to polluted area and non-polluted area. Parental smoking was significantly related to respiratory symptoms of cough, phlegm, and the level of pulmonary function. The observed changes in FEV{sub 1.0} and FVC seemed to relate to home cooking fuel, not to respiratory symptoms. The additional longitudinal work that carefully monitors ambient and indoor air pollution and health effects data should be conducted to confirm these results.

  19. Covanta Mid-Connecticut Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass...

  20. Veteran's Affairs Health Care System, West Haven, Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Veteran's Affairs Health Care System, West Haven, Connecticut Veteran's Affairs Health Care System, West Haven, Connecticut Overview The West Haven (Connecticut) Campus of the...

  1. Connecticut Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Connecticut Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Connecticut. Connecticut Summary of Reported ...

  2. Connecticut Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. Connecticut Region High School Regional Connecticut Connecticut...

  3. Connecticut Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Connecticut Region Middle School Regional Connecticut Connecticut Regional...

  4. Air Force pollution prevention research and development program

    SciTech Connect (OSTI)

    Montoya, G.

    1995-12-01

    The prevention surveys pollution prevention R&D in selected technology areas to meet high priority customer needs. Projects are categorized into four areas: Ozone Deleting Compound (ODC) Elimination, HAZMAT Materials and Substitution, HAZMAT Waste Reduction, and Volatile Organic Compound (VOC) Elimination. Each category has specific goals. The ODC Elimination goal was to eliminate the purchases of ODCs by 1 Apr 94. The HAZMAT Materials and Process Replacement goal is to reduce the purchase of EPA 17 materials from 1992 baseline 50% by the end of 1996. The HAZMAT Waste Reduction goal is 25% by the end of 1996, and 50% by the end of 1999. VOC elimination goals are included in the HAZMaT Materials and Substitution and HAZMAT Waste Reduction areas. Each category consists of a portfolio of projects which meet high priority customer technology needs (TNs) and contributes to meeting specific goals. The presentation provides more detailed information for the On-Board Halon Replacement Program, Atomic Oxygen Cleaning process for Oxygen Systems, Non-Chemical Metal Surface Preparation, and LARPS.

  5. 1990 INEL national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.'' Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  6. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect (OSTI)

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  7. National Emission Standards for Hazardous Air Pollutants, June 2005

    SciTech Connect (OSTI)

    Robert F. Grossman

    2005-06-01

    The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following

  8. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    SciTech Connect (OSTI)

    Giovanis, Eleftherios

    2015-06-15

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM{sub 2.5}) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  9. National Emission Standards for Hazardous Air Pollutants Calendar Year 1999

    SciTech Connect (OSTI)

    R. F. Grossman

    2000-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy's Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,561 km{sup 2} (1,375 mi{sup 2}), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  10. National Emission Standards for Hazardous Air Pollutants Submittal - 1998

    SciTech Connect (OSTI)

    Stuart Black; Yvonne Townsend

    1999-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,500 km2 (1,350 mi2), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi)north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  11. National Emission Standards for Hazardous Air Pollutants Calendar Year 2001

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a

  12. Preliminary results of a forty-home indoor air pollutant monitoring study

    SciTech Connect (OSTI)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Womack, D.R.; Morris, S.A.; Westley, R.R.; Gupta, K.C.

    1983-01-01

    A detailed study of the pollutants found in forty homes in the Oak Ridge/Knoxville, Tennessee, area is being conducted. Formaldehyde measurements were made on a twice-per-month schedule using passive permeation monitors with a sampling period of 24 hours. In addition to the formaldehyde measurements, other pollutants, including volatile organics, particulates, nitrogen oxides, and carbon monoxide, were measured during a one-day visit to each house. Radon levels were measured during a one-day visit to each house. Randon levels were measured by an active monitor located in the house for a period of one week. Air infiltration rates and meteorological data were also recorded. Pollutant levels were generally below any applicable guidelines with the exception of radon and formaldehyde which were elevated in some of the houses. Results of the first phase of the monitoring study are presented.

  13. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  14. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  15. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2013 INL Report for Radionuclides [2014

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2014-06-01

    This report documents the calendar year 2013 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 3.02 E-02 mrem per year, 0.30 percent of the 10 mrem standard.

  16. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.; Hemenway, A.

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  17. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. ); Hemenway, A. )

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  18. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect (OSTI)

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  19. Polycyclic aromatic hydrocarbons in olive fruits as a measure of air pollution in the valley of Florence (Italy)

    SciTech Connect (OSTI)

    Ignesti, G.; Lodovici, M.; Dolara, P.; Lucia, P.; Grechi, D.

    1992-06-01

    Plants have often been used for monitoring air pollution, such as Tradescantia for detecting mutagenic chemicals, or mosses which are bio-accumulators of heavy metals. Mosses have also been used as indicators of pollution from hexachlorobenzene and polycyclic aromatic hydrocarbons. PAH are present in most crops, and are deposited on the foliar surface of plants exposed to polluted air. Plants grown in heavily polluted environments have a higher concentration of PAH than those growing in clean environments, and plants grown in cabinets with filtered air have a very low concentration of PAH. Alimentary oils have high concentrations of PAH due to crop exposure to air pollutants and a high solubility of PAH in oils. PAH are important initiators of some human cancers and their monitoring is believed to be important for public health. Most Italian towns are heavily polluted by car exhaust and industrial sources, and a high concentration of PAH has been reported in the air particulate of urban areas. On the basis of these premises we thought it of interest to determine the concentration of some PAH in the olive fruits of trees growing in the valley of Florence (Italy), to establish if this approach could be useful for monitoring air pollution by PAH. 9 refs., 3 figs.

  20. Glacial Energy Holdings (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Connecticut) Jump to: navigation, search Name: Glacial Energy Holdings Place: Connecticut Phone Number: 800.286.2000 or 800.722.5584 Website: www.glacialenergy.comoutage-n Outage...

  1. GEXA Corp. (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    GEXA Corp. (Connecticut) Jump to: navigation, search Name: GEXA Corp. Place: Connecticut Phone Number: 866-961-9399 Website: www.gexaenergy.com Outage Hotline: 866-961-9399...

  2. Milford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in New Haven County, Connecticut. It falls under Connecticut's 3rd...

  3. Connecticut Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",544,363,556,510,391 "Solar","-","-","-","-","-" "Wind","-","-","-","-","...

  4. Bridgeport, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Bridgeport, Connecticut Clean Diesel Technologies References US Census Bureau Incorporated place and minor civil...

  5. Connecticut Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Connecticut Data Dashboard The data dashboard for Connecticut, a partner in the Better Buildings Neighborhood Program. Connecticut Data Dashboard (310.65 KB) More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard

  6. Air pollution control systems in WtE units: An overview

    SciTech Connect (OSTI)

    Vehlow, J.

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  7. Category:EZFeed Policies | Open Energy Information

    Open Energy Info (EERE)

    (Connecticut) Abatement of Air Pollution: Control of Sulfur Dioxide Emissions from Power Plants and Other Large Stationary Sources of Air Pollution (Connecticut) Abatement of Air...

  8. Results of a forty-home indoor-air-pollutant monitoring study

    SciTech Connect (OSTI)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.; Gupta, K.C.

    1983-01-01

    A study was conducted in 40 homes in the areas of Oak Ridge and west Knoxville, Tennessee. Concentrations of CO/sub x/, NO/sub x/, particulates, formaldehyde, and radon, as well as selected volatile organic compounds, were quantified. In addition, information was collected on air exchange rates, meteorological conditions, and structural and consumer products. This paper summarizes some of the results and provides specific examples of increased indoor concentrations of pollutants due to the operation of a kerosene space heater, a gas range, and a wood/coal stove. Results showed formaldehyde levels frequently exceeded 0.1 ppM; were highest in newer homes; and fluctuate diurnally and seasonally. Radon levels frequently exceeded 3 pCi/L and correlated strongly with house location. Organic pollutant levels were at least an order of magnitude higher indoors than outdoors. Combustion sources (especially unvented) significantly increased levels of CO/sub x/, NO/sub x/, and particulates. Air exchange rates were increased nearly two-fold by operation of the HVAC central air circulation fan.

  9. Pollutant transfer through air and water pathways in an urban environment

    SciTech Connect (OSTI)

    Brown, M.; Burian, S.; McPherson, T.; Streit, G.; Costigan, K.; Greene, B.

    1998-12-31

    The authors are attempting to simulate the transport and fate of pollutants through air and water pathways in an urban environment. This cross-disciplinary study involves linking together models of mesoscale meteorology, air pollution chemistry and deposition, urban runoff and stormwater transport, water quality, and wetland chemistry and biology. The authors are focusing on the transport and fate of nitrogen species because (1) they track through both air and water pathways, (2) the physics, chemistry, and biology of the complete cycle is not well understood, and (3) they have important health, local ecosystem, and global climate implications. The authors will apply their linked modeling system to the Los Angeles basin, following the fate of nitrates from their beginning as nitrate-precursors produced by auto emissions and industrial processes, tracking their dispersion and chemistry as they are transported by regional winds and eventually wet or dry deposit on the ground, tracing their path as they are entrained into surface water runoff during rain events and carried into the stormwater system, and then evaluating their impact on receiving water bodies such as wetlands where biologically-mediated chemical reactions take place. In this paper, the authors wish to give an overview of the project and at the conference show preliminary results.

  10. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Sullivan, I.K.

    1993-12-31

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information.

  11. The effects of air pollution regulations on the US refining industry. Task 3

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Numerous air pollution regulations affecting petroleum refineries recently have been promulgated, have been proposed, or are under consideration at the federal, state, and local level. As shown in Figure ES-1, all of these environmental regulations are intended to take effect over the relatively short time period from 1989 through 1995. In the aggregate these regulatory activities have significant implications for the US refining industry and the Nation, including: Major investment requirements; changes in industry profitability; potential closure of some refineries; and potential changes in crude oil or product import dependence. At issue is whether the cumulative effect of these regulations could so adversely affect the US refining industry that US national security would be affected. In addition to the regulations outlined in Figure ES-1, President Bush recently presented a major new plan to improve the nation`s air quality. The aspects of the President`s plan that could strongly affect US refineries are summarized below.

  12. Market Transformation in Connecticut: Integrating Home Performance Into

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Trades | Department of Energy Transformation in Connecticut: Integrating Home Performance Into Existing Trades Market Transformation in Connecticut: Integrating Home Performance Into Existing Trades Market Transformation in Connecticut: Integrating Home Performance Into Existing Trades, Evolving to Whole Home Success, Session 2: Sustainable Business Models presentation. Provides an overview of Connecticut's various home energy programs, the Connecticut Energy Efficiency Fund, and

  13. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  14. Pollution prevention incentives and disincentives created by the Clean Air Act

    SciTech Connect (OSTI)

    Webb, C.F.; Wolffe, G.S.

    1998-12-31

    Environmental laws and regulations have not always been implemented in a manner which allows the consideration of pollution prevention alternatives as a means of achieving progress toward air quality goals. Recently EPA has been making strides to re-interpret laws and regulations to be more flexible and encourage pollution prevention projects which do not involve end-of-the-pipe controls. For instance when conducting control technology evaluations such as Best Available Control Technology (BACT) and Lowest Achievable Emission Rate (LAER), facilities can and should take into consideration P2 options which accomplish the same emission reduction goals as traditional end-of-the-pipe controls. There are also new emissions trading provisions building on those allowed in the acid rain and offset trading programs which promise to make P2 projects much more cost effective. Several traditional command and control programs of the CAA also promote P2 projects. For instance emission reductions realized through P2 projects show managers a direct cost savings due to reductions in Title V Facility annual emissions fees and possibly a direct cost benefit through sale of emission credits. Furthermore, the CAA encourages P2 indirectly through the detailed understanding of processes gained from emissions inventories and Risk Management Plans. However, many CAA prescriptive programs create disincentives for industry to select pollution prevention alternatives. This paper will discuss incentives and disincentives for using P2 alternatives to comply with the CAA and discuss some of the recent changes designed to encourage P2.

  15. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    SciTech Connect (OSTI)

    Schwartz, J. ); Wypij, D.; Dockery D.; Ware, J.; Spengler, J.; Ferris, B. Jr. ); Zeger, S. )

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two data sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.

  16. Substantial Contribution of Anthropogenic Air Pollution to Catastrophic Floods in Southwest China

    SciTech Connect (OSTI)

    Fan, Jiwen; Rosenfeld, Daniel; Yang, Yan; Zhao, Chun; Leung, Lai-Yung R.; Li, Zhanqing

    2015-07-20

    Extreme events such as heat waves, floods, and droughts, have become more frequent since the 1950s1-2. This is likely caused through changes in greenhouse gases and aerosols that perturb the radiative balance and alter cloud processes3-8. On 8-9 July, 2013 a catastrophic flood devastated several metropolitan areas at the foothills of the Sichuan Basin. Using a high-resolution coupled atmosphere-chemistry model, we show that this disaster was not entirely natural. Ensemble simulations robustly show that the severe anthropogenic pollution in the Sichuan Basin significantly enhanced rainfall intensity over the mountainous area northwest of the basin. The heavy air pollution (mainly black carbon) absorbs solar radiation in the lower atmosphere at the expense of surface cooling, which stabilizes the atmosphere and suppresses convection and precipitation over the basin. The enhanced moisture and moist static energy over the basin are then transported by the prevailing winds towards the mountains during daytime. As the excessive moist air that reaches the foothills at night is orographically lifted, very strong convection develops and produces extremely heavy precipitation. Reducing black carbon (BC) emissions in the basin can effectively mitigate the extreme precipitation in the mountains. Unfortunately, BC emissions have been increasing in many developing countries including China9, making them more vulnerable to enhanced disasters as reported here.

  17. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  18. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    SciTech Connect (OSTI)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D.

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  19. Categorical Exclusion Determinations: Connecticut | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Categorical Exclusion Determinations: Connecticut Location Categorical Exclusion Determinations issued for actions in Connecticut. DOCUMENTS AVAILABLE FOR DOWNLOAD January 27, 2016 CX-100460 Categorical Exclusion Determination Additive Manufacturing and the Environment: A Special Issue of the Journal of Industrial Ecology Award Number: DE-EE0007317 CX(s) Applied: A9 Advanced Manufacturing Office Date: 01/27/2016 Location(s): CT Office(s): Golden Field Office September 17, 2015

  20. Mid-Connecticut MRF offers integrated approach

    SciTech Connect (OSTI)

    Thoresen, C.

    1993-11-01

    Mandatory recycling hit Connecticut in 1987, with a goal set at recycling 25% of the state's municipal solid waste. Once municipalities, haulers, and commercial operators were required to separate recyclables from garbage, no project moved forward to take the materials. CRRA already had 44 municipalities using its Mid-Connecticut waste-to-energy facility. The quickest way to accommodate these towns was to move aggressively forward to develop a Mid-Connecticut materials recycling facility and bring the recyclables in.

  1. Connecticut's Health Impact Study Rapidly Increasing Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts | Department of Energy Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts June 18, 2014 - 10:49am Addthis Weatherization workers are trained in the house as a system approach. The Energy Department's Weatherization Assistance Program funded technical assistance as part of Connecticut's Health Impact Assessment project. | Photo courtesy of Weatherization Assistance Program Technical

  2. Recovery Act State Memos Connecticut

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Guilford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Guilford is a town in New Haven County, Connecticut.1 Registered Energy Companies in...

  4. Windsor, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Windsor, Connecticut Infinity Fuel Cell and Hydrogen Inc References US Census Bureau Incorporated place and minor...

  5. Connecticut's 1st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    1st congressional district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp...

  6. Hartford County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Systems Connecticut Light and Power DBS Energy Inc Energy Recovery Associates Infinity Fuel Cell and Hydrogen National Energy Resource Corporation Pioneer Valley Photovoltaics...

  7. Thompson, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Thompson, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9587089, -71.8625715 Show Map Loading map... "minzoom":false,"mapping...

  8. Stamford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Stamford, Connecticut Clean Diesel Technologies Inc International Plasma Sales Group IPSG Natural State Research, Inc. Noble Americas...

  9. Fairfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fairfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1412077, -73.2637258 Show Map Loading map... "minzoom":false,"mappin...

  10. Bethlehem, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bethlehem, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6398184, -73.2084471 Show Map Loading map... "minzoom":false,"mappin...

  11. Glastonbury Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Glastonbury Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7009327, -72.5995347 Show Map Loading map......

  12. Quinebaug, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Quinebaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0237077, -71.9497954 Show Map Loading map... "minzoom":false,"mappin...

  13. Sherman, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sherman, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5792607, -73.4956795 Show Map Loading map... "minzoom":false,"mappings...

  14. Middlesex County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Middlesex County, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4698505, -72.4731529 Show Map Loading map......

  15. Lake Pocotopaug, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Lake Pocotopaug, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5984325, -72.5103654 Show Map Loading map......

  16. Simsbury Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Simsbury Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.88295, -72.81138 Show Map Loading map... "minzoom":false,"mapp...

  17. Lyme, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lyme, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.400812, -72.3429525 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Canterbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Canterbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6984319, -71.9709075 Show Map Loading map... "minzoom":false,"mappi...

  19. Woodstock, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woodstock, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9484307, -71.9739625 Show Map Loading map... "minzoom":false,"mappin...

  20. Newington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6978777, -72.7237063 Show Map Loading map... "minzoom":false,"mappin...

  1. Stratford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stratford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1845415, -73.1331651 Show Map Loading map... "minzoom":false,"mappin...

  2. Norwalk, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Norwalk, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1175966, -73.4078968 Show Map Loading map... "minzoom":false,"mappings...

  3. Plainfield Village, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Plainfield Village, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6753587, -71.9253141 Show Map Loading map......

  4. Clinton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clinton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2787104, -72.5275903 Show Map Loading map... "minzoom":false,"mappings...

  5. Westbrook Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Westbrook Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.28008, -72.443454 Show Map Loading map......

  6. Shelton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shelton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3164856, -73.0931641 Show Map Loading map... "minzoom":false,"mappings...

  7. Chester, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chester, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4031547, -72.4509204 Show Map Loading map... "minzoom":false,"mappings...

  8. Trumbull, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Trumbull, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2428742, -73.2006687 Show Map Loading map... "minzoom":false,"mapping...

  9. Burlington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Burlington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7692648, -72.9645484 Show Map Loading map... "minzoom":false,"mappi...

  10. Bristol, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bristol, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6717648, -72.9492703 Show Map Loading map... "minzoom":false,"mappings...

  11. Eastford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eastford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9020418, -72.0797979 Show Map Loading map... "minzoom":false,"mapping...

  12. Hampton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hampton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7839873, -72.0547977 Show Map Loading map... "minzoom":false,"mappings...

  13. Brooklyn, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brooklyn, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7881541, -71.9497957 Show Map Loading map... "minzoom":false,"mapping...

  14. Moosup, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moosup, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7128767, -71.8809054 Show Map Loading map... "minzoom":false,"mappingse...

  15. Berlin, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Berlin, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.621488, -72.7456519 Show Map Loading map... "minzoom":false,"mappingser...

  16. Wilton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1953739, -73.4378988 Show Map Loading map... "minzoom":false,"mappingse...

  17. Moodus, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moodus, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5028768, -72.4500867 Show Map Loading map... "minzoom":false,"mappingse...

  18. Madison, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Madison, Connecticut: Energy Resources (Redirected from Madison, CT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2795429, -72.5984258 Show Map Loading...

  19. Thompsonville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Thompsonville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9970407, -72.5989777 Show Map Loading map......

  20. Middletown, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Middletown, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5623209, -72.6506488 Show Map Loading map... "minzoom":false,"mappi...

  1. Central Manchester, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Central Manchester, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7812924, -72.514567 Show Map Loading map......

  2. Norwalk, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Norwalk, Connecticut: Energy Resources (Redirected from Norwalk, CT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1175966, -73.4078968 Show Map Loading...

  3. South Woodstock, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Woodstock, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9389864, -71.9595179 Show Map Loading map......

  4. Plainfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Plainfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6764876, -71.915073 Show Map Loading map... "minzoom":false,"mappin...

  5. Enfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Enfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9762077, -72.5917554 Show Map Loading map... "minzoom":false,"mappings...

  6. Plainville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Plainville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6745432, -72.8581558 Show Map Loading map... "minzoom":false,"mappi...

  7. Killingworth, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Killingworth, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3581545, -72.5637023 Show Map Loading map... "minzoom":false,"map...

  8. Southwood Acres, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Southwood Acres, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.962567, -72.571962 Show Map Loading map......

  9. Monroe, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Monroe, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3325962, -73.2073358 Show Map Loading map... "minzoom":false,"mappingse...

  10. Georgetown, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Georgetown, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2556512, -73.4348438 Show Map Loading map... "minzoom":false,"mappi...

  11. Essex, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Essex, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.353432, -72.3906406 Show Map Loading map... "minzoom":false,"mappingserv...

  12. Canton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Canton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8245424, -72.8937122 Show Map Loading map... "minzoom":false,"mappingse...

  13. Haddam, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Haddam, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4773213, -72.5120333 Show Map Loading map... "minzoom":false,"mappingse...

  14. Killingly, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Killingly, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8122401, -71.8334145 Show Map Loading map... "minzoom":false,"mappin...

  15. Westbrook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Westbrook, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2853769, -72.4475874 Show Map Loading map... "minzoom":false,"mappin...

  16. Storrs, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Storrs, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8084314, -72.2495231 Show Map Loading map... "minzoom":false,"mappingse...

  17. Yalesville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yalesville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4937084, -72.8237109 Show Map Loading map... "minzoom":false,"mappi...

  18. Putnam, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Putnam, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9150978, -71.9089613 Show Map Loading map... "minzoom":false,"mappingse...

  19. Hartford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hartford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7637111, -72.6850932 Show Map Loading map... "minzoom":false,"mapping...

  20. Southington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Southington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5964869, -72.8776013 Show Map Loading map... "minzoom":false,"mapp...

  1. Collinsville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Collinsville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8128757, -72.9201022 Show Map Loading map... "minzoom":false,"map...

  2. Windham, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Windham, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6998208, -72.1570219 Show Map Loading map... "minzoom":false,"mappings...

  3. Southbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Southbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4814847, -73.2131693 Show Map Loading map... "minzoom":false,"mappin...

  4. Putnam District, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Putnam District, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9257629, -71.9104934 Show Map Loading map......

  5. Hazardville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hazardville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9873187, -72.5448093 Show Map Loading map... "minzoom":false,"mapp...

  6. Higganum, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Higganum, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4970432, -72.5570348 Show Map Loading map... "minzoom":false,"mapping...

  7. Wauregan, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wauregan, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7442655, -71.9092393 Show Map Loading map... "minzoom":false,"mapping...

  8. Salisbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salisbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.983426, -73.4212318 Show Map Loading map... "minzoom":false,"mapping...

  9. Ashford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ashford, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8731532, -72.1214653 Show Map Loading map... "minzoom":false,"mappings...

  10. Norwich, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Norwich, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5242649, -72.0759105 Show Map Loading map... "minzoom":false,"mappings...

  11. Weatogue, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weatogue, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8437093, -72.8284317 Show Map Loading map... "minzoom":false,"mapping...

  12. Brookfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brookfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4825947, -73.4095652 Show Map Loading map... "minzoom":false,"mappi...

  13. Tariffville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tariffville, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9087087, -72.7600951 Show Map Loading map... "minzoom":false,"mapp...

  14. Scotland, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scotland, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6984319, -72.081465 Show Map Loading map... "minzoom":false,"mappings...

  15. Sterling, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sterling, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.707599, -71.828682 Show Map Loading map... "minzoom":false,"mappingse...

  16. Westport, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Westport, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1414855, -73.3578955 Show Map Loading map... "minzoom":false,"mapping...

  17. Willimantic, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willimantic, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7106543, -72.2081338 Show Map Loading map... "minzoom":false,"mapp...

  18. Bloomfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bloomfield, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.826488, -72.7300945 Show Map Loading map... "minzoom":false,"mappin...

  19. Fenwick, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fenwick, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2709316, -72.3536947 Show Map Loading map... "minzoom":false,"mappings...

  20. Cromwell, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cromwell, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5950989, -72.6453705 Show Map Loading map... "minzoom":false,"mapping...

  1. Pomfret, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pomfret, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8975977, -71.9625736 Show Map Loading map... "minzoom":false,"mappings...

  2. Redding, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Redding, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3025955, -73.3834532 Show Map Loading map... "minzoom":false,"mappings...

  3. Kensington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kensington, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6353769, -72.7687083 Show Map Loading map... "minzoom":false,"mappi...

  4. Danielson, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Danielson, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8025986, -71.8859054 Show Map Loading map... "minzoom":false,"mappin...

  5. Glastonbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Glastonbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7123218, -72.608146 Show Map Loading map... "minzoom":false,"mappi...

  6. Newtown, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newtown, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4139843, -73.3034505 Show Map Loading map... "minzoom":false,"mappings...

  7. Easton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Easton, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2528738, -73.2973394 Show Map Loading map... "minzoom":false,"mappingse...

  8. Durham, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Durham, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4817647, -72.6812059 Show Map Loading map... "minzoom":false,"mappingse...

  9. Manchester, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Manchester, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7759324, -72.5214754 Show Map Loading map... "minzoom":false,"mappi...

  10. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. Branford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Apricus Solar References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  13. Granby, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  14. Hartland, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  15. Chaplin, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  16. Farmington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  17. Marlborough, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  18. Ridgefield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  19. Simsbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  20. Danbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Danbury, Connecticut Electro Energy Inc FuelCell Energy Inc FuelCell Energy, Inc. New England Energy Management Inc Praxair Technipower Systems formerly Solomon...

  1. Connecticut/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Weston, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weston, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2009294, -73.3806748 Show Map Loading map... "minzoom":false,"mappingse...

  3. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are ...

  4. Portland, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titlePortland,Connecticut&oldid...

  5. Middlefield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleMiddlefield,Connecticut&old...

  6. Wethersfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleWethersfield,Connecticut&ol...

  7. Danbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Danbury, Connecticut: Energy Resources (Redirected from Danbury, CT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.394817, -73.4540111 Show Map Loading...

  8. Connecticut Light & Power- Small ZREC Tariff

    Broader source: Energy.gov [DOE]

    In July 2011, Connecticut enacted legislation amending the state's Renewables Portfolio Standard and creating two new classes of renewable energy credits (RECs): Zero Emission Renewable Energy...

  9. Avon, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Avon is a town in Hartford County, Connecticut.1 Registered Energy Companies in Avon,...

  10. Wallingford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4570418, -72.8231552 Show Map Loading map... "minzoom":false,"mappingservice":"...

  11. EERE Success Story-California and Connecticut: National Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel ...

  12. Hess Retail Natural Gas and Elec. Acctg. (Connecticut) | Open...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Connecticut) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Connecticut Phone Number: 212-997-8500...

  13. Consolidated Edison Sol Inc (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Edison Sol Inc (Connecticut) Jump to: navigation, search Name: Consolidated Edison Sol Inc Place: Connecticut Phone Number: 1-888-320-8991 Website:...

  14. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second...

    Energy Savers [EERE]

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and ...

  15. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third...

    Energy Savers [EERE]

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and ...

  16. Integrys Energy Services, Inc. (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Integrys Energy Services, Inc. (Connecticut) Jump to: navigation, search Name: Integrys Energy Services, Inc. Place: Connecticut Phone Number: 1-866-938-2139 Website:...

  17. City of South Norwalk, Connecticut (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    South Norwalk, Connecticut (Utility Company) Jump to: navigation, search Name: City of South Norwalk Place: Connecticut Phone Number: (203) 866-3366 Website: snew.org Outage...

  18. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  19. City of Norwich, Connecticut (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Norwich, Connecticut (Utility Company) Jump to: navigation, search Name: City of Norwich Place: Connecticut Phone Number: (860) 887-2555 Website: norwichpublicutilities.com...

  20. City of Jewett City, Connecticut (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Jewett City, Connecticut (Utility Company) Jump to: navigation, search Name: Jewett City City of Place: Connecticut Phone Number: (860) 376-2877 Website: jewettcitydpu.com Outage...

  1. South Jersey Energy Company (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Company (Connecticut) Jump to: navigation, search Name: South Jersey Energy Company Place: Connecticut Phone Number: 800-266-6020 Website: www.southjerseyenergy.com Twitter:...

  2. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  3. Noble Americas Energy Solutions LLC (Connecticut) | Open Energy...

    Open Energy Info (EERE)

    LLC (Connecticut) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Connecticut Phone Number: 1 877273-6772 Website: www.noblesolutions.com Outage...

  4. Suez Energy Resources North America (Connecticut) | Open Energy...

    Open Energy Info (EERE)

    Suez Energy Resources North America (Connecticut) Jump to: navigation, search Name: Suez Energy Resources North America Place: Connecticut Phone Number: 713.636.0000 or...

  5. Energy Plus Holdings LLC (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC (Connecticut) Jump to: navigation, search Name: Energy Plus Holdings LLC Place: Connecticut Phone Number: 1-888-766-3509 Website: www.energypluscompany.com...

  6. New Canaan, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 Registered Financial Organizations in New Canaan, Connecticut Advanced Materials Partners Inc References US Census Bureau Incorporated place and minor...

  7. Sandy Hook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hook is a city in Connecticut.1 Registered Energy Companies in Sandy Hook, Connecticut Environmental Energy Services Inc References US Census Bureau Incorporated place and...

  8. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This ...

  9. Connecticut Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Recovery Act State Memo (1.13 MB) More Documents & Publications CONNECTICUT RECOVERY ACT SNAPSHOT Final Report - Sun Rise New England - Open for Buisness State of the ...

  10. Air pollution and morbidity: a further analysis of the Los Angeles student nurses data

    SciTech Connect (OSTI)

    Schwartz, J.; Hasselblad, V.; Pitcher, H.

    1988-02-01

    Hammer et al. analyzed daily diary reports of headache, eye irritation, cough, and chest discomfort in a study of Los Angeles student nurses, and found a statistically significant association between these symptoms and daily maximum one-hour oxidant concentrations at a nearby air quality monitor. Our analysis examines the student nurse data for the possible significance of other pollutants. We used new model specifications designed to account for the probabilistic nature of the outcome variables, and to allow for complications arising from the time series aspects of the data. We replicated the finding of a significant relationship between oxidants and coughing and eye irritation, and also found that; carbon monoxide was significantly related to headache symptoms; nitrogen dioxide was significantly related to eye irritation; and sulfur dioxide was significantly related to chest discomfort.