National Library of Energy BETA

Sample records for air pollutants nox

  1. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted...

  2. Novel Application of Air Separation Membranes Reduces NOx Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen enrichment of intake air PDF icon air_separation_membranes

  3. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  4. Novel Application of Air Separation Membranes Reduces Engine NOx Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Novel Application of Air Separation Membranes Reduces Engine NOx Emissions Alternative to Exhaust Gas Recirculation that involves the nitrogen enrichment of intake air. Argonne National Laboratory Contact ANL About This Technology <p> Schematic representation of the air separation process through a membrane module</p> Schematic representation of the air separation process through

  5. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  6. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  7. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  8. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  9. Economics of pollution trading for SO{sub 2} and NOx

    SciTech Connect (OSTI)

    Dallas Burtraw; David A. Evans; Alan Krupnick; Karen Palmer; Russell Toth

    2005-03-15

    For years economists have urged policymakers to use market-based approaches such as cap-and-trade programs or emission taxes to control pollution. The sulphur dioxide (SO{sub 2}) allowance market created by Title IV of the 1990 US Clean Air Act Amendments represents the first real test of the wisdom of economists' advice. Subsequent urban and regional applications of NOx emission allowance trading took shape in the 1990s in the United States, culminating in a second large experiment in emission trading in the eastern United States that began in 2003. This paper provides an overview of the economic rationale for emission trading and a description of the major US programs for SO{sub 2} and nitrogen oxides. These programs are evaluated along measures of performance including cost savings, environmental integrity, and incentives for technological innovation. The authors offer lessons for the design of future programs including, most importantly, those reducing carbon dioxide. 128 refs., 1 fig., 1 tab.

  10. Effect of air-staging on anthracite combustion and NOx formation

    SciTech Connect (OSTI)

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang; Mingchuan Zhang

    2009-01-15

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the more NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.

  11. DOE - Fossil Energy: Knocking the NOx Out of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-Knocking Out NOx An Energy Lesson Cleaning Up Coal Knocking the NOx Out of Coal - How NOx Forms - Formation of NOx - Air is mostly nitrogen molecules (green in the above diagram) and oxygen molecules (purple). When heated hot enough (around 3000 degrees F), the molecules break apart and oxygen atoms link with the nitrogen atoms to form NOx, an air pollutant. Nitrogen is the most common part of the air we breathe. In fact, about 80% of the air is nitrogen. Normally, nitrogen atoms float around

  12. Hawaii Air Pollution Control Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    Air Pollution Control Permits Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Air Pollution Control Permits Webpage Abstract Information...

  13. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  14. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  15. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  16. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  17. Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...

    Open Energy Info (EERE)

    Department of Public Health and Environment of the construction of a new source of pollution. Form Type ApplicationNotice Form Topic Air Pollutant Emission Notice &...

  18. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions...

  19. Nevada Bureau of Air Pollution Control Permit Forms Webpage ...

    Open Energy Info (EERE)

    Bureau of Air Pollution Control Permit Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Bureau of Air Pollution Control Permit...

  20. Commonwealth of Virginia, State Air Pollution Control Board,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air ...

  1. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOE Patents [OSTI]

    Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  2. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  3. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  4. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  5. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  6. WAC 173-400 - General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 - General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-400 - General...

  7. Observing Emissions of Air Pollutants from Space | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study the future turnover of vehicle fleets around the world and the likely effects on air pollution and climate. This project has used satellite data to monitor CO, CO2,...

  8. WAC - 173-400 General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-400 General...

  9. Harboring Pollution: Air Quality Impacts of Marine Ports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harboring Pollution: Air Quality Impacts of Marine Ports Harboring Pollution: Air Quality Impacts of Marine Ports 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Resources Defense Council PDF icon 2004_deer_bailey.pdf More Documents & Publications Cleaning Up Diesel Engines South Coast AQMD Clean Transportation Programs Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility

  10. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  11. Lidar techniques for chemical and aerosol air pollution studies

    SciTech Connect (OSTI)

    Hardesty, R.M.

    1993-12-31

    At the Wave Propagation Laboratory (WPL), lidar methods are being applied in several areas of air pollution research. Differential absorption lidar (DIAL) systems for measuring ozone, ethylene, and other pollutants have been recently developed. The ozone instrument profiles ozone concentration in the boundary layer and lower troposphere to study sources, sinks, and transport of ozone. A goal is to combine DIAL and Doppler lidar techniques for measurement of the vertical fluxes of ozone and other pollutants. Doppler lidars have been also used at WPL to study visibility reduction caused by aerosol pollutants at the Grand Canyon, and to investigate dispersion of hazardous emissions near the Rocky Flats nuclear plant.

  12. Lichens as bioindicators of geothermal air pollution in central Italy

    SciTech Connect (OSTI)

    Loppi, S.

    1996-11-01

    The suitability of lichens as bioindicators of geothermal air pollution was evaluated in central Italy. Fifty-one sites were sampled in the Travale-Radicondoli geothermal field, an area of about 15 km{sup 2}. Lichens on 1-5 trees per station were sampled, using 30 x 50 cm grids on tree boles, where lichens were most dense. Index of Atmospheric Purity (IAP) was calculated as the sum of the frequencies of all lichen species present at the station. Using automatic mapping programs, the area was divided into four air quality zones and the lowest IAP values were found within about 500 m of geothermal power plants. No direct measurements of air pollution are available for the whole study area, however, other studies show that air pollution levels (mercury, boron) fall with distance from a geothermal source. Also no substrate parameter (height, circumference, bark pH, and buffer capacity of the trees) discriminates between IAP zones. This suggests that air pollution arising from geothermal emissions is responsible for the zonation shown, with values for species richness and IAP rising with distance from geothermal installations. It is concluded that lichens are reliable bioindicators of geothermal pollution. 64 refs., 1 fig., 3 tabs.

  13. Commonwealth of Virginia, State Air Pollution Control Board, Order by

    Energy Savers [EERE]

    Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 | Department of Energy Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Docket No. EO-05-01: This is a Consent Order issued under the authority of Va. Code § § 10.1-1307D and 10.1-1307.1, between the

  14. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of Chinas 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is Chinas 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  15. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    SciTech Connect (OSTI)

    Einfeld, W.; Church, H.W.

    1995-03-01

    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  16. H.A.R. 11-60.1 - Air Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    60.1 - Air Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-60.1 - Air Pollution ControlLegal...

  17. InMAP: a new model for air pollution interventions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations the air pollution outcome generally causing the largest monetized health damages attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmorechemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.less

  18. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  19. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  20. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  1. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  2. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S.

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_lawson.pdf More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality Impacts The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

  3. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  4. A methodology for evaluating air pollution strategies to improve the air quality in Mexico City

    SciTech Connect (OSTI)

    Barrera-Roldan, A.S.; Guzman, F.; Hardie, R.W.; Thayer, G.R.

    1995-05-01

    The Mexico City Air Quality Research Initiative has developed a methodology to assist decision makers in determining optimum pollution control strategies for atmospheric pollutants. The methodology introduces both objective and subjective factors in the comparison of various strategies for improving air quality. Strategies or group of options are first selected using linear programming. These strategies are then compared using Multi-Attribute Decision Analysis. The decision tree for the Multi-Attribute Decision Analysis was generated by a panel of experts representing the organizations in Mexico that are responsible for formulating policy on air quality improvement. Three sample strategies were analyzed using the methodology: one to reduce ozone by 33% using the most cost effective group of options, the second to reduce ozone by 43% using the most cost effective group of options and the third to reduce ozone by 43% emphasizing the reduction of emissions from industrial sources. Of the three strategies, the analysis indicated that strategy 2 would be the preferred strategy for improving air quality in Mexico City.

  5. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nations site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale background levels or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius of the facility who would experience the highest annual dose. This dose to a hypothetical person living close to the NTS cannot exceed 10 mrem/yr. C.1 This report has been produced annually for the EPA Region IX, and for the state of Nevada since 1992 and documents that the estimated EDE to the MEI has been, and continues to be, well below the NESHAP dose limit. The report format and level of technical detail has been dictated by the EPA and DOE Headquarters over the years. It is read and evaluated for NESHAP compliance by federal and state regulators. Each section and appendix presents technical information (e.g., NTS emission source estimates, onsite air sampling data, air transport model input parameters, dose calculation methodology, etc.), which supports the annual dose assessment conclusions. In 2005, as in all previous years for which this report has been produced, the estimated dose to the public from inhalation of radiological emissions from current and past NTS activities is shown to be well below the 10 mrem/yr dose limit. This was demonstrated by air sampling data collected onsite at each of six EPA-approved critical receptor stations on the NTS. The sum of measured EDEs from the four stations at the NTS boundaries is 2.5 mrem/yr. This dose is 25 percent of the allowed NESHAP dose limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, this individual receives only a small fraction of this dose. NESHAP compliance does not require DOE facilities to estimate annual inhalation dose from non-DOE activities. Therefore, this report does not estimate public radiation doses from any other sources or activities (e.g., naturally-occurring radon, global fallout).

  6. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  7. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  8. Durability of NOx Absorbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of NOx Absorbers Durability of NOx Absorbers 2002 DEER Conference Presentation: EmeraChem LLC PDF icon 2002_deer_parks.pdf More Documents & Publications Cleaner Vehicles, Cleaner Fuel & Cleaner Air APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach

  9. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  10. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  11. WAC 173-460 - Controls for New Sources of Toxic Air Pollutants...

    Open Energy Info (EERE)

    73-460 - Controls for New Sources of Toxic Air Pollutants Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-460 -...

  12. NAC 445B.287 et seq - Air Pollution Control Operating Permits...

    Open Energy Info (EERE)

    287 et seq - Air Pollution Control Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.287 et seq -...

  13. NAC 445B.3485 et seq - Air Pollution Control: Class III Operating...

    Open Energy Info (EERE)

    85 et seq - Air Pollution Control: Class III Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC...

  14. NAC 445B.3453 et seq - Air Pollution Control: Class II Operating...

    Open Energy Info (EERE)

    53 et seq - Air Pollution Control: Class II Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3453...

  15. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  16. NAC 445B.3361 et seq - Air Pollution Control: Class I Operating...

    Open Energy Info (EERE)

    361 et seq - Air Pollution Control: Class I Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3361...

  17. IDAPA 58.01.01 - Rules for the Control of Air Pollution in Idaho...

    Open Energy Info (EERE)

    1 - Rules for the Control of Air Pollution in Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.01 - Rules...

  18. Greenhouse Gas and Air Pollution Interactions and Synergies ...

    Open Energy Info (EERE)

    in five-year intervals through the year 2050. GAINS provides estimates on ambient air quality and the subsequent impacts on human health and ecosystems, as well as...

  19. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  20. National Emission Standards for Hazardous Air Pollutants Calendar Year 2006

    SciTech Connect (OSTI)

    NSTec Environmental Technical Services

    2007-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

  1. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect (OSTI)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  2. Effects of air pollution on the respiratory health of children: a cross-sectional study

    SciTech Connect (OSTI)

    Spinaci, S.; Arossa, W.; Bugiani, M.; Natale, P.; Bucca, C.; de Candussio, G.

    1985-09-01

    To investigate the effects of air pollution on the respiratory health of children, a subject of some controversy, a comparative study was undertaken of 2,385 school children who lived in central urban, peripheral urban, and suburban areas. Daily monitoring of sulfur dioxide and total suspended particle concentrations in all areas showed that pollutant concentrations in central and peripheral urban areas were above commonly accepted safety levels for respiratory health, while concentrations in the suburban area were within acceptable limits. A questionnaire administered to each mother assessed environmental exposure to pollutants in the household, the occurrence of respiratory symptoms as well as lung diseases as diagnosed by a physician, and general information. Children were interviewed about smoking habits and any acute respiratory symptoms. Children also performed standard lung function tests. Results showed that children from both urban areas had lessened pulmonary function and a higher prevalence of bronchial secretion with common colds than did those from the suburban area. These differences persisted after corrections for exposure to indoor pollutants, active or passive smoking, socioeconomic status, and sex. Parental cigarette smoking was related to a fall in forced expiratory volume in 1 second and an increased incidence of acute respiratory illnesses and chronic cough in children. Although boys had higher lung volumes and lower air flow, regression analysis showed no significant influence of the interactions sex-geographic area and sex-smoking on lung function. It was concluded that air pollution has a significant effect on the respiratory health of children.

  3. Pulmonary function and respiratory symptoms of school children exposed to ambient air pollution

    SciTech Connect (OSTI)

    Kim, Yoon Shin; Ko, Ung Ring

    1996-12-31

    This study was undertaken to evaluate the health effect of air pollution on pulmonary function and respiratory symptoms of Korean school children between 7 and 10 years of age during November 1995-January 1996. A standard respiratory symptom questionnaire was administered and spirometry was performed to examine pulmonary function of 121 children in an urban polluted area, Seoul, and of 119 children in non-polluted area, Sokcho, respectively. There was significant difference in the level of pulmonary function [forced expiratory volume in second (FEV{sub 1.0}) and forced vital capacity (FVC)] between exposed groups to polluted area and non-polluted area. Parental smoking was significantly related to respiratory symptoms of cough, phlegm, and the level of pulmonary function. The observed changes in FEV{sub 1.0} and FVC seemed to relate to home cooking fuel, not to respiratory symptoms. The additional longitudinal work that carefully monitors ambient and indoor air pollution and health effects data should be conducted to confirm these results.

  4. Air Force pollution prevention research and development program

    SciTech Connect (OSTI)

    Montoya, G.

    1995-12-01

    The prevention surveys pollution prevention R&D in selected technology areas to meet high priority customer needs. Projects are categorized into four areas: Ozone Deleting Compound (ODC) Elimination, HAZMAT Materials and Substitution, HAZMAT Waste Reduction, and Volatile Organic Compound (VOC) Elimination. Each category has specific goals. The ODC Elimination goal was to eliminate the purchases of ODCs by 1 Apr 94. The HAZMAT Materials and Process Replacement goal is to reduce the purchase of EPA 17 materials from 1992 baseline 50% by the end of 1996. The HAZMAT Waste Reduction goal is 25% by the end of 1996, and 50% by the end of 1999. VOC elimination goals are included in the HAZMaT Materials and Substitution and HAZMAT Waste Reduction areas. Each category consists of a portfolio of projects which meet high priority customer technology needs (TNs) and contributes to meeting specific goals. The presentation provides more detailed information for the On-Board Halon Replacement Program, Atomic Oxygen Cleaning process for Oxygen Systems, Non-Chemical Metal Surface Preparation, and LARPS.

  5. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect (OSTI)

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  6. 1990 INEL national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.'' Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  7. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect (OSTI)

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  8. Addendum to Guarantee Testing Results from the Greenidge Multi-Pollutant Control Project: Additiona NH3, NOx, and CO Testing Results

    SciTech Connect (OSTI)

    Daniel P. Connell; James E. Locke

    2008-03-01

    On March 28-30 and May 1-4, 2007, CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-MW Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The testing in March and May demonstrated that the multi-pollutant control system attained its performance targets for NO{sub x} emissions, SO{sub 2} removal efficiency, acid gas (SO{sub 3}, HCl, and HF) removal efficiency, and mercury removal efficiency. However, the ammonia slip measured between the SCR outlet and air heater inlet was consistently greater than the guarantee of 2 ppmvd {at} 3% O{sub 2}. As a result, additional testing was performed on May 30-June 1 and on June 20-21, 2007, in conjunction with tuning of the hybrid NO{sub x} control system by BPEI, in an effort to achieve the performance target for ammonia slip. This additional testing occurred after the installation of a large particle ash (LPA) screen and removal system just above the SCR reactor and a fresh SCR catalyst layer in mid-May. This report describes the results of the additional tests. During the May 30-June 1 sampling period, CONSOL R&D and Clean Air Engineering (CAE) each measured flue gas ammonia concentrations at the air heater inlet, downstream of the in-duct SCR reactor. In addition, CONSOL R&D measured flue gas ammonia concentrations at the economizer outlet, upstream of the SCR reactor, and CAE measured flue gas NO{sub x} and CO concentrations at the sampling grids located at the inlet and outlet of the SCR reactor. During the June 20-21 sampling period, CONSOL R&D measured flue gas ammonia concentrations at the air heater inlet. All ammonia measurements were performed using a modified version of U.S. Environmental Protection Agency (EPA) Conditional Test Method (CTM) 027. The NO{sub x} and CO measurements were performed using U.S. EPA Methods 7E and 10, respectively.

  9. National Emission Standards for Hazardous Air Pollutants, June 2005

    SciTech Connect (OSTI)

    Robert F. Grossman

    2005-06-01

    The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

  10. National Emission Standards for Hazardous Air Pollutants Calendar Year 1999

    SciTech Connect (OSTI)

    R. F. Grossman

    2000-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy's Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,561 km{sup 2} (1,375 mi{sup 2}), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  11. National Emission Standards for Hazardous Air Pollutants Submittal - 1998

    SciTech Connect (OSTI)

    Stuart Black; Yvonne Townsend

    1999-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,500 km2 (1,350 mi2), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi)north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  12. National Emission Standards for Hazardous Air Pollutants Calendar Year 2001

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.

  13. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  14. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2013 INL Report for Radionuclides [2014

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2014-06-01

    This report documents the calendar year 2013 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 3.02 E-02 mrem per year, 0.30 percent of the 10 mrem standard.

  15. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect (OSTI)

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  16. Polycyclic aromatic hydrocarbons in olive fruits as a measure of air pollution in the valley of Florence (Italy)

    SciTech Connect (OSTI)

    Ignesti, G.; Lodovici, M.; Dolara, P.; Lucia, P.; Grechi, D.

    1992-06-01

    Plants have often been used for monitoring air pollution, such as Tradescantia for detecting mutagenic chemicals, or mosses which are bio-accumulators of heavy metals. Mosses have also been used as indicators of pollution from hexachlorobenzene and polycyclic aromatic hydrocarbons. PAH are present in most crops, and are deposited on the foliar surface of plants exposed to polluted air. Plants grown in heavily polluted environments have a higher concentration of PAH than those growing in clean environments, and plants grown in cabinets with filtered air have a very low concentration of PAH. Alimentary oils have high concentrations of PAH due to crop exposure to air pollutants and a high solubility of PAH in oils. PAH are important initiators of some human cancers and their monitoring is believed to be important for public health. Most Italian towns are heavily polluted by car exhaust and industrial sources, and a high concentration of PAH has been reported in the air particulate of urban areas. On the basis of these premises we thought it of interest to determine the concentration of some PAH in the olive fruits of trees growing in the valley of Florence (Italy), to establish if this approach could be useful for monitoring air pollution by PAH. 9 refs., 3 figs.

  17. Ceramatec NOx Sensor and NOx Catalyst Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramatec NOx Sensor and NOx Catalyst Technologies Ceramatec NOx Sensor and NOx Catalyst Technologies 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ceramatec, Inc., Advanced Ionic Technologies PDF icon 2004_deer_nair.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Pt-free, Perovskite-based Lean NOx Trap Catalysts Active Soot Filter Regeneration

  18. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Sullivan, I.K.

    1993-12-31

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information.

  19. The effects of air pollution regulations on the US refining industry. Task 3

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Numerous air pollution regulations affecting petroleum refineries recently have been promulgated, have been proposed, or are under consideration at the federal, state, and local level. As shown in Figure ES-1, all of these environmental regulations are intended to take effect over the relatively short time period from 1989 through 1995. In the aggregate these regulatory activities have significant implications for the US refining industry and the Nation, including: Major investment requirements; changes in industry profitability; potential closure of some refineries; and potential changes in crude oil or product import dependence. At issue is whether the cumulative effect of these regulations could so adversely affect the US refining industry that US national security would be affected. In addition to the regulations outlined in Figure ES-1, President Bush recently presented a major new plan to improve the nation`s air quality. The aspects of the President`s plan that could strongly affect US refineries are summarized below.

  20. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  1. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    SciTech Connect (OSTI)

    Schwartz, J. ); Wypij, D.; Dockery D.; Ware, J.; Spengler, J.; Ferris, B. Jr. ); Zeger, S. )

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two data sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.

  2. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  3. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  4. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Studies of Weekday/Weekend Ozone Pollution in Southern California DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California 2002 DEER Conference Presentation: National Renewable Energy Laboratory PDF icon 2002_deer_lawson.pdf More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality

  5. Air pollution and morbidity: a further analysis of the Los Angeles student nurses data

    SciTech Connect (OSTI)

    Schwartz, J.; Hasselblad, V.; Pitcher, H.

    1988-02-01

    Hammer et al. analyzed daily diary reports of headache, eye irritation, cough, and chest discomfort in a study of Los Angeles student nurses, and found a statistically significant association between these symptoms and daily maximum one-hour oxidant concentrations at a nearby air quality monitor. Our analysis examines the student nurse data for the possible significance of other pollutants. We used new model specifications designed to account for the probabilistic nature of the outcome variables, and to allow for complications arising from the time series aspects of the data. We replicated the finding of a significant relationship between oxidants and coughing and eye irritation, and also found that; carbon monoxide was significantly related to headache symptoms; nitrogen dioxide was significantly related to eye irritation; and sulfur dioxide was significantly related to chest discomfort.

  6. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  7. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect (OSTI)

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg; Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester ; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.; Centre for Environmental Sciences, Hasselt University, Diepenbeek

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  8. Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses

    SciTech Connect (OSTI)

    Schwartz, J.; Zeger, S. )

    1990-01-01

    A cohort of approximately 100 student nurses in Los Angeles was recruited for a diary study of the acute effects of air pollution. Smoking histories and presence of asthma and other allergies were determined by questionnaire. Diaries were completed daily and collected weekly for as long as 3 yr. Air pollution was measured at a monitoring location within 2.5 miles of the school. Incidence and duration of a symptom were modeled separately. Pack-years of cigarettes were predictive of the number of episodes of coughing (p less than 0.0001) and of bringing up phlegm (p less than 0.0001). Current smoking, rather than cumulative smoking, was a better predictor of the duration of a phlegm episode (p less than 0.0001). Controlling for personal smoking, a smoking roommate increased the risk of an episode of phlegm (odds ratio (OR) = 1.41, p less than 0.001), but not of cough. Excluding asthmatics (who may be medicated), increased the odds ratio for passive smoking to 1.76 (p less than 0.0001). In logistic regression models controlling for temperature and serial correlation between days, an increase of 1 SD in carbon monoxide exposure (6.5 ppm) was associated with increased risk of headache (OR = 1.09, p less than 0.001), photochemical oxidants (7.4 pphm) were associated with increased risk of chest discomfort (OR = 1.17, p less than 0.001) and eye irritation (OR = 1.20 p less than 0.001), and nitrogen dioxide (9.1 pphm) was associated with increased risk of phlegm (OR = 1.08 p less than 0.01), sore throats (OR = 1.26, p less than 0.001), and eye irritation (OR = 1.16, p less than 0.001).

  9. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  10. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  11. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

  12. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  13. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect (OSTI)

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

  14. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  15. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect (OSTI)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  16. Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian Rural Communities

    SciTech Connect (OSTI)

    Stern, B.R.; Raizenne, M.E.; Burnett, R.T.; Jones, L.; Kearney, J.; Franklin, C.A. )

    1994-08-01

    This study was designed to examine differences in the respiratory health status of preadolescent school children, aged 7-11 years, who resided in 10 rural Canadian communities in areas of moderate and low exposure to regional sulfate and ozone pollution. Five of the communities were located in central Saskatchewan, a low-exposure region, and five were located in southwestern Ontario, an area with moderately elevated exposures resulting from long-range atmospheric transport of polluted air masses. In this cross-sectional study, the child's respiratory symptoms and illness history were evaluated using a parent-completed questionnaire, administered in September 1985. Respiratory function was assessed once for each child in the schools between October 1985 and March 1986, by the measurement of pulmonary function for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1.0]), peak expiratory flow rate (PEFR), mean forced expiratory flow rate during the middle half of the FVC curve (FEF[sub 25-75]), and maximal expiratory flow at 50% of the expired vital capacity (V[sub 50]max). After controlling for the effects of age, sex, parental smoking, parental education and gas cooking, no significant regional differences were observed in rates of chronic cough or phlegm, persistent wheeze, current asthma, bronchitis in the past year, or any chest illness that kept the child at home for 3 or more consecutive days during the previous year. Children living in southwestern Ontario had statistically significant (P < 0.01) mean decrements of 1.7% in FVC and 1.3% in FEV[sub 1.0] compared with Saskatchewan children, after adjusting for age, sex, weight, standing height, parental smoking, and gas cooking. There were no statistically significant regional differences in the pulmonary flow parameters (P > 0.05). 54 refs., 1 fig., 7 tabs.

  17. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect (OSTI)

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2013, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from 0.2% to a maximum of 10.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000011 mrem/yr, more than 900,000 times lower than the 10 mrem/yr limit.

  18. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect (OSTI)

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2012, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 0.5% to a maximum of 11.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  19. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  20. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  1. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  2. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  3. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  4. State air pollution permit program under subchapter 5 of the Clean Air Act as of August 8, 1995. Master`s thesis

    SciTech Connect (OSTI)

    Smith, J.M.

    1995-05-01

    The Clean Air Act Amendments of 1990 imposed the requirement for a comprehensive set of state air pollution permit programs on a nationwide basis for the first time. Prior to the passage of this law, there were about thirty-five state permit programs, and they were not subject to Federal supervision. During the debate in the House of Representives it was stated that the purpose of the permit program was to clarify and make more enforceable a source`s pollution control requirements. In addition, the Congress wanted to encourage public involvement in the process so that interested citizens will be able to review and help enforce a source`s obligations under the Act.

  5. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect (OSTI)

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

  6. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    Ciucci, John

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. At any one location, if multiple radionuclides are detected, then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclides concentration by its CL and then adding the fractions together) is less than 1.0. In 2009, the potential dose from radiological emissions to air, resulting from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.69 mrem/yr, well below the 10 mrem/yr dose limit. Air sampling data collected at all six critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers from potential release points on the NTS, concentrations at this location would be only a small fraction of that measured on the NTS. The potential dose to the public from NLVF emissions was also very low at 0.000044 mrem/yr, 230,000 times lower than the 10 mrem/yr limit.

  7. Emission factors for several toxic air pollutants from fluidized-bed combustion of coal

    SciTech Connect (OSTI)

    Smith, A.E.

    1986-03-01

    Clean coal technologies such as fluidized-bed combustion have the potential to emit the same trace elements as conventional combustors. Since the US Environmental Protection Agency (EPA) is likely to promulgate National Emission Standards for Hazardous Air Pollutants for several trace elements, the feasibility of using fluidized-bed combustors to reduce sulfur dioxide emissions may depend in part on the relative amounts of trace elements emitted by fluidized-bed and conventional combustors. Emissions of trace elements from both atmospheric and pressurized fluidized-bed combustors were compared with those from conventional combustors by developing fluidized-bed emission factors from information available in the literature and comparing them with the emission factors for conventional combustors recommended in a literature search conducted for EPA. The comparisons are based on the mass of emission per unit of heat input for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, vanadium, and zinc. When inaccuracies in the data were taken into account, the trace element emissions from atmospheric fluidized-bed combustion seem to be somewhat higher than those from a conventional utility boiler burning pulverized coal and somewhat lower than those from pressurized fluidized-bed combustion.

  8. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  9. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    SciTech Connect (OSTI)

    Jin, Ling; Tonse, Shaheen; Cohan, Daniel S.; Mao, Xiaoling; Harley, Robert A.; Brown, Nancy J.

    2009-05-15

    CMAQ-HDDM is used to determine spatial and temporal variations in ozone limiting reagents and local vs upwind source contributions for an air pollution episode in Central California. We developed a first- and second- order sensitivity analysis approach with the Decoupled Direct Method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a five-day ozone episode (29th July-3rd Aug, 2000). Despite considerable spatial variations, nitrogen oxides (NO{sub x}) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8-hr ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1-hr ozone standard. Inter-basin source contributions of NO{sub x} emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NO{sub x} and AVOC, and the rate coefficient of the OH + NO{sub 2} termination reaction, have the greatest effect on first-order ozone responses to changes in NO{sub x} emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

  10. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect (OSTI)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  11. Filtration technology for the control of solid hazardous air pollutants in paint booth operations

    SciTech Connect (OSTI)

    Stolle, M.

    1997-12-31

    In October of 1996, the EPA released the draft Aerospace NESHAP regulation that targets hazardous air pollutant (HAP) emissions from aerospace manufacturing and rework operations. One of the key provisions focuses on the control of inorganic HAPs released from application operations involving hexavalent chromium based primers. The NESHAP regulation mandates that coating facilities which release inorganic HAPS meet specific particulate emission control efficiencies or requirements, and further specifies different control requirements for new and existing facilities. The provisions pertaining to inorganic HAP emissions from coating operations were developed through the efforts of many individuals from the industrial, military, manufacturing, and regulatory sectors, and were the subject of intense discussion that spanned a period of years. Throughout this process, a topic of major debate was the development of dry filter particulate control efficiency requirements that would achieve an appropriate level of emission control, and could reasonably met by manufacturers and filter suppliers alike. The control requirements that are the topic of this paper mandate specific collection efficiencies for various particle size ranges. Recent studies on particle size characteristics of overspray generated by hexavalent chrome primer applications indicate that the NESHAP standard may not achieve the level of emission control that was initially intended. This paper presents the results of a detailed, third party analysis that focuses on the actual control efficiencies for chromate-based priming operations that will be achieved by the new standard. Following a general filtration efficiency discussion, an overview of the procedure employed to evaluate the overall efficiencies that will be achieved by NESHAP compliant filters is provided. The data upon which the evaluation was derived are presented.

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  13. Evaluation of innovative volatile organic compound and hazardous air-pollutant-control technologies for U. S. Air Force paint spray booths. Final report, Aug 88-Aug 89

    SciTech Connect (OSTI)

    Ritts, D.H.; Garretson, C.; Hyde, C.; Lorelli, J.; Wolbach, C.D.

    1990-10-01

    Significant quantities of volatile organic compounds (VOCs) and hazardous air pollutants are released into the atmosphere during USAF maintenance operations. Painting operations conducted in paint spray booths are major sources of these pollutants. Solvent based epoxy primers and solvent-based polyurethane coatings are typically used by the Air Force for painting aircraft and associated equipment. Solvents used in these paints include methyl ethyl ketone (MEK), toluene, lacquer thinner, and other solvents involved in painting and component cleaning. In this report, carbon paper adsorption/catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) were evaluated as control technologies to destroy VOC emissions from paint spray booths. Simultaneous testing of pilot-scale units was performed to evaluate the technical performance of both technologies. Results showed that each technology maintained greater than 99 percent Destruction and Removal Efficiencies (DREs). Particulate emissions from both pilot-scale units were less than 0.08 grains/dry standard cubic foot. Emissions of the criteria pollutants--sulfur oxides, nitrogen oxides, and carbon monoxide--were also below general regulatory standards for incinerators. Economic evaluations were based on a compilation of manufacturer-supplied data and energy consuption data gathered during the pilot scale testing. CPACM and FBCI technologies are less expensive than standard VOC control technologies when net present costs for a 15-year equipment life are compared.

  14. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  15. Practical ways to abate air and water pollution worldwide including a unique way to significantly curb global warming

    SciTech Connect (OSTI)

    Snell, J.R.

    1998-07-01

    This paper points out that in the next 50 years it will largely be the developing countries of the world which will continue to industrialize rapidly and hence pollute the water and air of not only their countries but that this pollution is becoming global (80% of the World's population.) From the author's 25 years of consulting experience in the developing countries, their greatest need is to have available to them low cost, innovative processes for pollution abatement will be neglected and the whole world will suffer immensely. The paper discusses in some detail the type of innovative low cost methods which have successfully been used in the categories of wastewater and solid wastes and names 6 other categories where many others exist. All these innovative methods need to be discovered, listed, and tested for quality and dependability, and then made widely available. Large Environmental Engineering Universities and International Consulting Engineering firms need to be organized to undertake these important tasks. The paper also points out the connection between Global Warming and the Solid waste industry and shows how it can be controlled inexpensively by employing a new, unique, and rapid method of converting municipal refuse into methane and then using that to make electricity. Information given in this paper could lead to a vast reduction in future pollution, with the resulting better global health and at the same time save trillions of dollars.

  16. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  17. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  18. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect (OSTI)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities, (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  19. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  20. CRS 25-7-100 et seq - Air Pollution and Prevention Control Act...

    Open Energy Info (EERE)

    Prevention and Control Act. This statutory section sets forth requirements for Colorado's air quality control program. Published NA Year Signed or Took Effect 1980 Legal Citation...

  1. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  2. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect (OSTI)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  3. Real-World Studies of Ambient Ozone Formation as a Function of NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductions … Summary and Implications for Air Quality Impacts | Department of Energy Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality Impacts Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality Impacts 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon

  4. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air | Department of Energy Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_bowser.pdf More Documents & Publications Membrane Technology Workshop Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Diesel Engine Alternatives

  5. Measurement and Characterization of NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study ...

  6. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for...

  7. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  8. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  9. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect (OSTI)

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  10. 1990 INEL national emission standards for hazardous air pollutants. Annual report, June 1991

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.`` Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  11. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, Lawrence E. (East Aurora, NY); Snyder, William J. (Ossining, NY)

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  12. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  13. NOx/O2 Sensors for High-Temperature Applications | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory NOx/O2 Sensors for High-Temperature Applications Technology available for licensing: Low-cost bifunctional high-temperature NOx/oxygen sensor that provides real-time sensing inside a combustion chamber without the requirement of a reference air supply. Placement in combustion chamber provide accurate oxygen-sensing, extremely low drift 2-10% energy saving from sensor optimization of air-flow ratio and fuel oil viscosity PDF icon high-temp_NOx-O2_sensor

  14. Efficiency of clay-TiO2 nanocomposites on the photocatalytic eliminationof a model hydrophobic air pollutant

    SciTech Connect (OSTI)

    Kibanova, Daria; Cervini-Silva, Javiera; Destaillats, Hugo

    2009-01-01

    Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a bench-top photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (gamma max = 365 nm) or UVC (gamma max = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-TiO2 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of ~;;170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33 and 66percent relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA (R) sorbent tubes downstream of the reactor, with subsequent thermal desorption -- GC/MS analysis. The fraction of toluene removed, percentR, and the reaction rate, Tr, were calculated for each experimental condition from the concentration changes measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/I gamma, the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but not for Kao-TiO2. In all cases, reaction rates peaked at 10percent RH, with Tr values between 10 and 50percent higher than those measured under dry air. However, a net inhibition was observed as RH increased to 33percent and 66percent, indicating that water molecules competed effectively with toluene for reactive surface sites and limited the overall photocatalytic conversion. Compared to P25, inhibition by co-adsorbed water was less significant for Kao-TiO2 samples, but was more dramatic for Hecto-TiO2 due to the high water uptake capacity of hectorite.

  15. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  16. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  17. Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for...

  18. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and...

  19. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx ... More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap ...

  20. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  1. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  2. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L. (Peoria, IL); Verkiel, Maarten (Metamora, IL); Driscoll, James J. (Dunlap, IL)

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  3. NOx sensor development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sensor development NOx sensor development PDF icon pm005_glass_2012_o.pdf More Documents & Publications NOxsensor development NOx Sensor Development Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

  4. Pt-free, Perovskite-based Lean NOx Trap Catalysts

    Broader source: Energy.gov [DOE]

    Perovskite-based lean NOx catalysts shown to achieve comparable NOx reduction performance as commercial platinum based counterpart

  5. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  6. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  7. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm023_singh_2011_p.pdf More Documents & Publications Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  8. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm023_singh_2010_p.pdf More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric O2/NOx

  9. Compact Potentiometric NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_16_singh.pdf More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx

  10. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  11. Method And Apparatus For Regenerating Nox Adsorbers

    DOE Patents [OSTI]

    Driscoll, J. Joshua (Dunlap, IL); Endicott, Dennis L. (Peoria, IL); Faulkner, Stephen A. (Stamford, GB); Verkiel, Maarten (Metamora, IL)

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  12. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  13. Pollution prevention opportunity assessment United States Naval Base Norfolk Naval Air Station. Project report, 20 June-30 September 1994

    SciTech Connect (OSTI)

    Bowman, D.; DeWaters, J.; Smith, J.; Snow, S.; Thomas, R.

    1995-08-01

    The approach for conducting a Pollution Prevention Opportunity Assessment (PPOA) at the Norfolk NAS is described along with background information about the site. Section 2 provides background information related to cooling tower operations and water treatment processes. Section 3 describes the current cooling tower activities and operations that were observed during the NAS site visit. Possible alternative practices for minimizing these wastes are discussed in Section 4. Recommendations on potential follow-up activities are also included in Section 4. Appendices include PPOA worksheets (Appendix A), National Pollutant Discharge Elimination Systems (NPDES) discharge limits (Appendix B), discharge data (Appendix C), material safety data sheets (MSDS) (Appendix D), the Hampton Roads Sanitation District Cooling Tower Waste Discharge Policy with Industrial Wastewater Pollutant Limitations and Discharge Requirements (Appendix E), and the MSDS for DIAS-Aid Tower Treatment XP-300 (Appendix F).

  14. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  15. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications. Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing metho

  16. The NO{sub x} Budget trading program: a collaborative, innovative approach to solving a regional air pollution problem

    SciTech Connect (OSTI)

    Napolitano, Sam; Stevens, Gabrielle; Schreifels, Jeremy; Culligan, Kevin

    2007-11-15

    The NO{sub x} Budget Trading Program showed that regional cap-and-trade programs are adaptable to more than one pollutant, time period, and geographic scale, and can achieve compliance results similar to the Acid Rain Program. Here are 11 specific lessons that have emerged from the experience. (author)

  17. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS

    SciTech Connect (OSTI)

    Lance L. Smith

    2004-03-01

    Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of < 0.03 lbs/MMBtu NOx. These emissions levels were achieved at scaled (10 atm, sub-scale) baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

  18. Cost analysis for compliance with EPA's regional NOx emissions reductions for fossil-fired power generation

    SciTech Connect (OSTI)

    Smith, D.; Mann, A.; Ward, J.; Ramezan, M.

    1999-07-01

    To achieve a more stringent ambient-air ozone standard promulgated in 1997, the U.S. EPA has established summer NOx emissions limits for fossil-fired electric power generating units in the Ozone Transport Rulemaking region, consisting of 22 eastern and midwestern states and the District of Columbia. These jurisdictions are required to submit State Implementation Plans by September 1999 in response to EPA's rule, with compliance required by 2007. There are 1757 affected units in this region. In the present study, projected state-by-state growth rates for power production are used to estimate power production and NOx emissions by unit in the year 2007. NOx emissions reductions expected by January 1, 2000 due to Title IV compliance are estimated, leaving a substantial balance of emissions reductions to be achieved by post-combustion NOx control. Cost estimates are developed for achieving these remaining reductions.

  19. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  20. A reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) program at Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    Culp, T.A.; Hylko, J.M.

    1997-10-01

    The initial National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico (SNL/NM) required: (1) continuous air monitoring of sources if the calculated effective dose equivalent (EDE) to the maximum exposed individual (MEI) was > 0.1 mrem/yr; (2) the determination of emissions based on measurements or measured parameters if the EDE to the MEI was < 0.1 mrem/yr; and (3) the calculation of worst case releases when the expected air concentrations were below detection limits using standard monitoring equipment. This conservative interpretation of the regulation guided SNL/NM to model, track, and trend virtually all emission sources with the potential to include any radionuclides. The level of effort required to implement these activities was independent of the EDE contributing from individual sources. A recent programmatic review found the NESHAP program to be in excess of the legal requirements. A further review found that, in summation, 13 of 16 radionuclide sources had a negligible impact on the final calculated EDE to the MEI used to demonstrate compliance at 20 separate on-site receptor locations. A reevaluation was performed to meet the legal requirements of 40 CFR 61, Subpart H, and still be reasonable and appropriate under the existing circumstances.

  1. Investigation on continuous soot oxidation and NOx reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx...

  2. Ultra-Low NOx Premixed Industrial Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low NOx Premixed Industrial Burner Ultra-Low NOx Premixed Industrial Burner Reduction of Burner NOx Production with Premixed Combustion Industries that are dependant on combustion processes are faced with more stringent environmental regulations to reduce NOx emissions. Some states require NOx emissions reductions as great as 90% for chemical and refining industries. The recently developed M-PAKT(tm) Ultra-Low NOx Burner uses lean premixed combustion gases and low swirl flow of combustion

  3. Reduce NOx and Improve Energy Efficiency

    SciTech Connect (OSTI)

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  4. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  5. An Experimental Investigation of the Origin of Increased NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel An Experimental Investigation of the Origin of Increased NOx Emissions ...

  6. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company PDF...

  7. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments...

  8. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  9. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  10. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th...

  11. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  12. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  13. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions...

  14. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  15. H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor PDF icon...

  16. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of...

  17. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine...

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  19. The Impact of Lubricant Formulation on the Performance of NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation on the Performance of NOx Adsorber Catalysts The Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts PDF icon 2005deerwhitacre.pdf More...

  20. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation...

  1. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Functionality of Commercial NOx Storage-Reduction Catalysts and the...

  2. A Systematic Investigation of Parameters Affecting Diesel NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst...

  3. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and...

  4. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of an Integrated Diesel NOx Adsorber AT Subsystem at Light-Duty Operation Durability Evaluation of an Integrated Diesel NOx Adsorber AT Subsystem at Light-Duty ...

  5. Development of Remove Sensing Instrumentation for NOx and PM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Remove Sensing Instrumentation for NOx and PM Emissions from Heavy Duty Trucks Development of Remove Sensing Instrumentation for NOx and PM Emissions from Heavy Duty ...

  6. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control &...

  7. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  8. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  9. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Formulations - One Solution for NOx After-treatment Systems Two Catalyst Formulations - One Solution for NOx After-treatment Systems Low-temperature SCR combined with...

  10. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning...

  11. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

  13. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect (OSTI)

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  14. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  15. Compact Potentiometric O2/NOx Sensor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    O2/NOx Sensor Compact Potentiometric O2/NOx Sensor 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm043_singh_2012_o.pdf More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  16. Electrochemical NOxSensor for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NOxSensor for Monitoring Diesel Emissions Electrochemical NOxSensor for Monitoring Diesel Emissions PDF icon pm_02_glass.pdf More Documents & Publications NOxsensor development Electrochemical NOx Sensors for Monitoring Diesel Emissions NOx Sensor Development

  17. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  18. NOx reduction in combustion with concentrated coal streams and oxygen injection

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.

    2004-03-02

    NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

  19. Impact of Natural Gas Appliances on Pollutant Levels in California Homes

    SciTech Connect (OSTI)

    Mullen, Nasim A.; Li, Jina; Singer, Brett C.

    2012-12-01

    This report presents results from the first year of a 2-year study, investigating associations of five air pollutants (CO, NO2, NOX, formaldehyde and acetaldehyde) with the presence of natural gas appliances in California homes. From November 2011 to March 2012, pollutant concentration and occupant activity data were collected in 155 homes for 6-day periods. The sample population included both single-family (68%) and multi-family (32%) dwellings, with 87% having at least one gas appliance and 77% having an unvented gas cooking appliance. The geometric mean (GM) NO2 levels measured in the kitchen, bedroom and outside of homes were similar at values of 15, 12 and 11 ppb, respectively. In contrast, the GM NOx levels measured in the kitchen and bedroom of homes were much higher than levels measured outdoors, at levels of 42 and 41 ppb, compared to 19 ppb, respectively. Roughly 10% of sampled homes had 6-day average NO2 levels that exceeded the outdoor annual average limit set by the California Ambient Air Quality Standards (CAAQS) (30 ppb). The GMs of the highest 1-h and 8-h CO level measured in homes were 2.5 and 1.1 ppm, respectively. Four homes had a 1-h or 8-h concentration that exceeded the outdoor limits set by the CAAQS. The GM formaldehyde and acetaldehyde concentrations measured in homes were 15 and 7 ppb, respectively. Roughly 95% of homes had average formaldehyde levels indoors that exceeded the Chronic Reference Exposure Level set by the California EPA (7 ppb). Concentrations of NO2 and NOx, and to a lesser extent CO were associated with use of gas appliances, particularly unvented gas cooking appliances. Based on first principles, it is expected that effective venting of cooking pollutant emissions at the source will lead to a reduction of pollutant concentrations. However, no statistical association was detected between kitchen exhaust fan use and pollutant concentrations in homes in this study where gas cooking occurred frequently. The lack of statistical

  20. Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts

    SciTech Connect (OSTI)

    Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun; Wang, Chong M.; Szanyi, Janos; Peden, Charles HF

    2011-10-01

    Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 C promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.

  1. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  2. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  3. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2005 time period.

  4. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    SciTech Connect (OSTI)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nerves that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.

  5. Parametric Study of NOx Adsorber Regeneration in Transient Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_west.pdf More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Measurement and Characterization of NOx Adsorber Regeneration and Desulfation Measurement

  6. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. PDF icon 2002_deer_park.pdf More Documents & Publications Lean NOx Catalysis Research and Development Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions

  7. Retrofit Diesel Emissions Control System Providing 50% NOxControl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_yee.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control

  8. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company PDF icon 2003_deer_hoard.pdf More Documents & Publications Plasma Assisted Catalysis System for NOx Reduction Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx

  9. Electrochemical NOx Sensors for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NOx Sensors for Monitoring Diesel Emissions Electrochemical NOx Sensors for Monitoring Diesel Emissions A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs PDF icon deer10_woo.pdf More Documents & Publications NOxsensor development NOx sensor development Electrochemical NOxSensor for

  10. Colorado Construction Air Permit Application | Open Energy Information

    Open Energy Info (EERE)

    for a construction permit for construction of a commercial or industrial source of air pollution. Form Type ApplicationNotice Form Topic Air Pollution Control Division -...

  11. The south Karelia air pollution study: Effects of low-level expsoure to malodorous sulfur compounds on symptoms

    SciTech Connect (OSTI)

    Partti-Pellinen, K.; Marttila, O.; Vilkka, V.; Jaakkola, J.J. |

    1996-07-01

    Exposure to very low levels of ambient-air malodorous sulfur compounds and their effect on eye irritation, respiratory-tract symptoms, and central nervous system symptoms in adults were assessed. A cross-sectional self-administered questionnaire (response rate = 77%) was distributed during March and April 1992 to adults (n = 336) who lived in a neighborhood that contained a pulp mill and in a nonpolluted reference community (n = 380). In the exposed community, the measured annual mean concentrations of total reduced sulfur compounds and sulfur dioxide measured in two stations were 2 to 3 {mu}g/m{sup 3} and 1 {mu}g/m{sup 3}, respectively. In the reference community, the annual mean concentration of sulfur dioxide was 1 {mu}g/m{sup 3}. The residents of the community near the pulp mill reported an excess of cough, respiratory infections, and headache during the previous 4 wk, as well as during the preceding 12 mo. The relative risk for headache was increased significantly in the exposed community, compared with the reference area: the adjusted odds ratio (aOR) was 1.83 (95% confidence interval [95% Cl] = 1.06-3.15) during the previous 4 wk and 1.70 (95% Cl = 1.05-2.73) during the preceding 12 mo. The relative risk for cough was also increased during the preceding 12 mo (aOR = 1.64, 95% Cl = 1.01-2.64). These results indicated that adverse health effects of malodorous sulfur compounds occur at lower concentrations than reported previously. 25 refs., 3 tabs.

  12. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect (OSTI)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  13. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  14. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    SciTech Connect (OSTI)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.; Peterson, R.A.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that form as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  16. Nevada Bureau of Pollution Control Webpage | Open Energy Information

    Open Energy Info (EERE)

    Site: Nevada Bureau of Pollution Control Webpage Abstract Provides information regarding air pollution control in Nevada. Author State of Nevada Division of Environmental...

  17. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  18. System and method for diagnosing EGR performance using NOx sensor

    DOE Patents [OSTI]

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  19. Reduction of Emission Variance by Intelligent Air Path Control | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Emission Variance by Intelligent Air Path Control Reduction of Emission Variance by Intelligent Air Path Control This poster describes an air path control concept, which minimizes NOx and PM emission variance while having the ability to run reliably with many different sensor configurations. PDF icon p-17_nanjundaswamy.pdf More Documents & Publications Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Future Directions in Engines and

  20. Photochemical air pollution. Part I

    SciTech Connect (OSTI)

    Goldstein E.; Hackney, J.D.; Rokaw, S.N.

    1985-03-01

    In this paper, epidemiologic studies are reported which indicate that high photochemical oxidant exposures: do not cause mortality or serious illness; may increase the risk of asthmatic attacks in a small percentage of asthmatic patients; appear to reduce pulmonary function in smokers and nonsmokers after long-term exposure; cause acute discomfort of eye and throat, chest irritation and cough; and interfere with athletic performance. Exposure to high ambient levels of NO/sub 2/ is not associated with mortality, serious disease or respiratory dysfunction, but self-limiting symptoms of respiratory irritation or illness may develop in children. 106 references, 2 figures, 1 table.

  1. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Catalysts Aged by LeanRich Cycling Catalysts in fully formulated lean NOx traps are aged and evaluated in a bench-flow reactor using simulated diesel...

  2. A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Performance | Department of Energy A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance 2002 DEER Conference Presentation: Dephi Corporation PDF icon 2002_deer_dou.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems

  3. Measurement and Characterization of NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_huff.pdf More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst

  4. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems PDF icon 2004_deer_catalytica.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  5. Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep_01_larson.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled

  6. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control...

  7. Plasma Assisted Catalysis System for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma Assisted Catalysis System for NOx Reduction Plasma Assisted Catalysis System for NOx Reduction 2002 DEER Conference Presentation: Noxtech, Inc. PDF icon 2002_deer_slone.pdf More Documents & Publications Noxtechs PAC System Development and Demonstration Lean NOx Catalysis Research and Development

  8. Lean NOx Catalysis Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Catalysis Research and Development Lean NOx Catalysis Research and Development 2003 DEER Conference Presentation: Caterpillar, Inc. PDF icon 2003_deer_park.pdf More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies Fuel Effects on Emissions Control Technologies

  9. AMMONIA-FREE NOx CONTROL SYSTEM

    SciTech Connect (OSTI)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  10. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

  11. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2008-11-14

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  12. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  13. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect (OSTI)

    Daniel P. Connell

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  14. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis | Department of Energy NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis 2003 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_aardahl.pdf More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with

  15. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  16. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect (OSTI)

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  17. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  18. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Goal 5: Pollution Prevention LANL is dedicated to finding ways to reduce waste, prevent pollution, and recycle waste that cannot be reduced. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Technical Area 21: Water was sprayed during the demolition of 24 Cold

  19. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control at LANL Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Our goal is to reduce or eliminate waste whenever possible. Promoting pollution prevention to achieve sustainability Our commitment to environmental stewardship and sustainability

  20. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  1. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  2. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_li.pdf More Documents & Publications Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2, CO and C3H6 Reductants

  3. Passive Catalytic Approach to Low Temperature NOx Emission Abatement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle PDF icon deer11_henry.pdf More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Cummins' Next Generation Tier 2, Bin 2 Light

  4. Lower Freezing DEF For Higher NOx Reduction Attainment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Freezing DEF For Higher NOx Reduction Attainment Lower Freezing DEF For Higher NOx Reduction Attainment NOx emissions data from bench-scale experiments and Class III truck operated using a low freezing point diesel exhaust fluid PDF icon deer11_highfield.pdf More Documents & Publications Urea Mixing Design -- Simulation and Test Investigation 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting

  5. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents latest progress in the development of a new type of lean NOx trapping catalyst based on heterogenous composite nanowires, which could potentially be used in gasoline and diesel engines. PDF icon deer11_gao.pdf More Documents & Publications Three-Dimensional Composite Nanostructures

  6. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration Phenomena In Heavy Duty Applications 2003 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_west.pdf More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project

  7. NOx Aftertreatment Using Ethanol as Reductant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Using Ethanol as Reductant NOx Aftertreatment Using Ethanol as Reductant The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high NOx reduction, no need for thawing, use of existing infrastructure, and reduced system cost making it a viable alternative to urea-based SCR PDF icon deer10_diewald.pdf More Documents & Publications Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future SCR-DPF Integrations

  8. Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sulfur Poisoning of NOx Adsorber (LNT) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_24_peden.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials

  9. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace026_peden_2011_o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT)

  10. Deactivation mechanisms of NOx storage materials arising from thermal aging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and sulfur poisoning | Department of Energy mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Presents the reliationship between Pt particle size and NOx storage performance over model catalysts. Novel reaction protocol designed to decouple effects of thermal deactivation and incomplete desulfation. PDF icon deer08_muntean.pdf More Documents & Publications

  11. Detection of Ammonia Slip Using NOx Sensor Signal Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Detection of Ammonia Slip Using NOx Sensor Signal Processing Detection of Ammonia Slip Using NOx Sensor Signal Processing Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_gady.pdf More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Simplification of Diesel Emission

  12. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Blends on NOx Emissions Effect of Biodiesel Blends on NOx Emissions Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_pedersen.pdf More Documents & Publications Key Benefits in Using Ethanol-Diesel Blends Lean NOx Trap Formulation Effect on Performance with In-Cylinder

  13. Super Duty Diesel Truck with NOx Aftertreatment | Department of Energy

    Energy Savers [EERE]

    Super Duty Diesel Truck with NOx Aftertreatment Super Duty Diesel Truck with NOx Aftertreatment A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions. This profile is part of the U.S. Drive 2011 Accomplishment Report. PDF icon U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment More Documents & Publications Development of the 2011MY Ford Super Duty

  14. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace030_gao_2010_o.pdf More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

  15. Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and SCR | Department of Energy Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_atkinson.pdf More Documents & Publications Reductant Utilization in a LNT + SCR System Lean NOx Trap

  16. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  17. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Vehicle Technologies Office Merit Review 2015: Metal Oxide...

  19. Lean NOx Traps - Microstructural Studies of Real World and Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traps - Microstructural Studies of Real World and Model Catalysts Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts 2005 Diesel Engine Emissions Reduction...

  20. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration Phenomena In Heavy Duty Applications 2003 DEER Conference Presentation: Oak Ridge National ...

  1. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an ...

  2. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel ...

  3. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review...

  4. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of...

  5. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  6. Passive Catalytic Approach to Low Temperature NOx Emission Abatement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce ...

  7. Development of Materials Analysis Tools for Studying NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Analysis Tools for Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company Development of Materials Analysis Tools ...

  8. Development on simultaneous reduction system of NOx and PM from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduction system of NOx and PM from a diesel engine 2003 DEER Converence Presentation: Toyota Motor Corporation PDF icon 2003deerwatanabe.pdf More Documents & Publications An...

  9. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with ...

  10. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for...

  11. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted ... Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective ...

  12. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  13. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Processor for Enhanced NOx Control | Department of Energy Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_dallabetta.pdf More Documents & Publications Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions

  14. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  15. SCR Technologies for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for NOx Reduction SCR Technologies for NOx Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_hesser.pdf More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation Powertrain Trends and Future Potential

  16. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2012_o.pdf More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials CLEERS Aftertreatment Modeling and Analysis

  17. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control PDF icon ...

  18. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip PDF icon deer12harold.pdf More Documents & Publications Development of ...

  19. Application of hybrid coal reburning/SNCR processes for NOx reduction in a coal-fired boiler

    SciTech Connect (OSTI)

    Yang, W.J.; Zhou, Z.J.; Zhou, J.H.; Hongkun, L.V.; Liu, J.Z.; Cen, K.F.

    2009-07-01

    Boilers in Beijing Thermal Power Plant of Zhongdian Guohua Co. in China are coal-fired with natural circulation and tangential fired method, and the economical continuous rate is 410 ton per hour of steam. Hybrid coal reburning/SNCR technology was applied and it successfully reduced NOx to about 170 mg/Nm{sup 3} from about 540 mg/Nm{sup 3}, meanwhile ammonia slip was lower than 10 ppm at 450-210 t/h load and the total reduction efficiency was about 70%. Normal fineness pulverized coal from the bin was chosen as the reburning fuel and the nozzles of the upper primary air were retrofitted to be used as the reburning fuel nozzles. The reducing agent of SNCR was an urea solution, and it was injected by the four layer injectors after online dilution. At 410 t/h load, NOx emission was about 300 mg/Nm{sup 3} when the ratio of reburning fuel to the total fuel was 25.9%-33.4%. Controlling the oxygen content of the gas in the reversal chamber to less than 3.4% resulted in not only low NOx emission but also high combustion efficiency. Ammonia slip distribution in the down gas pass was uneven and ammonia slip was higher in the front of the down gas pass than in the rear of the down gas pass. NSR and NOx reduction were proportional to each other and usually resulted in more ammonia slip with reduction in NOx. About 100 mg/Nm{sup 3} NOx emission could be achieved with about 40 ppm NH{sub 3} slip at 300-450 t/h, and ammonia slip from the SNCR reactions could be used as reducing agent of SCR, which was favorable for the future SCR retrofit.

  20. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-12-31

    This is the eighteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Safety equipment for ammonia for the SCR slipstream reactor at Plant Gadsden was installed. The slipstream reactor was started and operated for about 1400 hours during the last performance period. Laboratory analysis of exposed catalyst and investigations of the sulfation of fresh catalyst continued at BYU. Thicker end-caps for the ECN probes were designed and fabricated to prevent the warpage and failure that occurred at Gavin with the previous design. A refurbished ECN probe was successfully tested at the University of Utah combustion laboratory. Improvements were implemented to the software that controls the flow of cooling air to the ECN probes.

  2. SO{sub 2} and NOx trading markets: providing flexibility and results

    SciTech Connect (OSTI)

    Sam Napolitano; Melanie LaCount; Daniel Chartier

    2007-06-15

    Experience with the Acid Rain and NOx Budget Trading Programs demonstrates that cap-and-trade programs are an effective means of achieving broad improvements in air quality. Results demonstrate that the combination of mandatory emissions caps, a viable allowance trading market, rigorous emissions monitoring and reporting protocols, and automatic enforcement provide accountability and ensure results in a cost-effective manner. The market developments discussed in this article demonstrate a successful environmental partnership. With a government focused on results and a private sector motivated to innovate, cap-and trade systems deliver environmental results as efficiently and effectively as possible. 3 refs., 4 figs,

  3. Modeling the Regeneration Chemistry of Lean NOx Traps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Regeneration Chemistry of Lean NOx Traps Modeling the Regeneration Chemistry of Lean NOx Traps Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_larson.pdf More Documents & Publications Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Rh/Ba NOx Traps for Design and Optimization Production, Storage, and FC Analysis

  4. Flexible CHP System with Low NOx, CO and VOC Emissions- Fact Sheet, 2014

    Broader source: Energy.gov [DOE]

    Utilizing Supplemental Ultra-Low-NOx Burner Technology to Meet Emissions Standards and Improve System Efficiency

  5. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect (OSTI)

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  6. State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  7. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  8. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards N2O -- Similarities and Differences Between H2, CO and C3H6 Reductants Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between H2,...

  9. Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich Cycling Impacts of Biodiesel on Emission Control Devices Urea SCR and DPF System for Tier ...

  10. Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep01larson.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx ...

  11. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control PDF icon 2002_deer_aardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  12. Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Concept | Department of Energy Product Speciation Studies of the LNT + in situ SCR NOx Emission Control Concept Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission Control Concept Understanding the detailed chemistry of Nox Reduction across the combined LNT+SCR system. PDF icon deer10_crocker.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Lean NOx

  13. High-Throughput Program for the Discovery of NOx Reduction Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Throughput Program for the Discovery of NOx Reduction Catalysts High-Throughput Program for the Discovery of NOx Reduction Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: General Motors Corporation PDF icon 2004_deer_blint.pdf More Documents & Publications WA_02_042_GENERAL_MOTORS_POWER_TRAIN_DIV_Waiver_of_Domestic_.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Lean-NOx Catalyst

  14. APBF-DEC Light-duty NOx Adsorber/DPF Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-duty NOx Adsorber/DPF Project APBF-DEC Light-duty NOx Adsorber/DPF Project 2003 DEER Conference Presentation: FEV Technology, Inc. PDF icon deer_2003_tomazic.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study

  15. Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toward Targets of Efficient NOx Control for Diesels | Department of Energy Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_huff.pdf More Documents & Publications Intra-catalyst Reductant Chemistry in

  16. Status of APBF-DEC NOx Adsorber/DPF Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APBF-DEC NOx Adsorber/DPF Projects Status of APBF-DEC NOx Adsorber/DPF Projects 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_west.pdf More Documents & Publications APBF-DEC Light-duty NOx Adsorber/DPF Project APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study

  17. Ammonia storage and delivery systems for NOx aftertreatment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy storage and delivery systems for NOx aftertreatment Ammonia storage and delivery systems for NOx aftertreatment Poster presenation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_johannessen.pdf More Documents & Publications 3rd Generation SCR System Using Solid Ammonia Storage and

  18. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an analytical and experimental sA PDF icon 2002_deer_hakim.pdf More Documents & Publications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Cleaner Vehicles,

  19. Power Generating Stationary Engines Nox Control: A Closed Loop Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-11_servati.pdf More Documents & Publications A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF

  20. Diesel DeNOx Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Diesel DeNOx Catalyst New Argonne-Developed Catalyst Can Reduce NOx Emissions From Diesel Engines by 80-85% Argonne National Laboratory Contact ANL About This Technology Inventor Chris Marshall shows the new catalyst that could help remove nitrogen oxides from diesel engine exhaust while saving energy. Inventor Chris Marshall shows the

  1. Functionality of Commercial NOx Storage-Reduction Catalysts and the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Representative Model | Department of Energy Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_toops1.pdf More Documents & Publications Pre-Competitive

  2. Further improvement of conventional diesel NOx aftertreatment concepts as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pathway for SULEV | Department of Energy Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Discusses possible improvement potential and various pathways for LNT after-treatment systems for diesel applications to comply with Tier 2 Bin 5 and SULEV regulations PDF icon deer11_nanjundaswamy.pdf More Documents & Publications Future Directions in Engines and

  3. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace026_peden_2010_o.pdf More Documents & Publications Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction

  4. Enhanced High and Low Temperature Performance of NOx Reduction Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: CLEERS: Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis

  5. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  6. Development of Materials Analysis Tools for Studying NOx Adsorber Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A cooperative research and development agreement with Cummins Engine Company | Department of Energy Materials Analysis Tools for Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company Development of Materials Analysis Tools for Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon

  7. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for the intake manifold of a diesel engine equipped with EGR, along with a virtual intake manifold O2 sensor, show good accuracy with stationary measurements PDF icon deer09_traver.pdf More Documents & Publications Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications

  8. Bringing the Low NOx Diesel Under Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bringing the Low NOx Diesel Under Control Bringing the Low NOx Diesel Under Control Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_pinson.pdf More Documents & Publications Diesel Emission Control Technology Review Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency Clean

  9. CLEERS Activities: Diesel Soot Filter Characterization & NOx Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamentals | Department of Energy Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_21_herling.pdf More Documents & Publications CLEERS Aftertreatment Modeling and Analysis Hydrocarbon Inhibition and HC Storage Modeling

  10. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace030_gao_2012_o.pdf More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  11. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  12. NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption

    SciTech Connect (OSTI)

    Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T.

    2005-08-01

    In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

  13. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  14. Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.

    SciTech Connect (OSTI)

    Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R.

    2008-01-01

    Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

  15. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

    1994-01-01

    Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

  16. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  17. Effect of Thermal Aging on NO oxidation and NOx storage in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fully-Formulated Lean NOx Trap | Department of Energy Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Thermal aging of LNT has numerous material and chemical effects PDF icon deer09_toops.pdf More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx Abatement Research and Development CRADA with Navistar Incorporated Thermal Deactivation

  18. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during the demolition of 24 Cold War-era buildings at TA-21 to protect air quality. Recycling metal from the buildings at Technical Area 21 saved LANL from generating more than...

  19. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  20. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in ...

  1. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - ...

  2. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by...

  3. NH3 generation over commercial Three-Way Catalysts and Lean-NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation over commercial Three-Way Catalysts and Lean-NOx Traps NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Research to identify most promising...

  4. Simultaneously Low-Engine-Out NOx and PM with Highly Diluted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion 2002 DEER Conference...

  5. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study 2003 DEER Conference Presentation: Oak Ridge...

  6. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update 2003 DEER ...

  7. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Presentation given at the 2007 Diesel ...

  8. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER) ...

  9. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given ...

  10. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient ... Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant ...

  11. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation 2004 ...

  12. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel ...

  13. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  14. Compact Electrochemical Bi-functional NOx/O2 Sensors with an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Electrochemical Bi-functional NOxO2 Sensors with an Internal Reference for High Temperature Applications Compact Electrochemical Bi-functional NOxO2 Sensors with an...

  15. Investigation of Aging Mechanisms in Lean NOx Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aging Mechanisms in Lean NOx Traps Investigation of Aging Mechanisms in Lean NOx Traps 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_26_crocker.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts CLEERS Coordination & Development of Catalyst Process Kinetic Data Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

  16. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF | Department of Energy on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx removal and soot oxidation. PDF icon deer09_iretskaya.pdf More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Two Catalyst Formulations - One Solution for NOx After-treatment Systems SCR-DPF Integrations for Diesel

  17. Development on simultaneous reduction system of NOx and PM from a diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engine | Department of Energy on simultaneous reduction system of NOx and PM from a diesel engine Development on simultaneous reduction system of NOx and PM from a diesel engine 2003 DEER Converence Presentation: Toyota Motor Corporation PDF icon 2003_deer_watanabe.pdf More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update

  18. Two Catalyst Formulations - One Solution for NOx After-treatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst Formulations - One Solution for NOx After-treatment Systems Two Catalyst Formulations - One Solution for NOx After-treatment Systems Low-temperature SCR combined with standard high-temperature SCR catalyst formulation in one system provides high NOx conversion over wide temperature range. PDF icon deer08_iretskaya.pdf More Documents & Publications Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Advanced Technology Light Duty

  19. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential synergies of low emission advanced combustion techniques and advanced lean exhaust catalytic aftertreatment. PDF icon deer08_parks.pdf More Documents & Publications Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode High

  20. Impact of Sulfur Dioxide on Lean NOx Trap Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Dioxide on Lean NOx Trap Catalysts Impact of Sulfur Dioxide on Lean NOx Trap Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of New Mexico PDF icon 2004_deer_hammache.pdf More Documents & Publications CLEERS Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis An Improvement of Diesel PM and NOx Reduction System

  1. Clean Air Act | Department of Energy

    Energy Savers [EERE]

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  2. EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 |

    Office of Environmental Management (EM)

    Department of Energy EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 Presentation to the Electricity Advisory Committe on October 29, 2010 by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for additional rule making. PDF icon Reducing Pollution from Power Plants More Documents & Publications EEI Presentation: The

  3. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  4. The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines

    SciTech Connect (OSTI)

    Lyon, Richard

    2001-08-05

    This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

  5. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

  6. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOEs) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  7. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory PDF icon 2004_deer_whitacre.pdf More Documents & Publications APBF-DEC Light-duty NOx Adsorber/DPF Project Status of APBF-DEC NOx Adsorber/DPF Projects APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform

  8. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Update | Department of Energy Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update 2003 DEER Conference Presentation: Ricardo Inc., Chicago Technical Center PDF icon deer_2003_may.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study APBF-DEC Light-duty NOx Adsorber/DPF

  9. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Equipped with a Lean-NOx Trap | Department of Energy NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR. PDF icon deer09_lymburner.pdf More Documents & Publications Vehicle Technologies Office Merit

  10. Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Using High and Low Engine-Out NOx Calibrations | Department of Energy ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel

  11. Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Processor for Enhanced NOx Control | Department of Energy Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_dalla_betta.pdf More Documents & Publications

  12. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  13. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  14. Final Report on the Clean Energy/Air Quality Integration Initiative Pilot Project of the U.S. Department of Energy's Mid-Atlantic Regional Office

    SciTech Connect (OSTI)

    Jacobson, D.; O'Connor, P.; High, C.; Brown, J.

    2006-08-01

    The MARO pilot project represents the first effort in the country to seek to obtain credit under a Clean Air Act (CAA) State Implementation Plan (SIP) for nitrogen oxide (NOx) emission reductions.

  15. Improving Air Quality with Solar Energy; U.S. DOE Clean Energy and Air Quality Integration Initiative Fact Sheet Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality with Solar Energy Many states are seeking additional air pollution control strategies. Zero-emission solar technologies, such as solar electricity and solar water heating, can help air quality and energy offcials in cities, states, and federal agencies improve air quality, achieve Clean Air Act goals, and reduce pollution control costs for both industry and taxpayers. Solar technologies provide energy for heating, cooling, and lighting homes and heating water without any direct

  16. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect (OSTI)

    Trexler, E.C. Jr.; Shannon, J.D.

    1995-06-01

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  17. Development of a Non Air-assisted Thermal Regenerator | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy a Non Air-assisted Thermal Regenerator Development of a Non Air-assisted Thermal Regenerator A thermal regenerator can be used in vehicles without high-pressure air and results in low hydrocarbon emissions, good ignitability, and nozzle durability PDF icon deer09_dimpelfeld.pdf More Documents & Publications Development of an Active Regeneration Diesel Particulate Filter System Blowers for Air Assisted Diesel Particulate Filter Regeneration SCR Technologies for NOx Reduction

  18. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-01-31

    This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1) Completion of a long term field test for Rich Reagent Injection (RRI) at the Conectiv BL England Station Unit No.1, a 130 MW Cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for RRI in PC fired boilers; (3) Design improvements and calibration tests of the corrosion probe; and (4) Investigations on ammonia adsorption mechanisms and removal processes for Fly Ash.

  20. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  1. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  2. NOx Abatement Research and Development CRADA with Navistar Incorporated |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_33_toops.pdf More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Joint Development of

  3. Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office 1 Enhanced High and Low Temperature Performance of NOx Reduction Materials 2014 DOE AMR Review This presentation does not contain any proprietary, confidential, or otherwise restricted information. The work was funded by the U.S. Department of Energy (DOE) Office of FreedomCar and Vehicle Technologies. Program Managers: Ken Howden and Gurpreet Singh June 19, 2014 Feng Gao, George Muntean, Janos Szányi, Chuck Peden Institute for Integrated Catalysis Pacific Northwest

  4. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace030_gao_2011_o.pdf More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts

  5. Looking for Hazardous Pollutants in Your Kitchen

    ScienceCinema (OSTI)

    Singer, Brett

    2014-05-13

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  6. Looking for Hazardous Pollutants in Your Kitchen

    SciTech Connect (OSTI)

    Singer, Brett

    2013-07-22

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  7. Multi-Pollutant Legislation and Regulations (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The 108th Congress proposed and debated a variety of bills addressing pollution control at electric power plants but did not pass any of them into law. In addition, the Environmental Protection Agency (EPA) currently is preparing two regulations-a proposed Clean Air Interstate Rule (pCAIR) and a Clean Air Mercury Rule (CAMR)-to address emissions from coal-fired power plants. Several states also have taken legislative actions to limit pollutants from power plants in their jurisdictions. This section discusses three Congressional air pollution bills and the EPA's pCAIR and CAMR regulations.

  8. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect (OSTI)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  9. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  10. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  11. Indoor air quality & airborne disease control in healthcare facilities...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; MEDICAL ESTABLISHMENTS; INDOOR AIR POLLUTION; CONTROL SYSTEMS; DISEASES; THERMAL COMFORT; SPACE HVAC SYSTEMS Word ...

  12. http://epa.gov/air/oaqps/greenbk/index.html

    National Nuclear Security Administration (NNSA)

    EPA Headquarters should be contacted only when the Regional Office is unable to answer a question. Areas of the country where air pollution levels persistently exceed the national ...

  13. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

  14. Technical Assistance Project for the Minnesota Pollution Control Agency

    SciTech Connect (OSTI)

    Vimmerstedt, L.

    2006-12-01

    This report was prepared in response to a request for technical assistance from the Minnesota Pollution Control Agency (MPCA). The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy supported the National Renewable Energy Laboratory (NREL) in its response to this request through the Technical Assistance Project. Discussion with the MPCA identified the following as the highest-priority questions: What is the effect of (1) size of Renewable Energy Reserve (RER) and (2) duration of allocation award on (a) NOx emissions in Minnesota and (b) retail electricity prices? What data is available on the response of wind energy development to financial incentives? This report addresses those questions.

  15. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect (OSTI)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  16. H2-Assisted NOx Traps: Test Cell Results Vehicle Installations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor PDF icon 2003_deer_crane.pdf More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber

  17. Selective reduction of NOx in oxygen rich environments with plasma-assisted

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysis: Catalyst development and mechanistic studies | Department of Energy reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies 2003 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_peden.pdf More Documents & Publications Plasma-Activated Lean NOx

  18. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deposition for Potential Marine Applications | Department of Energy supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol Deposition for Potential Marine Applications Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol Deposition for Potential Marine Applications Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance PDF icon p-06_choi.pdf More Documents

  19. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gas Technology Institute (GTI), June 2011 | Department of Energy Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio

  20. Development of Chemical Kinetic Models for Lean NOx Traps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace035_larson_2010_o.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials

  1. Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Filter Technology for Low-Temperature and Low-NOx/PM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM Applications 2004 DEER Conference Presentation: Johnson-Matthey Catalysts PDF icon 2004_deer_chatterjee.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Aftertreatment Modeling Status, Futur Potential, and

  2. Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Operation | Department of Energy Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at Light-Duty Operation Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at Light-Duty Operation 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey PDF icon 2004_deer_li.pdf More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter

  3. Advanced Overfire Air system and design

    SciTech Connect (OSTI)

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  4. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and improve NOx reduction performance and reduce system cost PDF icon deer10lee.pdf More Documents & Publications Hydrocarbon Inhibition and HC Storage Modeling in...

  5. Safe and compact ammonia storage/delivery systems for SCR-DeNOX...

    Broader source: Energy.gov (indexed) [DOE]

    johannessen.pdf More Documents & Publications Ammonia storage and delivery systems for NOx aftertreatment 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas...

  6. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  7. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  8. APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NOx Adsorber/DPF Project: SUV/Pick-Up Platform APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform 2003 DEER Conference Presentation: Southwest Research Institute PDF icon 2003_deer_webb.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel APBF-DEC Light-duty

  9. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine. PDF icon p-18_servati.pdf More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology DPF for a Tractor Auxiliary Power Unit

  10. Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)

    SciTech Connect (OSTI)

    Whitacre, S. D.

    2005-08-25

    Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

  11. Effect of Thermal Aging on NO oxidation and NOx storage in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal aging of LNT has numerous material and chemical effects PDF icon deer09toops.pdf More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx ...

  12. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer certification using the Duramax 6.6 liter diesel PDF icon deer09_blint.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx

  13. Lean NOx Trap Formulation Effect on Performance with In-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effect on Performance with In-Cylinder Regeneration Strategies Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration Strategies Poster ...

  14. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst Study of effects of hydrocarbons on ammonia storage and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst behaviors at low temperatures and improve NOx reduction performance and reduce system cost PDF icon deer10_lee.pdf More Documents & Publications Hydrocarbon Inhibition and HC Storage Modeling in Fe-Zeolite

  15. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aged by Lean/Rich Cycling | Department of Energy Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by Lean/Rich Cycling Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by Lean/Rich Cycling Catalysts in fully formulated lean NOx traps are aged and evaluated in a bench-flow reactor using simulated diesel engine exhaust. PDF icon deer08_toops.pdf More Documents & Publications APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul

  16. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  17. Tennessee Pollution Prevention Partnership | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To initially achieve performer status, the Y-12 team developed and completed a five-project plan to help prevent pollution of air, land and water, while reducing waste and ...

  18. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. ...

  19. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  20. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  1. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  2. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, Michael S. (Columbia, MD); Hager, Michael J. (Baltimore, MD); Beeckman, Jean W. (Columbia, MD); Plecha, Stanislaw (Baltimore, MD)

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  3. Sox/Nox Sorbent And Process Of Use

    DOE Patents [OSTI]

    Ziebarth, Michael S. (Columbia, MD); Hager, Michael J. (Coraopolis, PA); Beeckman, Jean W. (Columbia, MD); Plecha, Stanislaw (Baltimore, MD)

    1996-12-17

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  4. Sox/Nox Sorbent And Process Of Use

    DOE Patents [OSTI]

    Ziebarth, Michael S. (Columbia, MD); Hager, Michael J. (Caraopolis, PA); Beeckman, Jean W. (Columbia, MD); Plecha, Stanislaw (Baltimore, MD)

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  5. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  6. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, Michael S. (Columbia, MD); Hager, Michael J. (Baltimore, MD); Beeckman, Jean W. (Columbia, MD); Plecha, Stanislaw (Baltimore, MD)

    1995-01-01

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  7. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  8. Enlightened self-interest key to pollution prevention

    SciTech Connect (OSTI)

    Quinn, B.

    1995-03-01

    A decade ago, pollution prevention was introduced by environmental policy-makers as an alternative to traditional end-of-pipe waste treatment. Even then, the concept was not new. Among corporate efforts, 3M`s well-publicized Pollution Prevention Pays program already had set the stage for viewing pollution prevention as an environmental and financial tool. What was new, though, was the integration of pollution prevention into the fabric of national law. The most blatant example of pollution prevention`s evolution from good idea to enforceable requirement is found in the Pollution Prevention Act of 1990. But some less-visible efforts may have an even more profound effect on the business community. The US Environmental Protection Agency (EPA) is looking for ways to incorporate pollution prevention into Title V permits under the Clean Air Act Amendments of 1990 (CAAA). And, more than 29 states have enacted environmental protection legislation that imposes specific planning requirements on the regulated community.

  9. Biological Air Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Air Emissions Control Biological Air Emissions Control Innovative Technology Enables Low-Cost, Energy-Efficient Treatment of Industrial Exhaust Streams Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol, formaldehyde, acetylaldehyde, and acrolein) during production of wood products must be tightly controlled. Conventional VOCs and HAPs emission

  10. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect (OSTI)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

  11. Sandia Energy - Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    toxic air pollutants including particulate matter (PM), smog-forming nitrogen oxides (NOx) and unburned hydrocarbons, and carbon monoxide (CO). To address these challenges,...

  12. new1chapter.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NOx Oxides of nitrogen, primarily nitrogen oxide and nitrogen dioxide. These are produced primarily by combustion of fossil fuels, and can constitute an air pollution problem. ...

  13. An Improvement of Diesel PM and NOx Reduction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2005_deer_watanabe.pdf More Documents & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions Control Strategy for U.S. Tier 2

  14. Development of Chemical Kinetic Models for Lean NOx Traps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace035_larson_2011_o.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic Data

  15. Study of phase I NOx control: Lessons learned for phase II NOx control strategies

    SciTech Connect (OSTI)

    Myers, B.

    1996-12-31

    Title IV of the Clean Air Act Amendments of 1990 (CAAA) is concerned with lowering the levels of acid rain in the USA. One of the contributions to acid rain is nitric oxides referred to as NO{sub x}. Title IV seeks NO{sub x} reductions from two groupings of utility steam generators. The first group, known as Phase I, was to have their reductions made by January 1, 1996. The purpose of this paper is to look back at Phase I to see what one can learn for use in Phase II compliance planning. Phase II units are scheduled to be in compliance by January 1, 2000. As such, this paper looks to answer four questions about Phase I units.

  16. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect (OSTI)

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  17. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  18. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    SciTech Connect (OSTI)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344F.

  19. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  20. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air

  1. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  2. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  3. Sandia National Laboratories: Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News Information...

  4. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect (OSTI)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

  5. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect (OSTI)

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  6. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  7. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study 2003 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_thomas.pdf More Documents & Publications Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR NOx Adsorber Regeneration Phenomena

  8. Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines | Department of Energy a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx. PDF icon deer08_bedick.pdf More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Evaluation of 2010 Urea-SCR Technology for

  9. Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Advanced engines using HCCI or HCCI-like combustion can provide both high efficiencies and very low emissions of NOX and PM PDF icon deer09_dec.pdf More Documents & Publications HCCI and Stratified-Charge CI Engine Combustion Research HCCI and Stratified-Charge CI Engine Combustion Research

  10. Safe and compact ammonia storage/delivery systems for SCR-DeNOX in

    Energy Savers [EERE]

    automotive units | Department of Energy Safe and compact ammonia storage/delivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storage/delivery systems for SCR-DeNOX in automotive units Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_johannessen.pdf More Documents & Publications Ammonia storage and delivery systems for NOx

  11. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories » Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste, conserve resources and apply sustainable practices. April 17, 2012 George Rael presenting a bronze award for "green" purchasing to Laboratory Deputy Director Beth Sellers. George Rael, assistant manager for national security missions for the Department of Energy's Los Alamos Site Office, presents a bronze

  12. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membranes for Reverse-Organic Air Separations Membranes for Reverse-Organic Air Separations New Membranes Use Reverse Separation to Reduce Pollutant Emissions Many industrial applications need a process to separate pollutants known as volatile organic compounds (VOCs) from air in order to protect the environment and save energy. One such application is the venting of vapor from underground storage tanks (UST) used in gasoline storage and dispensing. These vapors, which can build up and create

  13. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  14. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  15. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance PDF icon p-06choi.pdf ...

  16. NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps

    Broader source: Energy.gov [DOE]

    Research to identify most promising catalytic formulations and operation for the in-situ generation of NH3, storage on a downstream SCR catalyst, and utilized to reduce the remaining NOx

  17. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation 2004 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor PDF icon 2004_deer_crane.pdf More Documents & Publications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration

  18. Performance of Johnson Matthey EGRT’ Emission Control System for NOx and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Emission Reduction in Retrofit Applications Part 1 | Department of Energy 1 Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 2002 DEER Conference Presentation: Johnson Matthey PDF icon 2002_deer_chatterjee1.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 SCRT Technology for Retrofit of

  19. Performance of Johnson Matthey EGRT’ Emission Control System for NOx and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Emission Reduction in Retrofit Applications Part 2 | Department of Energy 2 Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 2002 DEER Conference Presentation: Johnson Matthey PDF icon 2002_deer_chatterjee2.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Development and Field Demonstrations of

  20. Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Traps - Microstructural Studies of Real World and Model Catalysts Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_narula.pdf More Documents & Publications Low Temperature Emission Control Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps Investigation of Aging Mechanisms in Lean

  1. An Experimental Investigation of the Origin of Increased NOx Emissions When

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel | Department of Energy the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the standing premixed autoignition zone near flame lift-off length

  2. An Improvement of Diesel PM and NOx Reduction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_shoji.pdf More Documents & Publications An Improvement of Diesel PM and NOx Reduction System Development on simultaneous reduction system of NOx and PM from a diesel engine Simplification of Diesel Emission Control System

  3. NOx Measurement Errors in Ammonia-Containing Exhaust | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Errors in Ammonia-Containing Exhaust NOx Measurement Errors in Ammonia-Containing Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_hoard.pdf More Documents & Publications Reductant Utilization in a LNT + SCR System Laboratory Product Speciation Studies of the LNT + in situ SCR NOx Emission Control Concept Function Specific Analysis of

  4. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductants | Department of Energy Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_marshall.pdf More Documents & Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

  5. Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustuion | Department of Energy Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_wagner.pdf More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Achieving High-Effiency Clean Ccombustion in Diesel Engines Light-Duty Diesel EngineTechnology to Meet

  6. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies on Diesel Construction Equipment | Department of Energy the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE)

  7. Compact Electrochemical Bi-functional NOx/O2 Sensors with an Internal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference for High Temperature Applications | Department of Energy Compact Electrochemical Bi-functional NOx/O2 Sensors with an Internal Reference for High Temperature Applications Compact Electrochemical Bi-functional NOx/O2 Sensors with an Internal Reference for High Temperature Applications A inexpensive compact O2 sensor has been developed using internal reference gas that is stable for months, has no complex electronics, and is amenable to mass production PDF icon deer09_singh.pdf More

  8. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace032_partridge_2011_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle

  9. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace032_partridge_2010_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace032_partridge_2012_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines,

  11. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck | Department of Energy NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_yezerets.pdf More Documents & Publications Durability

  12. Development of Remove Sensing Instrumentation for NOx and PM Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty Trucks | Department of Energy Development of Remove Sensing Instrumentation for NOx and PM Emissions from Heavy Duty Trucks Development of Remove Sensing Instrumentation for NOx and PM Emissions from Heavy Duty Trucks 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_mcgill.pdf More Documents & Publications Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art 21st Century Truck Partnership Roadmap Roadmap

  13. Unique Catalyst System for NOx Reduction in Diesel Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_slone.pdf More Documents & Publications Clean Diesel Engine Component Improvement Program Noxtechs PAC

  14. The Impact of Lubricant Formulation on the Performance of NOx Adsorber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy Formulation on the Performance of NOx Adsorber Catalysts The Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts PDF icon 2005_deer_whitacre.pdf More Documents & Publications The Impact of Lubricant on Emissions from a Medium-Duty Diesel Engine Diesel Aftertreatment Systems development Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter

  15. Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    N2O Selectivities over a Commercial LNT Catalyst | Department of Energy Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Evaluation of commercial Ba-based LNT (CLEERS benchmark catalyst; containing oxygen storage capacity) in a bench flow reactor under fast-cycling conditions, varying reductant type,

  16. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2015 | Department of Energy Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Solar Turbines Incorporated, in collaboration with The Pennsylvania State University and the University of Southern California, modified a gas turbine combustion system to operate on hydrogen-rich opportunity fuels. Increasing the usability of opportunity fuels will avoid

  17. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  18. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  19. U.S. NO₂ trends (2005-2013): EPA air quality system (AQS) data versus

    Office of Scientific and Technical Information (OSTI)

    improved observations from the Ozone Monitoring Instrument (OMI) (Journal Article) | DOE PAGES Accepted Manuscript: U.S. NO₂ trends (2005-2013): EPA air quality system (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI) Title: U.S. NO₂ trends (2005-2013): EPA air quality system (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI) Emissions of nitrogen oxides (NOx) and, subsequently, atmospheric levels of nitrogen dioxide

  20. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File usage Metadata...

  1. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  2. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect (OSTI)

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

  3. Impacts of Future Climate and Emission Changes on U.S. Air Quality

    SciTech Connect (OSTI)

    Penrod, Ashley; Zhang, Yang; Wang, K.; Wu, Shiang Yuh; Leung, Lai-Yung R.

    2014-06-01

    Changes in climate and emissions will affect future air quality. In this work, simulations of present (2001-2005) and future (2026-2030) regional air quality are conducted with the newly released CMAQ version 5.0 to examine the individual and combined impacts of simulated future climate and anthropogenic emission projections on air quality over the U.S. Current (2001-2005) meteorological and chemical predictions are evaluated against observational data to assess the models capability in reproducing the seasonal differences. Overall, WRF and CMAQ perform reasonably well. Increased temperatures (up to 3.18 C) and decreased ventilation (up to 157 m in planetary boundary layer height) are found in both future winter and summer, with more prominent changes in winter. Increases in future temperatures result in increased isoprene and terpene emissions in winter and summer, driving the increase in maximum 8-h average O3 (up to 5.0 ppb) over the eastern U.S. in winter while decreases in NOx emissions drive the decrease in O3 over most of the U.S. in summer. Future concentrations of PM2.5 in winter and summer and many of its components including organic matter in winter, ammonium and nitrate in summer, and sulfate in winter and summer, decrease due to decreases in primary anthropogenic emissions and the concentrations of secondary anthropogenic pollutants and increased precipitation in winter. Future winter and summer dry and wet deposition fluxes are spatially variable and increase with increasing surface resistance and precipitation (e.g., NH4+ and NO3- dry and wet deposition fluxes increase in winter over much of the U.S.), respectively, and decrease with a decrease in ambient particulate concentrations (e.g., SO42- dry and wet deposition fluxes decrease over the eastern U.S. in summer and winter). Sensitivity simulations show that anthropogenic emission projections dominate over changes in climate in their impacts on the U.S. air quality in the near future. Changes in some regions/species, however, are dominated by climate and/or both climate and anthropogenic emissions, especially in future years that are marked by meteorological conditions conducive to poor air quality.

  4. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    SciTech Connect (OSTI)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. )

    1991-01-01

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

  5. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  6. Air Sealing: A Guide for Contractors to Share with Homeowners Volume 10

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-04-12

    This guide provides information to contractors and homeowners to identify ways to seal unwanted air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution.

  7. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  8. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  9. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

    Broader source: Energy.gov [DOE]

    Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization.

  10. Voluntary pollution reduction programs

    SciTech Connect (OSTI)

    Sears, E.B.

    1997-08-01

    Despite claims that the government is reducing the amount of environmental regulation, the sheer amount of regulatory language has actually increased yearly. Yet based on media reports and citizen claims, pollution appears to go unchecked. Citizens condemn a perceived lack of government regulation of industrial pollution, while industries find themselves mired in increasingly complex regulatory programs that are sometimes far removed from real world situations. US Environmental Protection Agency (EPA) decision-makers have responded to these concerns by designing regulatory programs that abandon traditional command-and-control regulatory schemes as ill-suited to today`s pollution problems and the interests of these stakeholders. This paper analyzes the use of voluntary pollution control programs in place of command-and-control regulation. It is proposed that voluntary programs may serve as carrots to entice regulated entities to reduce pollution, but that there are a number of hurdles to their effective implementation that preclude them from being embraced as effective environmental regulatory tools. This paper reviews why agencies have moved from command-and-control regulation and examines current voluntary pollution control programs. This paper also contemplates the future of such programs.

  11. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  12. Storm Water Pollution Prevention Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Control Specialist FMS - Sustainability and Environmental Programs Date ......... 47 8.6 Site Sustainability Plan ......

  13. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  14. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2013-09-30

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  15. Total integrated NOx compliance for existing pulverized coal-fired units

    SciTech Connect (OSTI)

    Camody, G.; Lewis, R.; Cohen, M.B.; Buschmann, J.; Hilton, R.; Larsson, A.C.; Tobiasz, R.

    1999-07-01

    The EPA Title 1 NOx emission limits along with the corresponding OTR regulations are mandating coal-fired NOx emission levels below 0.15 lb/MBtu. For tangentially fired units, experience has shown that the technology is currently available to achieve these limits. The question for each unit owner-operator becomes; what is the most economical technology or combination of technologies to achieve the required results? This paper provides a brief overview of Combustion Engineering, Inc.'s (ABB C-E) latest NOx control technologies, both in-furnace and post-combustion, for tangential coal-fired steam generators. The paper further reviews options of both stand-alone and combined multiple technologies to achieve the most cost-effective NOx compliance, while maintaining the high levels of unit efficiency and performance that is required to by successful in their deregulated power industry. Current operational data of both in-furnace and SCR NOx reduction systems are presented, as well as the latest historical cost data for the systems.

  16. Investigation of air-entraining admixture dosage in fly ash concrete

    SciTech Connect (OSTI)

    Ley, M.T.; Harris, N.J.; Folliard, K.J.; Hover, K.C.

    2008-09-15

    The amount of air-entraining admixture (AEA) needed to achieve a target air content in fresh concrete can vary significantly with differences in the fly ash used in the concrete. The work presented in this paper evaluates the ability to predict the AEA dosage on the basis of tests on the fly ash alone. All results were compared with the dosage of AEA required to produce an air content of 6% in fresh concrete. Fly ash was sampled from six separate sources. For four of these sources, samples were obtained both before and after the introduction of 'low-NOx burners'. Lack of definitive data about the coal itself or the specifics of the burning processes prevents the ability to draw specific conclusions about the impact of low-NOx burners on AEA demand. Nevertheless, the data suggest that modification of the burning process to meet environmental quality standards may affect the fly ash-AEA interaction.

  17. Air separation membranes : an alternative to EGR in large bore natural gas engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Bihari, B.; McConnell, S.; Sekar, R.; Energy Systems

    2010-08-01

    Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from {Psi} :1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio {Psi} increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NO{sub x} emissions with a slight penalty in BTE.

  18. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases blast furnace gas (BFG) and coke-oven gas (COG) are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTIs highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  20. Impact of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by

    Office of Scientific and Technical Information (OSTI)

    NH3 Over Cu-zeolite Catalysts (Journal Article) | SciTech Connect Journal Article: Impact of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Citation Details In-Document Search Title: Impact of Biodiesel-based Na on the Selective Catalytic Reduction of NOx by NH3 Over Cu-zeolite Catalysts Authors: Brookshear, D. William [1] ; Nguyen, Ke [1] ; Toops, Todd J [2] ; Bunting, Bruce G [2] ; Rohr, William F [2] + Show Author Affiliations University of

  1. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects | Department of Energy Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_parks.pdf More Documents & Publications The Next Regulatory Chapter for Commercial Vehicles Review of Diesel

  2. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aging of NOx Sensors in Heavy-Duty Engine Exhaust Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project PDF icon 2004_deer_orban.pdf More Documents & Publications Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control Vehicle Technologies Office Merit Review 2015: Robust Nitrogen Oxide/Ammonia Sensors for

  3. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_traver.pdf More Documents & Publications Validated SCR Concept Development Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications New Demands on Heavy Duty Engine Management

  4. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel | Department of Energy Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  5. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_muncrief.pdf More Documents & Publications Design of Integrated Laboratory

  6. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines Developed for 2010 | Department of Energy Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing. PDF icon deer08_ardanese.pdf More Documents & Publications Development of ADECS to Meet 2010

  7. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  8. Medical and pharmaceutical wastes. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning medical and pharmaceutical waste regulation and disposal. The citations examine landfills and combustion as disposal options, and consider the economic viability of each. Also covered are the effects of pollutant effluents such as mercury, dioxins, infectious pathogens, residual ash, radioisotopes, and particulate air pollution. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  9. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  10. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  11. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  12. Hanford Site air operating permit application

    SciTech Connect (OSTI)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  13. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  14. Small, Inexpensive Combined NOx and O2 Sensor

    SciTech Connect (OSTI)

    W. Lawless; C. Clark

    2008-09-01

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  15. The progress of pollution prevention in San Diego County

    SciTech Connect (OSTI)

    Hess, J.R.

    1995-12-01

    The goal of pollution prevention to reduce or eliminate the creation of pollutants through source reduction has gained popularity in the industrial and legislative communities. Corporations have instituted voluntary pollution prevention programs and are participating in government sponsored programs such as the U.S. EPA`s 33/50 program. In parallel to these voluntary efforts, legislation has been promulgated at both the federal and state levels which require industrial facilities to establish hazardous waste minimization programs and to include manufacturing activity data when submitting chemical releases reports under TRI. However, the success of these efforts on a county wide basis has not been established. This study establishes a pollutant prevention index that indicates that pollution prevention and economic activity are not mutually exclusive and evaluates the pollutant discharge trends in San Diego County, California from 1987 through 1992. The pollutant discharges evaluated include: hazardous waste generation, as reported to the Cal-EPA on the uniform hazardous waste manifests; air emissions from annual emission inventories; heavy metal concentrations in industrial wastewater discharges; and annual toxic chemical releases as reported on the SARA 313 Toxic Chemical Release Inventory. Economic indicators used as the ratio denominator for normalizing the pollutant data included: energy use, gross regional product, and value of manufactured product. The relationship of between discharges and economic indicators was analyzed using the Spearman Rank Correlation Coefficient. An evaluation of the raw data was conducted to determine which ratio(s) would be representative pollution prevention indices. Two ratios emerge as viable pollution indices. These are hazardous waste per gross regional product and toxic chemical releases per value of manufactured product.

  16. Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  17. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  18. Impact of Sulfation and Desulfation on NOx Reduction Using Cu-Chabazite SCR Catalysts

    SciTech Connect (OSTI)

    Brookshear, Daniel W; Nam, Jeong-Gil; Nguyen, Ke; Toops, Todd J; Binder, Andrew J

    2015-01-01

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 C; however, above 250 C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Furthermore, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  20. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less