Powered by Deep Web Technologies
Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: IEP - Air Quality Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Air Quality Research Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Air Quality Research Innovations for Existing Plants Air Quality Research Ambient Monitoring Emissions Characterization Predictive Modeling & Evaluation Health Effects Regulatory Drivers Air Quality Research Reference Shelf The NETL Air Quality Research program is designed to resolve the scientific uncertainties associated with the atmospheric formation, distribution, and chemical transformation of pollutant emissions from today's coal-fired power plants, and to obtain a realistic assessment of the human health impacts of these emissions. Results of this research will help the DOE Office of Fossil Energy address policy questions regarding coal plant emissions and provide guidance for future emissions control R&D programs at

2

Observing air showers from cosmic superluminal particles  

Science Conference Proceedings (OSTI)

The Poincare relativity principle has been tested at low energy with great accuracy, but its extrapolation to very high-energy phenomena is much less well established. Lorentz symmetry can be broken at Planck scale due to the renormalization of gravity or to some deeper structure of matter: we expect such a breaking to be a very high energy and very short distance phenomenon. If textbook special relativity is only an approximate property of the equations describing a sector of matter above some critical distance scale, an absolute local frame (the 'vacuum rest frame', VRF) can possibly be found and superluminal sectors of matter may exist related to new degrees of freedom not yet discovered experimentally. The new superluminal particles ('superbradyons', i.e. bradyons with superluminal critical speed) would have positive mass and energy, and behave kinematically like 'ordinary' particles (those with critical speed in vacuum equal to c, the speed of light) apart from the difference in critical speed (we expect c{sub i}>>c, where c{sub i} is the critical speed of a superluminal sector). They may be the ultimate building blocks of matter. At speed v>c, they are expected to release ''Cherenkov'' radiation ('ordinary' particles) in vacuum. Superluminal particles could provide most of the cosmic (dark) matter and produce very high-energy cosmic rays. We discuss: a) the possible relevance of superluminal matter to the composition, sources and spectra of high-energy cosmic rays; b) signatures and experiments allowing to possibly explore such effects. Very large volume and unprecedented background rejection ability are crucial requirements for any detector devoted to the search for cosmic superbradyons. Future cosmic-ray experiments using air-shower detectors (especially from space) naturally fulfil both requirements.

Gonzalez-Mestres, Luis [Laboratoire de Physique Corpusculaire, College de France, 75231 Paris Cedex 05 (France); L.A.P.P., CNRS-IN2P3, B.P. 110, 74941 Annecy-le-Vieux Cedex (France)

1998-06-15T23:59:59.000Z

3

Air Force Announces Funding for Alternative Energy Research ...  

Air Force Announces Funding for Alternative Energy Research & Development. December 16, 2013. The Air Force Research Laboratory (AFRL) has ...

4

Workshop on indoor air quality research needs  

Science Conference Proceedings (OSTI)

Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

Not Available

1980-01-01T23:59:59.000Z

5

NETL: IEP - Air Quality Research: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers DOE/NETLÂ’s Air Quality Research Program is in direct response to the need to ensure that fossil-fuel-fired power systems continue to meet current and future environmental requirements. Specific environmental regulatory requirements driving this research are briefly summarized below: I. Clean Air Act (Including 1990 Amendments) Title I - Air Pollution Prevention and Control Part A - Air Quality and Emission Limitations Sect. 109 - National Ambient Air Quality Standards In July 1997 EPA promulgated new standards for particulate matter finer than 2.5 micrometers (PM2.5) and revised the ambient ozone standards. Sect. 111 - Standards of Performance for New Stationary Sources Part C - Prevention of Significant Deterioration of Air Quality

6

Research review: Indoor air quality control techniques  

Science Conference Proceedings (OSTI)

Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

Fisk, W.J.

1986-10-01T23:59:59.000Z

7

Nanometer Particles: Modern Methods of Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanometer Particles: Modern Methods of Research Nanometer Particles: Modern Methods of Research Speaker(s): Rashid Mavliev Date: August 10, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro "Nanometer particles" (with diameter below 50 - 100 nm) have attracted attention during recent years because of their increasing role in industries such as powder technology and semiconductors. They also play a critical role in atmospheric processes. At this size range the properties of particles are different from those of bulk materials and single molecules. This promises new technological innovations and potential scientific discoveries. At the same time it makes the detection and characterization of such particles imperative. Optical methods, which allow for simultaneous measurement of size and concentration of particles

8

Research in elementary particle physics  

Science Conference Proceedings (OSTI)

This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).

Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

1992-01-01T23:59:59.000Z

9

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

10

Pulsed particle beam vacuum-to-air interface  

DOE Patents (OSTI)

A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

Cruz, G.E.; Edwards, W.F.

1987-06-18T23:59:59.000Z

11

Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow  

E-Print Network (OSTI)

The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the direction of the gravitation force in the horizontal iodine air filter are orthogonal, hence the effective accumulation of the small dispersive coal dust particles takes place at the bottom of absorber in the horizontal iodine air filter. It is found that the air dust aerosol stream flow in the horizontal iodine air filter is not limited by the appearing structures, made of the precipitated small dispersive coal dust particles, in distinction from the vertical iodine air filter, in the process of long term operation of the iodine air filters at the nuclear power plant.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-06-11T23:59:59.000Z

12

Pulsed particle beam vacuum-to-air interface  

DOE Patents (OSTI)

A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

Cruz, Gilbert E. (Pleasanton, CA); Edwards, William F. (Livermore, CA)

1988-01-01T23:59:59.000Z

13

Current Research on Building Energy Systems and Air Cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Current Research on Building Energy Systems and Air Cleaning by Visible-Photocatalytic Oxidation (Visible-PCO)...

14

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

15

Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow  

E-Print Network (OSTI)

The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the directi...

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2013-01-01T23:59:59.000Z

16

NETL: IEP - Air Quality Research: Emissions Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

from fossil-fuel-based power systems, both in-stack and in the resultant plume. The combustion of coal can produce both "primary" particles (e.g., fly ash) and gaseous...

17

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2013-01-01T23:59:59.000Z

18

Ice Nuclei in Marine Air: Biogenic Particles or Dust?  

Science Conference Proceedings (OSTI)

Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

2013-01-11T23:59:59.000Z

19

Greenhouse air temperature predictive control using the particle swarm optimisation algorithm  

Science Conference Proceedings (OSTI)

The particle swarm optimisation algorithm is proposed as a new method to design a model-based predictive greenhouse air temperature controller subject to restrictions. Its performance is compared with the ones obtained by using genetic and sequential ... Keywords: Agriculture, Greenhouse climate, Model predictive control, Particle swarm optimisation algorithms

J. P. Coelho; P. B. de Moura Oliveira; J. Boaventura Cunha

2005-12-01T23:59:59.000Z

20

Research accomplishments and future goals in particle physics  

Science Conference Proceedings (OSTI)

This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper.

Whitaker, J.S.

1990-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-02-18T23:59:59.000Z

22

Research on Fuzzy Regulation Strategies in the Constant Air Volume Air Conditioning System  

E-Print Network (OSTI)

The energy consumption of the constant air volume (CAV) system largely depends on the regulation strategies. Although some air conditioning systems are equipped with automatic regulation devices, others lack effective regulation strategies. To avoid wasting energy and presenting simple regulation methods, fuzzy regulation strategies for CAV systems are studied in this research. A CAV system of an office building is modeled and simulated with the Designer's Simulation Toolkit (DeST). The operating parameters are calculated based on the instantaneous load obtained from simulation. The operation of the system is divided into five stages according to different conception of “cold” or “hot” in different seasons. The relationship between the outdoor air temperature and the fresh air volume, and the supply air temperature is presented in the form of fuzzy rules. Then the building is simulated under different load conditions and the operating parameters are obtained from fuzzy reasoning. Finally, the effect of fuzzy strategies on energy consumption is analyzed and compared with the effects of the operating parameters obtained from simulation. The results show that energy consumption using a fuzzy regulation strategy is close to the energy consumption of knowing the exact load of the building, while the fuzzy regulation strategy can largely simplify the regulation of the air conditioning system.

Bai, T.; Zhang, J.; Ning, N.; Tong, K.; Wu, Y.; Wang, H.

2006-01-01T23:59:59.000Z

23

Particle-beam fusion research facilities at Sandia National Laboratories  

SciTech Connect

Sandia research in inertial-confinement fusion (ICF) is based on pulse-power capabilities that grew out of earlier developments of intense relativistic electron-beam (e-beam) radiation sources for weapon effects studies. ICF involves irradiating a deuterium-tritium pellet with either laser light or particle beams until the center of the pellet is compressed and heated to the point of nuclear fusion. This publication focuses on the use of particle beams to achieve fusion, and on the various facilities that are used in support of the particle-beam fusion (PBF) program.

1980-12-31T23:59:59.000Z

24

Improved particle impactor assembly for size selective high volume air sampler  

DOE Patents (OSTI)

Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

Langer, G.

1987-03-23T23:59:59.000Z

25

Air Flow and Particle Trajectories around Aircraft Fuselages. Part III: Extensions to Particles of Arbitrary Shape  

Science Conference Proceedings (OSTI)

Earlier work that produced generalized rules for obtaining trajectories of water droplets moving around aircraft fuselages has been extended to cover the case for particles of arbitrary shape. The parameters determining the major features of the ...

W. D. King

1985-12-01T23:59:59.000Z

26

SPARC: The Stored Particle Atomic Research Collaboration At FAIR  

Science Conference Proceedings (OSTI)

The future international accelerator Facility for Antiproton and Ion Research (FAIR) encompasses 4 scientific pillars containing at this time 14 approved technical proposals worked out by more than 2000 scientists from all over the world. They offer a wide range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. As one of the backbones of the Atomic, Plasma Physics and Applications (APPA) pillar, the Stored Particle Atomic Physics Research Collaboration (SPARC) has organized tasks and activities in various working groups for which we will present a concise survey on their current status.

Stoehlker, Th. [Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Helmholtz-Institut Jena, Jena (Germany); Physikalisches Institut, Ruprecht-Karls Universitaet Heidelberg (Germany); ExtreMe Matter Institute EMMI and Research Division, Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Beyer, H. F.; Braeuning-Demian, A.; Brandau, C.; Herfurth, F.; Kozhuharov, Ch.; Kuehl, Th.; Liesen, D.; Litvinov, Yu.; Noertershaeuser, W.; Kester, O.; Quint, W.; Spillmann, U.; Winters, D. [Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Gumberidze, A. [ExtreMe Matter Institute EMMI and Research Division, Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Johann Wolfgang Goethe Universitaet Frankfurt (Germany); Grisenti, R. E.; Petridis, N. [Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet Frankfurt (Germany); Hagmann, S. [Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet Frankfurt (Germany); Maertin, R. [Helmholtz-Zentrum fuer Schwerionenforschung GSI, Darmstadt (Germany); Physikalisches Institut, Ruprecht-Karls Universitaet Heidelberg (Germany); Schramm, U. [FZD Forschungszentrum Dresden- Rossendorf (Germany)

2011-06-01T23:59:59.000Z

27

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

Ledenyov, Oleg P

2013-01-01T23:59:59.000Z

28

Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research  

Science Conference Proceedings (OSTI)

Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, and population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.

Not Available

1994-06-01T23:59:59.000Z

29

Research in particle physics. [Dept. of Physics, Boston Univ  

Science Conference Proceedings (OSTI)

Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

Not Available

1992-09-01T23:59:59.000Z

30

Particle beam fusion research at Sandia National Laboratories  

SciTech Connect

Sandia`s Particle Beam Fusion Program is investigating several driver options, based on pulsed power technology, with the goal of demonstrating a practical ignitor for Inertial Confinement Fusion (ICF) Reactors. The interrelated aspects of power conditioning and compression, beam-target interaction, and target ignition are being studied. The issues of efficiency, reliability and multiple pulse capability are being integrated into the program to provide a viable approach to an experimental power reactor. On a shorter time scale the authors expect to derive important military-related benefits from attendant research and facility development. The two most important advantages of pulsed power driven fusion are the inherent low cost and high efficiency of high current particle accelerators. However, comparison of the relative merits of particle beams and focused laser beams must include many other factors such as beam transport, and target coupling, as well as target design and fabrication. These issues are being investigated to determine if the perceived practical benefits of particle beam fusion can indeed be realized. The practical considerations are exemplified in a comparison of the leading ICF drivers. The plan being followed by Sandia involves using the Electron Beam Fusion Accelerator (EBFA) to meet three objectives by 1985: significant burn using EBFA 1, net energy gain based on an upgrade of EBFA to the 2 megajoule (MJ) level (EBFA 2), and demonstration of a single module of EBFA 2 operated in the repetitive pulse mode. These goals are dependent, of course, on success in solving several key technical problems under investigation. If these technical problems can be solved, then practical applications to fusion power could be considered. The potential for these applications has been studied using economic models that allow one to derive the cost of power based on various assumptions.

1978-12-31T23:59:59.000Z

31

The DOE-NETL Air Quality Research Program U.S. Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-NETL Air Quality Research Program U.S. Department of Energy Office of Fossil Energy (FE) National Energy Technology Laboratory (NETL) Descriptor - include initials orgdate...

32

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

33

On the Aerosol Particle Size Distribution Spectrum in Alaskan Air Mass Systems: Arctic Haze and Non-Haze Episodes  

Science Conference Proceedings (OSTI)

Aerosols in central Alaskan winter air mass system were classified according to size by diffusive separation and light-scattering spectrometry. Particles entering central Alaska from the Pacific Marine environment had number concentrations ...

Glenn E. Shaw

1983-05-01T23:59:59.000Z

34

Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion  

Science Conference Proceedings (OSTI)

The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: ...

Tishkoff Julian M.; Drummond J. Philip; Edwards T.; Nejad A. S.

1997-01-01T23:59:59.000Z

35

Characterization of aerosol particles from Buenos Aires City and its subway system: PIXE and SEM/EDX  

Science Conference Proceedings (OSTI)

This study analyzes total suspended particle (TSP) samples collected at two sites of Buenos Aires City (34S, 58W). One site (San Martin) placed 17 km from city center, and the other one at an underground subway station (Diagonal Norte) in downtown Buenos Aires. In both cases, gravimetric analysis has been performed, while elemental analysis using PIXE has been only carried out in the first case. To the best our knowledge, this is the first airborne particle measurement perform at a Buenos Aires underground subway station.

Murruni, L. G.; Debray, M. E.; Minsky, D. [Unidad de Actividad Fisica, CNEA, 1650 Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM, 1650 Buenos Aires (Argentina); Kreiner, A. J. [Escuela de Ciencia y Tecnologia, UNSAM, 1650 Buenos Aires (Argentina); Unidad de Actividad Fisica, CNEA, 1650 Buenos Aires (Argentina); CONICET, (Argentina); Burlon, A. [Escue la de Ciencia y Tecnologia, UNSAM, 1650 Buenos Aires (Argentina); Davidson, M.; Davidson, J. [CONICET (Argentina); Ozafran, M.; Vazquez, M. E. [Unidad de Actividad Fisica, CNEA, 1650 Buenos Aires (Argentina); Rosenbusch, M. [Unidad de Actividad Quimica, CNEA, 1650 Buenos Aires (Argentina); Ulke, A. G. [Depto. de Ciencias de la Atmosfera y los Oceanos, UBA, (1428) (Argentina); Solanes, V. [Escuela de Ciencia y Tecnologia, UNSAM, 1650 Buenos Aires (Argentina)

2007-02-12T23:59:59.000Z

36

Unmanned air vehicle (UAV) ultra-persitence research  

DOE Green Energy (OSTI)

Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.

Dron, S. B.

2012-03-01T23:59:59.000Z

37

The Next Generation Air Particle Detectors for the United States Navy  

Science Conference Proceedings (OSTI)

Design and testing of the United States Navy’s next generation air particle detector (NGAPD) is presently underway. The NGAPD is intended for use in nuclear applications for the United States Navy and is being designed to detect airborne Co-60 with a reduction in false alarms and improved ease of use. Features being developed include gamma compensation, low maintenance, commercial off-the-shelf electronics, and spectrum simulation for quality assurance and functional testing applications. By supplying a spectrum simulator, the radon stripping algorithm can be running when a simulated anthropogenic source spectrum (e.g., from Co-60 or transuranics) is superimposed on the radon progeny spectrum. This will allow alarm levels to be tested when the air flow is running and the radon stripping algorithm is providing the instrument response output. Modern units evaluate source spectra with the air flow off and the radon spectrum absent thereby not testing the true system performance which comes out of the radon stripping algorithm. Testing results of the preliminary prototype show promise along with computer simulations of source spectra. Primary testing results taken to date include gamma compensation, thermal insults, vibration and spectrum simulation.

Robert Hayes and Craig Marianno

2007-06-24T23:59:59.000Z

38

Field Evaluation of Nanofilm Detectors for Measuring Acidic Particles in Indoor and Outdoor Air  

E-Print Network (OSTI)

independent and unbiased research organization to provide high quality, impartial, and relevant science on the health effects of emissions from motor vehicles, fuels, and other environmental sources. All results are provided to industry and government sponsors, other key decisionmakers, the scientific community, and the public. HEI funds research on all major pollutants, including air toxics, diesel exhaust, nitrogen oxides, ozone, and particulate matter. The Institute periodically engages in special review and evaluation of key questions in science that are highly relevant to the regulatory process. To date, HEI has supported more than 220 projects at institutions in North America, Europe, and Asia and has published over 160 Research Reports and Special Reports. Typically, HEI receives half of its core funds from the US Environmental Protection Agency and half from 28

E F F E Cts; Beverly S Cohen; Maire Sa Heikkinen; Yair Hazi; Hai Gao; Paul Peters

2004-01-01T23:59:59.000Z

39

Measured concentrations of radioactive particles in air in the vicinity of the Anaconda Uranium Mill  

Science Conference Proceedings (OSTI)

Concentrations of radioactive particles (U-238, Th-230, Ra-226, and Pb-210) in air were measured in the vicinity of the Anaconda Uranium Mill, Bluewater, New Mexico. Airborne particles were collected at three stations for about two-thirds of a year using a continuous collection method at a sampling rate of 10 L/min, and also were measured in monthly composites collected periodically at four stations using high volume air samplers at a sampling rate of 1400 L/min. The ratios of concentrations of each radionuclide to the concentrations of U-238 indicate that the concentrations of the radionuclides are influenced principally by the proximity of the major sources of emission and the direction of the wind. In all cases, the concentration of Pb-210 exceeded that of U-238. The ratio of Pb-210/U-238 was 12.3 and 13.3 for stations dominated by the emissions from the tailings and ore pads, but was only 1.6 for the station dominated by the yellowcake stack emission. The ratio of the radionuclide concentrations measured by the two methods of sample collection was between 0.8 and 1.2 for uranium, radium, and lead at station 104, but was 0.28 to 1.7 for thorium, radium, and lead at stations 101 and 102. The average concentrations calculated from the measurements made in this study suggest that releases from the Anaconda mill were made well within the existing limits of the maximum permissible concentrations for inhalation exposure of the general public.

Momeni, M H; Kisieleski, W E

1980-02-01T23:59:59.000Z

40

Residential Heating, Ventilating, and Air Conditioning Research Workshop  

Science Conference Proceedings (OSTI)

The residential HVAC load contributes $23 billion to electric utility energy sales and significantly to peak demands. Participants at this 1986 workshop identified fifteen areas of research needed to improve HVAC components, systems, and applications.

1987-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Research in elementary particle physics. [Ohio State Univ. , Columbus  

Science Conference Proceedings (OSTI)

Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

Not Available

1992-01-01T23:59:59.000Z

42

Quantitative evaluation of air-filtration systems in use at asbestos abatement sites: Research in progress  

Science Conference Proceedings (OSTI)

High Efficiency Particulate Air (HEPA) filtration systems serve as the principal engineering control to remove asbestos particulate from airstreams at abatement projects. However, little quantitative information is available on the integrity of these air-filtration systems in preventing asbestos fiber release into outdoor air or adjacent building areas, potentially exposing occupants. A study is in progress to assess the performance of HEPA filtration systems in use at asbestos abatement projects to determine each systems operating particle-removal efficiency, percent concentration, and decontamination factor. The asbestos-fiber concentration in the inlet and discharge air of each filtration system will be determined by isokinetic air sampling. Each isokinetic air sample collected will be analyzed using transmission electron microscopy. In addition, in-place aerosol performance testing will be conducted according to procedures outlined in ANSI/ASME N510-1980. The test method utilizes a polydispersed dioctyl phthalate aerosol (generated by Laskin nozzles) and a photometric light-scattering mass-concentration detector as the measuring device.

Powers, T.J.; Cain, W.C.; Wilmoth, R.C.; Kominsky, J.R.; Brownlee, J.A.

1989-01-01T23:59:59.000Z

43

NETL: IEP - Air Quality Research: In-House R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Ambient Monitoring - NETL / OST Monitoring Site This project is part of the NETL In-House R&D Ambient Air Quality Research Program. As part of the overall DOE-FE air quality sampling and analysis activities, NETL's Office of Science & Technology (OST) has initiated an in-house ambient monitoring program that builds upon the Center's core capabilities and competencies in inorganic and organic analyses and instrumentation. The program has culminated with the establishment of a fine particulate/air toxics sampling station at the Center's research laboratory in Pittsburgh. This air monitoring station consists of a new 715 ft2 indoor facility housing equipment to monitor continuously gaseous pollutants O3, SO2, NH3, NOy, NOx, CO, H2S, and peroxide, and PM2.5 particulates containing carbon and polyaromatic hydrocarbons. In addition, a fully-instrumented, fourteen bay rack has been constructed to support a variety of ambient monitoring equipment. OST will also collaborate with Consol and the Allegheny (PA) County Health Department in evaluating the performance of PM2.5 FRM samplers. The NETL sampling station will use an existing 10-meter meteorological tower that has been collecting weather-related data for the past seven years. Two in-house laboratories have been completely renovated to support the analysis of PM2.5/air toxics samples, including the installation of a Kratos MS50 high-resolution mass spectrometer for the detailed characterization of organic compounds.

44

Development, characterization, and application of a charged particle microbeam for radiobiological research  

E-Print Network (OSTI)

The goal of this work is to develop a charged-particle microbeam for use in radiobiological research at the MIT Laboratory for Accelerator Beam Applications (LABA). The purpose of this device is to precisely explore the ...

Folkert, Michael R. (Michael Ryan), 1975-

2005-01-01T23:59:59.000Z

45

PROPOSED RESEARCH AGENDA FOR ACHIEVING INDOOR AIR QUALITY SUPPORTING HEALTH AND  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSED RESEARCH AGENDA FOR ACHIEVING PROPOSED RESEARCH AGENDA FOR ACHIEVING INDOOR AIR QUALITY SUPPORTING HEALTH AND COMFORT IN HIGHLY ENERGY EFFICIENT BUILDINGS Pawel Wargocki 1* , Max Sherman 2 , Willem de Gids 3 , Peter Wouters 4 , Francis Allard 5 , Remi Carrie 6 , Paolo Carrer 7 , and Stylianos Kephalopolous 8 1 International Centre for Indoor Environment and Energy, DTU Civil Engineering, Technical University of Denmark 2 Residential Building Systems Group, Lawrence Berkeley National Laboratory, USA 3 VentGuide, the Netherlands 4 Air Infiltration and Ventilation Centre, Belgium 5 University of La Rochelle, France 6 International Network for Information on Ventilation, Belgium 7 The University of Milan, Italy 8 Joint Research Centre, Ispra, Italy ABSTRACT Research topics that need to be addressed so that the future highly energy efficient buildings do not compromise

46

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

Oleg P. Ledenyov; Ivan M. Neklyudov

2013-06-14T23:59:59.000Z

47

96 ASHRAE Transactions: Research Current duct design methods for variable air volume  

E-Print Network (OSTI)

96 ASHRAE Transactions: Research ABSTRACT Current duct design methods for variable air volume (VAV in the 1997 ASHRAE Handbook--Fundamentals (ASHRAE 1997): equal friction, static regain, and the T Systems Taecheol Kim Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol

48

ASHRAE Transactions: Research 105 Current duct design methods for variable air volume  

E-Print Network (OSTI)

ASHRAE Transactions: Research 105 ABSTRACT Current duct design methods for variable air volume (VAV for different design conditions are sought using a duct fitting database program as described in ASHRAE (1993 Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol Kim is a Ph

49

ZINC/AIR BATTERY R & D RESEARCH AND DEVELOPMENT OF BIFUNCTIONAL OXYGEN ELECTRODE TASKS I AND II  

E-Print Network (OSTI)

ENCE DIVISION ZINC/AIR BATTERY R&D C-.J(~ur.1":! rfS SECTIONLBL-22661 ZINC/AIR BATTERY R&D RESEARCH AND DEVELOPMENT OFTask III - Zinc Air for EV Battery - an engineerin~~~~~¥! 3!

Klein, M.

2009-01-01T23:59:59.000Z

50

Research on Automatically Identification of Diagonal Air-flow Branches of Complex Ventilation System of Coal Mines  

Science Conference Proceedings (OSTI)

air-flow branches identification and stability analysis is one of the core contents of stability and reliability theory of mine ventilation system. This current paper takes deeply research on diagonal air-flow branches. Limitations of the path method ... Keywords: diagonal air-flow branch, path collection, path method, node-position method

Feng Cai, Zegong Liu

2012-07-01T23:59:59.000Z

51

UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report  

SciTech Connect

This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G�parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;�}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and non�coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

B.M.K. Nefkens (Principal Investigator, ed.); J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin (ed.)

2011-05-18T23:59:59.000Z

52

Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania  

SciTech Connect

In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

2010-03-01T23:59:59.000Z

53

NETL: IEP - Air Quality Research: Health Effects of Coal Plant Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Map Click on a Project Name to Get More Information Click to read a DOE TechLine [PDF-22KB] describing three new projects that will improve our current understanding of the link between power plant emissions, PM2.5, and human health. The Health Effects component of NETL's Air Quality Research Program is designed to enhance the body of scientific evidence relating stack emissions from coal plants to adverse health effects resulting from human exposures to air pollution. Despite the fact that coal plants emit significant amounts of PM2.5 and mercury to the atmosphere, there is currently a great deal of uncertainty regarding the actual amount of health damage resulting from these emissions. In order to devise cost-effective

54

. Liquid or solid particles suspended in the air . Some occur naturally, originating from  

E-Print Network (OSTI)

, absorption by particles and surrounding atmosphere causes net warming. . magnitude of cooling depends on size) . Aerosols produce more vivid sunsets . We are not sure whether aerosols are overall warming or cooling by underlying Earth surface albedo . Although reduction in sunlight reaching ground produces net cooling

McCready, Mark J.

55

Computer program development specification for the air traffic control subsystem of the Man-Vehicle Systems Research Facility.  

E-Print Network (OSTI)

Functional summary: The Air Traffic Control (ATC) Subsystem of the Man-Vehicle System Research Facility (MVSRF) is a hardware/software complex which provides the MVSRF with the capability of simulating the multi-aircraft, ...

Massachusetts Institute of Technology. Flight Transportation Laboratory

1982-01-01T23:59:59.000Z

56

Research accomplishments and future goals in particle physics. Final technical report  

Science Conference Proceedings (OSTI)

This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. Boston University is active in seven principal areas: (1) Task A: Colliding Beams -- physics of e{sup +}e{sup {minus}} and {anti p}p collisions; (2) Task C: MACRO Experiment -- search for magnetic monopoles and study of cosmic rays; (3) Task D: Proton Decay -- search for nucleon instability and study of neutrino interactions; (4) Tasks E, J, and N: Particle Theory -- theoretical high energy particle physics, including two Outstanding Junior Investigator awards; (5) Task F: Muon G-2 -- measurement of the anomalous magnetic moment of the muon; (6) Task K: SSCintcal -- calorimetry for the GEM Experiment; (7) Task L: Muon Detectors for the GEM Experiment. The body of the proposal is devoted to detailed discussions of each of the tasks. The total budget request for the program appears in a summary chapter that includes a general budget discussion and individual budget requests and explanations for each of the tasks.

Not Available

1994-06-01T23:59:59.000Z

57

Research in particle physics. Progress report, June 1, 1992--January 31, 1993  

Science Conference Proceedings (OSTI)

Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron{endash}positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ``electrostatic muon kicker``; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

Not Available

1992-09-01T23:59:59.000Z

58

Research on the Integration Characteristics of Cooling Energy Recovery from Room Exhausting Cool Air in Summer  

E-Print Network (OSTI)

Currently, the design and construction of buildings and building energy systems are far from reasonable. The requirement and consumption of primary energy resources is aggravated, the use of building energy is free and wasteful, and pollution of the earth's atmosphere from building energy consumption is also aggravated. Therefore, the research and applications of energy efficiency and environmentally benign building energy systems are very important and urgent. Until now, much work on building energy conservation methods, measures and evaluations have been done by people in many countries. Some theoretical achievements have been already put into practice, but most of them put undue emphasis on some parts of the whole system. The complete idea of building energy conservation by integrating the building energy systems has not been put forward, and unequivocal guidance and a complete evaluation index and theoretical system for building energy consumption and its impact on the environment have not been formed. In this paper, we make further suggestions for improvement, and present some new concepts such as building energy flow, building mass flow, couple recovering of building discharge energy, integrated system of building energy , factor of building energy integration I, and effect factor on atmospheric environment of building energy F. The positive effects of these new concepts and methods on traditional approaches are also predicted. Theoretical research on an energy recovery unit that recovers cooling energy from indoor exhausting cool air in summer has been done in this paper, and demonstrates great advantages of its integration characteristics of building thermal systems.

Zhang, W.; Wu, J.; Wei, Y.

2006-01-01T23:59:59.000Z

59

Program on Technology Innovation: Interactions of Climate Change and Air Quality: Research Priorities and New Direction  

Science Conference Proceedings (OSTI)

Regional air quality and global climate change are highly interrelated because emissions of many pollutants affect both air quality and climate change, and the fundamental chemistry affecting air quality and global climate is similar. There are major gaps in scientific understanding that limit the development of models that can be used to accurately assess impacts of the interactions between air quality and climate on global to regional scales. A two-day workshop was held to identify such gaps and develo...

2005-08-09T23:59:59.000Z

60

Analysis of a Radome Air-Motion System on a Twin-Jet Aircraft for Boundary-Layer Research  

Science Conference Proceedings (OSTI)

A “radome gust probe” system was installed on a twin-jet aircraft for the purpose of boundary-layer research. This system provided a useful relatively low-cost method for air motion and turbulence measurements on an aircraft already equipped with ...

Michael Tjernström; Carl A. Friehe

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

STUDY OF CHARACTERIZATION OF SUBMICRON COAL PARTICLES DISPERSED IN AIR AND CAPTURE OF COAL PARTICLES BY WATER DROPS IN A SCRUBBING COLUMN.  

E-Print Network (OSTI)

??Present day water spray based dust removal technologies do not effectively remove respirable submicron coal and silica dust particles in the underground coal mines causing… (more)

Chakravorty, Utshab

2012-01-01T23:59:59.000Z

62

NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

research determines optimal HVAC system design for research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evalu- ated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air tempera-

63

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

Cole, G.H.

1998-04-01T23:59:59.000Z

64

Particle Image Velocimetery (PIV) Diagnostics for Wind Energy and Energy Security Research  

DOE Green Energy (OSTI)

Particle Image Velocimetery (PIV) is a laser based technique that involves correlation analysis of tracer particle images to estimate the velocity field in a fluid. High resolution velocity measurement capability and non-intrusive nature of PIV make it desirable for understanding complex fluid flow phenomena occurring in various scenarios. This presentation briefly describes the development of novel PIV diagnostics that forward Wind Energy research and advance scaling models to solve expensive maintenance issues of the Strategic Petroleum Reserves (SPR). Two new diagnostic implementations of Particle Image Velocimetry (PIV) are being developed at Los Alamos National Laboratory (LANL) to facilitate understanding of wind turbine aerodynamics in unprecedented detail. It has been demonstrated that a Large-Field PIV (LF-PIV) diagnostic capable of measuring large scale flow fields of up to 4.3m x 2.8m per camera has been developed. This diagnostic, which represents a significant leap in the field of view of existing centimeter scale PIV systems, allows the measurement of velocity fields at multiple points with high accuracy for large scale flows, such as, flows around wind turbines. Further, to characterize the near blade boundary layer of wind turbines a rotating PIV system (R-PIV) is also under development at LANL (patent application in progress). Design considerations and results of bench top tests that confirm the reliability of PIV measurements obtained using the above diagnostics will be presented in this talk. PIV along with conductivity and temperature probe data has been useful to develop models that simulate the evolution of the layered structure of crude oil stored in the subterranean caverns of the Strategic Petroleum Reserves (SPR). Understanding the evolution of stratified layers of crude oil that are subjected to geothermal forcing is crucial in improving the efficiency of maintenance procedures carried out for the SPR and hence ensure Energy Security of the nation. Through analytical and experimental analysis it has been found that the dynamics of crude oil mixing are significantly affected by the presence of heating sidewalls of the storage caverns. Scaling laws that have been advanced for evolution of mixed layers for stratified fluid layers stored in slender containers will also be described in this presentation.

Pol, Suhas Uddhav [Los Alamos National Laboratory

2012-06-04T23:59:59.000Z

65

Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry  

E-Print Network (OSTI)

for fossil fuel combustion and biomass burning emissions [Arabia: Biomass/biofuel burning and fossil fuel combustion,Many K-Combustion particles are from biomass burning, but

Ault, Andrew Phillip

2010-01-01T23:59:59.000Z

66

Classification of Volatile Engine Particles  

Science Conference Proceedings (OSTI)

Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

Cheng, Mengdawn [ORNL

2013-01-01T23:59:59.000Z

67

Research on Thermal Properties in a Phase Change Wallboard Room Based on Air Conditioning Cold Storage  

E-Print Network (OSTI)

After comparing the thermal performance parameters of an ordinary wall room to a phase change wall (PCW) room, we learn that phase change wallboard affects the fluctuation of temperature in air-conditioning room in the summer. We built a PCW room and an ordinary wall room, which are cooled by an air-conditioner. We used differential scanning calorimetry (DSC) to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested, we found that the mean temperature of PCW is lower than that of ordinary wall room by 1 to 2?, and PCW can lower the heat flow by 4.6W/m2. Combining phase change material with the building envelope can lower the indoor temperature, make the room thermally comfortable, and cut down the turn-on-and-off frequency of the air-conditioner and the primary investment and operating costs. It alleviates the urgent need for electricity.

Feng, G.; Li, W.; Chen, X.

2006-01-01T23:59:59.000Z

68

Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces  

DOE Green Energy (OSTI)

This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping.

Thomas, E.W.

1985-02-01T23:59:59.000Z

69

Exploratory Research on MEMS Technology for Air-Conditioning and Heat-Pumps  

Science Conference Proceedings (OSTI)

Multiple refrigerant channels are essential for improving system efficiency in refrigeration and air-conditioning systems. A study was conducted to study the use of micro-electrical-mechanical- systems (MEMS) and micro device technologies to improve current vapor compression refrigeration cycles. The first step toward realizing this goal, and the focus of this report, is to determine how to better control multi-channel evaporators by reducing refrigerant maldistribution among channels.

1998-12-14T23:59:59.000Z

70

Research on Ammonium Bisulfate Formation in Air Preheaters - Experimental Investigation and CFD Modeling  

Science Conference Proceedings (OSTI)

Ammonium bisulfate (ABS) formation and deposition is the most common operating problem affecting air preheaters (APHs) in fossil power plants with post combustion NOx controls that use selective noncatalytic reduction (SNCR) or selective catalytic reduction (SCR). This report describes pilot-scale experiments conducted to better understand ABS chemistry and efforts to develop a computational fluid dynamics (CFD) model of an APH to identify the key phenomena that may affect ABS formation and deposition.

2008-06-30T23:59:59.000Z

71

A Miniature Optical Particle Counter for In Situ Aircraft Aerosol Research  

Science Conference Proceedings (OSTI)

Modification of a commercial Met One 237A optical sensor to accept custom electronics consisting of a single logarithmic amplifier providing 256 size bins over the 0.3–14-?m diameter range is described. Configuration of the optical particle ...

Antony D. Clarke; Norman C. Ahlquist; Steven Howell; Ken Moore

2002-10-01T23:59:59.000Z

72

U.C. Davis high energy particle physics research: Technical progress report -- 1990  

SciTech Connect

Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

NONE

1990-12-31T23:59:59.000Z

73

NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of DEVAP prototype validates modeled Testing of DEVAP prototype validates modeled predictions of 40% to 85% energy savings. Researchers in the NREL Buildings group are moving the award-winning desiccant enhanced evaporative (DEVAP) air conditioning technol- ogy further toward commercialization by demonstrating that its energy-saving perfor- mance matches closely with thermodynamic model predictions. Industry partners Synapse Product Development and AIL Research built two prototypes of DEVAP based on NREL's design and modeling, which were tested in NREL's Advanced HVAC Systems Laboratory. Experiments added confidence to the predicted energy savings of 40% in humid climates and 85% in dry climates, empowering the model as a tool for developing marketable designs, and illustrating the potential of DEVAP to transform

74

Andrew F. Bunker: Pioneering in Air-Sea Interaction Research 1946–79  

Science Conference Proceedings (OSTI)

Andrew F. Bunker was a research scientist at the Woods Hole Oceanographic Institution (WHOI) for over 30 years until his death in 1979. He was interested in the energy exchanges between the atmosphere and ocean, and devised techniques for their ...

Carl A. Friehe; Henry M. Stommel

1991-01-01T23:59:59.000Z

75

Improvement of solar air collectors: Study and Experimental Research Project. Final report, May 1976-June 1978  

DOE Green Energy (OSTI)

Literature and patents relevant to solar air-heating collectors were reviewed. The design constraints are listed. The analysis considered the heat transfer and pressure loss characteristics of the various designs. Three absorbers along with the baseline design were mounted in identical collector bodies and subjected to thermal efficiency tests on Solaron's collector test stand. The testing was done simultaneously on the four panels in a side-by-side collector test. Various manufacturing techniques for producing an absorber with extended heat transfer surface were investigated. It was found that fins could be attached to the absorber in a cost-effective manner by an electrical resistance weld. Four finned absorbers were fabricated by resistance welding and installed in a 2 x 2 collector array to verify that these production model prototypes would, in fact, increase performance by a factor of 1.11. (MHR)

Cole-Appel, B.E.; Loef, G.O.G.; Shaw, L.E.; Fischer, B.B.

1978-01-01T23:59:59.000Z

76

Research Positionsfor Development of Novel Green Air Conditioning and Refrigeration Systems for Transportation Vehicles  

E-Print Network (OSTI)

trucks and reefers. The research program includes the following: i) Modeling A/CR loads of heavy duty with the automotive, truck, and food industries, thermal system analysis, numerical simulation, testbed design, CFD, and relevant design/numerical/simulation software (e.g. SolidWorks,COMSOL, FLUENT

Bahrami, Majid

77

Developing A Safety Culture In A Research And Development Environment: Air Traffic Management Domain  

E-Print Network (OSTI)

Measuring safety climate has been undertaken in many industries (e.g. oil, nuclear, aviation) over the past twenty years, as a proactive method of collecting safety information about the current level of safety in the organisation. However, there has been little work undertaken to develop the safety culture of the designers of these technological systems, to ensure that their designs are endeavouring to reach the highest levels of safety. A tool was developed to measure the current level of safety culture of designers in an air traffic navigation R&D organisation and contains 21 sub-sections under the following four main headings: i) Management Demonstration of Safety; ii) Planning and Organising for Safety; iii) Communication, Trust & Responsibility for Safety and iv) Measuring, Auditing and Reviewing. The findings indicated that the main areas for improvement are: i) the safety management system; ii) team integration; iii) responsibility for safety. Based on the survey findings some changes were undertaken in an attempt to improve the safety culture at the centre and a repeat survey is planned for April, 2005 to assess any improvements. This paper will describe the survey method and findings, the safety improvement plan, preliminary findings from the follow-up survey and lessons learnt during the change process. 1.

Rachael Gordon; Barry Kirwan

2005-01-01T23:59:59.000Z

78

Collaborative research on fluidization employing computer-aided particle tracking. Final report  

Science Conference Proceedings (OSTI)

Discussions presented in this report highlight all the important considerations for making particle dynamics measurements using the radioactive active particle tracking methodology. It is seen that the technique makes it possible to obtain data which are not accessible by any other means. Among the advantages of the methods are: (1) It is completely uninvasive, and hence cannot disturb the flow. (2) It can penetrate opaque suspensions. (3) It yields detailed, spatially resolved (subject to resolution limitations) data on mean velocity and density distributions as well as other statistical quantities. Its disadvantages are: (1) It can only provide time averaged data. It cannot provide instantaneous ``snap shots`` of the flow field. (2) It cannot yield information of flows around bubbles, which are of great interest in fluidization theories. (3) It has only modest resolution -- of the order of a two to four percent of the flow field. However, the resolution can be improved by almost an order of magnitude, if long test runs can be used to acquire data of high statistical quality. 4. For data of adequate resolution, long test runs -- several hours and up - are needed. Clearly if used with a clear understanding of its capabilities as well as limitations, the radioactive particle tracking technique can make possible measurements which are not possible by any other method, and contribute significantly to the study of suspension flows.

Chen, M.M.

1993-04-01T23:59:59.000Z

79

Review of research results for the photocatalytic oxidation of hazardous wastes in air  

SciTech Connect

Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

Nimlos, M.R.; Wolfrum, E.J.; Gratson, D.A.; Watt, A.S.; Jacoby, W.A.; Turchi, C.

1995-01-01T23:59:59.000Z

80

Air-Quality Data from NARSTO (North American Research Strategy for Tropospheric Ozone)  

DOE Data Explorer (OSTI)

In January 1997, the U.S. Department of Energy's Environmental Sciences Division announced their sponsorship of the NARSTO Quality Systems Science Center (QSSC). The QSSC is located at the Oak Ridge National Laboratory within the Carbon Dioxide Information Analysis Center (CDIAC). Quality Assurance and Data Management assistance and guidelines are provided by the QSCC, along with access to data files. The permanent data archive is maintained by the NASA EOSDIS Distributed Active Archive Center at the Langley Research Center. The archived data can be reached by a link from the QSSC.(Specialized Interface) See also the NARSTO web site at http://www.narsto.org/

None

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FACE: Free-Air CO{sub 2} Enrichment for plant research in the field  

DOE Green Energy (OSTI)

Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

Hendrey, G.R. [ed.

1992-08-01T23:59:59.000Z

82

FACE: Free-Air CO[sub 2] Enrichment for plant research in the field  

DOE Green Energy (OSTI)

Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

Hendrey, G.R. (ed.)

1992-08-01T23:59:59.000Z

83

Research in elementary particle physics. Technical progress report, June 1, 1991--May 31, 1992  

Science Conference Proceedings (OSTI)

This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).

Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

1992-08-01T23:59:59.000Z

84

Compendium of selected references on air emissions; health, risk, and valuation research; and environmental externalities  

Science Conference Proceedings (OSTI)

In preparing to develop a cost-benefit methodology that could be applied to potential projects abroad involving new coal-fired power plants that make use of US clean coal technologies, the author reviewed a wide variety of reference sources. These are listed in this publication. Before this review, the author had conducted a number of literature searches that identified source material in the newly rediscovered field of environmental externalities and related topics that might also be of value to other energy and environmental researchers. Those sources that appeared to be appropriate but that the author was unable to review are also listed in this document. Thus, this document serves as a comprehensive compendium of source material on these subjects, arranged alphabetically within categories.

Szpunar, C.B.

1992-07-01T23:59:59.000Z

85

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

Science Conference Proceedings (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

86

PNNL: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Cutting Air Pollution Got Boost from Weather Cutting Air Pollution Got Boost from Weather View full sized image New research suggests that China's impressive feat of cutting...

87

U.C. Davis particle physics research. Final technical progress report, May 1, 1970--February 28, 1989  

SciTech Connect

During the period of this contract, the participants carried out theoretical and experimental researches in high energy particle physics. The experiment group has been working with both bubble chamber and electronic detectors. The bubble chamber work made use of bubble chambers and particle beams at Lawrence Berkeley Laboratory, Brookhaven National Laboratory, Fermilab, and the Stanford Linear Accelerator Center. The different electronic detectors were the TPC/Two Gamma facility situated at the PEP electron-positron collider at SLAC, the AMY detector at TRISTAN, the electron-positron collider at KEK in Japan, fixed target detectors at Fermilab, and a hybrid bubble chamber/electronic detector at SLAC. Negotiations were also started with the H1 collaboration for a UCD participation at the upcoming Hera electron-proton collider. The theoretical groups have been engaged in a wide variety of studies. Phenomenological studies of high energy interactions have constituted a major fraction of the effort, particularly those associated with the higgs field, various aspects of supersymmetry, and searches for new physics. Work on reactions associated with ee, ep, and hadron colliders has been extensive and includes many analyses providing tests of QCD. Lattice gauge theory has been a major area of work, and electroweak physics and mathematical physics have also been topics of study. Work has been published on heavy flavor decays and CP noninvariance, super symmetry, Yang-Mills theory and electroweak symmetry breaking as well as string theory.

NONE

1989-12-31T23:59:59.000Z

88

Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.  

E-Print Network (OSTI)

and energy conservation in buildings," HVAC&R Research, 14(3), 359-372. A Dual Airflow Window for Indoor Air. For commercial buildings IAQ can be regulated by the HVAC system that mixes fresh outdoor air with return air

Chen, Qingyan "Yan"

89

Small Particles, Big Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Particles, Big Impact Small Particles, Big Impact Small-scale effects of Aerosols Add up Over Time August 24, 2011 | Tags: Climate Research, Earth Sciences, Environmental...

90

ZINC/AIR BATTERY R & D RESEARCH AND DEVELOPMENT OF BIFUNCTIONAL OXYGEN ELECTRODE TASKS I AND II  

E-Print Network (OSTI)

requirements, weight of battery and cost comparisons arecost, convenience and com- plexity of each of the schemes. The following zinc-air battery

Klein, M.

2009-01-01T23:59:59.000Z

91

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air. The most common method of air source heat pump frost removal is reverse-cycle defrost. During the defrosting operation, the heat pump runs in the cooling mode. The defrost process is accomplished by reversing the normal heating mode. In this paper, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little effect on the room temperature.

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

92

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists then measured how the particles were distributed in the vapor using a mobility scanner that determined particle sizes. In the other approach, researchers...

93

Review of air quality assessment studies and definitions of some research needs for the emerging oil shale technology  

SciTech Connect

This paper reviews the air quality assessment programs that have been conducted by the various private and government sponsored developers who propose to extract energy from the oil shale. These studies have ranged from regional comprehensive baseline and environmental impact studies over several years' period to intermittant localized small scale air quality monitoring programs. A review of the environmental programs, their location, retorting type, and extent of environmental program undertaken is given.

Parker, G.B.

1979-04-01T23:59:59.000Z

94

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

95

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

96

NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

13 Denver West Parkway 13 Denver West Parkway Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning into homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment

97

Meteorological Research Needs for Improved Air Quality Forecasting: Report of the 11th Prospectus Development Team of the U.S. Weather Research Program*  

Science Conference Proceedings (OSTI)

The U.S. Weather Research Program convenes expert working groups on a one-time basis to identify critical research needs in various problem areas. The most recent expert working group was charged to “identify and delineate critical meteorological ...

Walter F. Dabberdt; Mary Anne Carroll; Darrel Baumgardner; Gregory Carmichael; Ronald Cohen; Tim Dye; James Ellis; Georg Grell; Sue Grimmond; Steven Hanna; John Irwin; Brian Lamb; Sasha Madronich; Jeff McQueen; James Meagher; Talat Odman; Jonathan Pleim; Hans Peter Schmid; Douglas L. Westphal

2004-04-01T23:59:59.000Z

98

Improved intake air filtration systems  

SciTech Connect

This report comprises the results of a project sponsored by the Pipeline Research Committee of the American Gas Association (Improved Intake Air Filtration Systems). The quality of the inlet air consumed by pipeline gas turbines plays a significant role in the performance, maintenance, and economy of turbine operations. The airborne contaminants may cause degradation of compressor blades and hot gas path components, primarily by erosion, corrosion, and fouling. Machines in the pipeline fleet have a typical average loss of 3.5% in output, chiefly caused by fouling of the gas turbine compressor. It also showed that: Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested.'' Filters which incorporated electrostatically charged fibers (achieved through the use of triboelectric [TE] effects) offered the most promising means for developing an improvement over paper media. The purpose of this program was to validate the use of new technology for self-cleaning air inlet filtration on gas turbine pumping applications. An approach utilizing triboelectrification of fabric filters was examined by testing to determine the penetration (efficiency), cleanability, pressure drop vs flow, and dust-holding capacity of seven pairs of filter cartridges: six fabric and one paper.

Lawson, C.C. (Lawson (Calvin C.), North Wildwood, NJ (United States))

1991-09-01T23:59:59.000Z

99

A Surface Mooring for Air–Sea Interaction Research in the Gulf Stream. Part I: Mooring Design and Instrumentation  

Science Conference Proceedings (OSTI)

The design of a surface mooring for deployment in the Gulf Stream in the Mid-Atlantic Bight is described. The authors' goals were to observe the surface meteorology; upper-ocean variability; and air–sea exchanges of heat, freshwater, and momentum ...

Robert A. Weller; Sebastien P. Bigorre; Jeffrey Lord; Jonathan D. Ware; James B. Edson

2012-09-01T23:59:59.000Z

100

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment  

SciTech Connect

Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

Kuntysh, V.B.; Fedotova, L.M.

1983-01-01T23:59:59.000Z

102

Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building  

E-Print Network (OSTI)

Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes temperature variations of solar collector arrays, heat storage tank and adsorption chillers as well as refrigerating output variations of the system. Experimental results show that adsorption chillers have the advantages of low driving temperature, stability and long working time with high efficiency. Under representative working conditions in summer, the average refrigerating output of solar powered air-conditioning system is 15.31kW during operation of 8 hours; moreover, the maximum attains 20kW. Correspondingly, the average system COP is 0.35, and the average solar COP is 0.15. The solar fraction in summer is concluded to be 71.73%. In addition, the variations of solar-powered air-conditioning system performance with ambient parameters (solar radiant intensity and ambient temperature) and operating parameters (temperatures and flow rates) are analyzed.

Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

2006-01-01T23:59:59.000Z

103

Air pollution and lung cancer  

SciTech Connect

Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

Boehm, G.M.

1982-01-01T23:59:59.000Z

104

Energy Spectrum and Chemical Composition of Cosmic Rays between 0.3 and 10 PeV determined from the Cherenkov-Light and Charged-Particle distributions in Air Showers  

E-Print Network (OSTI)

Measurements of the lateral distribution of Cherenkov photons with the wide-angle atmospheric Cherenkov light detector array AIROBICC and of the charged particle lateral distribution with the scintillator matrix of the HEGRA air-shower detector complex in air showers are reported. With the atmospheric shower-front sampling technique these detectors measure the electromagnetic component of an extensive air shower via the lateral density distribution of the shower particles and of the Cherenkov photons. The data are compared with events generated with the CORSIKA program package with the QGSJET hadronic-event generator. Consistency checks performed with primary energy-reconstruction methods based on different shower observables indicate satisfactory agreement between these extensive air shower simulations and the experimental data. The energy spectrum features a so called ``knee'' at an energy of E_knee = 3.98 (+4.66) (-0.83) (stat) +- 0.53 (syst) PeV. Power law fits to the differential energy spectrum yield indices of -2.72 (+0.02)(-0.03) (stat) +- 0.07 (syst) below, and -3.22 (+0.47) (-0.59) (stat) +- 0.08 (syst)} above the knee. The best-fit elongation rate for the whole energy range is determined to 78.3 +- 1.0 (stat) +- 6.2 (syst) g/cm^2. At the highest energies it seems to decrease slightly.The best-fit fraction of light nuclei decreases from 37 (+28) (-21) % (combined statistical and systematic) to 8 (+32) (-8) % (combined statistical and systematic) in the energy range discussed here. A detailed study of the systematic errors reveals that a non-changing composition cannot be excluded.

F. Arqueros; The HEGRA Collaboration

1999-08-18T23:59:59.000Z

105

Ice slurry cooling research: Microscale study of ice particles characteristics, role of freezing point depressant, and influence on slurry fluidity  

DOE Green Energy (OSTI)

The influences of freezing-point-depressants on ice slurry characteristics in the form of ice slurry fluidity and on the microscale ice particle features are studied. The results identify microscale features of ice particles such as surface roughness that greatly influence slurry fluidity that are altered favorably by the use of a freezing point depressant. The engineering of a workable and efficient ice slurry cooling system depends very strongly on the characteristics of the individual ice particles in the slurry and, in turn, on the method of ice production. Findings from this study provide guidance on the fluidity and handleability of slurry produced by several methods currently under development and already many achieved.

Hayashi, K.; Kasza, K.

2000-05-03T23:59:59.000Z

106

Application of the Weather Research and Forecasting Model for Air Quality Modeling in the San Francisco Bay Area  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model is evaluated by conducting various sensitivity experiments over central California including the San Francisco Bay Area (SFBA), with the goal of establishing a WRF model configuration to be used by ...

Raphael E. Rogers; Aijun Deng; David R. Stauffer; Brian J. Gaudet; Yiqin Jia; Su-Tzai Soong; Saffet Tanrikulu

2013-09-01T23:59:59.000Z

107

Application of the Weather Research and Forecasting Model for Air Quality Modeling in the San Francisco Bay Area  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model is evaluated by conducting various sensitivity experiments over central California (CA) including the San Francisco Bay Area (SFBA), with the goal of establishing a WRF model configuration to be ...

Raphael E. Rogers; Aijun Deng; David R. Stauffer; Brian J. Gaudet; Yiqin Jia; Su-Tzai Soong; Saffet Tanrikulu

108

Turbulent particle deposition in a rectangular chamber: Study of the effect of particle size and ventilation regimes  

SciTech Connect

The interaction of aerosol particles with wall surfaces is important in modeling their behavior. This interaction is usually represented in theoretical models as a loss term. The loss rate is the rate at which particles deposit or react with the surfaces. This loss term is important in many branches of aerosol science including human health and indoor air quality. Increased surface deposition usually means lower concentrations of airborne particles and hence, lower exposure to the inhabitants. If the efficiency of the particle deposition is influenced by factors other than the particle size, such as a natural convection of the air, this has to be taken into account to evaluate the results. In this research, test aerosol sized from 15 nm to 3 {micro}m are produced by several different aerosol generators; the gas burner, the Collison nebulizer, the condensation aerosol generator, the orifice atomizer and the Vibrating Orifice Aerosol Generator (VOAG). A rectangular chamber whose dimensions are 75 x 75 x 180 cm{sup 3} was used in this study. The particles were injected into the chamber, with a known ventilation and the concentration decay was monitored by the Ultrafine Condensation Particle Counter (UCPC) and Optical Particle Counter (OPC). During the measurement, the air inside the chamber is moved by natural convection and ventilation effect. The results shows that the particle loss rate under the higher air exchange rate is larger and this is not only due to air exchange itself but also the wall deposition. The theoretical model presented by Benes and Holub (1996) agree with the experimental data better than the Crump and Seinfield (1981) model with the hypothesis of Plandtl`s mixing length. 118 refs.

Nomura, Yoshio

1996-04-01T23:59:59.000Z

109

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. A high voltage is generated near a conductive mesh while a fan draws air containing air molecules ionized by alpha particles across the mesh. The current in the mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

Wolf, M.A.; McAdtee, J.L. III; Unruh, W.P.; Cucchiadra, A.L.; Huchton, R.L.

1990-03-13T23:59:59.000Z

110

ARM - Measurement - Particle number concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

Observing System AP-SURF : Aerosol Profiler at Surface CSPHOT : Cimel Sunphotometer DRI-AIR : Desert Research Institute Airborne Aerosol Instruments DRI-GND : Desert Research...

111

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, Duncan W. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); McAtee, James L. (Los Alamos, NM); Unruh, Wesley P. (Los Alamos, NM); Cucchiara, Alfred L. (Los Alamos, NM); Huchton, Roger L. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

112

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

1993-02-02T23:59:59.000Z

113

NETL: News Release - Energy Department Expands Air Monitoring Efforts to  

NLE Websites -- All DOE Office Websites (Extended Search)

September 11, 2000 September 11, 2000 Energy Department Expands Air Monitoring Efforts to Deep South The Energy Department is expanding its efforts to collect data on microscopic airborne particles to the deep South. The department will award Southern Research Institute (SRI), Birmingham, AL, a $750,000 contract to augment an air monitoring station in Alabama with new capabilities to study fine particulate matter called PM2.5. The term stands for particulate matter with a diameter less than 2.5 micrometers, or about 1/30th the width of a human hair. The effort is intended to assist the Environmental Protection Agency (EPA), state agencies and the energy industry in gauging the level and sources of the tiny particles which are now regulated under new federal air quality standards.

114

Open Problems in $?$ Particle Condensation  

E-Print Network (OSTI)

$\\alpha$ particle condensation is a novel state in nuclear systems. We briefly review the present status on the study of $\\alpha$ particle condensation and address the open problems in this research field: $\\alpha$ particle condensation in heavier systems other than the Hoyle state, linear chain and $\\alpha$ particle rings, Hoyle-analogue states with extra neutrons, $\\alpha$ particle condensation related to astrophysics, etc.

Y. Funaki; M. Girod; H. Horiuchi; G. Roepke; P. Schuck; A. Tohsaki; T. Yamada

2010-03-05T23:59:59.000Z

115

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

116

Air Proportional Counter  

DOE Patents (OSTI)

A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

Simpson, J.A. Jr.

1950-10-31T23:59:59.000Z

117

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico City Carbon-Containing Particle Composition Simulated Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Radiation...

118

AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE  

SciTech Connect

This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

John H. Pavlish; Steven A. Benson

1999-07-01T23:59:59.000Z

119

ARM - Campaign Instrument - dri-air  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign Instrument : Desert Research Institute Airborne Aerosol Instruments (DRI-AIR) Instrument Categories Aerosols, Airborne Observations Campaigns Aerosol IOP ...

120

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why » What We Monitor & Why » Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Metal-air battery assessment  

DOE Green Energy (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

122

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

123

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

124

Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report  

SciTech Connect

This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

2006-02-28T23:59:59.000Z

125

Segregation of granular particles in suspension flow  

E-Print Network (OSTI)

An experiment was conducted to investigate the development of longitudinal stripes of granular particles due to instabilities in particle suspension flow. Research was conducted to characterize environmental phenomena ...

Tsay, Jessica, 1983-

2004-01-01T23:59:59.000Z

126

Slow Waveguide Structures for Particle Accelerators  

A waveguide design that can save time and money in the construction and tuning ofa particle accelerator was developed by ORNL researchers. Particle ...

127

Particle Dynamics In A Turbulent Particle-Gas Suspension At High Stokes Number.  

E-Print Network (OSTI)

??Particle laden turbulent flows find applications in many industrial processes such as energy conversion, air pollution control etc. In these types of flows, there are… (more)

Goswami, Partha Sarathi

2009-01-01T23:59:59.000Z

128

Research program in particle physics  

SciTech Connect

This report discusses the following topics: Quantum Gravity and Mathematical Physics; Phenomenology; Quantum Mechanics and Quantum Field Theory; Status of BNL Expt. 791; BNL Expt. 791; BNL Expt. 888; and SSC Activities.

Sudarshan, E.C.G.; Dicus, D.A.; Ritchie, J.L.; Lang, K.

1992-07-01T23:59:59.000Z

129

A Numerical Determination of the Evolution of Cloud Drop Spectra due to Condensation on Natural Aerosol Particles  

Science Conference Proceedings (OSTI)

The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in ...

In Young Lee; G. Hänel; H. R. Pruppacher

1980-08-01T23:59:59.000Z

130

Alpha migration through air filters: A numerical simulation  

Science Conference Proceedings (OSTI)

This theoretical study investigates the migration of alpha-emitting particles through high-efficiency particulate air (HEPA) filters. As part of the study, a review of previous research relating to the alpha-migration phenomena was conducted. As a result of the literature review, a numerical model was developed to simulate the migration of alpha-emitting radionuclide aerosols through HEPA filters. This model predicts the filter performance with regard to particle penetration. It can be used to better estimate the penetration of alpha radioactive species through filter systems for environmental concerns, to aid in the use of current filter systems, and to design new filter systems. It is obvious from the review of the literature that evidence exists of migration of alpha radionuclide species through high-efficiency filter media. The theories suggest that nanometer-size particles can eventually penetrate fibrous filters because of gradual movement through the filter matrix. It is conjectured that this movement may be induced by energies caused by the alpha recoil from the decay process by thermal energies. It is further hypothesized that such nanometer-size particles, containing radionuclide species can be formed from larger particles already captured within the filter. The penetration of such small particles through high-efficiency filter media is so low that experimental corroboration of these mechanisms by penetration measurements is difficult at best. A number of items were identified that affect the migration of alpha-emitting particles through a filter. These include the size distribution of aerosol particles entering the filter, the size distribution of fragment particles produced by alpha recoil, the penetration of the challenge aerosols and fragment particles, the velocity through the filter, the radionuclide specific activity, the alpha recoil energy, and the surface-binding energies between the particle and the filter matrix.

Biermann, A.H.; da Roza, R.A.; Chang, Yun.

1991-12-11T23:59:59.000Z

131

Particles and Prairies: Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles and Prairies Video Sponsors: Funding for this program was provided in part by the U.S. Department of Energy Office of Energy Research, Illinois State Board of Education's...

132

air_water.cdr  

Office of Legacy Management (LM)

12/2011 12/2011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring Site Remedial Action Project (WSSRAP) to measure levels of gamma radiation, radioactive dust particles, radon gas, and asbestos. With remediation of contaminated materials essentially complete and measurements indistinguishable from background, the U.S. Department of Energy (DOE) ceased perimeter and offsite air monitoring as of December 31, 2000. Groundwater has been routinely monitored at the site since 1986. Separate groundwater monitoring programs were established for the Chemical Plant and Quarry sites because of geographic separation and differences in the hydrogeologic features that influence

133

Numerical Analysis of a Cold Air Distribution System  

E-Print Network (OSTI)

Cold air distribution systems may reduce the operating energy consumption of air-conditioned air supply system and improve the outside air volume percentages and indoor air quality. However, indoor temperature patterns and velocity field are easily non-uniform so that residents usually feel uncomfortable. The distribution of indoor airflow by cold air distribution is researched in this paper. We study indoor air distribution under different low temperature air supply conditions by numerical simulation. The simulated results agree well with the experiments.

Zhu, L.; Li, R.; Yuan, D.

2006-01-01T23:59:59.000Z

134

Observing Air Showers from Cosmic Superluminal Particles  

E-Print Network (OSTI)

''vacuum rest frame'', VRF) can possibly be found and superluminal sectors of matter may exist related

135

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

1989-04-11T23:59:59.000Z

136

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

137

Employment/Research Opportunities  

Science Conference Proceedings (OSTI)

... Simulation of Light Transmission (Photon Migration) within Particle-Filled ... Authentication of Cell Lines Used for Research and Healthcare Products ...

2013-08-07T23:59:59.000Z

138

On Deriving Vertical Air Motions from Cloud Radar Doppler Spectra  

Science Conference Proceedings (OSTI)

A method for deriving vertical air motions from cloud radar Doppler spectrum measurements is introduced. The method is applicable to cloud volumes containing small particles, in this case liquid droplets, which are assumed to trace vertical air ...

Matthew D. Shupe; Pavlos Kollias; Michael Poellot; Edwin Eloranta

2008-04-01T23:59:59.000Z

139

HEXOS—Humidity Exchange Over the Sea A Program for Research on Water-Vapor and Droplet Fluxes from Sea of Air at Moderate to High Wind Speeds  

Science Conference Proceedings (OSTI)

HEXOS is an international program for the study of evaporation and spray-droplet flux from sea to air. The program includes measurements in the field at moderate-to-high wind speeds, wind-tunnel studies, instrument development, boundary-layer ...

Kristina B. Katsaros; Stuart D. Smith; Wiebe A. Oost

1987-05-01T23:59:59.000Z

140

Urban and Regional Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment equipment Urban and Regional Air Quality Research in this area is concerned with regional air quality issues such as: Controlling nitrogen oxides (NOx) and volatile organic compounds, to manage tropospheric ozone pollution. Hazardous air pollutants: using science to base standards on rigorously studied risks. Air quality and climate: how does climate influence air quality at a regional or local level? Current modeling practices often do not capture variations in pollutants such as ozone-they represent a limited sample of the diverse meteorology and human behavior that affect air pollution. Improved modeling of regional air quality will help understand variability, reveal patterns of behavior, and pollutant transport issues. Controlled experiments in lab and field can help validate improved models.

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Particle separation  

DOE Patents (OSTI)

Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

2011-04-26T23:59:59.000Z

142

Numerical Simulation Study on Transpired Solar Air Collector  

E-Print Network (OSTI)

The unglazed transpired solar air collector is now a well-recognized solar air heater for heating outside air directly. In this article, researchers introduced numerical simulation tools into the solar air collector research area, analyzed the performance characteristics of the unglazed transpired solar air collector and compared them with several kinds of traditional solar air collectors. The results showed that the unglazed transpired solar air collector has unparalleled advantages in the ventilation preheating area and also proves that CFD tools have their own advantages in the solar air collector research area.

Wang, C.; Guan, Z.; Zhao, X.; Wang, D.

2006-01-01T23:59:59.000Z

143

Air cooled turbine component having an internal filtration system  

DOE Patents (OSTI)

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15T23:59:59.000Z

144

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

145

ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORT 1975-76  

E-Print Network (OSTI)

of a) soot particles from propane-benzene combustion in air;tempera­ downstream from a propane Photoelectron spectraand carbon (Is) regions of propane soot particles produced

Novakov, T.

2010-01-01T23:59:59.000Z

146

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

147

GEOPHYSICAL RESEARCH LETTERS, VOL. 9, NO. 10, PAGES 1207-1210, OCTOBEX 1982 PARTICLE SIZE DISTRIBUTION OF NITRATE AND SULFATE IN THE MARINE ATMOSPHERE  

E-Print Network (OSTI)

(also produced from gas-to-particle conversion reactions) which is present primarily on submicron of the what man-41 impaction-surf ace filters. These were extracted in Millipore filtering-centrifuge tubes

Prospero, Joseph M.

148

Design, construction, and initial operation of the BNL-coastal transport and diffusion, Air/Sea Interaction research buoy. Data report  

SciTech Connect

Design features of the Brookhaven National Laboratory (BNL) Air/Sea Interaction (A/S-I) buoy are described, and construction, testing, and deployment experiences are related. This two-attitude buoy is similar to the MIT/Navy buoy which it replaces, but it accommodates more instruments and can be towed through shallower water. The BNL A/S-I buoy can be broken down into two, three, or four sections to facilitate overland transport. Compressed air is stored aboard and the controls for deploying, trimming, and recovering the buoy are centralized on the superstructure and are perpetually above water level. The ballast control plumbing is entirely within the hull for maximum protection. The buoy also has a propane storage and distribution system and a 40-watt thermoelectric generator for powering instruments. Two buoys were built and tested in 1978, and one buoy was deployed in 1979 and is in operation off the south coast of Long Island.

Huszagh, D; Ripperger, W; Fink, S

1979-10-01T23:59:59.000Z

149

ENHANCEMENT OF ENVIRONMENTAL SAMPLING THROUGH AN IMPROVED AIR MONITORING TECHNIQUE  

SciTech Connect

Environmental sampling (ES) is a key component of International Atomic Energy Agency (IAEA) safeguarding approaches throughout the world. Performance of ES (e.g. air, water, vegetation, sediments, soil and biota) supports the IAEAs mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a State and has been available since the introduction of safeguards strengthening measures approved by the IAEA Board of Governors (1992-1997). A recent step-change improvement in the gathering and analysis of air samples at uranium/plutonium bulk handling facilities is an important addition to the international nuclear safeguards inspector's toolkit. Utilizing commonly used equipment throughout the IAEA network of analytical laboratories for particle analysis, researchers are developing the next generation of ES equipment for air grab and constant samples. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) silicon substrate has been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. The new collection equipment will allow IAEA nuclear safeguards inspectors to develop enhanced safeguarding approaches for complicated facilities. This paper will explore the use of air monitoring to establish a baseline environmental signature of a particular facility that could be used for comparison of consistencies in declared operations. The implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Technical aspects of the air monitoring device and the analysis of its environmental samples will demonstrate the essential parameters required for successful application of the system.

Hanks, D.

2010-06-07T23:59:59.000Z

150

Feasibility study of new technology for intake air filtration  

SciTech Connect

This report comprises the results of a project sponsored by the Pipeline Research Committee of the American Gas Association (A.G.A). The work was composed of three major efforts: A literature search was performed to establish the state of the art of particle removal from gases, particularly electrostatic precipitation, and to identify the leading vendors of the equipment--considering both experience and technical expertise. Two chosen companies were visited to determine their technical capabilities as they apply to gas turbine inlet air filtration. A representative gas turbine was specified by the A.G.A. as being the equivalent of a GE Model 3002J turbine, with an airflow of 91,200 acfm. A specification based upon that airflow was prepared and submitted to the two vendors. Each vendor prepared a proposal for a filter system compliant with the specification. The proposed air filtration equipment is sufficiently different from existing products that it was judged not beneficial to visit manufacturing facilities. Both vendors are reputable suppliers of air filtration equipment. Compressors fouling is caused by the ingestion of substances which deposit and adhere to blade surfaces, resulting in reduced aerodynamic efficiency and decreased available output. Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested. The consequent lower loss of output power and decreased cleaning efforts provide lower costs of operation and increased shaft power. This study is intended to provide information relative to the use of new technology for air inlet filtration on gas turbines in gas pipeline pumping applications. 61 figs., 11 tabs.

Lawson, C.C.

1989-06-15T23:59:59.000Z

151

Nuclear Energy Research Initiative Annual Report-Innovative Approaches to Automating QA/QC of Fuel Particle Production Using On-Line Nondestructive Methods for Higher Reliability.  

Science Conference Proceedings (OSTI)

This document summarizes the activities performed and progress made in FY-03. Various approaches for automating the particle fuel production QC process using on-line nondestructive methods for higher reliability were evaluated. In this first-year of a three-year project, surrogate fuel particles made available for testing included leftovers from initial coater development runs. These particles had a high defect fraction and the particle properties spanned a wide range, providing the opportunity to examine worst-case conditions before refining the inspection methods to detect more subtle coating features. Particles specifically designed to evaluate the NDE methods being investigated under this project will be specified and fabricated at ORNL early next reporting period. The literature was reviewed for existing inspection technology and to identify many of the fuel particle conditions thought to degrade its performance. A modeling study, including the electromagnetic and techniques, showed that the in-line electromagnetic methods should provide measurable responses to missing layers, kernel diameter, and changes in coating layer thickness, with reasonable assumptions made for material conductivities. The modeling study for the ultrasonic methods provided the resonant frequencies that should be measured using the resonant ultrasound technique, and the results from these calculations were published in the proceedings for two conferences. The notion of a particle quality index to relate coating properties to fabrication process parameters was explored. Progress was made in understanding the fabrication process. GA identified key literature in this area and Saurwein (2003a) provided a literature review/summary. This literature has been reviewed. An approach previously applied to flexible manufacturing was adopted and the modification and development of the concepts to meet TRISO particle fuel manufacturing and QA/QC needs initiated. This approach establishes relationships between key process parameters and part parameters, including ''defects'' for each manufacturing step--which in this case is a coating layer. This activity will continue in year two, when an initial evaluation will be made using available process and particle data. Radiographic and Computed Tomography (CT) techniques were developed and refined to examine individual particles and batches of up to about 30 to 40 particles for kernel diameter, coating layer thickness and spatial uniformity. These results are essential for developing the defect library of characterized particles that will be used to calibrate the high-speed nondestructive measurement methods that are found capable of automatically detecting particles having properties outside a specified range. The in-line inspection methods evaluated include the electrical property measurement methods traditionally referred to as eddy current and capacitance (or dielectric) in the nondestructive test methods literature. An eddy current technique was developed and evaluated on stationary particles. Good correlation was found between the eddy current measurements and the radiographically determined particle dimensions. Initial measurements on fuel compacts using the eddy current approach showed that these materials are amenable to electrical inspection and that significant coil impedance variability can be observed among different samples.

Hockey, Ronald L.; Bond, Leonard J.; Ahmed, Salahuddin; Sandness, Gerald A.; Gray, Joseph N.; Batishko, Charles R.; Flake, Matthew; Panetta, Paul D.; Saurwein, John J.; Lowden, Richard A.; Good, Morris S.

2004-04-20T23:59:59.000Z

152

Development of Dual-Air-Assistant Atomizing Nozzle to Apply Aerosol-Sealing  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Dual-Air-Assistant Atomizing Nozzle to Apply Aerosol-Sealing Development of Dual-Air-Assistant Atomizing Nozzle to Apply Aerosol-Sealing Technology in Air Duct Systems Speaker(s): Alan Ropers Date: July 8, 2002 - 12:00pm Location: Bldg. 90 An Aerosol-sealing Technology was developed by LBNL to seal leaks in Air Duct Systems (ADS). The firm AEROSEAL already commercializes this technology for residential ADS. The current goal of our research at the Laboratory is to apply this technology to large commercial ADS. That means to develop a new kind of injector called "Compact Injector". So far, the injector that is used is a nozzle from the Schlick-Dusen firm. Results in terms of sealing rate are satisfactory, but this nozzle quickly clogs up with sealant particles. There are two reasons for the clogging problem: the

153

Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study  

Science Conference Proceedings (OSTI)

Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.

Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

2013-06-24T23:59:59.000Z

154

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Dependence on Dry Air Sources Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions." Geophysical Research Letters, 39, L20812, doi:10.1029/2012GL053646. Probability density functions (PDFs) of entrainment rate (λ) for different dry air sources in eight cumulus flights. The rate at which cloud engulfs dry air (entrainment rate) has proven to be one of the strongest controls on the climate sensitivity of climate models;

155

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

SciTech Connect

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

156

Fine Particles in Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particles in Soils Fine Particles in Soils Nature Bulletin No. 582 November 28, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist FINE PARTICLES IN SOILS If a farmer, while plowing, is visited in the field by another farmer, invariably the visitor will pick up a handful of turned over earth and knead it with his fingers while they talk. The "feel" of it tells him a lot about the texture and structure of that soil. He knows that both are important factors in the growth of plants and determine the crops that may be obtained from the land. Soil is a combination of three different things About half of it is solid matter; the other half consists of air and water The solid portion is composed of organic and inorganic materials.

157

Carbon-particle generator  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, A.J.

1982-09-29T23:59:59.000Z

158

Measured Spectra of the Hygroscopic Fraction of Atmospheric Aerosol Particles  

Science Conference Proceedings (OSTI)

The relation between dry diameter (X0) and critical supersaturation (Sc) for atmospheric submicron aerosol particles is investigated using a long term air sampling program at Rolla, Missouri. The particles are passed through an electrostatic ...

Darryl J. Alofs; Donald E. Hagen; Max B. Trueblood

1989-02-01T23:59:59.000Z

159

ARM - Measurement - Cloud ice particle  

NLE Websites -- All DOE Office Websites (Extended Search)

ice particle ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MET : Surface Meteorological Instrumentation Field Campaign Instruments REPLICATOR : Balloon-borne Ice Crystal Replicator CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments

160

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Health benefits of particle filtration  

NLE Websites -- All DOE Office Websites (Extended Search)

Health benefits of particle filtration Health benefits of particle filtration Title Health benefits of particle filtration Publication Type Journal Article Year of Publication 2013 Authors Fisk, William J. Journal Indoor Air Date Published 02/12/2013 Abstract The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

162

Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization  

Science Conference Proceedings (OSTI)

The aim of this work is to optimize the layout of the heating/cooling channels for rapid heat cycle molding with hot medium heating and coolant cooling by using response surface methodology and optimization technique. By means of a Box-Behnken experiment ... Keywords: Injection molding, Particle swarm optimization (PSO), Rapid heat cycle molding (RHCM), Response surface methodology (RSM), Steam heating

Guilong Wang; Guoqun Zhao; Huiping Li; Yanjin Guan

2011-06-01T23:59:59.000Z

163

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

164

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

165

Particle Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviewing Particle Lifetimes Reviewing Particle Lifetimes The lifetimes of elementary particles are statistical in nature. In a given sample, one particle might decay immediately, another in 1 nanosecond, yet another after 10 milliseconds, and still another in 50 years. What we call the lifetime is the time it takes for a sample to decay so 1/e (~30%) of the sample is left; after 2 lifetimes, 1/e2 of the sample is left, and so on. Take, for example, a sample of cosmic ray muons produced in the upper atmosphere. These muons, when observed at (relative) rest in the laboratory, have a mean lifetime T. Now, since particle decay is statistical in nature, the number of undecayed particles after a given time is a negative exponential function: N(t) = No e-t/T where N(t) is the number of muons at time t, No is the initial number of

166

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

167

Solar air conditioning  

DOE Green Energy (OSTI)

Development of a hybrid solar-assisted air conditioning system that combines a vapor compression section for sensible cooling with a desiccant section for dehumidification and that uses both solar energy and condenser waste heat to drive the dehumidifier has been under way for the last two years (1981 and 1982). The results of this research are included in this report: utilizing solar energy in an economical way has proven quite difficult.

Robison, H.

1981-01-01T23:59:59.000Z

168

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

169

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect

It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-09-04T23:59:59.000Z

170

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Giants in the Sky Giants in the Sky For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight A few large particles in a crowd of tiny ones have often been ignored when calculating the amount of sunlight bounced back into space in clean-sky conditions. Scientists at Pacific Northwest National Laboratory found that these "giant" particles have a larger-than-expected impact on the amount of sunlight reflected away from Earth, by as much as 45 percent. They also showed that particles larger than one micron (0.000039 inch) occur much more frequently than expected, up to 85 percent of the time. "Many routine measurements are unable to sample large particles, thus they may overlook the residence of many 'Gullivers in the country of Lilliput,' said Dr. Evgueni

171

Elementary particle physics at the University of Florida  

SciTech Connect

This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

Not Available

1991-12-01T23:59:59.000Z

172

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Air Motion Measurements in Large-Scale Precipitation Vertical Air Motion Measurements in Large-Scale Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Luke, E., Brookhaven National Laboratory Kollias, P., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Properties Journal Reference: Giangrande SE, EP Luke, and P Kollias. 2010. "Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95-GHz." Journal of Atmospheric and Oceanic Technology, 27(9), 10.1175/2010JTECHA1343.1. Time-height mapping of the retrieved vertical air motion for the 1 May 2007 event at SGP. Simultaneous measurements of vertical air motion and raindrop size distribution parameters in precipitation are challenging. The ARM W-band radars (95-GHz), despite being used primarily for cloud sensing, offer

173

Decomposition of Rare Earth Loaded Resin Particles  

Science Conference Proceedings (OSTI)

The Fuel Cycle R and D (FCR and D) program within the Department of Energy Office of Nuclear Energy (DOE-NE) is evaluating nuclear fuel cycle options, including once-through, modified open, and fully closed cycles. Each of these scenarios may utilize quite different fuel management schemes and variation in fuel types may include high thermal conductivity UO{sub 2}, thoria-based, TRISO, metal, advanced ceramic (nitride, carbide, composite, etc.), and minor actinide (MA) bearing fuels and targets. Researchers from the US, Europe, and japan are investigating methods of fabricating high-specific activity spherical particles for fuel and target applications. The capital, operating, and maintenance costs of such a fuel fabrication facility can be significant, thus fuel synthesis and fabrication processes that minimize waste and process losses, and require less footprint are desired. Investigations have been performed at the Institute for Transuranium Elements (ITU) and the French Atomic Energy Commission (CEA) studying the impact of americium and curium on the fuel fabrication process. proof of concept was demonstrated for fabrication of MA-bearing spherical particles, however additional development will be needed for engineering scale-up. Researchers at the Paul Scherer Institute (PSI) and the Japan Atomic Energy Association (JAEA) have collaborated on research with ceramic-metallic (CERMET) fuels using spherical particles as the ceramic component dispersed in the metal matrix. Recent work at the CEA evaluates the burning of MA in the blanket region of sodium fast reactors. There is also interest in burning MA in Canada Deuterium Uranium (CANDU) reactors. The fabrication of uranium-MA oxide pellets for a fast reactor blanket or MA-bearing fuel for CANDU reactors may benefit from a low-loss dedicated footprint for producing MA-spherical particles. One method for producing MA-bearing spherical particles is loading the actinide metal on a cation exchange resin. The AG-50W resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

Voit, Stewart L [ORNL; Rawn, Claudia J [ORNL

2010-09-01T23:59:59.000Z

174

Free Air C02 Enrichment (FACE) Research Data from the Oak Ridge FACE Site and Experiment on CO2 Enrichment of Sweetgum  

DOE Data Explorer (OSTI)

The facility was established with support from the ORNL Director's R&D Fund and the Biological and Environmental Research program of the U. S. Department of Energy Office of Science. Additional support was provided by the Terrestrial Ecology and Global Change (TECO) program through the National Science Foundation. This project was part of the CO2 research network fostered by the Global Change and Terrestrial Ecosystems core project of the International Geosphere-Biosphere Programme. Results from the experiment contributed to the Terrestrial Ecosystem Response to Atmospheric and Climatic Change (TERACC) project, a 5-year initiative integrating experimental data and global change modeling. Data from the ORNL FACE experiment are being used in an model benchmarking activity at the National Center for Ecological Analysis and Synthesis. [Copied from http://face.ornl.gov/goals.html

175

Matter: the fundamental particles  

E-Print Network (OSTI)

"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

Landua, Rolf

2007-01-01T23:59:59.000Z

176

Design and development of an ultrafine particle reflection-time-of-flight mass spectrometer  

E-Print Network (OSTI)

The primary motivation for the research is to study the effect of small particles on global climate. The study can also help to understand the dynamics involved with gas to particle conversion, which is being debated to be a rich source for atmospheric aerosol. However, the most important use would be to study health effects, since small particles easily diffuse into the lungs, with seemingly little physiological filtration mechanism. The research work involves the design, development and characterization of a single-ultrafine-particle mass spectrometer. The instrument aerodynamically size selects fine and ultrafine aerosol particles (size range 20 nm-1 []m), with a constant Stokes number, and focuses them into a vacuum chamber. This is achieved by changing the upstream pressure of the inlet, which changes aerodynamic drag experienced by the particle. After its entry into the chamber, the particle is ablated by a high power excimer laser, which produces ions from the original molecular constituents. Reflectron time-of-flight mass spectrometry is utilized to analyze the ions, and thus the chemical composition of the particle that was hit. The present work is aimed to overcome the shortcomings of previous instruments, while allowing for increased portability. The instrument is designed, fabricated and experimentally characterized. The first phase involves analysis of the particle beam generated by the inlet. An atomizer generates aerosols from a solution of 5% oleic acid and ethanol. The polydisperse aerosol is passed through a differential mobility analyzer to make a monodisperse mixture, which is transmitted through the inlet. The monodisperse particle beam is intercepted by glass slides, and the spot sizes are indicative of the beam shape and width at the slide positions. A theoretical analysis of the fluid flow field and particle trajectory is developed to correlate with the experimental results. The second phase involves calibration of the mass spectra, and measuring some particulate composition from the laboratory room air.

Das, Rishiraj

2002-01-01T23:59:59.000Z

177

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Lord of the Wings: Elevated Particles a Rising Star Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3, doi:10.3390/atmos3040495. The 4STAR instrument. The 4STAR instrument (inset) is installed through the upper hull of the PNNL G-1 research aircraft, for in-flight sun-tracking and sky light-scanning. Researchers at Pacific Northwest National Laboratory, in collaboration with colleagues at NASA Ames Research Center, developed a next-generation

178

Air Pollution (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

179

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

virtual particles. Virtual particles do not violate the conservation of energy. The kinetic energy plus mass of the initial decaying particle and the final decay products is...

180

The Particle Adventure | Accelerators and Particle Detectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Waves and particles The world's meterstick Mass and energy Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles Accelerating...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Online Particle Physics Information - Particles & Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles & Properties Data Review of Particle Physics (RPP) A biennial comprehensive review summarizing much of the known data about the field of particle physics produced by the...

182

Air Showers and Geomagnetic Field  

E-Print Network (OSTI)

The influence of the geomagnetic field on the development of air showers is studied. The well known International Geomagnetic Reference Field was included in the AIRES air shower simulation program as an auxiliary tool to allow calculating very accurate estimations of the geomagnetic field given the geographic coordinates, altitude above sea level and date of a given event. Our simulations indicate that the geomagnetic deflections alter significantly some shower observables like, for example, the lateral distribution of muons in the case of events with large zenith angles (larger than 75 degrees). On the other hand, such alterations seem not to be important for smaller zenith angles. Global observables like total numbers of particles or longitudinal development parameters do not present appreciable dependences on the geomagnetic deflections for all the cases that were studied.

A. Cillis; S. J. Sciutto

1999-07-31T23:59:59.000Z

183

Review of Particle Physics  

E-Print Network (OSTI)

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

184

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

185

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeled Compared to Measured O:C and H:C Elemental Ratios of Secondary Modeled Compared to Measured O:C and H:C Elemental Ratios of Secondary Organic Material Download a printable PDF Submitter: Martin, S., Pierce Hall School of Engineering and Applied Sciences Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Chen Q, Y Liu, N Donahue, J Shilling, and S Martin. 2011. "Particle-phase chemistry of secondary organic material: modeled compared to measured O:C and H:C elemental ratios provide constraints." Environmental Science & Technology, , 10.1021/es104398s. Figure 1. Measurements and predictions. The first row shows particle mass yields at 298 K. The second row shows the modeled and measured particle-average O:C and H:C ratios for increasing particle mass concentrations.

186

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

First Measurements of Neutral Atmospheric Cluster and 1-2 Nm Particle First Measurements of Neutral Atmospheric Cluster and 1-2 Nm Particle Number Distributions During Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Jiang J, J Zhao, M Chen, J Scheckman, BJ Williams, FL Eisele, and PH McMurry. 2011. "First measurements of neutral atmospheric cluster and 1-2 nm particle number distributions during nucleation events." Aerosol Science and Technology, 45, doi:10.1080/02786826.2010.546817. Jiang J, M Chen, C Kuang, M Attoui, and PH McMurry. 2011. "Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm."

187

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of Convective Entrainment Using Lagrangian Particles Measurement of Convective Entrainment Using Lagrangian Particles Download a printable PDF Submitter: Romps, D., University of California, Berkeley Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Yeo K and DM Romps. 2013. "Measurement of convective entrainment using Lagrangian particles." Journal of the Atmospheric Sciences, 70(1), doi:10.1175/JAS-D-12-0144.1. Trajectories of seven particles that are entrained at the cloud base and transported to the cloud top. Colors denote the mixing ratio of condensed water. Previous work by Romps (2010) found large entrainment rates of ~100% per kilometer for deep convection using a new technique for large-eddy simulations (LES) called "Eulerian direct measurement". These results

188

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

Science Conference Proceedings (OSTI)

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

189

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern California Measured During CARES and CalNex Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Cahill JF, K Suski, JH Seinfeld, RA Zaveri, and KA Prather. 2012. "The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-10989-2012. The CARES campaign took place in Sacramento in order to sample the city's urban plume. Photo courtesy of Jason Tomlinson. Researchers, including DOE scientists working at Pacific Northwest National

190

Assessing uncertainties in the relationship between inhaled particle  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing uncertainties in the relationship between inhaled particle Assessing uncertainties in the relationship between inhaled particle concentration, internal deposition and health effects, Chapter 9 Title Assessing uncertainties in the relationship between inhaled particle concentration, internal deposition and health effects, Chapter 9 Publication Type Book Chapter Year of Publication 2005 Authors Price, Phillip N. Secondary Authors Ruzer, Lev S., and Naomi H. Harley Book Title Aerosols Handbook: Measurement, Dosimetry and Health Effects Chapter Chapter Pagination 157-188 Publisher CRC Press, Boca Raton, FL Abstract The question that ultimately motivates most aerosol inhalation research is: for a given inhaled atmosphere, what health effects will result in a specified population? To attempt to address this question, quantitative research on inhaled aerosols has been performed for at least fifty years (Landahl et al, 1951). The physical factors that determine particle deposition have been determined, lung morphology has been quantified (particularly for adults), models of total particle deposition have been created and validated, and a large variety of inhalation experiments have been performed. However many basic questions remain, some of which are identified by the U.S. Committee on Research Priorities for Airborne Particulate Matter (NRC 1998a) as high-priority research areas. Among these are: What are the quantitative relationships between outdoor concentrations measured at stationary monitoring stations, and actual personal exposures? What are the exposures to biologically important constituents of particulate matter that cause responses in potentially susceptible subpopulations and the general population? What is the role of physicochemical characteristics of particulate matter in causing adverse health effects? As these questions show, in spite of significant progress in all areas of aerosol research, many of the most important practical questions remain unanswered or inadequately answered.In this chapter, we discuss the sources and magnitudes of error that hinder the ability to answer basic questions concerning the health effects of inhaled aerosols. We first consider the phenomena that affect the epidemiological studies, starting with studies of residential radon and moving on to fine particle air pollution. Next we discuss the major uncertainties in physical and physiological modeling of the causal chain that leads from inhaled aerosol concentration, to deposition in the airway, to time-dependent dose (that is, the concentration of particles at a given point in the lungs as function of time), to physiological effects, and finally to health effect.

191

Trapping and Measuring Charged Particles in Liquids  

Using molecular dynamics simulations, the researchers found that particles are trapped in liquid environments when appropriate AC/DC electric fields ...

192

Elementary Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Elementary Particles Elementary Particles Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people Electric Forces & Fields For Children The Electric Force For Children Electric Force Fields For Children Charges and Fields For Children Vibrating Charges and Electromagnetic Waves Electrons For Older People The Discovery of the Electron Traveling Waves For Older People Waves and Wave-Like Motion For Children Catch the Wave For Children Vibrating Charges and Electromagnetic Waves For Children Electromagnetic Waves Standing Waves For Older People Physics 128 Lecture Standing Waves For Older People Resonance in Strings and Springs For Older People Standing Wave - 1st Harmonic For Older People Standing Wave - 2nd Harmonic Atom For Older People Bohr Atom

193

Trillion Particles,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

194

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

195

Improving National Air Quality Forecasts with Satellite Aerosol Observations  

Science Conference Proceedings (OSTI)

Accurate air quality forecasts can allow for mitigation of the health risks associated with high levels of air pollution. During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype tool for improving fine ...

Jassim Al-Saadi; James Szykman; R. Bradley Pierce; Chieko Kittaka; Doreen Neil; D. Allen Chu; Lorraine Remer; Liam Gumley; Elaine Prins; Lewis Weinstock; Clinton MacDonald; Richard Wayland; Fred Dimmick; Jack Fishman

2005-09-01T23:59:59.000Z

196

Evaporation and Precipitation Surface Effects in Local Mass Continuity Laws of Moist Air  

Science Conference Proceedings (OSTI)

The local mass balance equations of cloudy air are formulated for a model system composed of dry air, water vapor, and four categories of water condensate particles, as typically adopted for numerical weather prediction and climate models. The ...

Ulrike Wacker; Thomas Frisius; Fritz Herbert

2006-10-01T23:59:59.000Z

197

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

198

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

Science Conference Proceedings (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

199

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

200

Small Particles in Cirrus  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles in Cirrus Particles in Cirrus Because the reflective properties of ice crystals in cirrus clouds can greatly influence the amount of solar energy that reaches the Earth, scientists use information about the shape and size of ice crystals as input to climate models. These data are obtained by satellite instruments, ground-based sensors, and research aircraft equipped with probes. However, notable discrepancies among these measurements have led to considerable uncertainty in how to represent these properties in climate models. From December 2009 through April 2010, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will sponsor the use of an instrumented aircraft to obtain the most comprehensive set of measurements of ice crystals in cirrus clouds yet obtained. In conjunction with

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaporative Enhancement for Air Cooled Condensers  

Science Conference Proceedings (OSTI)

This report summarizes research into condenser air evaporative pre-cooling technologies and the associated potential for energy and peak power savings. The interest in this project is evaluation of the specific application of evaporative cooling to the inlet air of condenser coils, particularly for large roof-top type air cooled chillers. While the technology is established and understood particularly well for hot, dry climates, this report is intended to also examine evaporative ...

2013-03-06T23:59:59.000Z

202

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Monitoring Speaker(s): Igor Paprotny Date: November 12, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Lara Gundel Air-microfluidic devices that monitor particles suspended in air, as opposed to liquids, can dramatically reduce the size and cost of future air-quality sensors. The use of microelectromechanical systems (MEMS) technologies and wafer-scale integration permits the inclusion of many different sensors onto a small footprint. Benefits of air-microfluidics are many. For example, air-microfluidic lab-on-a-chip devices can be used as portable sensors for tracking individual exposure to airborne pollutants. Such sensors will enable linking exposure and biometric information to

203

Air Quality Program Specialist Vandenberg AFB, California  

E-Print Network (OSTI)

Air Quality Program Specialist Vandenberg AFB, California POSITION An Air Quality Program, California. ORGANIZATION CEMML is a research, education and service unit within the Warner College of Natural of Santa Barbara on the central coast of California. The base and its 45 miles of scenic coastline is home

204

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

205

Alternating current long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

MacArthur, D.W.; McAtee, J.L.

1993-02-16T23:59:59.000Z

206

Primary zone air proportioner  

SciTech Connect

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

207

Air Pollution Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes the Department of Environmental Management and the Air Pollution Control Board, which are tasked with the prevention, abatement, and control of air pollution by all...

208

Sub-micron particle sampler apparatus  

DOE Patents (OSTI)

Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

Gay, Don D. (Aiken, SC); McMillan, William G. (Ulmers, SC)

1987-01-01T23:59:59.000Z

209

Method for sampling sub-micron particles  

DOE Patents (OSTI)

Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

Gay, Don D. (Aiken, SC); McMillan, William G. (Ulmers, SC)

1985-01-01T23:59:59.000Z

210

Coherent Scattering of Microwaves by Particles: Evidence from Clouds and Smoke  

Science Conference Proceedings (OSTI)

Many radar measurements of the atmosphere can be explained in terms of two scattering mechanisms: incoherent scattering from particles, and coherent scattering from variations in the refractive index of the air, commonly called clear-air or Bragg ...

J. S. Erkelens; V. K. C. Venema; H. W. J. Russchenberg; L. P. Ligthart

2001-05-01T23:59:59.000Z

211

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

212

Comparison Between Polluted and Clean Air Masses over Lake Michigan  

Science Conference Proceedings (OSTI)

Clean and polluted air masses, advected over Lake Michigan, were studied using instrumented aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The ...

A. J. Alkezweeny; N. S. Laulainen

1981-02-01T23:59:59.000Z

213

Ris-R-1053(EN) Particulate Air Pollution with  

E-Print Network (OSTI)

particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne91 F Main reaction pathways in non sulphur vulcanisation 94 G Flame atomic absorption spectrometer

214

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

215

Particle swarm optimization with opposite particles  

Science Conference Proceedings (OSTI)

The particle swarm optimization algorithm is a kind of intelligent optimization algorithm. This algorithm is prone to be fettered by the local optimization solution when the particle's velocity is small. This paper presents a novel particle swarm ...

Rujing Wang; Xiaoming Zhang

2005-11-01T23:59:59.000Z

216

Clean Air Task Force CATF | Open Energy Information  

Open Energy Info (EERE)

Task Force CATF Jump to: navigation, search Name Clean Air Task Force (CATF) Place Boston, Massachusetts Zip 2108 Product Massachusetts-based scientific research and legal advocacy...

217

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Stable Does not decay. A particle is stable if there exist no processes in which a particle disappears and in its place different particles appear...

218

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Event What occurs when two particles collide or a single particle decays. Particle theories predict the probabilities of various possible events occurring when many similar...

219

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge A quantum number carried by a particle. Determines whether the particle can participate in an interaction process. A particle with electric charge has electrical...

220

Fine Particle Emissions from Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particle Emissions from Combustion Systems Fine Particle Emissions from Combustion Systems Speaker(s): Allen Robinson Date: November 11, 2005 - 12:00pm Location: 90-3122 Combustion systems such as motor vehicles and power plants are major sources of fine particulate matter. This talk describes some of the changes in fine particle emissions that occur as exhaust from combustion systems mix with background air. This mixing cools and dilutes the exhaust which influences gas-particle partitioning of semi-volatile species, the aerosol size distribution, and the fine particle mass. Dilution sampling is used to characterize fine particle emissions from combustion systems because it simulates the rapid cooling and dilution that occur as exhaust mixes with the atmosphere. Results from dilution sampler

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Indoor air radon  

SciTech Connect

This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references.

Cothern, C.R.

1990-01-01T23:59:59.000Z

222

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

Evans, J.V.; Savaskan, G.

1991-04-09T23:59:59.000Z

223

Battery using a metal particle bed electrode  

DOE Patents (OSTI)

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

224

A methodology for determining the relationship between air transportation demand and the level of service  

E-Print Network (OSTI)

Introduction: Within the last ten years significant advances in the state-of-the art in air travel demand analysis stimulated researchers in the domestic air transportation field. Among these advances, researchers in ...

Eriksen, Steven Edward

1976-01-01T23:59:59.000Z

225

Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver  

DOE Patents (OSTI)

A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

Kolb, Gregory J. (Albuquerque, NM)

2012-02-07T23:59:59.000Z

226

Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver  

SciTech Connect

A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

Kolb, Gregory J. (Albuquerque, NM)

2012-02-07T23:59:59.000Z

227

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

228

NREL: Concentrating Solar Power Research - Particle Receiver...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bed-Novel Components to Overcome Existing Barriers Advancing concentrating solar power (CSP) systems to the target cost of 0.06 per kilowatt-hour, set by the U.S. Department of...

229

Research Administration Index of Commonly Used Acronyms  

E-Print Network (OSTI)

of Bimolecular Resource Facilities ACM Association of American Medical Colleges ACO Administrative Contracting Officer ADA Americans with Disabilities Act of 1990 AFAA Air Force Audit Agency AFARS Army Federal Acquisition Regulation Supplement AFOSR Air Force Office of Scientific Research AFRL Air Force Research

Salama, Khaled

230

Isokinetic air sampler  

DOE Patents (OSTI)

An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

Sehmel, George A. (Richland, WA)

1979-01-01T23:59:59.000Z

231

Gas Research Institute environment and safety research program. Status report  

SciTech Connect

The 1992 status report describes ongoing planned activities in the Environment and Safety Research Program. The objectives and goals, accomplishments, and strategies are discussed for the supply, end use, and gas operations subprograms. Contract status summaries are presented for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, Combustion Systems Emissions Control, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas (LNG) Safety Research, Gas Operations Environmental Research, and End Use Bioengineering.

Not Available

1992-03-01T23:59:59.000Z

232

Sub-micron particle sampler apparatus and method for sampling sub-micron particles  

DOE Patents (OSTI)

Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.

Gay, D.D.; McMillan, W.G.

1984-04-12T23:59:59.000Z

233

Consolidated Air Mobility Planning System (CAMPS): An Air Mobility Planning and  

E-Print Network (OSTI)

, the initial development of CAMPS was concluded and primary maintenance responsibility was turned over for Transportation Analysis (CTA) Research Areas Aviation Safety Air Traffic Management Analysis Data, Statistical Analysis Highway Safety Intelligent Transportation Systems Logistics Management Supply Chain Management

234

Scavenging of Aerosol Particles by Precipitation  

Science Conference Proceedings (OSTI)

Airborne measurements have been made of aerosol particle size distributions (>0.01 ?m) in aged air masses, in the plumes from several coal power plants and a large Kraft paper mill, and in the emissions from a volcano, before and after rain or ...

Lawrence F. Radke; Peter V. Hobbs; Mark W. Eltgroth

1980-06-01T23:59:59.000Z

235

Elementary particle physics at the University of Florida. Annual progress report  

Science Conference Proceedings (OSTI)

This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

Not Available

1991-12-01T23:59:59.000Z

236

Vermont Air Pollution Control Regulations, Ambient Air Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ambient Air Quality Standards (Vermont) Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont) Eligibility Utility Agricultural Investor-Owned Utility...

237

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

238

China Ga Air Compressor, China Ga Air Compressor Products ...  

U.S. Energy Information Administration (EIA)

China Ga Air Compressor, China Ga Air Compressor Suppliers and Manufacturers Directory - Source a Large Selection of Ga Air Compressor Products at ...

239

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

240

Screw Type Ac Air Compressor Manufacturers, Screw Type Ac Air ...  

U.S. Energy Information Administration (EIA)

Screw Type Ac Air Compressor, Screw Type Ac Air Compressor Manufacturers & Suppliers Directory - Find here Screw Type Ac Air Compressor Traders, ...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

DOE Green Energy (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

242

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

243

Air Conditioning and lungs  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Conditioning and lungs Name: freeman Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What affect does air conditioning have upon the lungs of the...

244

Moisture transport in silica gel particle beds  

DOE Green Energy (OSTI)

A theoretical and experimental study of the performance of silica gel packed particle beds is described. A bench-scale test rig was used to obtain data for parameter values pertinent to solar air-conditioning applications. Both adsorption and desorption experiments were performed for Regular Density (RD) silica gel for a wide range of particle size. Adsorption data were also obtained for Intermediate Density (ID) gel. A model of heat and mass transfer in the bed was developed with special attention paid to the modeling of solid side resistance. For this latter purpose an extensive review of the available literature on moisture adsorption and moisture transport in silica gel was made. Both Knudsen and surface diffusion are found to be important mechanisms of moisture transport in Intermediate Density gels while surface diffusion is dominant in Regular Density gels. A general equation for moisture transport in a spherical silica gel particle was developed and was incorporated into the model equations governing heat and mass transfer between the gel particles and air flowing through a packed particle bed. A computer code DESICCANT was written to solve the coupled set of partial differential equations using a finite difference numerical method. The agreement between theory and experiment for adsorption on RD gel is satisfactory, and is somewhat better for the outlet water vapor concentration than for the outlet air temperature. The agreement for desorption from RD gel and adsorption to ID gel is satisfactory, but not as good as for adsorption on RD gel.

Pesaran, A.A.

1983-02-01T23:59:59.000Z

245

Imaging Lithium Air Electrodes | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Agatha Bardoel - January 01, 2013 Image produced by neutron-computed tomography. The next step in revolutionizing electric vehicle capacity Research Contacts: Hassina Bilheux, Jagjit Nanda, and S. Pannala Using neutron-computed tomography, researchers at the CG-1D neutron imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Lithium-air chemistry promises very high-energy density that, if successful, would revolutionize the world of electric vehicles by extending their range to 500 miles or more. The high-energy density comes from

246

Muon Bremsstrahlung and Muonic Pair Production in Air Showers  

E-Print Network (OSTI)

The objective of this work is to report on the modifications in air shower development due to muon bremsstrahlung and muonic pair production. In order to do that we have implemented new muon bremsstrahlung and muonic pair production procedures in the AIRES air shower simulation system, and have used it to simulate ultra high energy showers in different conditions. The influence of the mentioned processes in the global development of the air shower is important for primary particles of large zenith angles, while they do not introduce significant changes in the position of the shower maximum.

A. Cillis; S. J. Sciutto

2000-06-08T23:59:59.000Z

247

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Experiment Results Featured in Technical Journal Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification shows the size of aerosol particles relative to the pore size of the filter used during one of the study's sampling runs. Aerosol particles are gaining increasing scientific attention as a key factor in climate change. Through scattering and absorption of solar radiation, or by altering cloud properties, aerosols have the potential to

248

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Scattering and Absorption by Nonspherical Cirrus Modeling of Scattering and Absorption by Nonspherical Cirrus Submitter: Dong, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Fu, Q., W.B. Sun, and P. Yang, 1999: "Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths," J. Atmos. Sci. 56(16): 2937-2947. We examined a number of commonly used methods for the calculation of the scattering and absorption properties of nonspherical ice crystals at thermal infrared wavelengths. It is found that, for randomly oriented nonspherical particles, Mie theory using equivalent ice spheres tends to overestimate the absorption efficiency while the anomalous diffraction

249

Air Conditioner Compressor Performance Model  

SciTech Connect

During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

Lu, Ning; Xie, YuLong; Huang, Zhenyu

2008-09-05T23:59:59.000Z

250

ARM - Measurement - Particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

size distribution size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

251

Applications of TIERRAS for underground particle cascade simulations  

SciTech Connect

In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

Tueros, M. J.

2010-11-24T23:59:59.000Z

252

Multimedia Impacts of Air Pollutant Controls  

Science Conference Proceedings (OSTI)

With federal and state restrictions on air pollutant emissions growing more stringent, cross-media transfer may increase their concentration in solid waste and wastewater in complex chemical settings that make it difficult to predict pollutant behavior, both within the power plant and in the outside environment. Recent EPRI research addresses these complexities and helps to clarify impacts to solid waste and wastewater resulting from air pollution control operation. The ultimate goal of this ...

2013-05-28T23:59:59.000Z

253

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

alphabet: (alpha), (beta), and (gamma). Alpha particles are helium nuclei (2 p, 2 n): Beta particles are speedy electrons: Gamma radiation is a high-energy photon: These three...

254

Air Pollution- Local Air Quality (Ontario, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Air Pollution regulation administered by the Ministry of the Environment enforces compliance to the standards set in the Ontario law. The law is phased in, with portions taking effect in 2010,...

255

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Clouds Brighten Up the Sky Near Them Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the brightness of sky in nearby clear areas. In cloud-free areas light is scattered mainly by air molecules, but aerosols also contribute. Figure 2. Top: Average increase in MODIS clear-sky reflectivity (R) near clouds. The difference between areas near illuminated and shadowy cloud

256

Numerical modeling of a solid particle solar central receiver  

Science Conference Proceedings (OSTI)

The flow of air and particles and the heat transfer inside a solar heated, open cavity containing a falling cloud of 100 to 1000 micron solid particles have been studied. Two-way momentum and thermal coupling between the particles and the air is included in the analysis along with the effects of radiative transport within the particle cloud, among the cavity surfaces, and between the cloud and the surfaces. The flow field is assumed to be two dimensional with steady mean quantities. The PSI-Cell (particle source in cell) computer code is used to describe the gas-particle interaction. The method of discrete ordinates is used to obtain the radiative transfer within the cloud. The results include the velocity and temperature profiles of the particles and the air. In addition, the thermal performance of the solid particle solar receiver has been determined as a function of the following particle parameters: size, mass flow rate, absorptivity, and infrared scattering albedo. Other parameters which have been varied include the incident solar flux (both magnitude and distribution) and receiver size. A forced flow, applied across the cavity aperture, has also been investigated as a means of decreasing convective heat loss from the cavity. Comparison of the results from the model has been made with an experiment performed at the radiant heat facility in Albuquerque. The model has also been used to predict the entrainment of air and the decrease in particle drag which has been observed when measurements were made of particle velocity in a cloud of particles in free fall.

Evans, G.H.; Houf, W.G.; Greif, R.; Crowe, C.

1985-12-01T23:59:59.000Z

257

Thin Air Breathing  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Air Breathing Thin Air Breathing Name: Amy Location: N/A Country: N/A Date: N/A Question: Why is it hard to breathe in thin air? What health dangers do mountain climbers face at high altitudes? Replies: Among the obvious dangers of losing ones footing, the oxygen available in the air is considerable less at higher altitudes. If I recall correctly, 21% of the atmosphere at standard temperature and pressure at sea level is composed of oxygen. This is less at higher altitudes. One can lose consciousness and even die in an oxygen deficient environment with changes from oxygen content to lower than 19.5%. This can unfortunate effect can occur within minutes. Dr. Myron The air is not really thin at high altitudes. The problem is that air pressure is lower. As altitude increases, air pressure decreases. In order for your lungs to fill with air, the air pressure in your lungs has to be less than the pressure of the air outside your lungs. Air moves from areas of higher pressure to lower pressure. As your diaphragm (the muscle that separates your chest cavity from your abdominal cavity) moves downward, the size of your chest cavity increases. This decreases the pressure in your chest and air flows in. When the diaphragm is up, it puts pressure on the chest cavity and the pressure in the lungs is greater than outside the lungs. Air flows out. This is an example of Boyle's Law. The movement of the diaphragm is controlled by the brainstem. Anyway-the reason that it is harder for some people to breathe at higher altitudes is that the air pressure differences aren't as great between the inside of the lungs and outside.

258

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson A particle that has integer intrinsic angular momentum (spin) measured in units of h-bar (spin 0, 1, 2, ...). All particles are either fermions or bosons. The particles...

259

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Rest Mass The rest mass (m) of a particle is the mass defined by the energy of the isolated (free) particle at rest, divided by the speed of light squared. When particle physicists...

260

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay A process in which a particle disappears and in its place different particles appear. The sum of the masses of the produced particles is always less than the mass of the...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Is this particle really the Higgs... Is this particle really the Higgs Boson? Does it swim and quack like a duck? While decays of this kind had been observed for the new particle...

262

The Interface or Air–Sea Flux Component of the TOGA Coupled Ocean–Atmosphere Response Experiment and Its Impact on Subsequent Air–Sea Interaction Studies  

Science Conference Proceedings (OSTI)

The interface or air–sea flux component of the Coupled Ocean–Atmosphere Response Experiment (COARE) of the Tropical Ocean Global Atmosphere (TOGA) research program and its subsequent impact on studies of air–sea interaction are described. The ...

Robert A. Weller; Frank Bradley; Roger Lukas

2004-02-01T23:59:59.000Z

263

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents (OSTI)

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

264

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan  

DOE Green Energy (OSTI)

The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

None

1980-12-01T23:59:59.000Z

265

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

266

Glossary Term - Beta Particle  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay Previous Term (Beta Decay) Glossary Main Index Next Term (Bohr Radius) Bohr Radius Beta Particle Beta particles are either electrons or positrons ejected from the nucleus....

267

Glossary Term - Alpha Particle  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay Previous Term (Alpha Decay) Glossary Main Index Next Term (Atomic Number) Atomic Number Alpha Particle alphaparticle.gif Produced during alpha decay, an alpha particle is a...

268

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Particle A particle that exists only for an extremely brief instant in an intermediary process. Then the Heisenberg Uncertainty Principle allows an apparent violation of...

269

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Annihilation A process in which a particle meets its corresponding antiparticle and both disappear. The energy appears in some other form, perhaps as a different particle and its...

270

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Chamber The outer layers of a particle detector capable of registering tracks of charged particles. Except for the chargeless neutrinos, only muons reach this layer from the...

271

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Hadron A particle made of strongly-interacting constituents (quarks andor gluons). These include the meson and baryons. Such particles participate in residual strong interactions...

272

Particle Physics Booklet 2008  

E-Print Network (OSTI)

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

273

Airvest's Breath of Fresh Air  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 The Cutting Edge: Airvest's Breath of Fresh Air Spray booths are a common sight in the industrial sector. Designed to remove pollutants during industrial processes such as spray painting or welding, a booth is a rectangular enclosure open on one side where the worker stands, and equipped on the opposite wall with a fan and filter arrangement to suck away the dirty air. The full-size mannequin in these photographs simulates a worker in a spray booth facing the exhaust filters. In experiments designed by LBL researcher Ashok Gadgil, smoke was released in front of the mannequin to simulate the spraying of paint in the booth. The photo on the left shows the spray booth during standard operation. The smoke-representing a pollutant-is entrained in the eddy that forms in

274

Radiodetection of Cosmic Ray Extensive Air Showers  

E-Print Network (OSTI)

We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high- energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4 $\\sigma$ threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas.

D. Ardouin; A. Belletoile; D. Charrier; R. Dallier; L. Denis; P. Eschstruth; T. Gousset; F. Haddad; J. Lamblin; P. Lautridou; A. Lecacheux; D. Monnier-Ragaiggne; A. Rahmani; O. Ravel; the Codalema Collaboration

2004-12-09T23:59:59.000Z

275

Manufacturing Research & Development for Systems that will  

E-Print Network (OSTI)

Advanced Plasma Energy Research Section 36 Advanced Energy Research Section 46 Advanced Energy Conversion Advanced Energy Storage Research Section 64 Complex Plasma Systems Research Section 74 Clean EnergyRadiationEnergy ResearchSection AdvancedAtomicEnergy ResearchSection AdvancedParticleBeamEnergy ResearchSection AdvancedPlasma

276

Physics Out Loud - Particle Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Accelerator Previous Video (Particle Accelerator) Physics Out Loud Main Index Next Video (Photomultiplier Tube) Photomultiplier Tube Particle Resonance How is a particle...

277

Chemical Looping Air Separation Unit and Methods of Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Looping Air Separation Unit and Methods of Use Looping Air Separation Unit and Methods of Use Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Opportunity Research is currently active on the patent-pending technology "Chemical Looping Air Separation Unit and Methods of Use" that combines the best attributes of chemical looping and oxy-fuel combustion technologies. Following patent approval, the technology will be available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Combines chemical looping and oxy-fuel technologies * Separates oxygen from air at high efficiencies * Removes CO

278

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Minimalist Approach to Modeling Complex Arctic Clouds Minimalist Approach to Modeling Complex Arctic Clouds Download a printable PDF Submitter: Shaw, R. A., Michigan Technological University - Physics Department Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Yang F, M Ovchinnikov, and RV Shaw. 2013. "Minimalist model of ice microphysics in mixed-phase stratiform clouds." Geophysical Research Letters, 40(14), doi:10.1002/grl.50700. Nordic winter landscape. Mixed-phase stratiform clouds are common features in the Arctic environment. They contain a mix of ice and "supercooled" water that, despite the freezing temperatures, remains in liquid form. Scientists aren't sure why these clouds exist in the Arctic for long periods of time, even while steadily losing ice particles through precipitation.

279

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud ice crystal appears deceptively delicate but has the power to tip the balance between ice and water in Arctic clouds. This image of an ice crystal was obtained from a Cloud Particle Imager during ISDAC. The imager was mounted on aircraft flying through clouds at a speed of 100 m/s.

280

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122. La Conchas fire, New Mexico Analyzing fresh, carbon-rich aerosols in smoke from the largest wildfire in New Mexico (2011), scientists report large impacts of wildfires on climate. A research study, published last week in Nature Communications, has revealed that smoke from wildfires, or biomass-burning events, contains

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Evolution and Distribution of Water Vapor and Microphysical Properties The Evolution and Distribution of Water Vapor and Microphysical Properties in Cirrus Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Comstock JM, R Lin, DO Starr, and P Yang. 2008. "Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds." Journal of Geophysical Research - Atmospheres, 113, D23211, doi:10.1029/2008JD010332. Vertical velocity (Vm) derived from millimeter cloud radar (MMCR) Doppler velocity measurements in cirrus clouds observed over the ACRF SGP site. Cloud model simulations of cirrus clouds using large-scale forcing (left panel) and cloud-scale forcing (right panel).

282

Residential Forced Air System Cabinet Leakage and Blower Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

283

Photo of the Week: What Do Airborne Radioactive Particles Taste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1:40pm Addthis At Sandia National Laboratories, researchers have developed pods that can survey and "taste" radioactive particles without exposing a human crew to nuclear hazards....

284

Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report  

DOE Green Energy (OSTI)

Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

2006-03-01T23:59:59.000Z

285

Scenes from Argonne's Materials Engineering Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs...

286

NIST Building and Fire Research Laboratory Publications ...  

Science Conference Proceedings (OSTI)

... of building materials, lighting, and indoor air quality. ... Pello, AC Fire Propagation in Concurrent Flows. ... 193844 fire spread; buoyant flow; fire research ...

1996-08-14T23:59:59.000Z

287

Indoor Air Quality Group  

Science Conference Proceedings (OSTI)

... CONTAM has been used at NIST to study the indoor air quality impacts of HVAC systems in single-family residential buildings, ventilation in large ...

2011-10-31T23:59:59.000Z

288

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (the Board or ARB) will conduct a public hearing at the time and place noted below to consider amendments to the Verifkztion

unknown authors

2003-01-01T23:59:59.000Z

289

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (the Board or ARB) will conduct a public hearing at the time and place noted below to consider amendments to the Verification

unknown authors

2003-01-01T23:59:59.000Z

290

Environmental Quality: Air (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

291

Air Pollution Project: Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary HELP Index Summary Scenario Internet Links Student Pages SubjectContent Area: ScienceChemistry, Environment - Air Pollution Target Audience: High school chemistry...

292

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

293

Movements in air conditioning.  

E-Print Network (OSTI)

??Movements in Air Conditioning is a collection of poems that explores the obstacles inherent in creating a new sense of home in a country that… (more)

Hitt, Robert D. (Robert David)

2013-01-01T23:59:59.000Z

294

Adsorption air conditioner  

DOE Patents (OSTI)

A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

Rousseau, Jean L. I. (Redondo Beach, CA)

1979-01-01T23:59:59.000Z

295

Room Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

of Superefficient Room Air Conditioners year month keywords appliance energy efficiency energy efficiency incentives Market Transformation standards url https isswprod lbl gov...

296

Air Pollution Controls  

Energy.gov (U.S. Department of Energy (DOE))

Various statutes within the Wisconsin Legislative Documents relate to air pollution control. These statutes describe zoning, permitting, and emissions regulations for hazardous and non-hazardous...

297

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

like everyday objects and have momentum, but they also have wave properties. Quantum mechanics, the mathematical basis for our theories about particles, explains the behavior of...

298

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle decays and annihiliations - Electron positron annhiliation When an electron and positron (antielectron) collide at high energy, they can annihilate to produce charm...

299

Recirculating electric air filter  

DOE Patents (OSTI)

An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

Bergman, Werner (Pleasanton, CA)

1986-01-01T23:59:59.000Z

300

Portable oven air circulator  

DOE Patents (OSTI)

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Growth and poverty in the urban fringe : decentralization, dispersion, and inequality in greater Buenos Aires  

E-Print Network (OSTI)

This research presents the case of growth in Buenos Aires since the late 1970s, when the decentralization of urban planning powers in the Province of Buenos Aires began, until 2001, when an economic crisis submerged -even ...

Libertun de Duren, Nora R

2007-01-01T23:59:59.000Z

302

Numerical Simulations of the Meteorological and Dispersion Conditions during an Air Pollution Episode over Athens, Greece  

Science Conference Proceedings (OSTI)

In this study a summer air pollution episode from 6 to 8 August 1994 over Athens, Greece, is investigated through advanced atmospheric modeling. This episode was reported from the air quality monitoring network, as well as from research aircraft ...

V. Kotroni; G. Kallos; K. Lagouvardos; M. Varinou; R. Walko

1999-04-01T23:59:59.000Z

303

Hybrid regional air pollution models  

SciTech Connect

This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

Drake, R.L.

1980-03-01T23:59:59.000Z

304

Meeting the Air Leakage  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting the Air Leakage Meeting the Air Leakage Requirements of the 2012 IECC The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The newest edition of the International Energy Conservation Code ® (IECC) (2012) sets the bar higher for energy efficiency, and new air sealing requirements are one of the key new provisions. This guide is a resource for understanding the new air leakage requirements in the 2012 IECC and suggestions on how these new measures can be met. It also provides information from Building America's Air Sealing Guide, Best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code (IRC) requirements are referenced throughout the guide.

305

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network (OSTI)

Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

306

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Clouds Make the Case for Remote Sensing Instrumentation Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, S. A., and W. W. Grabowski (2007). Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767. In this figure, the lines indicate theoretical calculations of cloud droplet size for clouds with various droplet concentrations in which no mixing occurs. The cloud droplet size shows significant variability with height. Traditionally, observations of air mixing and cloud droplet size come from in situ aircraft probes, which collect data at very high horizontal

307

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

308

Laser particle sorter  

DOE Patents (OSTI)

Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

Martin, J.C.; Buican, T.N.

1987-11-30T23:59:59.000Z

309

Modular Pebble Bed Reactor Project, University Research Consortium Annual Report  

Science Conference Proceedings (OSTI)

This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. · A South African MPBR fuel testing proposal is pending ($7.0M over nine years).

Petti, David Andrew

2000-07-01T23:59:59.000Z

310

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

All air pollution not otherwise covered by these regulations is prohibited. Stationary sources which cause air pollution must be operated in accordance with all applicable emissions standards and...

311

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut...  

Open Energy Info (EERE)

DEEP Air Management Department Department of Energy and Environmental Protection Division Environmental Protection Division; Bureau of Air Management Address 79 Elm Street Place...

312

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

313

ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES  

SciTech Connect

Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

2011-06-07T23:59:59.000Z

314

Measuring UAS pilot responses to common air traffic clearances  

Science Conference Proceedings (OSTI)

Using a simulated ground control station, this study documents the methods for measuring the verbal response and execution time of unmanned aerial system (UAS) pilots to direct commands from air traffic controllers (ATCos). Although prior research has ... Keywords: air traffic management, measured response, unmanned aerial systems

Jason Ziccardi, Zach Roberts, Ryan O'Connor, Conrad Rorie, Gregory Morales, Vernol Battiste, Thomas Strybel, Dan Chiappe, Kim-Phuong L. Vu, Jay Shively

2013-07-01T23:59:59.000Z

315

Air Shower Simulations  

SciTech Connect

Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

Alania, Marco; Gomez, Adolfo V. Chamorro [Centro de Tecnologias de Informacion y Comunicaciones, Universidad Nacional de Ingenieria, Lima (Peru); Araya, Ignacio J. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Santiago (Chile); Huerta, Humberto Martinez; Flores, Alejandra Parra [Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Knapp, Johannes [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

2009-04-30T23:59:59.000Z

316

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

317

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

318

IMAGING HIGH SPEED PARTICLES IN EXPLOSIVE DRIVEN BLAST WAVES  

Science Conference Proceedings (OSTI)

This research describes a new application of a commercially available particle image velocimetry (PIV) instrument adapted for imaging particles in a blast wave. Powder was dispersed through the PIV light sheet using a right circular cylindrical charge containing aluminum powder filled in the annular space between the explosive core and exterior paper tube wall of the charge. Images acquired from each shot showed particle agglomeration and unique structures with the smaller particle diameters having developed structured appearances.

Jenkins, C. M. [Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Air Force Research Laboratory, Munitions Directorate, Eglin AFB FL 32542 (United States); Horie, Y. [Air Force Research Laboratory, Munitions Directorate, Eglin AFB FL 32542 (United States); Ripley, R. C.; Wu, C.-Y. [Martec Limited, Suite 400-1888 Brunswick Street, Halifax, NS, B3J3J8 (Canada)

2009-12-28T23:59:59.000Z

319

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermion Any particle that has odd-half-integer (12, 32, ...) intrinsic angular momentum (spin), measured in units of h-bar. All particles are either fermions or bosons. Fermions...

320

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Interaction A process in which a particle decays or it responds to a force due to the presence of another particle (as in a collision). The four fundamental interactions are...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Pauli Exclusion Principle The principle that no two particles in the same quantum state may exist in the same place at the same time. Particles that obey this principle are called...

322

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle A particle with no internal substructure. In the Standard Model the quarks, leptons, photons, gluons, W+ and W- bosons, and the Z bosons are fundamental. All other objects...

323

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Antiparticle For most particle types (and every fermion type) there is another particle type that has exactly the same mass but the opposite value of all other charges (quantum...

324

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

325

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson - 2 Finding the Mass of the Higgs Boson - Part 2 Adding up the masses of the particles from the Higgs decay doesn't work, because these particles have enormous kinetic energy...

326

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron A type of circular accelerator in which the particles travel in synchronized bunches at fixed radius...

327

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Fermi National Accelerator Laboratory in Batavia, Illinois (near Chicago). Named for particle physics pioneer Enrico Fermi...

328

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

CERN CERN (European Laboratory for Particle Physics) is the major European international accelerator laboratory located near Geneva, Switzerland...

329

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking The reconstruction of a "track" left in a detector by the passage of a particle through the...

330

An Extreme Cold-Air Outbreak over the Labrador Sea: Roll Vortices and Air–Sea Interaction  

Science Conference Proceedings (OSTI)

Observational data from two research aircraft flights are presented. The flights were planned to investigate the air–sea interaction during an extreme cold-air outbreak, associated with the passage of a synoptic-scale low pressure system over the ...

Ian A. Renfrew; G. W. K. Moore

1999-10-01T23:59:59.000Z

331

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Download a printable PDF Submitter: Mace, G., Utah State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data." Journal of the Atmospheric Sciences, 68(6), doi:10.1175/2010JAS3354.1. Figure 1. Frequency distribution of ice water content (top), effective radius (middle), and crystal concentration (bottom) derived from 313 h of cloud property retrievals using the bimodal algorithm. The distributions are shown as a function of the layer-mean temperature shown in the legend.

332

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Scattering Properties of Aggregates of Plates Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud Particle Imager (left panel) and idealized geometry of aggregates of plates with AI=0.61 (right panel). Asymmetry parameter (g) at λ=0.55 μm of 80 different aggregates of seven 100 μm plates attached together, as functions of (a) AI, (b) 1-AR, and (c) An. The correlation coefficient and constants for a fitting equation,

333

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Anthropogenic Emissions on Organic Aerosols During CARES Impact of Anthropogenic Emissions on Organic Aerosols During CARES Submitter: Zhang, Q., University of California, Davis Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Setyan A, Q Zhang, M Merkel, WB Knighton, Y Sun, C Song, J Shilling, TB Onasch, S Herndon, D Worsnop, JD Fast, R Zaveri, LK Berg, A Wiedensohler, BA Flowers, MK Dubey, and R Subramanian. 2012. "Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: Results from CARES." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-8131-2012. High-resolution mass spectra (colored by ion category) and elemental ratios of the OA factors. Average contribution of ion categories to the total

334

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Shows True Weight of Aerosol Effects on Clouds Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations, which represent disaggregated data, differ from those derived from satellite-based data, which represent data aggregated at a range of levels. Currently, many climate change models treat the two types of data the same. Aerosols-tiny airborne particles from sources like pollution or desert

335

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Mixed-Phase Clouds from the Ground: a Status Report Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-based observational methods." Bulletin of the American Meteorological Society, accepted for publication in October 2008 issue. Figure 1. Retrieved cloud properties for 9 October 2004 at Barrow: (a) Multisensor cloud phase classification, (b) radar Doppler spectra cloud phase classification, (c) ice water content, (d) ice particle effective radius, (e) adiabatic liquid water content scaled to the microwave

336

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

When Pollution Gets a Whiff of Trees When Pollution Gets a Whiff of Trees Download a printable PDF Submitter: Shilling, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Shilling JE, RA Zaveri, JD Fast, L Kleinman, M Alexander, MR Canagaratna, E Fortner, JM Hubbe, JT Jayne, A Sedlacek, A Setyan, S Springston, DR Worsnop, and Q Zhang. 2013. "Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign." Atmospheric Chemistry and Physics, 13, doi:10.5194/acp-13-2091-2013. Organic aerosols from tree emissions increase when mixed with manmade sources, impacting the climate. It's easy to visualize particles and gases from vehicle exhaust or burning trash wafting into the atmosphere. It's harder to envision similar gases

337

Air Carrier Flight Operations  

E-Print Network (OSTI)

Most air carriers operate under a system of prioritized goals including safety, customer service (on-time departures and arrivals) and operating economics. The flight operations department is responsible for the safe and ...

Midkif, Alan H.

338

AIR RESOURCES BOARD Acknowledgements  

E-Print Network (OSTI)

This report was prepared with the assistance and support from other agencies, divisions and offices of the Air Resources Board, and private firms. Staff would especially like to thank the following individuals for their assistance in developing this proposed pathway:

Green Wastes; Green Wastes; Richard Corey; Deputy Executive Officer; Cynthia Marvin Chief; Michael Waugh Chief; Kamal Ahuja; Brian Helmowski; Wes Ingram; Ray Asregadoo (arb; Juliet Bohn (hwma; Richard Boyd (arb; Alicia Chakrabarthy (ebmud; Steven Cliff (arb; Kevin Dickison (ebmud; Jacques Franco (calrecycle

2012-01-01T23:59:59.000Z

339

Breathing zone air sampler  

DOE Patents (OSTI)

A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, John (Bethel Park, PA)

1989-01-01T23:59:59.000Z

340

air_water.cdr  

Office of Legacy Management (LM)

Office of Legacy Management Weldon Spring Site Air and Water Monitoring 32008 This fact sheet provides information at Weldon Spring, Missouri. This site is managed by the U.S....

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have an air economizer cycle for free cooling under certain outside air conditions. During the economizer cycle, the outside air and return air dampers are modulated to seek mixing air temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control. Actually the dehumidification is not necessary when outside air dew point is less than 55°F. Meanwhile the space may have less cooling load due to envelope heat loss and/or occupant schedule. These provide an opportunity to use higher supply air temperature to reduce or eliminate mechanical cooling and terminal box reheat. On the other hand the higher supply air temperature will require higher air flow as well as higher fan power. Therefore the supply air temperature has to be optimized to minimize the combined energy for fan, cooling and heating energy. In this paper a simple energy consumption model is established for AHU systems during the economizer and then a optimal supply air temperature control is developed to minimize the total cost of the mechanical cooling and the fan motor power. This paper presents AHU system energy modeling, supply air temperature optimization, and simulated energy savings.

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

342

Evaluating passenger delays in the US domestic air transportation system  

E-Print Network (OSTI)

A fundamental component of any National Airspace System (NAS) performance evaluation is the cost impact of air traffic delays, and more generally capacity limitations, on the traveling passengers. In previous research it ...

Umang, Nitish

2010-01-01T23:59:59.000Z

343

Air Quality | Open Energy Information  

Open Energy Info (EERE)

Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Category: NEPA Resources...

344

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - How to obtain particles to accelerate Electrons: Heating a metal causes electrons to be ejected. A...

345

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Detector shapes Physicists are curious about the events that occur during and after a particle's...

346

Effect of Air Bubbles on Absorption of Solar Radiation by Water Droplets  

Science Conference Proceedings (OSTI)

It was suggested that absorption by a weakly absorbing droplet may be increased substantially by the presence of air bubbles within a droplet. The authors use an exact solution of the scattering of electromagnetic waves by a spherical particle ...

Petr Chýlek; Gorden Videen; Dat Ngo

1998-02-01T23:59:59.000Z

347

FREE AIR PRESSURE MEASUREMENTS  

SciTech Connect

Indenter gages, Wiancko gages, and interferometer gages were used to measure air overpressure vs time at essentially ground level stations for both the surface (S) and undprground (U) atomic explosions. For the S Burst several instruments were placed on a line extending from an overpressure region of 13 psi to a region of less than one psi. The air measurements for the U Burst ranged from 32 to 2 psi. (D. L.G.)

Howard, W.J.; Jones, R.D.

1952-02-19T23:59:59.000Z

348

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle decays and annihiliations - Half life A lump of uranium left to itself will gradually decay, one nucleus at a time. The rate of decay is measured by how long it would take...

349

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

mass in a radioactive decay go? Recall that we said that when uranium decays into thorium and an alpha particle, 0.0046 u of mass appears to have been lost. As Einstein said,...

350

Particle beam dynamics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

351

ARM - Measurement - Cloud particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

size distribution size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments CPI : Cloud Particle Imager CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties

352

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

353

InAir: sharing indoor air quality measurements and visualizations  

Science Conference Proceedings (OSTI)

This paper describes inAir, a tool for sharing measurements and visualizations of indoor air quality within one's social network. Poor indoor air quality is difficult for humans to detect through sight and smell alone and can contribute to the development ... Keywords: air quality, domestic technology, environment, health, iphone, persuasive technology, sensors, sustainability

Sunyoung Kim; Eric Paulos

2010-04-01T23:59:59.000Z

354

Physics Out Loud - Particle Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Nucleus Previous Video (Nucleus) Physics Out Loud Main Index Next Video (Particle Resonance) Particle Resonance Particle Accelerator Andrew Hutton, Director of Accelerators at...

355

Adhesive particle shielding  

DOE Patents (OSTI)

An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

Klebanoff, Leonard Elliott (Dublin, CA); Rader, Daniel John (Albuquerque, NM); Walton, Christopher (Berkeley, CA); Folta, James (Livermore, CA)

2009-01-06T23:59:59.000Z

356

Oxide modified air electrode surface for high temperature electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

1992-01-01T23:59:59.000Z

357

Air quality prediction in yinchuan by using neural networks  

Science Conference Proceedings (OSTI)

A field study was carried out in Yinchuan to gather and evaluate information about the real environment. O3 (Ozone), PM10 (particle 10 um in diameter and smaller) and SO2 (sulphur monoxide) constitute ... Keywords: air quality prediction, artificial neural networks, yinchuan

Fengjun Li

2010-06-01T23:59:59.000Z

358

Characterization of aerodynamic drag force on single particles: Final report  

Science Conference Proceedings (OSTI)

An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

Kale, S.R.

1987-10-01T23:59:59.000Z

359

Dynamic modeling and global optimal operation of multizone variable air volume HVAC systems.  

E-Print Network (OSTI)

??Energy conservation and indoor environment concerns have motivated extensive research on various aspects of control of Heating, Ventilating and Air-Conditioning (HVAC) and building systems. The… (more)

Zheng, Guo Rong

1997-01-01T23:59:59.000Z

360

Active improvement of air-conditioning system energy consumption with adaptive thermal comfort approach.  

E-Print Network (OSTI)

??The MSc research project aims to suggest improvements to building air-conditioning control systems, to reduce energy consumption while maintaining the comfort level of the occupants.… (more)

Muhammad Saleh, Muhammad Fadzli

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

Bharathan, D.

2009-05-01T23:59:59.000Z

362

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet...

363

An air pollution trajectory model for Southeast Texas  

E-Print Network (OSTI)

Amounts of ozone for the Houston area are the second-highest within the United States. As a result of Houston's high ozone problem a task of finding new ways to control the ozone concentration was necessary for the Southeast Texas area (Lambeth et al. 1994). A hybrid Eulerian-Lagrangian model was optimized to examine the southeast Texas coastal region for high ozone development. Verification of the optinuzed air pollution model was performed by a case study for a day with high ozone concentration and a day with low ozone concentration having similar meteorological setup for the Houston area. The model chosen for study was the Hybrid Single-Particle Lagrangiank Model (HY-SPLIT). The verification used enhanced meteorological data sources for researching the phenomena which developed the ozone concentration problem. The meteorology of these case studies generated trajectories to observe the ozone distribution trends for the Texas coastal area.The analysis of the trajectories generated suggested that either the Nested Grid Model (NGM) or gridded rawinsonde data could be used for the HY-SPLIT model input. However for mesoscale features, the gridded rawinsonde data produced moreinput. However for mesoscale features, the gridded rawinsonde data produced more accurate trajectory tracings for study of ozone concentrations. As a result of this case study, mesoscale flow was determined to be a key factor in origination and distribution of source pollutants. The development of the sea breeze and its air content was crucial in determining the ozone content for the Southeast Texas region. Mixing associated with strong sea breeze and land breeze flows found low ozone concentrations in the region of interest. This strong sea breeze flow produced large parcel movement associated with the trajectories computed for this study. However with light winds, stable conditions, wann temperatures and high photochemical activity high ozone and shorter trajectories were seen for the Houston area.

Walters, Tamera Ann

1996-01-01T23:59:59.000Z

364

Compressed Air System Maintenance Guide  

Science Conference Proceedings (OSTI)

The "Compressed Air System Maintenance Guide" provides fossil plant personnel with information on the operation and maintenance of the compressed air system. The contents of this guide will assist personnel in improving performance of the compressed air system, reducing maintenance costs, and increasing air system reliability.

2002-11-27T23:59:59.000Z

365

Solar Buildings: Transpired Air Collectors  

DOE Green Energy (OSTI)

Transpired air collectors preheat building ventilation air by using the building's ventilation fan to draw fresh air through the system. The intake air is heated as it passes through the perforated absorber plate and up the plenum between the absorber and the south wall of the building. Reduced heating costs will pay for the systems in 3--12 years.

NONE

1998-11-24T23:59:59.000Z

366

How Particle Physics Improves Your Life | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Physics Improves Your Life Particle Physics Improves Your Life How Particle Physics Improves Your Life April 5, 2013 - 10:33am Addthis Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov Learn More Visit Symmetry Magazine for more on research and development from Fermilab and SLAC. Editor's Note: This article is cross-posted from Symmetry Magazine, a joint Fermilab/SLAC publication. From MRIs to shrink wrap, particle physics technology improves the world we live in. Read about how your daily products are improved from Energy

367

How Particle Physics Improves Your Life | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Particle Physics Improves Your Life How Particle Physics Improves Your Life How Particle Physics Improves Your Life April 5, 2013 - 10:33am Addthis Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov Learn More Visit Symmetry Magazine for more on research and development from Fermilab and SLAC. Editor's Note: This article is cross-posted from Symmetry Magazine, a joint Fermilab/SLAC publication. From MRIs to shrink wrap, particle physics technology improves the world we live in. Read about how your daily products are improved from Energy

368

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

First Direct Imaging of Swollen Microgel Particles Print First Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

369

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Swollen Microgel Particles Print Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

370

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

First Direct Imaging of Swollen Microgel Particles Print First Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

371

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

372

IAQ in Hospitals - Better Health through Indoor Air Quality Awareness  

E-Print Network (OSTI)

Quality air is fundamental to people's health and well-being. Indoor air quality is an important issue from both a social and economic point of view. Continual advances in medicine and technology necessitate constant reevaluation of the air-conditioning needs of hospital and medical facilities. The application of air conditioning to health facilities presents many problems not encountered in the usual comfort air conditioning design. Hospital air conditioning assumes a more important role than just the promotion of comfort. Studies show that patients in controlled environment generally have more rapid physical improvement than do those in uncontrolled environment. Air quality at hospitals needs special precautions during design and maintenance stage to prevent infections from spreading. 50% of all illnesses are either caused by, or aggravated by, polluted indoor air. The main objective of this paper is to critically review and summarize the available information about IAQ particularly in health care industries. Symptoms of poor IAQ in a building, contaminants causing poor IAQ, features of HVAC systems for a hospital for better IAQ are briefly discussed in this paper. Strategies to improve indoor air quality in hospitals and the current international research to improve indoor air quality are reported in this paper. Based on the extensive interactions with different stake holders of a hospital it is concluded that maintenance of proper indoor quality in a hospital needs meticulous team work among the various members of the hospital at various stages .

Al-Rajhi, S.; Ramaswamy, M.; Al-Jahwari, F.

2010-01-01T23:59:59.000Z

373

Effects of Surface Wetness on the Evolution and Vertical Transport of Submicron Particles  

Science Conference Proceedings (OSTI)

Simulations have been carried out with a numerical model describing air chemistry, aerosol microphysics, and turbulent mixing, in order to study the behavior of fine sulfate particles in the atmospheric surface layer over wet surfaces. ...

I. Y. Lee; M. L. Wesely

1989-03-01T23:59:59.000Z

374

Air Charter Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

42.2 (April 2012) 42.2 (April 2012) 1 Documentation and Approval of Federally Funded International Travel (Fly America Act-Open Skies Agreement) Overview This section provides guidance to DOE Contracting Officers, Contracting Officer Representatives, and Program Officials on documentation and approval of federally funded international travel by Federal contractors and subcontractors in accordance with FAR 52.247-63 PREFERENCE FOR U.S.-FLAG AIR CARRIERS (JUNE 2003), 49 U.S.C. §40118 (Fly America Act) and the Open Skies Agreements as amended. Background Contracts that include FAR clause 52.247-63, PREFERENCE FOR U.S.-FLAG AIR CARRIERS (JUNE 2003) as prescribed in FAR 47.405 require that, if available, the Contractor (and subcontractors), in performing work under the contract, shall use U.S.-flag air carriers for

375

AIR COOLED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

Fermi, E.; Szilard, L.

1958-05-27T23:59:59.000Z

376

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

377

Inverter Controlled Screw Air Compressor Manufacturers ...  

U.S. Energy Information Administration (EIA)

Inverter Controlled Screw Air Compressor, Inverter Controlled Screw Air Compressor Manufacturers & Suppliers Directory - Find here Inverter ...

378

Quantifying the Air Pollution Exposure Consequences of Distributed  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Air Pollution Exposure Consequences of Distributed Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation Speaker(s): Garvin Heath Date: November 8, 2005 - 12:00pm Location: Bldg. 90 This talk will highlight my research investigating differences in potential for human inhalation exposure to air pollutants emitted by distributed electricity generation (DG) technologies and existing central station power plants in California. The most sophisticated research on environmental impacts of DG has focused on evaluating spatially and temporally resolved air pollutant concentrations (e.g., ozone) that result from scenarios of future deployment of DG technologies (Samuelsen at al., 2003 and collaborations amongst Tonse, van Buskirk and Heath, unpublished). I extend this research to consider the relationship between where pollutants are

379

Solar air collector  

SciTech Connect

A solar heating system including a radiant heat collector apparatus made up of an enclosure having glazed panels. The collector provided within the enclosure is upstanding with the enclosure and the collector has heat absorbent flat walls spaced inwardly from the glazed panels. A heat storage core is provided centrally within the collector and spaced from the walls of the collector. The heat storage core includes an insulated housing and a heat retaining member within the insulated housing. Air passageways are formed between the collector walls and the insulated housing for passing input air, and duct members are provided for communicating with a household.

Deschenes, D.; Misrahi, E.

1981-12-15T23:59:59.000Z

380

Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?  

E-Print Network (OSTI)

The supply air temperature set point for a singleduct constant air volume air handling unit (AHU) system is often reset based on either return air temperature or outside air temperature in order to reduce simultaneous cooling and heating energy consumption. Both reset strategies make engineering sense as long as the reset schedules are reasonable. Quite often the decision to use one over the other is made with the assumption that they will all achieve some sorts of energy savings. However, the impact of these two strategies on AHU energy consumption could be very different. A comparison of these two commonly used supply air temperature reset strategies for a single-duct constant air volume system is presented in this paper. It is shown that from either the building energy consumption or building comfort point of view, the reset strategy based on outside air temperature is inherently better than that based on return air temperature. Significant amount of heating energy savings can be achieved by switching from return air temperature based reset to outside air temperature based reset. The reset strategy can also benefit variable air volume (VAV) AHUs. An improved supply air temperature set point reset control strategy is proposed by combining and staging the outside air and return air temperature based resets.

Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Air New England (1970-1974) : a case study of a commuter air carrier  

E-Print Network (OSTI)

This is a brief account of research by CAB staff. The success of Air New England from the beginning of its corporate life to the summer of 1974, when it was offered a certificate of public convenience and necessity by the ...

Ausrotas, Raymond A.

1975-01-01T23:59:59.000Z

382

Commercial Building Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Commercial Building Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

383

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

384

Summary of the particle physics and technology working group  

SciTech Connect

Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

Stephan Lammel et al.

2002-12-10T23:59:59.000Z

385

Surrogate protein particle standards  

Science Conference Proceedings (OSTI)

... The large particles may be useful as a standard for the counting of ... drugs require visual inspection, at present there are no standards available for ...

2013-09-10T23:59:59.000Z

386

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

at RHIC or the AGS should be submitted to the Associate Laboratory Director for Nuclear and Particle Physics, presently Steve Vigdor, Bldg. 510F, Brookhaven National...

387

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 12-14 September 2006 Tuesday, 12 September Room 2-160, Bldg. 510 (Physics) 0900...

388

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting June 15-16, 2009 Agenda Reference Documents Letter to Barbara Jacak and Nu Xu (129...

389

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 7-8 June 2012 Agenda Related Documents: PHENIX Beam Use Proposal, STAR Beam Use...

390

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge Conservation The observation that electric charge is conserved in any process of transformation of one group of particles into another...

391

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Model Physicists have developed a theory of fundamental particles and interactions called the Standard Model. This site describes various aspects of this model...

392

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Weak Interaction The interaction responsible for all processes in which flavor changes, hence for the instability of heavy quarks and leptons, and particles that contain them. Weak...

393

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Antimatter Material made from antifermions. We define the fermions that are common in our universe as matter and their antiparticles as antimatter. In the particle theory there is...

394

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Z Boson A carrier particle of the weak interactions. It is involved in all weak processes that do not change flavor...

395

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

W+, W- Boson A carrier particle of the weak interactions. It is involved in all electric-charge-changing weak processes...

396

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator A machine used to accelerate particles to high speeds, and thus high energy compared to their rest-mass energy...

397

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation When a quantity is always the same before and after a particle reaction, it is said to be conserved. Such quantities include electric charge, energy, and momentum...

398

Particle Event Pictures  

NLE Websites -- All DOE Office Websites (Extended Search)

- Identifying Particles - D0 Detector - CDF Detector - Links Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: April 13, 2001...

399

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron The least massive electrically-charged particle, hence absolutely stable. It is the most common lepton, with electric charge -1...

400

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

The discovery of the Higgs boson is an enormous clue about the mechanism for giving mass to fundamental particles, as conceived by Higgs, Brout, Englert, Guralnik, Hagen, and...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FPGA particle graphics hardware.  

E-Print Network (OSTI)

??Particle graphics simulations are well suited for modeling phenomena such as water, cloth, explosions, fire, smoke, and clouds. They are normally realized in software, as… (more)

Beeckler, John Sachs.

2006-01-01T23:59:59.000Z

402

Particle Data Group - Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Group HOME: pdgLive Summary Tables Reviews, Tables, Plots Particle Listings Europe, Africa, Middle East, India, Pakistan, Russia and all other countries For copies of: ...

403

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites -...

404

Spatial and Temporal Variability of Aerosol Particles in Arctic Spring  

SciTech Connect

The objective of this work is to investigate the variability in the particle number concentration that may affect climate change assessment for Arctic regions. The Indirect and Semi-Direct Aerosol Campaign (ISDAC) was conducted in April 2008, in the vicinities of Fairbanks and Barrow, Alaska. Measurements of particle number concentrations and size distributions were conducted using a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X) mounted under the Convair-580 aircraft wing. Total number concentration of particles (Na) with diameters in the range 0.12-3 ?m was determined for polluted and clean air masses during times when the air was free of clouds and/or precipitation. Variability in Na was considered for both vertical profiles and constant altitude (horizontal) flight legs. This variability can have important implications for estimates of particle properties used in global climate model (GCM) simulations. When aerosol particle layers were encountered, Na rapidly increased from 25 cm-3 up to 550 cm-3 within relatively clean air masses, and reached up to 2200 cm-3 within polluted air masses, dominated by biomass burning pollution. When averaging Na over different distance scales, it was found that Na=140 cm-3 represent an average value for the majority of the encountered clean cases; while Na=720 cm-3 is a mean for polluted cases dominated by biomass burning plumes. These estimates, however, would not capture the details of particle layers encountered during most of the flights. Average aerosol particle characteristics can be difficult to interpret, especially during polluted cases, due to small-scale spatial and temporal variability.

Shantz, Nicole C.; Gultepe, Ismail; Liu, Peter; Earle, Michael; Zelenyuk, Alla

2012-10-01T23:59:59.000Z

405

Hexane Air Combustion  

E-Print Network (OSTI)

Hot surface ignition and subsequent flame propagation of premixed n-hexane air mixtures are shown in this fluid dynamics video. High speed schlieren photography revealed 3 distinct behaviors of ignition and propagation as a function of mixture composition and initial pressure.

Boettcher, Philipp A; Shepherd, Joseph E

2010-01-01T23:59:59.000Z

406

Air-cleaning apparatus  

SciTech Connect

An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces.

Howard, A.G.

1981-08-18T23:59:59.000Z

407

Winter Morning Air Temperature  

Science Conference Proceedings (OSTI)

Results of temperature measurements, which may be applied to inference of winter temperatures in data-sparse areas, are presented. The morning air temperatures during three winters were measured at 80 places in a 10 km × 30 km area along the ...

A. Hogan; M. Ferrick

1997-01-01T23:59:59.000Z

408

Research Opportunities  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Research Opportunities. ... NRC Postdoctoral Research Associateships Program; NIST NRC Program Description. ...

2013-04-22T23:59:59.000Z

409

Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors  

SciTech Connect

In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

2005-07-06T23:59:59.000Z

410

Altitude dependence of fluorescence light emission by extensive air showers  

E-Print Network (OSTI)

Fluorescence light is induced by extensive air showers while developing in the Earth's atmosphere. The number of emitted fluorescence photons depends on the conditions of the air and on the energy deposited by the shower particles at every stage of the development. In a previous model calculation, the pressure and temperature dependences of the fluorescence yield have been studied on the basis of kinetic gas theory, assuming temperature-independent molecular collision cross-sections. In this work we investigate the importance of temperature-dependent collision cross-sections and of water vapour quenching on the expected fluorescence yield. The calculations will be applied to simulated air showers while using actual atmospheric profiles to estimate the influence on the reconstructed energy of extensive air showers.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2008-01-28T23:59:59.000Z

411

A pilot study of energy efficient air cleaning for ozone  

SciTech Connect

A laboratory pilot study has been undertaken with the material that showed the most promise (high capacity and low pressure drop) based on the literature review and associated calculations. The best-performing air cleaner was a commercially available pleated filter that contained a thin layer of small activated carbon particles between two sheets of non-woven fibrous webbing. We will refer to this unit as the ''ozone filter'' although it is marketed for removal of volatile organic compounds (VOCs) from automobile passenger compartments. This pilot study strongly suggests that ozone air cleaning can be practical in commercial air handling systems; however, further tests are needed to assess air cleaner performance under a wider range of conditions.

Gundel, Lara A.; Sullivan, Douglas P.; Katsapov, Gregory Y.; Fisk, William J.

2002-11-01T23:59:59.000Z

412

NETL: Ambient Monitoring - Steubenville Comprehensive Air Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Steubenville Comprehensive Air Monitoring Project (SCAMP) Steubenville Comprehensive Air Monitoring Project (SCAMP) The National Ambient Air Quality Standards for airborne fine particles (PM2.5) are based on the mass of PM2.5 measured at outdoor monitoring stations; however, most people spend the majority of their time indoors. In order to fully understand the relationship between ambient PM2.5 and human health effects, it is important to define how ambient PM2.5 concentrations and compositions compare to those actually breathed by humans during normal daily activities. The objective of SCAMP is to measure the concentrations of PM2.5 and other potential air pollutants at ambient monitoring stations in and around Steubenville, OH, and relate them to the pollutant concentrations in air that is actually breathed by people living in the area. Steubenville was chosen by DOE for this study because of the ability to integrate its results with those of the UORVP, and also because Steubenville was one of the six cities where correlations between ambient PM2.5 mass and adverse health effects had been noted. These correlations had been cited by EPA as one of the primary justifications for its 1997 ambient PM2.5 standards. Complete characterization of the relationships between ambient PM2.5 and human exposure, including the chemical components of PM2.5 at various locations, will provide a comprehensive database for use in subsequent epidemiological studies, long-range transport studies, and State Implementation Program development. CONSOL Energy is the primary performer of SCAMP, and will provide the necessary coordination and data integration between the various components of the study.

413

Department of Physics & Astronomy Experimental Particle Physics Group  

E-Print Network (OSTI)

Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University­taking conditions are described. An analysis of the detector performance, using silica aerogel, air and C 4 F 10 gas tag of B mesons using kaons. The RICH­1 detector [1--3] combines gas and aerogel radiators to provide

Glasgow, University of

414

Hazardous Air Pollutant Controls Workshop Summary  

Science Conference Proceedings (OSTI)

This workshop was held in response to a request during the February 2012 advisory meetings by members of the Electric Power Research Institute’s (EPRI’s) Program 75, Integrated Environmental Controls, for a consolidated summary of control technologies that they could use to comply with the newly finalized Mercury and Air Toxics Standards (MATS). The members asked that the summary be provided by June 2012, as many companies were facing control selection decision dates in the ...

2012-09-26T23:59:59.000Z

415

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

416

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

417

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers  

SciTech Connect

There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical distributions of copper and silver corrosion rates in the sampled data centers(3) To what extent are copper and silver corrosion measurements related (4) What is the relationship of corrosion rate measurements between outside-air cooled data centers compared to closed data centers (5) How do corrosivity measurements relate to IT equipment failure rates The data from our limited sample size suggests that most United States data center operators should not be concerned with environmental gaseous contamination causing high IT equipment failure rates even when using outside-air cooling. The research team recommends additional basic research on how environmental conditions, specifically gaseous contamination, affect electronic equipment reliability.

Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

2011-07-17T23:59:59.000Z

418

Monte Carlo Simulation for Particle Detectors  

E-Print Network (OSTI)

Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

Pia, Maria Grazia

2012-01-01T23:59:59.000Z

419

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Besides adversely affecting air quality and human health, aerosols can also influence our weather and climate by altering solar radiation and clouds. Understanding the impacts of...

420

Some Particle Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Properties Particle Properties An Article Written Originally for Midlevel Teachers Back A particle, increasing its speed because of some force acting on it, gains energy of motion. An electron (negatively charged) gains one electron volt (eV) of energy in accelerating through a vacuum from the negative end to the positive end of a one-volt battery. The one eV of energy is given up to other particles as the electron crashes into the positive end. A proton (positively charged) traveling from positive to negative pole through the vacuum would also gain one eV of energy and give it up in its collision with particles in the negative end. This proton collision is similar to the proton beam collision with a target at Fermilab, but at Fermilab the proton energy is much greater.

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Imaging alpha particle detector  

DOE Patents (OSTI)

A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, David F. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

422

HIGH ENERGY PARTICLE ACCELERATOR  

DOE Patents (OSTI)

An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

Courant, E.D.; Livingston, M.S.; Snyder, H.S.

1959-04-14T23:59:59.000Z

423

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Combustion Laboratory Fundamental Combustion Laboratory To help meet a national strategic commitment to clean power generation, NETL is developing a technology base for tomorrow's highly efficient, near-zero-emissions power plants. At NETL, combustion science research is helping to provide the basis for a new generation of advanced fossil fuel conversion technologies that are needed to meet future demands for efficient, clean, and cost-effective energy production. Combustion science researchers are able to study fundamental combustion processes and properties at a laboratory scale, using advanced laser-based systems. Researchers also use a natural gas combustion apparatus that has been adapted to study a variety of fuel types and power systems. Taking this fundamental research the next step, researchers find that, when applied to reciprocating engines, laser-induced spark ignition can achieve leaner air/fuel running conditions by significantly lowering combustion temperatures, which reduces the amount of pollutants produced such as NOx.

424

BNL | Neutrino Research History  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Neutrino Research Brookhaven Neutrino Research image of neutrinos Tens of billions of neutrinos are passing through every square centimeter of the Earth's surface right now. A Ghost-Particle Retrospective Neutrinos, ghostlike particles that flooded the universe just moments after the Big Bang, are born in the hearts of stars and other nuclear reactions. Untouched by electromagnetism and nearly as fast as light, neutrinos pass practically unhindered through everything from planets to people, only rarely responding to the weak nuclear force and the even weaker gravity. In fact, at any given moment, tens of billions of neutrinos are passing through every square centimeter of the Earth's surface. Neutrino Research News photomultiplier tubes New Results from Daya Bay: Tracking the Disappearance of Ghostlike

425

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning Conditioning Air Conditioning July 1, 2012 - 6:28pm Addthis Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment. Two-thirds of all homes in the United States have air conditioners. Air conditioners use about 5% of all the electricity produced in the United States, at an annual cost of more than $11 billion to homeowners. As a

426

Judging Air Quality Model Performance  

Science Conference Proceedings (OSTI)

Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on air quality modeling, a small group of scientists was convened to review and recommend procedures to evaluate the performance of air quality models. Particular ...

Douglas G. Fox

1981-05-01T23:59:59.000Z

427

Oil and Gas Air Heaters  

E-Print Network (OSTI)

Most conventional air heaters adopt indirect heat transfer, which uses combustion gases to indirectly heat fresh air by heating surfaces to generate hot air used for material drying and dehumidification. We call them indirect air heaters. However, they have a higher manufacturing cost and lower thermal efficiency, especially when high temperature air is needed. For this reason, a direct air heater applicable for or feed and industrial raw products is put forward, which has advantages such as less production cost, smaller dimensions and higher thermal efficiency. Their design, working principles, characteristics, structure and applications are presented in this article, and brief comparisons are made between the indirect and direct air heater. Finally, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium.

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

428

Computer controlled air conditioning systems  

SciTech Connect

This patent describes an improvement in a computer controlled air conditioning system providing for circulation of air through an air conditioned house in contact with concrete walls requiring a humidity within a critical range. The improvement consists of: a computer for processing sensed environmental input data including humidity and oxygen to produce output control signals for affecting the humidity of the air in the house; provision for an air flow circulation path through the house in contact with the concrete walls; sensing responsive to the amount of oxygen in the house for providing input signals to the computer; mixing for combining with the air in the house a variable amount of fresh atmospheric air to supply fresh oxygen; and humidity modifying means for modifying the humidity of the air flowing in the flow path responsive to the control signals.

Dumbeck, R.F.

1986-02-04T23:59:59.000Z

429

Louisiana Air Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

This law states regulations for air quality control and states the powers and duties of the secretary of environmental quality. It provides information about permits and licenses, air quality...

430

Uncertainty in Air Quality Modeling  

Science Conference Proceedings (OSTI)

Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly ...

Douglas G. Fox

1984-01-01T23:59:59.000Z

431

Particle physics in the sky and astrophysics underground : connecting the universe's largest and smallest scales  

E-Print Network (OSTI)

Particles have tremendous potential as astronomical messengers, and conversely, studying the universe as a whole also teaches us about particle physics. This thesis encompasses both of these research directions. Many models ...

Swanson, Molly E. C. (Molly Ellen Crosby)

2008-01-01T23:59:59.000Z

432

Modification and Tests of Particle Probe Tips to Mitigate Effects of Ice Shattering  

Science Conference Proceedings (OSTI)

Ice particle shattering may significantly contaminate measurements taken by airborne particle probes in ice clouds. Environment Canada and the NASA Glenn Research Center (GRC) undertook efforts to modify and test probe tips in order to mitigate ...

Alexei Korolev; Edward Emery; Kirk Creelman

2013-04-01T23:59:59.000Z

433

Air cathode structure manufacture  

DOE Patents (OSTI)

An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

1985-01-01T23:59:59.000Z

434

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network (OSTI)

"Air compressors are a significant industrial energy user. Based on a survey (conducted by Oregon State University and the Bonneville Power Administration) of energy audit reports from 125 plants, air compressors account for roughly 10% of total plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy or productivity benefits from reliable compressed air. Compressed air is often called the ""fourth utility"" in industrial facilities after electricity, natural gas, and water. It provides motive power for machinery, cooling, materials handling, and hand tools. It is a safe, flexible, and powerful resource, but one that is seldom run for low operating costs or best productivity. Learning the basics of compressed air systems represents the beginning of both reducing energy costs and enjoying the productive benefits of reliable compressed air. Compressed air management systems, including a system approach to managing demand, stabilizing pressure, reducing leaks and compressor controls, can allow the industrial end user to save 20% - 50% of their air compressor electricity usage. The monitoring capabilities of compressed air management systems provide a useful tool through power, pressure and flow trending to maintain both the energy savings and increased system reliability. More efficiently managed compressed air systems are less costly to maintain and have less impact on the environment. The most important issues of industrial compressed air in relation to energy efficiency and management are: 1. Compressed air is an essential industrial utility; 2. Compressing air is a fundamentally inefficient energy transformation process; 3. Optimal operation of compressed air systems in industrial plants is seldom a priority and adequate management infonnation is rare, resulting in negative impacts on production and even less efficiency."

Burke, J. J.; Bessey, E. G.

2003-05-01T23:59:59.000Z

435

Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981  

DOE Green Energy (OSTI)

A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented.

Kim, K.

1981-01-01T23:59:59.000Z

436

NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)  

DOE Green Energy (OSTI)

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

Not Available

2012-02-01T23:59:59.000Z

437

Review of air flow measurement techniques  

SciTech Connect

Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

McWilliams, Jennifer

2002-12-01T23:59:59.000Z

438

Packaged air cleaning systems tame desert dust storms in Oman  

SciTech Connect

Vast storms created when cold, northwesterly air masses slam into hot, southwesterly monsoons, moving lethargically over the Sudan and Red Sea, generate swift downdrafts that strike the ground and deflect forward in a powerful, swirling air stream up to 500 km long. As the wind moves along the ground, it churns up particles ranging in size from 80 to 2000 micrometers. This churning also kicks up particles in the 0.1 to 80 micrometer range, and these may rise to heights of 500 m or more, the smaller of which remain suspended for hours. These conditions made it imperative to protect the blades and internal mechanisms of the gas turbines in use at Yibal, Sultanate of Oman. Each of the gas turbines is equipped with a packaged intake air cleaning system. Because no single air filter has been designed to handle effectively the extremely high concentrations of particulates encountered during storms, the AAF air filters are multistage filtration systems. These systems are discussed.

1980-12-01T23:59:59.000Z

439

Review of Particle Physics  

SciTech Connect

This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V{sub ud} and V{sub us}, V{sub cb} and V{sub ub}, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

Particle Data Group; Nakamura, Kenzo; al., et

2010-06-30T23:59:59.000Z

440

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (ARB or Board) will conduct a public hearing at the time and place noted below to consider adoption of the Proposed Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products. The proposed ATCM would reduce the public’s current exposure to formaldehyde by reducing emissions from hardwood plywood (HWPW), particleboard (PB) and medium density fiberboard (MDF) panels. The ATCM would also apply to finished goods made with these materials.

unknown authors

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Research - CECM  

E-Print Network (OSTI)

Our research is outlined our research proposals below. Samples of completed research may be found under "Sample Papers" and under "Project Highlights" on  ...

442

Steel Research Applied to National Needs - A Company Perspective  

Science Conference Proceedings (OSTI)

Symposium, Materials Research Applied to National Needs (MARANN) in Honor of ... food packaging, transportation (auto, rail, and air), etc, to name just a few.

443

Ambient Air Sampling During Quantum-dot Spray Deposition  

Science Conference Proceedings (OSTI)

Ambient air sampling for nano-size particle emissions was performed during spot spray coating operations with a Sono-Tek Exactacoat Benchtop system (ECB). The ECB consisted of the application equipment contained within an exhaust enclosure. The enclosure contained numerous small access openings, including an exhaust hook-up. Door access comprised most of the width and height of the front. The door itself was of the swing-out type. Two types of nanomaterials, Cadmium selenide (Cd-Se) quantum-dots (QDs) and Gold (Au) QDs, nominally 3.3 and 5 nm in diameter respectively, were applied during the evaluation. Median spray drop size was in the 20 to 60 micrometer size range.1 Surface coating tests were of short duration, on the order of one-half second per spray and ten spray applications between door openings. The enclosure was ventilated by connection to a high efficiency particulate aerosol (HEPA) filtered house exhaust system. The exhaust rate was nominally 80 ft3 per minute producing about 5 air changes per minute. Real time air monitoring with a scanning mobility particle size analyzer (SMPS ) with a size detection limit of 7 nm indicated a significant increase in the ambient air concentration upon early door opening. A handheld condensation particle counter (CPC) with a lower size limit of 10 nm did not record changes in the ambient background. This increase in the ambient was not observed when door opening was delayed for 2 minutes (~10 air changes). The ventilated enclosure controlled emissions except for cases of rapid door opening before the overspray could be removed by the exhaust. A time delay sufficient to provide 10 enclosure air changes (a concentration reduction of more than 99.99 %) before door opening prevented the release of aerosol particles in any size.2 Scanning-transmission electron microscopy (STEM) and atomic force microscopy (AFM) demonstrated the presence of agglomerates in the surfaces of the spray applied deposition. A filtered air sample of the enclosure overspray examined by AFM also demonstrated the presence of agglomerates for the Au QDs. The AFM system was not able to resolve individual QDs as was the STEM. Chemical fingerprinting of the QDs with STEM/EDS (energy dispersive spectroscopy) was performed for the Cd-Se surface deposition, but not the aerosol. Both STEM and AFM background characterization by morphology and chemical fingerprinting were performed throughout the laboratory for a period of about one year. Outdoor sources were primarily biological, combustion fume, salt and other crustal particles. Indoor sources were primarily paper/clothing fibers, spray-on insulation fragments, fiber glass, and human skin cells.

Jankovic, John Timothy [ORNL; Hollenbeck, Scott M [ORNL

2010-01-01T23:59:59.000Z

444

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

445

The Air or Brayton Cycle Solvent Recovery System  

E-Print Network (OSTI)

The required temperature and technique for condensing common industrial solvents from the exhaust air of drying ovens is explained. The benefits of the Air Cycle for this application are discussed. The operation of the 8000 CFM Air Cycle Solvent Recovery System developed by the AiResearch Manufacturing Company of California under contract to the Department of Energy is discussed. Performance data for the recovery of solvents from an industrial drying oven is presented. The advantages of the "free spindle" arrangement as an alternate to the present gear drive are explained. The simple method for adjusting and controlling the turbine exhaust temperature for the "free spindle" arrangement is explained. The application of the Air Cycle for condensing solvent vapors from inert atmosphere ovens and from activated carbon desorbed with nitrogen is also described. Relative merits of the Air Cycle System compared with other available methods of solvent recovery are discussed.

Fox, B. J.

1986-06-01T23:59:59.000Z

446

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Fixed target experiments In a fixed-target experiment, a charged particle such as an electron or a...

447

California Air Resources Board | Open Energy Information  

Open Energy Info (EERE)

Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name California Air Resources Board Place Sacramento, California Website http:www.arb.ca.gov...

448

Review of air flow measurement techniques  

E-Print Network (OSTI)

rate and air leakage tests under reductive sealing for anfor subsequent sealing, the openings of air infiltrationreductive sealing between the reductions in measured air

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

449

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network (OSTI)

Science of Alloy Oesign," EXXON Colloquia in Metallurgy,Research Dr. W. C. Baird Exxon Research Dr. T. P. WilsonLiquid-Solid Particle Erosion," Exxon Corporate Research Lab

Authors, Various

2010-01-01T23:59:59.000Z

450

The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010  

Science Conference Proceedings (OSTI)

Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the climate impacts of aerosol in California.

Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

2012-11-21T23:59:59.000Z

451

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

452

Testing of a refuelable zinc/air bus battery  

DOE Green Energy (OSTI)

We report tests of a refuelable zinc/air battery of modular, bipolar-cell design, intended for fleet electric busses and vans. The stack consists of twelve 250-cm{sup 2} cells built of two units: (1) a copper-clad glass-reinforced epoxy board supporting anode and cathode current collectors, and (2) polymer frame providing for air- and electrolyte distribution and zinc fuel storage. The stack was refueled in 4 min. by a hydraulic transfer of zinc particles entrained in solution flow.

Cooper, J.F.; Fleming, D.; Koopman, R.; Hargrove, D.; Maimoni, A.; Peterman, K.

1995-02-22T23:59:59.000Z

453

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

experiment with tiny particles? - A linear or circular accelerator? All accelerators are either linear or circular, the difference being whether the particle is shot like a bullet...

454

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Major accelerators We invite you to explore the basic plans of the world's major accelerators so...

455

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Accelerators solve two problems for physicists. First, since all particles behave like waves, physicists use accelerators to increase a particle's momentum, thus...

456

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory Fluidization Research: Multiphase Flow/Gas-Solid Transport Laboratory NETL's research, development, and demonstration initiatives are leading to improved operations of coal-based power systems, and future power supplies that are environmentally clean and economically affordable. One method NETL researchers are using is advanced computational and experimental research, which is helping to develop novel technologies, including transport gasifiers, circulating fluidized-bed combustors, and hot gas desulfurization. Enhanced computational capabilities are leading to major improvements in power plant efficiency, and therefore to reduced emissions. Transport gasifier and MFIX showing particle trajectories and oxygen concentration. MFIX simulations complement testing and development at the DOE demonstration Power System Development Facility (PSDF) in Wilsonville, Alabama (shown above). Coal and recycled materials feed into the lower mixing zone of the plant's circulating fluidized-bed. The validated simulation model is currently being used to design a commercial-scale unit.

457

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortcomings Shortcomings of the first data Shortcomings of the first data The data were convincing but not perfect, and there were significant shortcomings. For one thing, by July 4, 2012, there weren't enough statistics to measure whether the rate at which this particle (the Higgs boson) decays to various collections of less massive particles (the "branching ratios") are those predicted by the Standard Model. A "branching ratio" is simply the probability that a particle will decay via a given decay channel. These ratios are predicted by the Standard Model, and measured by observing the same particle decay over and over again. The next plot shows the best measurements we can make of the branching ratios with the data available in 2013. Since these are the ratios to the

458

Heterogeneous particle swarm optimizers  

Science Conference Proceedings (OSTI)

Particle swarm optimization (PSO) is a swarm intelligence technique originally inspired by models of flocking and of social influence that assumed homogeneous individuals. During its evolution to become a practical optimization tool, some heterogeneous ...

Marco A. Montes De Oca; Jorge Peña; Thomas Stützle; Carlo Pinciroli; Marco Dorigo

2009-05-01T23:59:59.000Z

459

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Program Advisory Committee Meeting 21-22 June 2010 Agenda Submitted Proposals STAR Beam Use Proposal PHENIX Beam Use Proposal LoI: Feasibility Test of...

460

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Agenda Brookhaven Nuclear and Particle Physics Program Advisory Committee Meeting 6-8 June 2011 Reference Documents PAC Recommendations, 21-22 June 2010 Charge to PAC for...

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider A collider is an accelerator in which two beams traveling in opposite directions are steered together to provide high-energy collisions between the particles in one beam...

462

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fixed-target Experiment An experiment in which the beam of particles from an accelerator is directed at a stationary (or nearly stationary) target. The target may be a solid, a...

463

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

How Do Fundamental Particles Get Mass? > How Does the Higgs Boson... How Does the Higgs Boson get its Mass? On the other hand, if a rumor crosses the room,... ...it creates the...

464

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

The Higgs Boson and Beyond > Is this Higgs Boson the Higgs Boson... Is this Higgs Boson the Higgs Boson of the Standard Model? We do know that the particle we discovered is a Higgs...

465

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson Finding the Mass of the Higgs Boson How do you find the mass of the Higgs Boson when it decays into other particles before we detect it? If you were going to build a bicycle,...

466

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

2 web edition of RPP for different platforms 2012 book edition of RPP Particle Physics Booklet (rpp-2012-booklet.pdf file, 7 MBytes); Review of Partilce Physics 1526 pages, Phys....

467

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

1 web edition of RPP for different platforms 2010 book edition of RPP Particle Physics Booklet (rpp-2010-booklet.pdf file, 6 MBytes); rpp-2010-JPhys-G-37-075021.pdf file (40...

468

Particle Data Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2 book, booklet will be available in August. Web edition of the Review of Particle Physics is now available. Funded By: US DOE US NSF CERN MEXT (Japan) INFN (Italy) MEC (Spain)...

469

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

6 MBytes); rpp-2010-JPhys-G-37-075021.pdf file (40 MBytes) of the published RPP 2010 book; Figures from the reviews in RPP The PDG Monte Carlo particle numbering scheme The PDG...

470

Particle entrapping filamentry structures  

DOE Patents (OSTI)

Minute particulates are removed from a fluid flow by directing the fluid towards a particle entrapping element having a hair-like covering a flexible filaments. The filaments have fixed root ends and movable free ends that extend away from the roots and are shiftable in response to flow pressure and particle impacts. Particles lodge within the mass of filaments while the fluid component of the flow passes through particle entrapping element if the substrate is porous or is deflected away if the substrate is impervious. The structure does not necessarily cause a sizable pressure drop in the flow and can entrap large quantities of particulates. The invention has a variety of specific applications such as, for example, removal of smoke from the exhaust gases of vehicle engines or stationary fuel consuming installations. 11 figs.

Steele, W.A.; Leider, H.R.; Mohr, P.B.

1988-09-29T23:59:59.000Z

471

Particle Physics Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is A Particle Physics Experiment? The word "experiment" often makes people envision a scientist in white lab coat and goggles walking into the lab, pouring some test tubes...

472

Ohio River Basin Trading Project Joint Session: Air, Water, Climate  

Science Conference Proceedings (OSTI)

Electric Power Research Institute (EPRI) project managers in air, water, and climate programs are working together to address the complex, interrelated issues associated with water and air quality in the United States. This session provided background and told the story of the pilot effort in the Ohio River Basin to develop broad, nontraditional collaborations that will support multi-stakeholder programs for water quality trading, carbon trading, and ecosystem services protection. Through this pilot effo...

2010-08-09T23:59:59.000Z

473

Inlet Air Chillers for Gas Turbine Capacity Enhancement  

Science Conference Proceedings (OSTI)

This report provides information and analysis to help power generation engineers assess the cost-effectiveness of using inlet air chillers to increase the net output capacity of combustion turbine and combined cycle generating units. It also provides an analysis of integrating the storage of chilled water or ice with the inlet air cooling system as a means of energy storage. This report provides new and updated information and analysis, building on information from previous Electric Power Research ...

2012-12-01T23:59:59.000Z

474

Research Opportunities  

Science Conference Proceedings (OSTI)

... industrial or academic partner perform joint research with outcomes ... these collaborations arise spontaneously and the researchers jointly pursue ...

2013-06-27T23:59:59.000Z

475

PNNL: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Story Research at PNNL Home Featured Highlights Archive Research Directorates Energy & Environment Fundamental & Computational Sciences National Security Facilities...

476

Guest Researchers  

Science Conference Proceedings (OSTI)

... If confidentiality of cooperative research results are desired a Cooperative Research and Development Agreement (CRADA) may be appropriate. ...

2012-07-06T23:59:59.000Z

477

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. (AIR PRODUCTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INVENTION INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-95PC95051 W(A)-95-014 , CH-0861 The Petitioner, Air Products, was awarded this cooperative agreement in response to an unsolicited proposal for the engineering development of slurry bubble column reactors. Air Products was selected for this cooperative agreement based on its past experience and current research efforts in related technology as well as the capabilities of the Government-owned Alternative Fuels Development Unit located on the Petitioner's LaPorte, Texas site. The Contracting Officer has found that although the provisions of the 1992 Energy Policy Act, P.L. 102-486, do not apply to this cooperative agreement, the cost sharing requirements of §3002 of the Act are met. Air Products has requested a waiver of domestic and foreign rights for all subject

478

ARM Site Atmospheric State Best Estimates for AIRS Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

479

Applications of particle physics to the early universe  

E-Print Network (OSTI)

In this thesis, I show some of the results of my research work in the field at the crossing between Cosmology and Particle Physics. The Cosmology of several models of the Physics Beyond the Standard Model is studied. These ...

Senatore, Leonardo

2006-01-01T23:59:59.000Z

480

Strategies of Lithography for Trapping Nano-particles  

E-Print Network (OSTI)

Current research in materials science and engineering continues to drive it's attention to systems on the nanoscale. Thin films, nano-particles, quantum dots, nano-wires, etc are just a few of the areas that are becoming ...

Rajter, Rick

Note: This page contains sample records for the topic "air particles research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Analysis of Laser Wakefield Particle Acceleration Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Laser Wakefield Particle Acceleration Data LWFAIllustrationSmall.png In collaboration with researchers of the LOASIS program (LBNL) and the SciDAC SDM center (LBNL) we...

482

Charged-particle tracking for neutron-deuteron breakup  

E-Print Network (OSTI)

Particle tracking software has been developed to measure the energy of protons scattered in the breakup process d(n, np)n. The nd breakup experiment is performed at the Weapons Neutron Research facilities at Los Alamos ...

Boddy, Kimberly K

2007-01-01T23:59:59.000Z

483

GPU COMPUTING FOR PARTICLE TRACKING  

E-Print Network (OSTI)

a simple GPU based particle tracking code, TracyGPU, isP U COMPUTING FOR PARTICLE TRACKING Hiroshi Nishimura, K a iCOMPUTING FOR PARTICLE TRACKING * Hiroshi Nishimura ', Kai

Nishimura, Hiroshi

2011-01-01T23:59:59.000Z

484

Modeling of solid-side mass transfer in desiccant particle beds  

DOE Green Energy (OSTI)

A model is proposed for heat and mass transfer in a packed bed of desiccant particles and accounts for both Knudsen and surface diffusion within the particles. Using the model, predictions are made for the response of thin beds of silica gel particles to a step change in air inlet conditions compared to mental results. The predictions are found to be satisfactory and, in general, superior to those of pseudogas-side controlled models commonly used for the design of desiccant dehumidifiers for solar air conditioning application.

Pesaran, A.A.; Mills, A.F.

1984-02-01T23:59:59.000Z

485

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Radiobiology Program NASA Space Radiation Laboratory (NSRL) Scientific Advisory Committee for Radiation Research (SACRR) Membership...

486

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Mixing on Acceptable Indoor Air Quality in Homes Impacts of Mixing on Acceptable Indoor Air Quality in Homes Title Impacts of Mixing on Acceptable Indoor Air Quality in Homes Publication Type Journal Article LBNL Report Number LBNL-3048E Year of Publication 2010 Authors Sherman, Max H., and Iain S. Walker Journal HVAC & Research Journal Keywords air distribution, indoor air quality, mechanical ventilation, mixing, other, resave, residential ventilation, ventilation effectiveness Abstract Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant leve