Powered by Deep Web Technologies
Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse Savannah River Company LLC Westinghouse Savannah River Company LLC Savannah River Site Aiken, SC 29808 LWO-SPT-2007-00247 Rev. 1 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00247 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

2

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE))

This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation.

3

Treatment of biomass-gasification wastewaters by wet-air oxidation  

DOE Green Energy (OSTI)

Production of synthetic natural gas from gasification of biomass results in the generation of a high-strength wastewater that is difficult to treat by conventional means. This study investigated the use of wet air oxidation (WAO) as a treatment method for these wastewaters. A literature review was conducted to identify the suitability of WAO for the treatment of high-strength industrial wastewaters and to determine typical operating conditions for such treatment. Data presented in the literature showed that WAO should be suitable for treatment. Data presented in the literature showed that WAO should be suitable for treatment of biomass gasification wastewaters (BGW), and a laboratory treatability study was designed. BGW, having an initial chemical oxygen demand (COD) of 30,800 mg/1 and initial color of 183,000 APHA units, was treated in a laboratory autoclave for 20, 40, 60, 120, and 180 min at temperatures and pressures of 150/sup 0/C, 5.1 MPa (750 psi); 200/sup 0/C, 6.9 MPa (1000 psi); 250/sup 0/C, 10.3 MPa (1500 psi); and 300/sup 0/C, 13.8 MPa (2000 psi). Maximum COD removals of 0% for the 150/sup 0/C, 5.2 MPa (750 psi) runs; 40% for the 200/sup 0/C, 6.9 MPa (1000 psi) runs, 55% for the 250/sup 0/C, 10.3 MPa (1500 psi) runs; and 85% for the 300/sup 0/C, 13.8 MPa (2000 psi) runs were measured. Maximum color removals for these respective runs were 56%, 82%, 97%, and 99%. Initial removal rates of COD and color were observed to increase with reaction temperature. The experimental results suggest that oxidation of BGW organics by WAO occurs in a stepwise fashion with large organic molecules first being hydrolyzed and then partially oxidized to low molecular weight intermediates. Complete oxidation of these intermediates is more difficult and most easily accomplished at high reaction temperatures. The best application of WAO to treatment of BGW appears to be as a pretreatment to biological treatment and it is recommended that this application be investigated.

English, C.J.

1981-09-01T23:59:59.000Z

4

DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE  

DOE Green Energy (OSTI)

Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

Adu-Wusu, K; Paul Burket, P

2009-03-31T23:59:59.000Z

5

Air-Oxidation of a [(Co  

Science Conference Proceedings (OSTI)

Symposium, Bulk Metallic Glasses VIII. Presentation Title, Air-Oxidation of a [(Co 50Cr15C15Mo14B6)97.5Er2.5]93Fe7 Bulk Metallic Glass at 600 - 725 oC.

6

Oxide modified air electrode surface for high temperature electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

1992-01-01T23:59:59.000Z

7

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

8

A Study of Catalytic Oxidation and Oxide Adsorption for the Removal of Tritium from Air  

SciTech Connect

An apparatus and procedure were developed for studying the containment of tritium using catalytic conversion to the oxide followed by oxide adsorption. Data were obtained on the catalytic oxidation of elemental tritium and tritiated volatile hydrocarbons from pump oils between 23 and 538 degrees C. Oxidation efficiencies as high as 99.99997% (decontamination factor = 3.3 million) were obtained for total tritium levels of 1 ppm and a tritiated hydrocarbon level of approximately 0.2 ppb. In addition, a mathematical study was made to derive equations for the conceptual design of an "Emergency Containment System" for containment of tritium following an accidental release to room air.

Bixel, John C.; Kershner, Carl J.

1972-12-21T23:59:59.000Z

9

SiC Fiber Strengths after Oxidation in Wet and Dry Air, Steam, and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Data for SiC fiber strengths after oxidation in wet and dry air, steam, and low pO2 are reviewed. Oxidation and scale crystallization kinetics are  ...

10

Air feed tube support system for a solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

2002-01-01T23:59:59.000Z

11

A Ruggedized Ultrasensitive Field Air Sampler for Differentially Determining Tritium Oxide and Gas in Ambient Air Atmosphere  

SciTech Connect

The instrument described is an operational, practical, ruggedized, ultrasensitive, tritium field air sampler assembled for the simultaneous, differential sampling of the environmental air for tritium oxide and elemental tritium. The system uses hardware assembled and packaged in such manner as to facilitate use in the field as well as in the laboratory. The sampling system occupies relatively small space and is simple to operate. The detection sensitivity approaches tritium background levels and is achieved by high volume sampling, efficient removal of tritium oxide and elemental tritium ("tritium gas"), and counting the recovered fractions by liquid scintillation spectrometry.

Brown, R.; Meyer, H. E.; Robinson, B.; Sheehan, W. E.

1971-12-21T23:59:59.000Z

12

Stressed and Unstressed Oxidation of SiC Fibers in Steam, Air, and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Oxidation kinetics of Hi-Nicalon-S SiC fibers have been measured in air, steam, and low pO2 environments at temperatures as low as 700°C ...

13

Air Oxidation Kinetics for Zr-based Alloys [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Oxidation Kinetics for Air Oxidation Kinetics for Zr-based Alloys Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

14

Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents  

Science Conference Proceedings (OSTI)

The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

2008-12-01T23:59:59.000Z

15

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

16

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

17

Assessment of methanol electro-oxidation for direct methanol-air fuel cells  

DOE Green Energy (OSTI)

The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

Fritts, S.D.; Sen, R.K.

1988-07-01T23:59:59.000Z

18

Interim results from UO/sub 2/ fuel oxidation tests in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO/sub 2/, fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO/sub 2/ pellets in the temperature range of 135 to 250/sup 0/C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10/sup 5/ R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10/sup 5/ R/h gamma field. 33 refs., 51 figs., 6 tabs.

Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j

1987-08-01T23:59:59.000Z

19

Oxidation of delta-phase plutonium alloy: Corrosion kinetics in dry and humid air at 35 {degree}C  

Science Conference Proceedings (OSTI)

Kinetic data for oxidation of delta-phase plutonium alloy are evaluated to provide a technical basis for assessing the merit of an existing time limitation on air exposure of components during process operations. Data describing the effects of humidity and oxygen pressure on the oxidation rate of the Pu-1.0 wt% Ga alloy at elevated temperatures are obtained from literature sources and used to predict the oxidation behavior of the alloy in air at 35 C and 0 to 100% relative humidity. A mandated six-hour limit on air exposure is inconsistent with a predicted thirty-day period required for formation of a 1-{micro}m-thick oxide layer in moisture-saturated air at 35 C. Relationships are defined for predicting kinetic behavior of the alloy at other conditions, and recommendations for addressing oxidation-related concerns in production are presented.

Haschke, J.M.

1997-06-01T23:59:59.000Z

20

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

22

Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze  

DOE Green Energy (OSTI)

Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

2004-10-01T23:59:59.000Z

23

CAST STONE OXIDATION FRONT EVALUATION: PRELIMINARY RESULTS FOR SAMPLES EXPOSED TO MOIST AIR  

Science Conference Proceedings (OSTI)

The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup ?} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup ?}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. • The Cr oxidation front (depth to which soluble Cr was detected) for the Cast Stone sample exposed for 68 days to ambient outdoor temperatures and humid air (total age of sample was 131 days) was determined to be about 35 mm below the top sample surface exposed. The Tc oxidation front, depth at which Tc was insoluble, was not determined. Interpretation of the results indicates that the oxidation front is at least 38 mm below the exposed surface. The sample used for this measurement was exposed to ambient laboratory conditions and humid air for 50 days. The total age of the sample was 98 days. • Technetium appears to be more easily oxidized than Cr in the Cast Stone matrix. The oxidized forms of Tc and Cr are soluble and therefore leachable. Longer exposure times are required for both the Cr and Tc spiked samples to better interpret the rate of oxidation. Tc spiked subsamples need to be taken further from the exposed surface to better define and interpret the leachable Tc profile. • Finally Tc(VII) reduction to Tc(IV) appears to occur relatively fast. Results demonstrated that about 95 percent of the Tc(VII) was reduced to Tc(IV) during the setting and very early stage setting for a Cast Stone sample cured 10 days. Additional testing at longer curing times is required to determine whether additional time is required to reduce 100 % of the Tc(VII) in Cast Stone or whether the Tc loading exceeded the ability of the waste form to reduce 100 % of the Tc(VII). Additional testing is required for samples cured for longer times. Depth discrete subsampling in a nitrogen glove box is also required to determine whether the 5 percent Tc extracted from the subsamples was the result of the sampling process which took place in air. Reduction capacity measurements (per the Angus-Glasser method) performed on depth discrete samples could not be correlated with the amount of chromium or technetium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium and technetium (i.e., effective Cr and Tc oxidation fronts). Residual reduct

Langton, C.

2013-11-26T23:59:59.000Z

24

Lanthanum manganite-based air electrode for solid oxide fuel cells  

DOE Patents (OSTI)

An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

Ruka, Roswell J. (Pittsburgh, PA); Kuo, Lewis (Monroeville, PA); Li, Baozhen (Essex Junction, VT)

1999-01-01T23:59:59.000Z

25

Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections  

DOE Green Energy (OSTI)

The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions.

Chick, L.A.; Bates, J.L.

1992-07-01T23:59:59.000Z

26

SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE  

DOE Green Energy (OSTI)

Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

2009-10-01T23:59:59.000Z

27

Oxidation, volatilization, and redistribution of molybdenum from TZM alloy in air  

Science Conference Proceedings (OSTI)

The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal alloys react readily with oxygen and other gases. Oxidized molybdenum in turn is susceptible to losses from volatile molybdenum trioxide species, MoO{sub 3}(m), in air and the hydroxide, MoO{sub 2}(OH){sub 2}, formed from water vapor. Transport of radioactivity by the volatilization, migration, and re-deposition of these volatile species during a potential accident involving a loss of vacuum or inert environment represents a safety issue. In this report the authors present experimental results on the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800 C. These results are compared with calculations obtained from a vaporization mass transfer model using chemical thermodynamic data for vapor pressures of MoO{sub 3}(g) over pure solid MoO{sub 3} and an expression for the vapor pressures of MoO{sub 2}(OH){sub 2} from the literature. Calculations correlate well with experimental data.

Smolik, G.R.; Petti, D.A.; McCarthy, K.A.; Schuetz, S.T.

2000-01-01T23:59:59.000Z

28

Oxidation, Volatilization, and Redistribution of Molybdenum from TZM Alloy in Air  

Science Conference Proceedings (OSTI)

The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal alloys react readily with oxygen and other gases. Oxidized molybdenum in turn is susceptible to losses from volatile molybdenum trioxide species, (MoO3)m, in air and the hydroxide, MoO2(OH)2, formed from water vapor. Transport of radioactivity by the volatilization, migration, and re-deposition of these volatile species during a potential accident involving a loss of vacuum or inert environment represents a safety issue. In this report we present experimental results on the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800°C. These results are compared with calculations obtained from a vaporization mass transfer model using chemical thermodynamic data for vapor pressures of MoO3(g) over pure solid MoO3 and an expression for the vapor pressures of MoO2(OH)2 from the literature. Calculations correlate well with experimental data.

Smolik, Galen Richard; Petti, David Andrew; Mccarthy, Kathryn Ann; Schuetz, Stanley Thomas

2000-01-01T23:59:59.000Z

29

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

Air Resource Board, Sacramento, CA, April 2006. CARB (Air Resources Board, Sacramento, CA. CARB (2009a).Air Resources Board, Sacramento, CA. http://www.arb.ca.gov/

Millstein, Dev

2009-01-01T23:59:59.000Z

30

Air-Oxidation of a (Zr55Cu30Al10Ni5)98Er2 Bulk Metallic Glass at ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Bulk Metallic Glasses VII. Presentation Title, Air-Oxidation of a ...

31

Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process  

DOE Green Energy (OSTI)

A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

English, C.J.; Petty, S.E.; Sklarew, D.S.

1983-02-01T23:59:59.000Z

32

FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

2011-01-01T23:59:59.000Z

33

GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.  

SciTech Connect

Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

GREENE,G.A.; FINFROCK,C.C.

2001-10-01T23:59:59.000Z

34

FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced graphite oxidation models into the GAMMA code, and (f) air ingress and oxidation mitigation analyses of the whole air-ingress scenario.

Chang H. Oh; Eung S. Kim

2009-12-01T23:59:59.000Z

35

Review of research results for the photocatalytic oxidation of hazardous wastes in air  

SciTech Connect

Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

Nimlos, M.R.; Wolfrum, E.J.; Gratson, D.A.; Watt, A.S.; Jacoby, W.A.; Turchi, C.

1995-01-01T23:59:59.000Z

36

A Modeling Study of Atmospheric Transport and Photochemistry in the Mixed Layer during Anticyclonic Episodes in Europe. Part II. Calculations of Photo-Oxidant Levels along Air Trajectories  

Science Conference Proceedings (OSTI)

A computer model for photochemical oxidant formation in the atmospheric boundary layer has been used to calculate trends in ozone formation in air masses traveling across Europe. Ozone calculations were made for some actual summertime ...

K. Selby

1987-10-01T23:59:59.000Z

37

Mechanism of the Initial Oxidation of Hydrogen andHalogen Terminated Ge(111) Surfaces in Air  

DOE Green Energy (OSTI)

The initial stage of the oxidation of Ge(111) surfaces etched by HF, HCl and HBr solutions is systematically studied using synchrotron radiation photoelectron spectroscopy (SR-PES). We perform controlled experiments to differentiate the effects of different oxidation factors. SR-PES results show that both moisture and oxygen contribute to the oxidation of the surfaces; however, they play different roles in the oxidation process. Moisture effectively replaces the hydrogen and halogen termination layers with hydroxyl (OH), but hardly oxidizes the surfaces further. On the other hand, dry oxygen does not replace the termination layers, but breaks the Ge-Ge back bonds and oxidizes the substrates with the aid of moisture. In addition, room light enhances the oxidation rate significantly.

Sun, Shiyu; /Stanford U., Phys. Dept.; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianetta, Piero; /SLAC, SSRL

2006-08-23T23:59:59.000Z

38

Calculation of oxygen diffusion in plutonium oxide films during the high-temperature oxidation of plutonium-1 weight percent gallium in 500 torr of air  

Science Conference Proceedings (OSTI)

Oxygen self-diffusion in PuO/sub 1.995/ was calculated from rate constants obtained for the parabolic oxidation of the Pu-1 wt % Ga alloy in 500-torr dry air between 250 and 480/degree/C. The activation energy for oxygen vacancy diffusion in the n-type PuO/sub 2-x/ is 22.6 kcal/mole. Results from this investigation are compared with other reported results, and possible explanation for the difference in results is discussed. 21 refs., 5 figs., 1 tab.

Stakebake, J.L.

1988-05-27T23:59:59.000Z

39

MAGNESIUM OXIDE AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009  

E-Print Network (OSTI)

MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009 http://www.epa.gov/radiation/wipp/index.html MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER Why is MgO Used At WIPP? The U.S. Department of Energy (DOE

40

Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Air with Water Vapor  

Science Conference Proceedings (OSTI)

A high-purity Fe-20Cr and commercial type 430 ferritic stainless steel were exposed at 700 and 800 C in dry air and air with 10% water vapor (wet air) and characterized by SEM, XRD, STEM, SIMS, and EPMA. The Fe-20Cr alloy formed a fast growing Fe-rich oxide scale at 700 C in wet air after 24 h exposure, but formed a thin chromia scale at 700 C in dry air and at 800 C in both dry air and wet air. In contrast, thin spinel + chromia base scales with a discontinuous silica subscale were formed on 430 stainless steel under all conditions studied. Extensive void formation was observed at the alloy-oxide interface for the Fe-20Cr in both dry and wet conditions, but not for the 430 stainless steel. The Fe-20Cr alloy was found to exhibit a greater relative extent of subsurface Cr depletion than the 430 stainless steel, despite the former's higher Cr content. Depletion of Cr in the Fe-20Cr after 24 h exposure was also greater at 700 C than 800 C. The relative differences in oxidation behavior are discussed in terms of the coarse alloy grain size of the high-purity Fe-20Cr material, and the effects of Mn, Si, and C on the oxide scale formed on the 430 stainless steel.

Brady, Michael P [ORNL; Keiser, James R [ORNL; More, Karren Leslie [ORNL; Fayek, Mostafa [University of Manitoba, Canada; Walker, Larry R [ORNL; Meisner, Roberta Ann [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

SciTech Connect

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-10-31T23:59:59.000Z

42

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

DOE Green Energy (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

43

Optimized air staged injection for the oxidation of low calorific value gases  

DOE Green Energy (OSTI)

This paper describes a simplified numerical model used for predicting an optimized air staged plug-flow combustor for low calorific value gas mixtures. The parameter used for optimization, Z, is the summed flow rates of fuel components leaving the combustor. An optimized combustor is one of a given length and input mass flux that minimizes Z. Since a mathematical proof describing the importance of global interactions remains lacking, the model employs both a ``local optimization`` procedure and a ``global optimization`` procedure. By exercising and comparing both procedures, the model shows that ``local optimization`` is sufficient to provide an optimized solution. Sensitivity of Z to deviations in air injection profile and inlet temperature is also examined.

Gemmen, R.S.

1996-12-31T23:59:59.000Z

44

Final report on the oxidation of energetic materials in supercritical water. Final Air Force report  

Science Conference Proceedings (OSTI)

The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

1995-04-03T23:59:59.000Z

45

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-Print Network (OSTI)

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium, of mesquite and juniper. From Thermo-gravimetric analyses the pre-exponential factor (B) and activation energy of fuels for pyrolysis were obtained using single reaction models (SRM) and parallel reaction model (PRM). The single reaction model including convention Arrhenius (SRM-CA) and maximum volatile release rate model (SRM-MVR). The parallel reaction model fits the experimental data very well, followed by MVR. The CA model the least accurate model. The activation energies obtained from PRM are around 161,000 kJ/kmol and 158,000 kJ/kmol for juniper and mesquite fuels, respectively. And, the activation energies obtained from MVR are around100,000 kJ/kmol and 85,000 kJ/kmol for juniper and mesquite fuels, respectively. The effects of equivalence ratio (ER), particle size, and moisture content on the temperature profile, gas composition, tar yield, and higher heating value (HHV) were investigated. For air gasification, when moisture increased from 6% to 12% and ER decreased from 4.2 to 2.7, the mole composition of the dry product gas for mesquite varied as follow: 18-30% CO, 2-5% H2, 1-1.5% CH4, 0.4-0.6% C2H6, 52-64% N2, and 10-12% CO2. The tar yield shows peak value (150 g/Nm^3) with change in moisture content between 6-24%. The tar collected from the gasification process included light tar and heavy tar. The main composition of the light tar was moisture. The chemical properties of heavy tar were determined. For air-steam gasification, H2 rich mixture gas was produced. The HHV of the mesquite gas increased first when S: F ratio increased from 0.15 to 0.3 and when the S: F ratio increased to 0.45, HHV of the gas decreased. Mesquite was blended with the Wyoming Powder River Basin (PRB) coal with ratio of 90:10 and 80:20 in order to increase the Tpeak and HHV. It was found that the Tpeak increased with the increase of PRB coal weight percentage (0% to 20%).

Chen, Wei 1981-

2012-12-01T23:59:59.000Z

46

A Second Examination of Fragments of Unirradiated and Irradiated CANDU Fuel, and Irradiated LWR Fuel, Oxidized in Air at 130 Degrees Centigrade and 170 Degrees Centigrade for Approximately One Thousand Days  

Science Conference Proceedings (OSTI)

Thisreport documents the examination of unclad fragments of unirradiated CANDU fuel, and irradiated LWR fuel, after approximately 2.8 years of oxidation in air at 130 degrees Centigrade and 170 degrees Centigrade. During oxidation, the various fuel specimens were isolated in separate vials, which were designed to permit free access of air, while preventing cross-contamination. Two specimens of each fuel type were recovered for examination from each experiment. The irradiated fuel specimens were weighed a...

1999-10-01T23:59:59.000Z

47

Benefits and technological challenges in the implementation of TiO2-based ultraviolet photocatalytic oxidation (UVPCO) air cleaners  

Science Conference Proceedings (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects student health and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air-conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent to which filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Hodgson, Al; Destaillats, Hugo; Hotchi, Toshifumi; Fisk, William J.

2008-10-01T23:59:59.000Z

48

Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals  

DOE Green Energy (OSTI)

Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4mol% CuO in silver. The brazed samples were exposure tested at 750°C for 200, 400, and 800hrs in both simulated fuel and air environments and thermally cycled at rapid rate (75°C/min) between room temperature and 750°C for as many as fifty cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800hrs of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800hrs of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze/electrolyte interface after 50 cycles.

Weil, K. Scott; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon; Hardy, John S.

2005-12-01T23:59:59.000Z

49

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations  

SciTech Connect

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-09-30T23:59:59.000Z

50

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 12640 of 28,905 results. 31 - 12640 of 28,905 results. Download Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation. http://energy.gov/em/downloads/technology-maturation-plan-tmp-wet-air-oxidation-wao-technology-tank Download DOE F 5480.4 Contractor Employee Occupational Safety or Health Complaint http://energy.gov/cio/downloads/doe-f-54804 Download Flash2009-032attachment.pdf http://energy.gov/management/downloads/flash2009-032attachmentpdf Article Summary of Decisions- June 10, 2013- June 14, 2013 Decisions were issued on: - Freedom of Information Act Appeal

51

Variations of the weight concentrations of dust, nitrogen oxides, sulphur dioxide and ozone in the surface air in tbilisi  

Science Conference Proceedings (OSTI)

The data of the Georgian air pollution monitoring network were analyzed in order to establish any trends in the variations of the near-ground concentrations of various substances. It was shown that despite a considerable fall-down in the Georgian economy in the recent years

A. Amiranashvili; V. Amiranashvili; T. Gzirishvili; G. Gunia; L. Intskirveli; J. Kharchilava

2000-01-01T23:59:59.000Z

52

Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer  

E-Print Network (OSTI)

Concentrated animal feeding operations such as cattle feedlots and dairies produce a large amount of manure, cattle biomass (CB), which may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. However, the concentrated production of low quality CB at these feeding operations serves as a good feedstock for in situ gasification for syngas (CO and H2) production and subsequent use in power generation. A small scale (10 kW) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were also studied for comparison purposes. In addition, chlorinated char was also produced via pure pyrolysis of DB using N2 and N2-steam gas mixtures. The chlorinated char is useful for enhanced capture of Hg in ESP of coal fired boilers. Two main parameters were investigated in the gasification studies with air-steam mixtures. One was the equivalence ratio ER (the ratio of stochiometric air to actual air) and the second was the steam to fuel ratio (S:F). Prior to the experimental studies, atom conservation with i) limited product species and ii) equilibrium modeling studies with a large number of product species were performed on the gasification of DB to determine suitable range of operating conditions (ER and S:F ratio). Results on bed temperature profile, gas composition (CO, CO2, H2, CH4, C2H6, and N2), gross heating value (HHV), and energy conversion efficiency (ECE) are presented. Both modeling and experimental results show that gasification under increased ER and S:F ratios tend to produce rich mixtures in H2 and CO2 but poor in CO. Increased ER produces gases with higher HHV but decreases the ECE due to higher tar and char production. Gasification of DB under the operating conditions 1.59less than0.8 yielded gas mixtures with compositions as given below: CO (4.77 - 11.73 %), H2 (13.48 - 25.45%), CO2 (11-25.2%), CH4 (0.43-1.73 %), and C2H6 (0.2- 0.69%). In general, the bed temperature profiles had peaks that ranged between 519 and 1032 degrees C for DB gasification.

Gordillo Ariza, Gerardo

2009-08-01T23:59:59.000Z

53

Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen  

Science Conference Proceedings (OSTI)

Indium tin oxide (ITO) thin films have been grown onto soda-lime glass substrates by sputtering at room temperature with various oxygen to argon partial pressure ratios. After deposition, the samples have been annealed at temperatures ranging from 100 to 500 degree sign C in nitrogen or in air. The structure, optical, and electrical characteristics of the ITO coatings have been analyzed as a function of the deposition and the annealing parameters by x-ray diffraction, spectrophotometry, and Hall effect measurements. It has been found that the as-grown amorphous layers crystallize in the cubic structure by heating above 200 degree sign C. Simultaneously, the visible optical transmittance increases and the electrical resistance decreases, in proportions that depend mainly on the sputtering conditions. The lowest resistivity values have been obtained by annealing at 400 degree sign C in nitrogen, where the highest carrier concentrations are achieved, related to oxygen vacancy creation. Some relationships between the analyzed properties have been established, showing the dependence of the cubic lattice distortion and the infrared optical characteristics on the carrier concentration.

Guillen, C.; Herrero, J. [Departamento de Energia, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

2007-04-01T23:59:59.000Z

54

Air Pollution Control Regulations: No.27 - Control of Nitrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Eligibility Commercial...

55

Hydrogen & Fuel Cells - Fuel Cell - Solid Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Research and Development Solid Oxide Fuel Cells Solid oxide diagram In an SOFC, oxygen from air is reduced to ions at the cathode, which diffuse through the...

56

Controlled CO preferential oxidation  

DOE Patents (OSTI)

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

57

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

E-Print Network (OSTI)

an axisymmetric laminar diffusion flame. Proc. Comb. Inst. ,laminar diffusion flames. Combust. Sci. Tech. , [25] N .premixed ethylene/air flames. Combust. Flame, 127:2004-2022,

2001-01-01T23:59:59.000Z

58

Reactive Air Aluminizing - Energy Innovation Portal  

Reactive Air Aluminizing is a process for applying a protective coating on steel components in solid oxide fuel ... Building Energy Efficiency; ...

59

Reactive Air Aluminizing - Energy Innovation Portal  

Reactive Air Aluminizing is a process for applying a protective coating on steel components in solid oxide fuel cells and other high temperature electrochemical devices.

60

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith Gégo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why » What We Monitor & Why » Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

62

Urban and Regional Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment equipment Urban and Regional Air Quality Research in this area is concerned with regional air quality issues such as: Controlling nitrogen oxides (NOx) and volatile organic compounds, to manage tropospheric ozone pollution. Hazardous air pollutants: using science to base standards on rigorously studied risks. Air quality and climate: how does climate influence air quality at a regional or local level? Current modeling practices often do not capture variations in pollutants such as ozone-they represent a limited sample of the diverse meteorology and human behavior that affect air pollution. Improved modeling of regional air quality will help understand variability, reveal patterns of behavior, and pollutant transport issues. Controlled experiments in lab and field can help validate improved models.

63

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

64

Treatment of biomass gasification wastewaters using reverse osmosis  

DOE Green Energy (OSTI)

Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

1981-09-01T23:59:59.000Z

65

Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation  

SciTech Connect

This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

Testoni, A. L.

2011-10-19T23:59:59.000Z

66

Controlled CO preferential oxidation  

DOE Green Energy (OSTI)

Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

Meltser, Mark A. (Pittsford, NY); Hoch, Martin M. (Webster, NY)

1997-01-01T23:59:59.000Z

67

Partial oxidation power plant with reheating and method thereof  

DOE Patents (OSTI)

A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

Newby, R.A.; Yang, W.C.; Bannister, R.L.

1999-08-10T23:59:59.000Z

68

Partial oxidation power plant with reheating and method thereof  

DOE Patents (OSTI)

A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

Newby, Richard A. (Pittsburgh, PA); Yang, Wen-Ching (Export, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

69

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

70

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

71

Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells  

DOE Patents (OSTI)

An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

2000-01-01T23:59:59.000Z

72

Current Research on Building Energy Systems and Air Cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Current Research on Building Energy Systems and Air Cleaning by Visible-Photocatalytic Oxidation (Visible-PCO)...

73

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

Science Conference Proceedings (OSTI)

In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded with ammonia in the fuel stream. We have performed numerical simulations with detailed chemistry as well as laser-induced fluorescence imaging measurements for a range of ammonia injection rates. For comparison with the experimental data, synthetic LIF images are calculated based on the numerical data accounting for temperature and fluorescence quenching effects. We demonstrate good agreement between measurements and computations. The LIF corrections inferred from the simulation are then used to calculate absolute NO mole fractions from the measured signal.The NO formation in both doped and undoped flames occurs in the flame sheet. In the undoped flame, four different mechanisms including thermal and prompt NO appear to contribute to NO formation. As the NH3 seeding level increases, fuel-NO becomes the dominant mechanism and N2 shifts from being a net reactant to being a net product. Nitric oxide in the undoped flame as well as in the core region of the doped flames are underpredicted by the model; we attribute this mainly to inaccuracies in the NO recycling chemistry on the fuel-rich side of the flame sheet.

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Bessler, Wolfgang G.; Schulz, Christof; Glarborg, Peter; Jensen, Anker D.

2001-12-14T23:59:59.000Z

74

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

75

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

76

Air permitting of IGCC plants  

SciTech Connect

The IGCC process is, currently, the preferred choice over conventional thermal power production in regard to cleanup of fuel and significantly reduced contaminant emissions. The air permitting requirements include the review of: feed preparation and PM emissions; feed gasification and contaminant emissions; elemental sulfur recovery and SO{sub 2} emissions; options for carbon-dioxide recovery; syngas characteristics for combustion; CT design and combustion mechanisms; air contaminant emissions of CT; controlled CT emissions of nitrogen-oxides and carbon-monoxide gases using the SCR and oxidation catalysts, respectively; and, emission of volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). However, the IGCC processes are being rigorously reviewed for the system integration and reliability, and significant reduction of air contaminant emissions (including the greenhouse gases). This paper included a review of IGCC air contaminant emission rates, and various applicable regulatory requirements, such as NSR (New Source Review), NSPS (New Source Performance Standards), and MACT (Maximum Achievable Control Technology). The IGCC facility's NOX, CO, SO{sub 2}, PM, VOCs, and HAPs emission rates would be significantly low. Thus, effective, construction and installation, and operation air permits would be necessary for IGCC facilities.

Chitikela, S.R.

2007-07-01T23:59:59.000Z

77

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

78

An integrated multi-model approach for air quality assessment: Development and evaluation of the OSCAR Air Quality Assessment System  

Science Conference Proceedings (OSTI)

This paper reports on the development and evaluation of a new modelling system for studying air quality on local scales. A multi-model approach has been adopted to develop the OSCAR Air Quality Modelling System to conduct assessments at different levels ... Keywords: Air quality, Model evaluation, Modelling system, Nitrogen oxides, OSCAR, Particulate matter

Ranjeet S. Sokhi; Hongjun Mao; Srinivas T. G. Srimath; Shiyuan Fan; Nutthida Kitwiroon; Lakhumal Luhana; Jaakko Kukkonen; Mervi Haakana; Ari Karppinen; K. Dick van den Hout; Paul Boulter; Ian S. McCrae; Steinar Larssen; Karl I. Gjerstad; Roberto San José; John Bartzis; Panagiotis Neofytou; Peter van den Breemer; Steve Neville; Anu Kousa; Blanca M. Cortes; Ingrid Myrtveit

2008-03-01T23:59:59.000Z

79

Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.  

SciTech Connect

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Mann, Paul T. (National Nuclear Security Administration); Caviness, Michael L. (Los Alamos National Laboratory); Yoshimura, Richard Hiroyuki

2010-06-01T23:59:59.000Z

80

Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Caviness, Michael L [Los Alamos National Laboratory; Mann, Paul T [NNSA/ALBUQUERQUE; Yoshimura, Richard H [SNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oxidative Degradation of Monoethanolamine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

82

Air Pollution (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

83

Oxidation of Low Sulfur Single Crystal Nickel-Base Superalloys  

Science Conference Proceedings (OSTI)

oxidation in air at 1100°C approached a parabolic rate law, after a transient period, ... parabolic rate constants in good agreement with those for growth of a-

84

Solid Oxide Fuel Cells (SOFC) as Military APU Replacements  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Propulsion Directorate Air Force Research Laboratory Solid Oxide Fuel Cells (SOFC) as Military APU Replacements Cleared For Public For Public Release: 88ABW-2010-0196 2...

85

Oxidation Behavior of the Simulated Fuel with Dissolved ...  

Science Conference Proceedings (OSTI)

Page 1. Oxidation Behavior of the Simulated Fuel with Dissolved Fission Products in Air at 573~873 K KH Kang C, S, KC ...

2006-07-20T23:59:59.000Z

86

Reactive Air Aluminization  

DOE Green Energy (OSTI)

Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

2011-10-28T23:59:59.000Z

87

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

88

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

89

Tetraalykylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

1998-01-01T23:59:59.000Z

90

Tetraalklylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

1998-10-06T23:59:59.000Z

91

Eastern States Harness Clean Energy to Promote Air Quality  

SciTech Connect

States on the East Coast are including renewable energy and energy efficiency projects into their air quality plans that they submit to the EPA to address nonattainment for nitrogen oxides and other pollutants.

2007-10-01T23:59:59.000Z

92

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

93

Technology Maturation Plans (TMPs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing » Tank Waste and Waste Processing » Technology Maturation Plans (TMPs) Technology Maturation Plans (TMPs) Documents Available for Download November 1, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. November 1, 2007 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation.

94

Primary zone air proportioner  

SciTech Connect

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

95

Air Pollution Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes the Department of Environmental Management and the Air Pollution Control Board, which are tasked with the prevention, abatement, and control of air pollution by all...

96

Graphite oxidation modeling for application in MELCOR.  

SciTech Connect

The Arrhenius parameters for graphite oxidation in air are reviewed and compared. One-dimensional models of graphite oxidation coupled with mass transfer of oxidant are presented in dimensionless form for rectangular and spherical geometries. A single dimensionless group is shown to encapsulate the coupled phenomena, and is used to determine the effective reaction rate when mass transfer can impede the oxidation process. For integer reaction order kinetics, analytical expressions are presented for the effective reaction rate. For noninteger reaction orders, a numerical solution is developed and compared to data for oxidation of a graphite sphere in air. Very good agreement is obtained with the data without any adjustable parameters. An analytical model for surface burn-off is also presented, and results from the model are within an order of magnitude of the measurements of burn-off in air and in steam.

Gelbard, Fred

2009-01-01T23:59:59.000Z

97

Complex defects in the oxidation of uranium  

Science Conference Proceedings (OSTI)

We are reporting EPR results obtained with uranium powder samples fully oxidized in dry air, water vapor, and air/water vapor mixtures. The results reported previously are confirmed and additional paramagnetic centers, associated with chemisorbed species, have been identified. The temperature dependence of the g-value for these centers from room temperature to 10K is also reported.

MacCrone, R.K.; Sankaran, S.; Shatynski, S.R.; Colmenares, C.A.

1986-06-10T23:59:59.000Z

98

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

99

Nox control for high nitric oxide concentration flows through combustion-driven reduction  

DOE Patents (OSTI)

An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

1989-01-01T23:59:59.000Z

100

Isokinetic air sampler  

DOE Patents (OSTI)

An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

Sehmel, George A. (Richland, WA)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hanford Site air operating permit application  

SciTech Connect

The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

NONE

1995-05-01T23:59:59.000Z

102

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

103

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

104

THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS  

E-Print Network (OSTI)

of various urban sulfate aerosol production mechanisms.radius of an evaporating aerosol droplet in which oxidationEnvironment THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR:

Toossi, R.

2013-01-01T23:59:59.000Z

105

Updated projections of air quality impacts for electric cars  

DOE Green Energy (OSTI)

Future air pollution emissions and resulting air quality are projected for the five primary air pollutants: total suspended particulates (TSP), sulfur oxides (SO/sub x/), nitrogen oxides (NO/sub x), total hydrocarbons (THC), and carbon monoxide (CO). Separate projections are made for three future years - 1980, 1990, and 2000 - and for three assumed levels of electric car use - zero, 10%, and 100%. Emissions and air quality are analyzed for each of the 24 Air Quality Control Regions (AQCRs) having the largest populations in 1975. Emission projections are made using an improved version of the Regional Emissions Projection System which uses the 1975 National Emissions Data System, 1977 state OBERS growth projections, recent state implementation plans and new source performance standards, and electric utility fuel forecasts from the Recharge Capacity Projection System.

Collins, M.M.

1979-07-01T23:59:59.000Z

106

Interfacial material for solid oxide fuel cell  

DOE Patents (OSTI)

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

107

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Composition ...

108

Vermont Air Pollution Control Regulations, Ambient Air Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ambient Air Quality Standards (Vermont) Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont) Eligibility Utility Agricultural Investor-Owned Utility...

109

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

110

China Ga Air Compressor, China Ga Air Compressor Products ...  

U.S. Energy Information Administration (EIA)

China Ga Air Compressor, China Ga Air Compressor Suppliers and Manufacturers Directory - Source a Large Selection of Ga Air Compressor Products at ...

111

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

112

Screw Type Ac Air Compressor Manufacturers, Screw Type Ac Air ...  

U.S. Energy Information Administration (EIA)

Screw Type Ac Air Compressor, Screw Type Ac Air Compressor Manufacturers & Suppliers Directory - Find here Screw Type Ac Air Compressor Traders, ...

113

Air Conditioning and lungs  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Conditioning and lungs Name: freeman Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What affect does air conditioning have upon the lungs of the...

114

Dual-environment effects on the oxidation of metallic interconnects  

DOE Green Energy (OSTI)

Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

2006-08-01T23:59:59.000Z

115

Air Pollution- Local Air Quality (Ontario, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Air Pollution regulation administered by the Ministry of the Environment enforces compliance to the standards set in the Ontario law. The law is phased in, with portions taking effect in 2010,...

116

NETL: News Release - Record Run by Solid Oxide Fuel Cell Comes...  

NLE Websites -- All DOE Office Websites (Extended Search)

the equivalent of 65 kilowatts of thermal energy in the form of hot water to the local district heating system. Air emissions from the unit - nitrogen oxides, sulfur oxides,...

117

Thin Air Breathing  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Air Breathing Thin Air Breathing Name: Amy Location: N/A Country: N/A Date: N/A Question: Why is it hard to breathe in thin air? What health dangers do mountain climbers face at high altitudes? Replies: Among the obvious dangers of losing ones footing, the oxygen available in the air is considerable less at higher altitudes. If I recall correctly, 21% of the atmosphere at standard temperature and pressure at sea level is composed of oxygen. This is less at higher altitudes. One can lose consciousness and even die in an oxygen deficient environment with changes from oxygen content to lower than 19.5%. This can unfortunate effect can occur within minutes. Dr. Myron The air is not really thin at high altitudes. The problem is that air pressure is lower. As altitude increases, air pressure decreases. In order for your lungs to fill with air, the air pressure in your lungs has to be less than the pressure of the air outside your lungs. Air moves from areas of higher pressure to lower pressure. As your diaphragm (the muscle that separates your chest cavity from your abdominal cavity) moves downward, the size of your chest cavity increases. This decreases the pressure in your chest and air flows in. When the diaphragm is up, it puts pressure on the chest cavity and the pressure in the lungs is greater than outside the lungs. Air flows out. This is an example of Boyle's Law. The movement of the diaphragm is controlled by the brainstem. Anyway-the reason that it is harder for some people to breathe at higher altitudes is that the air pressure differences aren't as great between the inside of the lungs and outside.

118

Clean Air and Climate Protection Software 2009 | Open Energy Information  

Open Energy Info (EERE)

Clean Air and Climate Protection Software 2009 Clean Air and Climate Protection Software 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Air and Climate Protection Software 2009 Focus Area: Low Carbon Communities Topics: Opportunity Assessment & Screening Website: www.icleiusa.org/tools/cacp-2009/cacp-software-2009/ Equivalent URI: cleanenergysolutions.org/content/clean-air-and-climate-protection-soft CACP 2009 is a one-stop emissions management tool that calculates and tracks emissions and reductions of greenhouse gases (carbon dioxide, methane, nitrous oxide) and criteria air pollutants (NOx, SOx, carbon monoxide, volatile organic compounds, PM10, PM 2.5) associated with electricity, fuel use, and waste disposal. References Retrieved from "http://en.openei.org/w/index.php?title=Clean_Air_and_Climate_Protection_Software_2009&oldid=51434

119

Indoor Air Quality Group  

Science Conference Proceedings (OSTI)

... CONTAM has been used at NIST to study the indoor air quality impacts of HVAC systems in single-family residential buildings, ventilation in large ...

2011-10-31T23:59:59.000Z

120

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (the Board or ARB) will conduct a public hearing at the time and place noted below to consider amendments to the Verifkztion

unknown authors

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (the Board or ARB) will conduct a public hearing at the time and place noted below to consider amendments to the Verification

unknown authors

2003-01-01T23:59:59.000Z

122

Environmental Quality: Air (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

123

Air Pollution Project: Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary HELP Index Summary Scenario Internet Links Student Pages SubjectContent Area: ScienceChemistry, Environment - Air Pollution Target Audience: High school chemistry...

124

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

125

Movements in air conditioning.  

E-Print Network (OSTI)

??Movements in Air Conditioning is a collection of poems that explores the obstacles inherent in creating a new sense of home in a country that… (more)

Hitt, Robert D. (Robert David)

2013-01-01T23:59:59.000Z

126

Adsorption air conditioner  

DOE Patents (OSTI)

A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

Rousseau, Jean L. I. (Redondo Beach, CA)

1979-01-01T23:59:59.000Z

127

Room Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

of Superefficient Room Air Conditioners year month keywords appliance energy efficiency energy efficiency incentives Market Transformation standards url https isswprod lbl gov...

128

Air Pollution Controls  

Energy.gov (U.S. Department of Energy (DOE))

Various statutes within the Wisconsin Legislative Documents relate to air pollution control. These statutes describe zoning, permitting, and emissions regulations for hazardous and non-hazardous...

129

Low-friction coatings for air bearings in fuel cell air compressors  

DOE Green Energy (OSTI)

In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

2000-01-06T23:59:59.000Z

130

Air Pollution Control Systems for Stack and Process Emissions  

Science Conference Proceedings (OSTI)

Strict environmental regulations at the federal and local levels require that industrial facilities control emissions of particulates, nitrogen oxides (NOx), sulfur dioxide (SO2), volatile organic compounds (VOCs), and hazardous air pollutants. To comply with regulations, industries must either modify the processes or fuels they use to limit the generation of air pollutants, or remove the pollutants from the process gas streams before release into the atmosphere. This report provides a comprehensive disc...

2001-03-30T23:59:59.000Z

131

Indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-12-28T23:59:59.000Z

132

Recirculating electric air filter  

DOE Patents (OSTI)

An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

Bergman, Werner (Pleasanton, CA)

1986-01-01T23:59:59.000Z

133

Portable oven air circulator  

DOE Patents (OSTI)

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

134

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

135

Meeting the Air Leakage  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting the Air Leakage Meeting the Air Leakage Requirements of the 2012 IECC The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The newest edition of the International Energy Conservation Code ® (IECC) (2012) sets the bar higher for energy efficiency, and new air sealing requirements are one of the key new provisions. This guide is a resource for understanding the new air leakage requirements in the 2012 IECC and suggestions on how these new measures can be met. It also provides information from Building America's Air Sealing Guide, Best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code (IRC) requirements are referenced throughout the guide.

136

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

137

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

48 Business Decision Criteria 48 Business Decision Criteria Renee H. Spires Technology Development May 21, 2009 5/21/09 2 Tank 48 Business Decision Criteria Technology development for the treatment of Tank 48 was invested in two alternatives - Fluidized Bed Steam Reforming (FBSR) - Wet Air Oxidation (WAO) Systems engineering processes were used to identify, define and weigh a set of criteria to perform selection of alternatives - Designed with flexibility so that the criteria can be applied to the Tank 48 technology selection at any time The business decision will result in the design, deployment and operation of the selected alternative for the treatment of Tank 48 5/21/09 3 Agenda Tank 48 Background and Importance Development of Criteria Comparison to Past Evaluations Status

138

Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) /  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Chemisorbent Air Cleaner for Indoor Air Applications Title Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Chemisorbent Air Cleaner for Indoor Air Applications Publication Type Report LBNL Report Number LBNL-62202 Year of Publication 2007 Authors Hodgson, Alfred T., Hugo Destaillats, Toshifumi Hotchi, and William J. Fisk Report Number LBNL-62202 Abstract We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680 - 780 m3/h (400 - 460 cfm).

139

Effects of Water Vapor on Oxidation Behavior of Ferritic Stainless Steels Under Solid Oxide Fuel Cell Interconnect Exposure Conditions  

Science Conference Proceedings (OSTI)

The oxidation of ferritic stainless steels has been studied under solid oxide fuel cell (SOFC) interconnect ''dual'' exposure conditions, i.e. simultaneous exposure to air on one side of the sample, and fuel (hydrogen) on the other. It was found that, under the dual exposures, the oxidation behavior of the stainless steels at the airside differed significantly from that observed during exposure to air at both sides. Increased water vapor partial pressure in the air at the airside further accelerated the anomalous oxidation, resulting in nucleation and growth of hematite in the scale that led to a localized attack. The accelerated oxidation and growth of the hematite nodules was a result of combined effects of hydrogen transport from the fuel side to the airside and the presence of increased water vapor.

Yang, Z Gary; Xia, Gordon; Singh, Prabhakar; Stevenson, Jeffry W.

2005-08-01T23:59:59.000Z

140

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

All air pollution not otherwise covered by these regulations is prohibited. Stationary sources which cause air pollution must be operated in accordance with all applicable emissions standards and...

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut...  

Open Energy Info (EERE)

DEEP Air Management Department Department of Energy and Environmental Protection Division Environmental Protection Division; Bureau of Air Management Address 79 Elm Street Place...

142

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

143

Blind benchmark predictions of the NACOK air ingress tests using the CFD code FLUENT  

E-Print Network (OSTI)

The JAERI and NACOK experiments examine the combined effects of natural convection during an air ingress event: diffusion, onset of natural circulation, graphite oxidation and multicomponent chemical reactions. MIT has ...

Brudieu, Marie-Anne V

2007-01-01T23:59:59.000Z

144

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

145

Air Shower Simulations  

SciTech Connect

Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

Alania, Marco; Gomez, Adolfo V. Chamorro [Centro de Tecnologias de Informacion y Comunicaciones, Universidad Nacional de Ingenieria, Lima (Peru); Araya, Ignacio J. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Santiago (Chile); Huerta, Humberto Martinez; Flores, Alejandra Parra [Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Knapp, Johannes [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

2009-04-30T23:59:59.000Z

146

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

147

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have an air economizer cycle for free cooling under certain outside air conditions. During the economizer cycle, the outside air and return air dampers are modulated to seek mixing air temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control. Actually the dehumidification is not necessary when outside air dew point is less than 55°F. Meanwhile the space may have less cooling load due to envelope heat loss and/or occupant schedule. These provide an opportunity to use higher supply air temperature to reduce or eliminate mechanical cooling and terminal box reheat. On the other hand the higher supply air temperature will require higher air flow as well as higher fan power. Therefore the supply air temperature has to be optimized to minimize the combined energy for fan, cooling and heating energy. In this paper a simple energy consumption model is established for AHU systems during the economizer and then a optimal supply air temperature control is developed to minimize the total cost of the mechanical cooling and the fan motor power. This paper presents AHU system energy modeling, supply air temperature optimization, and simulated energy savings.

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

148

Air Quality | Open Energy Information  

Open Energy Info (EERE)

Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Category: NEPA Resources...

149

Air Carrier Flight Operations  

E-Print Network (OSTI)

Most air carriers operate under a system of prioritized goals including safety, customer service (on-time departures and arrivals) and operating economics. The flight operations department is responsible for the safe and ...

Midkif, Alan H.

150

AIR RESOURCES BOARD Acknowledgements  

E-Print Network (OSTI)

This report was prepared with the assistance and support from other agencies, divisions and offices of the Air Resources Board, and private firms. Staff would especially like to thank the following individuals for their assistance in developing this proposed pathway:

Green Wastes; Green Wastes; Richard Corey; Deputy Executive Officer; Cynthia Marvin Chief; Michael Waugh Chief; Kamal Ahuja; Brian Helmowski; Wes Ingram; Ray Asregadoo (arb; Juliet Bohn (hwma; Richard Boyd (arb; Alicia Chakrabarthy (ebmud; Steven Cliff (arb; Kevin Dickison (ebmud; Jacques Franco (calrecycle

2012-01-01T23:59:59.000Z

151

Breathing zone air sampler  

DOE Patents (OSTI)

A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, John (Bethel Park, PA)

1989-01-01T23:59:59.000Z

152

air_water.cdr  

Office of Legacy Management (LM)

Office of Legacy Management Weldon Spring Site Air and Water Monitoring 32008 This fact sheet provides information at Weldon Spring, Missouri. This site is managed by the U.S....

153

FREE AIR PRESSURE MEASUREMENTS  

SciTech Connect

Indenter gages, Wiancko gages, and interferometer gages were used to measure air overpressure vs time at essentially ground level stations for both the surface (S) and undprground (U) atomic explosions. For the S Burst several instruments were placed on a line extending from an overpressure region of 13 psi to a region of less than one psi. The air measurements for the U Burst ranged from 32 to 2 psi. (D. L.G.)

Howard, W.J.; Jones, R.D.

1952-02-19T23:59:59.000Z

154

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

155

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

156

InAir: sharing indoor air quality measurements and visualizations  

Science Conference Proceedings (OSTI)

This paper describes inAir, a tool for sharing measurements and visualizations of indoor air quality within one's social network. Poor indoor air quality is difficult for humans to detect through sight and smell alone and can contribute to the development ... Keywords: air quality, domestic technology, environment, health, iphone, persuasive technology, sensors, sustainability

Sunyoung Kim; Eric Paulos

2010-04-01T23:59:59.000Z

157

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

158

Quick-start catalyzed methanol partial oxidation reformer  

DOE Green Energy (OSTI)

The catalytic methanol partial oxidation reformer described in this paper offers all the necessary attributes for use in transportation fuel cell systems. The bench-scale prototype methanol reformer developed at Argonne is a cylindrical reactor loaded with copper zinc oxide catalyst. Liquid methanol, along with a small amount of water, is injected as a fine spray into a flowing air stream, past an igniter onto the catalyst bed where the partial oxidation reaction takes place.

Ahmed, S.; Kumar, R.

1995-12-01T23:59:59.000Z

159

Low-head air stripper treats oil tanker ballast water  

SciTech Connect

Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions.

Goldman, M. (Camp Dresser McKee, Cambridge, MA (United States))

1992-02-01T23:59:59.000Z

160

Oxidation Behavior of Ferritic Stainless Steels under SOFC Interconnect Exposure Conditions  

Science Conference Proceedings (OSTI)

The oxidation of ferritic stainless steels has been studied under solid oxide fuel cell (SOFC) interconnect “dual” exposure conditions, i.e. simultaneous exposure to air on one side of the sample, and moist hydrogen on the other side. This paper focuses on the oxidation behavior of ferritic stainless steels during the isothermal oxidation in the dual environments. It was found that scales grown on the air side under these dual exposure conditions can be significantly different from scales grown on samples exposed to air on both sides. In contrast, no substantial difference was observed between the scales grown on the fuel side of the dual atmosphere samples and scales grown on samples exposed to moist hydrogen on both sides. AISI430, with 17% Cr, suffered localized attack via formation of Fe2O3 hematite-rich nodules on the air side of dual exposure samples, while the spinel top layer of the air side scale of Crofer22 APU (23% Cr) was enriched in iron. For E-brite, with the highest Cr content (27%), no unusual phases were found in the scale on the air side, but it was noticed the air side scale was less dense and appeared to be more prone to defects than the scale grown in air only. The anomalous oxidation behavior of ferritic stainless steels on the air side of dual exposure specimens is related to the transport of hydrogen through the steel and its subsequent presence in the air side scale.

Yang, Zhenguo; Walker, Matthew S.; Singh, Prabhakar; Stevenson, Jeffry W.; Norby, Truls

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Compressed Air System Maintenance Guide  

Science Conference Proceedings (OSTI)

The "Compressed Air System Maintenance Guide" provides fossil plant personnel with information on the operation and maintenance of the compressed air system. The contents of this guide will assist personnel in improving performance of the compressed air system, reducing maintenance costs, and increasing air system reliability.

2002-11-27T23:59:59.000Z

162

Solar Buildings: Transpired Air Collectors  

DOE Green Energy (OSTI)

Transpired air collectors preheat building ventilation air by using the building's ventilation fan to draw fresh air through the system. The intake air is heated as it passes through the perforated absorber plate and up the plenum between the absorber and the south wall of the building. Reduced heating costs will pay for the systems in 3--12 years.

NONE

1998-11-24T23:59:59.000Z

163

Inverter Controlled Screw Air Compressor Manufacturers ...  

U.S. Energy Information Administration (EIA)

Inverter Controlled Screw Air Compressor, Inverter Controlled Screw Air Compressor Manufacturers & Suppliers Directory - Find here Inverter ...

164

Solid oxide fuel cell operable over wide temperature range  

DOE Patents (OSTI)

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

2001-01-01T23:59:59.000Z

165

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

166

air_water.cdr  

Office of Legacy Management (LM)

12/2011 12/2011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring Site Remedial Action Project (WSSRAP) to measure levels of gamma radiation, radioactive dust particles, radon gas, and asbestos. With remediation of contaminated materials essentially complete and measurements indistinguishable from background, the U.S. Department of Energy (DOE) ceased perimeter and offsite air monitoring as of December 31, 2000. Groundwater has been routinely monitored at the site since 1986. Separate groundwater monitoring programs were established for the Chemical Plant and Quarry sites because of geographic separation and differences in the hydrogeologic features that influence

167

Air Charter Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

42.2 (April 2012) 42.2 (April 2012) 1 Documentation and Approval of Federally Funded International Travel (Fly America Act-Open Skies Agreement) Overview This section provides guidance to DOE Contracting Officers, Contracting Officer Representatives, and Program Officials on documentation and approval of federally funded international travel by Federal contractors and subcontractors in accordance with FAR 52.247-63 PREFERENCE FOR U.S.-FLAG AIR CARRIERS (JUNE 2003), 49 U.S.C. §40118 (Fly America Act) and the Open Skies Agreements as amended. Background Contracts that include FAR clause 52.247-63, PREFERENCE FOR U.S.-FLAG AIR CARRIERS (JUNE 2003) as prescribed in FAR 47.405 require that, if available, the Contractor (and subcontractors), in performing work under the contract, shall use U.S.-flag air carriers for

168

AIR COOLED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

Fermi, E.; Szilard, L.

1958-05-27T23:59:59.000Z

169

Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?  

E-Print Network (OSTI)

The supply air temperature set point for a singleduct constant air volume air handling unit (AHU) system is often reset based on either return air temperature or outside air temperature in order to reduce simultaneous cooling and heating energy consumption. Both reset strategies make engineering sense as long as the reset schedules are reasonable. Quite often the decision to use one over the other is made with the assumption that they will all achieve some sorts of energy savings. However, the impact of these two strategies on AHU energy consumption could be very different. A comparison of these two commonly used supply air temperature reset strategies for a single-duct constant air volume system is presented in this paper. It is shown that from either the building energy consumption or building comfort point of view, the reset strategy based on outside air temperature is inherently better than that based on return air temperature. Significant amount of heating energy savings can be achieved by switching from return air temperature based reset to outside air temperature based reset. The reset strategy can also benefit variable air volume (VAV) AHUs. An improved supply air temperature set point reset control strategy is proposed by combining and staging the outside air and return air temperature based resets.

Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

2002-01-01T23:59:59.000Z

170

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Principal accomplishments have been achieved in all three areas of selective catalytic oxidation of methane that have been pursued in this research project. These accomplishments are centered on the development of catalyst systems that produce high space time yields of C{sub 2} hydrocarbon products, formaldehyde, and methanol from methane/air mixtures at moderate temperatures and at ambient pressure. The accomplishments can be summarized as the following: the SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} catalyst developed here has been further optimized to produce 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550C; V{sub 2}O{sub 5}SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630C with CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and tested that produces over 100 g methanol/kg catalyst/hr at 600C.

Klier, K.; Herman, R.G.

1995-06-01T23:59:59.000Z

171

Solar air collector  

SciTech Connect

A solar heating system including a radiant heat collector apparatus made up of an enclosure having glazed panels. The collector provided within the enclosure is upstanding with the enclosure and the collector has heat absorbent flat walls spaced inwardly from the glazed panels. A heat storage core is provided centrally within the collector and spaced from the walls of the collector. The heat storage core includes an insulated housing and a heat retaining member within the insulated housing. Air passageways are formed between the collector walls and the insulated housing for passing input air, and duct members are provided for communicating with a household.

Deschenes, D.; Misrahi, E.

1981-12-15T23:59:59.000Z

172

Air Permits, Licenses, Certifications (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) Air Permits, Licenses, Certifications (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection This program regulates and limits air emissions from a variety of sources within Maine through a statewide permitting program. Separate regulations exist for limiting emissions of nitrogen oxides (NOx), sulfur dioxide

173

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

174

Automatic electrochemical ambient air monitor for chloride and chlorine  

DOE Patents (OSTI)

An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

Mueller, Theodore R. (Oak Ridge, TN)

1976-07-13T23:59:59.000Z

175

Hexane Air Combustion  

E-Print Network (OSTI)

Hot surface ignition and subsequent flame propagation of premixed n-hexane air mixtures are shown in this fluid dynamics video. High speed schlieren photography revealed 3 distinct behaviors of ignition and propagation as a function of mixture composition and initial pressure.

Boettcher, Philipp A; Shepherd, Joseph E

2010-01-01T23:59:59.000Z

176

Air-cleaning apparatus  

SciTech Connect

An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces.

Howard, A.G.

1981-08-18T23:59:59.000Z

177

Winter Morning Air Temperature  

Science Conference Proceedings (OSTI)

Results of temperature measurements, which may be applied to inference of winter temperatures in data-sparse areas, are presented. The morning air temperatures during three winters were measured at 80 places in a 10 km × 30 km area along the ...

A. Hogan; M. Ferrick

1997-01-01T23:59:59.000Z

178

Air Proportional Counter  

DOE Patents (OSTI)

A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

Simpson, J.A. Jr.

1950-10-31T23:59:59.000Z

179

Degradation of Solid Oxide Fuel Cell Air Electrode - Programmaster ...  

Science Conference Proceedings (OSTI)

Author(s), Prabhakar Singh, Manoj Kumar Mahapatra, Boxun Hu, Na Li, Michael Keane. On-Site Speaker (Planned), Prabhakar Singh. Abstract Scope, Materials ...

180

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to reciprocating engines, fuel-burning equipment, or waste combusting equipment which are either attached to major stationary sources of NOx or have high potential NOx...

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalysis of Propane Oxidation and Premixed Propane-Air Flames.  

E-Print Network (OSTI)

??Improvements in deriving energy from hydrocarbon fuels will have a large impact on our efforts to transition to sustainable and renewable energy resources. The hypothesis… (more)

Wiswall, James T.

2009-01-01T23:59:59.000Z

182

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

183

Non-oxidative conversion of methane with continuous hydorgen removal  

SciTech Connect

The objective is to overcome the restrictions of non-oxidative methane pyrolysis and oxidative coupling of methane by transferring hydrogen across a selective inorganic membrane between methane and air streams, without simultaneous transport of hydrocarbon reactants or products. This will make the overall reaction system exothermic, remove the thermodynamic barrier to high conversion, and eliminate the formation of carbon oxides. Our approach is to couple C-H bond activation and hydrogen removal by passage of hydrogen atoms through a dense ceramic membrane. In our membrane reactor, catalytic methane pyrolysis produces C2+ hydrogen carbons and aromatics on the one side of the membrane and hydrogen is removed through an oxide film and combusted with air on the opposite side. This process leads to a net reaction with the stoichiometry and thermodynamic properties of oxidative coupling, but without contact between the carbon atoms and oxygen species.

Borry, R.W. III [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering; Iglesia, E. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

1997-12-31T23:59:59.000Z

184

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

185

Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell (SOFC) technology, which offers many advantages over traditional energy conversion systems including low emission and high efficiency, has become increasingly attractive to the utility, automotive, and defense industries (as shown in Figure 1). As an all solid-state energy conversion device, the SOFC operates at high temperatures (700-1,000 C) and produces electricity by electrochemically combining the fuel and oxidant gases across an ionically conducting oxide membrane. To build up a useful voltage, a number of cells or PENs (Positive cathode-Electrolyte-Negative anode) are electrically connected in series in a stack through bi-polar plates, also known as interconnects. Shown in Figure 2 (a) is a schematic of the repeat unit for a planar stack, which is expected to be a mechanically robust, high power-density and cost-effective design. In the stack (refer to Figure 2 (b)), the interconnect is simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing (fuels such as hydrogen or natural gas) environment on the anode side for thousands of hours at elevated temperatures (700-1,000 C). Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain sulfide impurities. Also, the interconnect must be stable towards any sealing materials with which it is in contact, under numerous thermal cycles. Furthermore, the interconnect must also be stable towards electrical contact materials that are employed to minimize interfacial contact resistance, and/or the electrode materials. Considering these service environments, the interconnect materials should possess the following properties: (1) Good surface stability (resistance to oxidation and corrosion) in both cathodic (oxidizing) and anodic (reducing) atmospheres. (2) Thermal expansion matching to the ceramic PEN and other adjacent components, all of which typically have a coefficient of thermal expansion (CTE) in the range of 10.5-12.0 x 10{sup -6} K{sup -1}. (3) High electrical conductivity through both the bulk material and in-situ formed oxide scales. (4) Satisfactory bulk and interfacial mechanical/thermomechanical reliability and durability at the SOFC operating temperatures. (5) Good compatibility with other materials in contact with interconnects such as seals and electrical contact materials. Until recently, the leading candidate material for the interconnect was doped lanthanum chromite (LaCrO3), which is a ceramic material which can easily withstand the traditional 1000 C operating temperature. However, the high cost of raw materials and fabrication, difficulties in obtaining high-density chromite parts at reasonable sintering temperatures, and the tendency of the chromite interconnect to partially reduce at the fuel gas/interconnect interface, causing the component to warp and the peripheral seal to break, have plagued the commercialization of planar SOFCs for years. The recent trend in developing lower temperature, more cost-effective cells which utilize anode-supported, several micron-thin electrolytes and/or new electrolytes with improved conductivity make it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2003-06-15T23:59:59.000Z

186

DETERMINATION OF TETRAVALENT URANIUM IN THORIUM OXIDE-URANIUM OXIDE MIXTURES. PARTS I, II, AND III  

SciTech Connect

For the determination of milligram quantities of uranium(N) in thorium oxide-uranium oxide mixtures which may also contain uranium(VI), it was necessary to devise a means of dissolving the sample so as to prevent any air oxidation of the uranium(IV) to uranium(VI). For this determination, the conventional potassium dichromate volumetric method was used except that the sample was dissolved under reflux in 7 M H/sub 3/PO/sub 4/ which contained an excess of standard dichromate solution. Following the dissolution of the sample, this excess was determined by back titration with a standard solution of iron(II). Barium diphenylaminesulfonate was used as the indicator. Initial tests on the dissolution of samples of thorium oxide-uranium oxide in hot HC1O/sub 4/ and hot HCI are described. (auth)

Menis, O.

1959-04-01T23:59:59.000Z

187

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning Conditioning Air Conditioning July 1, 2012 - 6:28pm Addthis Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment. Two-thirds of all homes in the United States have air conditioners. Air conditioners use about 5% of all the electricity produced in the United States, at an annual cost of more than $11 billion to homeowners. As a

188

Judging Air Quality Model Performance  

Science Conference Proceedings (OSTI)

Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on air quality modeling, a small group of scientists was convened to review and recommend procedures to evaluate the performance of air quality models. Particular ...

Douglas G. Fox

1981-05-01T23:59:59.000Z

189

Oil and Gas Air Heaters  

E-Print Network (OSTI)

Most conventional air heaters adopt indirect heat transfer, which uses combustion gases to indirectly heat fresh air by heating surfaces to generate hot air used for material drying and dehumidification. We call them indirect air heaters. However, they have a higher manufacturing cost and lower thermal efficiency, especially when high temperature air is needed. For this reason, a direct air heater applicable for or feed and industrial raw products is put forward, which has advantages such as less production cost, smaller dimensions and higher thermal efficiency. Their design, working principles, characteristics, structure and applications are presented in this article, and brief comparisons are made between the indirect and direct air heater. Finally, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium.

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

190

Computer controlled air conditioning systems  

SciTech Connect

This patent describes an improvement in a computer controlled air conditioning system providing for circulation of air through an air conditioned house in contact with concrete walls requiring a humidity within a critical range. The improvement consists of: a computer for processing sensed environmental input data including humidity and oxygen to produce output control signals for affecting the humidity of the air in the house; provision for an air flow circulation path through the house in contact with the concrete walls; sensing responsive to the amount of oxygen in the house for providing input signals to the computer; mixing for combining with the air in the house a variable amount of fresh atmospheric air to supply fresh oxygen; and humidity modifying means for modifying the humidity of the air flowing in the flow path responsive to the control signals.

Dumbeck, R.F.

1986-02-04T23:59:59.000Z

191

Louisiana Air Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

This law states regulations for air quality control and states the powers and duties of the secretary of environmental quality. It provides information about permits and licenses, air quality...

192

Uncertainty in Air Quality Modeling  

Science Conference Proceedings (OSTI)

Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly ...

Douglas G. Fox

1984-01-01T23:59:59.000Z

193

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network (OSTI)

"Air compressors are a significant industrial energy user. Based on a survey (conducted by Oregon State University and the Bonneville Power Administration) of energy audit reports from 125 plants, air compressors account for roughly 10% of total plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy or productivity benefits from reliable compressed air. Compressed air is often called the ""fourth utility"" in industrial facilities after electricity, natural gas, and water. It provides motive power for machinery, cooling, materials handling, and hand tools. It is a safe, flexible, and powerful resource, but one that is seldom run for low operating costs or best productivity. Learning the basics of compressed air systems represents the beginning of both reducing energy costs and enjoying the productive benefits of reliable compressed air. Compressed air management systems, including a system approach to managing demand, stabilizing pressure, reducing leaks and compressor controls, can allow the industrial end user to save 20% - 50% of their air compressor electricity usage. The monitoring capabilities of compressed air management systems provide a useful tool through power, pressure and flow trending to maintain both the energy savings and increased system reliability. More efficiently managed compressed air systems are less costly to maintain and have less impact on the environment. The most important issues of industrial compressed air in relation to energy efficiency and management are: 1. Compressed air is an essential industrial utility; 2. Compressing air is a fundamentally inefficient energy transformation process; 3. Optimal operation of compressed air systems in industrial plants is seldom a priority and adequate management infonnation is rare, resulting in negative impacts on production and even less efficiency."

Burke, J. J.; Bessey, E. G.

2003-05-01T23:59:59.000Z

194

Metal-air battery assessment  

DOE Green Energy (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

195

California Air Resources Board | Open Energy Information  

Open Energy Info (EERE)

Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name California Air Resources Board Place Sacramento, California Website http:www.arb.ca.gov...

196

Review of air flow measurement techniques  

E-Print Network (OSTI)

rate and air leakage tests under reductive sealing for anfor subsequent sealing, the openings of air infiltrationreductive sealing between the reductions in measured air

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

197

Air cathode structure manufacture  

DOE Patents (OSTI)

An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

1985-01-01T23:59:59.000Z

198

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

199

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

200

Solar air conditioning  

DOE Green Energy (OSTI)

Development of a hybrid solar-assisted air conditioning system that combines a vapor compression section for sensible cooling with a desiccant section for dehumidification and that uses both solar energy and condenser waste heat to drive the dehumidifier has been under way for the last two years (1981 and 1982). The results of this research are included in this report: utilizing solar energy in an economical way has proven quite difficult.

Robison, H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (ARB or Board) will conduct a public hearing at the time and place noted below to consider adoption of the Proposed Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products. The proposed ATCM would reduce the public’s current exposure to formaldehyde by reducing emissions from hardwood plywood (HWPW), particleboard (PB) and medium density fiberboard (MDF) panels. The ATCM would also apply to finished goods made with these materials.

unknown authors

2007-01-01T23:59:59.000Z

202

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

203

A review of the technical issues of air ingression during severe reactor accidents  

Science Conference Proceedings (OSTI)

Severe reactor accident scenarios involving air ingression into the reactor coolant system are described. Evidence from modem reactor accident analyses and from the accident at Three Mile Island show residual fuel will be present in the core region when air ingression is possible. This residual fuel can interact with the air. Exploratory calculations with the MELCOR code of station blackout accidents during shutdown conditions and during operations are used to examine clad oxidation by air and ruthenium release from fuel in air. Extensive ruthenium release is predicted when air ingression rates exceed about 10 moles/s. Past studies of air interactions with irradiated reactor fuel are reviewed. Effects air ingression may have on fission product release, transport, deposition and revaporization are discussed. Perhaps the most important effects of air ingression are expected to be enhanced release of ruthenium from the fuel and the formation of copious amounts of aerosol from uranium oxide vapors. Revaporization of iodine and tellurium retained in the reactor coolant system might be expected.

Powers, D.A.; Kmetyk, L.N.; Schmidt, R.C.

1994-09-01T23:59:59.000Z

204

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

205

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

206

Atmospheric emissions of one pulp and paper mill. contribution to the air quality of Viana do Castelo  

Science Conference Proceedings (OSTI)

One of the most sensitive environmental impact of the pulp and paper mills is associated with the atmospheric pollution namely with sulphur compounds, particulate matter and nitrogen oxides. The study undertaken aimed to evaluate the influence of one ... Keywords: air pollution modelling, kraft pulp and paper mill, urban air pollution

Lígia T. Silva; José F. G. Mendes

2009-10-01T23:59:59.000Z

207

Lipid Oxidation Pathways  

Science Conference Proceedings (OSTI)

This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. Lipid Oxidation Pathways Hardback Books Health - Nutrition -

208

Halving the Casimir force with conductive oxides  

E-Print Network (OSTI)

The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals.

S. de Man; K. Heeck; R. J. Wijngaarden; D. Iannuzzi

2009-01-23T23:59:59.000Z

209

AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

2011-01-01T23:59:59.000Z

210

Regenerative air heater  

DOE Patents (OSTI)

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

1982-01-01T23:59:59.000Z

211

Regenerative air heater  

DOE Patents (OSTI)

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, P.B.; Baldner, R.

1980-11-26T23:59:59.000Z

212

Retrofit Air Preheat Economics  

E-Print Network (OSTI)

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can be increased to a range of 89% to 92%. The economic justification for the addition of this equipment is presented in new total investment curves and simple payout curves for a range of fuel cost. This will enable the owner to quickly determine the preliminary feasibility and conceptual requirements for his project before proceeding with more vigorous work.

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

213

Hot air drum evaporator  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

214

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

215

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

SciTech Connect

The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

2011-07-01T23:59:59.000Z

216

Method for forming indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1984-03-13T23:59:59.000Z

217

Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures  

SciTech Connect

Aerosols dispersed from depleted uranium penetrators exposed to air and air-CO/sub 2/ mixtures at temperatures ranging from 500 to 1000/sup 0/C for 2- or 4-h periods were characterized. These experiments indicated dispersal of low concentrations of aerosols in the respirable size range (typically <10/sup -3/% of penetrator mass at 223 cm/s (5 mph) windspeed). Oxidation was maximum at 700/sup 0/C in air and 800/sup 0/C in 50% air-50% CO/sub 2/, indicating some self-protection developed at higher temperatures. No evidence of self-sustained burning was observed, although complete oxidation can be expected in fires significantly exceeding 4 h, the longest exposure of this series. An outdoor burning experiment using 10 batches of pine wood and paper packing material as fuel caused the highest oxidation rate, probably accelerated by disruption of the oxide layer accompanying broad temperature fluctuation as each fuel batch was added.

Elder, J.C.; Tinkle, M.C.

1980-12-01T23:59:59.000Z

218

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe maximum allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for...

219

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut...  

Open Energy Info (EERE)

requirements. Policy Contact Contact Name Anne Gobin Department Department of Energy & Environmental Protection Division Bureau of Air Management Phone (860) 424-3026...

220

Air temperature thresholds for indoor comfort and perceived air quality  

E-Print Network (OSTI)

Moving air for comfort. ASHRAE Journal, May, Arens, E. ,17-22, Copenhagen. . ASHRAE Standard 55- 2010. ThermalSensations of Sedentary Man, ASHRAE Transactions, Vol. 80 (

Zhang, Hui; Edward, Arens; Pasut, Wilmer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

222

Dual Environment Effects on the Oxidation of Metallic Interconnects  

DOE Green Energy (OSTI)

Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e. H2 gas) and oxidizer on the other side (i.e. air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual environment scales are flaky and more friable than the single environment scales. The H2 disrupts the scale on the air-side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air/air, H2/air, and H2/Ar environments are reported in support of the model.

Holcomb, Gordon R.; Ziomek-Moroz, Malgorzata; Cramer, Stephen D.; Covino, Jr., Bernard S.; and Bullard, Sophie J.

2004-10-20T23:59:59.000Z

223

Impacts of alternative fuels on air quality  

DOE Green Energy (OSTI)

The objective of this project was to determine the impact of alternative fuels on air quality, particularly ozone formation. The alternative fuels of interest are methanol, ethanol, liquefied petroleum gas, and natural gas. During the first year of study, researchers obtained qualitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol and ethanol. The thermal degradation of ethanol produced a substantially larger number of intermediate organic by-products than the similar thermal degradation of methanol, and the organic intermediate by-products lacked stability. Also, a qualitative comparison of the UDRI flow reactor data with previous engine test showed that, for methanol, formaldehyde and acetone were the organic by-products observed in both types of tests; for ethanol, only very limited data were located.

Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

1994-06-01T23:59:59.000Z

224

Selective methane oxidation over promoted oxide catalysts. Quarterly report, September 1 - November 30, 1995  

DOE Green Energy (OSTI)

The objective of this research is the selective oxidation of methane to C{sub 2}H{sub 4} hydrocarbons and to oxygenates, in particular formaldehyde and methanol. Air, oxygen, or carbon dioxide rather than nitrous oxide, are utilized as the oxidizing gas at high gas hourly space velocity but mild reaction conditions (500-700{degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. During this quarter, solid state {sup 51}V NMR and double catalyst bed experiments were conducted to demonstrate the unfavorable effect of the presence of bulk crystalline V{sub 2}O{sub 5} in V{sub 2}O{sub 5}-SiO{sub 2} xerogel catalysts on selective oxidation of methane to methanol and formaldehyde. Results are discussed.

Klier, Kamil; Herman, R.G.; Wang, C.B. [USDOE Morgantown Energy Technology Center, WV (United States)

1995-12-31T23:59:59.000Z

225

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

226

Oklahoma Clean Air Act (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes the authority for the Oklahoma Department of Environmental Quality to administer programs to maintain and monitor air quality across Oklahoma. The Department monitors...

227

Optimization of Air Conditioning Cycling.  

E-Print Network (OSTI)

??Systems based on the vapor compression cycle are the most widely used in a variety of air conditioning applications. Despite the vast growth of modern… (more)

Seshadri, Swarooph

2012-01-01T23:59:59.000Z

228

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and...

229

Air Kerma - High Energy Xray  

Science Conference Proceedings (OSTI)

... such as high energy megavoltage x rays with peak voltages of at least 5 MV. Currently, air-kerma measurements at these high energies are not ...

2013-03-13T23:59:59.000Z

230

Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design  

SciTech Connect

In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

2007-06-28T23:59:59.000Z

231

Air toxics provisions of the Clean Air Act: Potential impacts on energy  

SciTech Connect

This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

Hootman, H.A.; Vernet, J.E.

1991-11-01T23:59:59.000Z

232

Air toxics provisions of the Clean Air Act: Potential impacts on energy  

SciTech Connect

This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

Hootman, H.A.; Vernet, J.E.

1991-11-01T23:59:59.000Z

233

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network (OSTI)

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate the economic attractiveness of retrofitting HVAC industrial energy recovery equipment.

Graham, E. L.

1980-01-01T23:59:59.000Z

234

Air distribution effectiveness with stratified air distribution systems  

E-Print Network (OSTI)

, Ph.D Qingyan Chen, Ph.D. Student Member ASHRAE Fellow ASHRAE ABSTRACT Stratified air distribution distribution systems has been taken into consideration by the ASHRAE standards through the air distribution effectiveness. For example, Table 6-1 of ANSI/ASHRAE Standard 62.1-2004 (ASHRAE 2004) defines the minimum

Chen, Qingyan "Yan"

235

In-Flight Oxidation of Aluminum in the Twin-Wire Electric Arc Process  

Science Conference Proceedings (OSTI)

This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (~2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3 to 12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.

Donna Post Guillen; Brian G. Williams

2006-03-01T23:59:59.000Z

236

Solid oxide fuel cell with monolithic core  

DOE Patents (OSTI)

A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

McPheeters, C.C.; Mrazek, F.C.

1988-08-02T23:59:59.000Z

237

Air conditioning: Impact on the built environment  

Science Conference Proceedings (OSTI)

The topics discussed in this book are: Introduction. 1. Air Conditioning - An Ever Expanding Market. 2. Building Envelope Design and Air Contitioning. 3. Air Conditioning and Energy - The CIBSE Building Energy Code. 4. Thermal Storage in Air Conditioning Systems. 5. Good Practice in the Design and Construction of Air Conditioning Systems. 6. Software for Air Conditioning Load Analysis and Design. 7. Lloyd's of London - The Architecture of Air Conditioning - Prediction of the Environment.

Sherratt, A.F.C.

1987-01-01T23:59:59.000Z

238

Regional emissions of air pollutants in China.  

SciTech Connect

As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

Streets, D. G.

1998-10-05T23:59:59.000Z

239

VSD/VFD Screw air compressor, Kunshan CompAirs Machinery Plant ...  

U.S. Energy Information Administration (EIA)

VSD/VFD Screw air compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and exporter in china, Professional ...

240

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary - Savannah River Site Tank 48H Waste Treatment Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S Wet Air Savan contain liquid w contain potent to the option tank w Bed S condu be pur The as Techn Techn as liste * W o o The Ele Site: S roject: S P Report Date: J ited States Savanna Why DOE r Oxidation Proc nnah River Tan ning approxima waste. The wa ns tetraphenylb tially flammable tank head spa s have been id waste: Wet Air O team Reformin cted to aid in d rsued for treatin What th ssessment team ology Element ology Readine ed below: Wet Air Oxidatio Reactor sys Offgas Trea To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Savannah Rive SRS Tank 48H Project July 2007 Departmen ah River E-EM Did This cess k 48H is a 1.3 ately 250, 000 aste is a salt so borate (TPB), w e concentration ce. Two poten dentified for this Oxidation (WAO ng (FBSR). Th deciding which ng the Tank 48

242

Protective supplied breathing air garment  

DOE Patents (OSTI)

A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

Childers, E.L.; Hortenau, E.F. von.

1984-07-10T23:59:59.000Z

243

Protective supplied breathing air garment  

DOE Patents (OSTI)

A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

Childers, Edward L. (Lakewood, CO); von Hortenau, Erik F. (Golden, CO)

1984-07-10T23:59:59.000Z

244

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

245

In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components  

DOE Patents (OSTI)

A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

Subramanian, Ramesh (Oviedo, FL)

2001-01-01T23:59:59.000Z

246

air conditioner | OpenEI  

Open Energy Info (EERE)

air conditioner air conditioner Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

247

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Ken Gray P.E. HQ AFCESA /CENR Air Force Renewable Energy Programs April, 2011 FUPWG "Make Energy a Consideration in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics  Air Force Energy Use  Air Force Facility Energy Center  Current RE Generation  Project Development System  Programmed RE Generation FY11-13  Goal Achievement 2 I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Air Force 2010 Energy Use The Air Force spent approximately $8.2 billion for energy in 2010; an increase of 22% from 2009 Energy Cost and Consumption Trends Energy Cost Breakdown Aviation 79% Facilities 17% 3 Aviation 84% Facilities 12% Vehicles & Equipment

248

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

249

NETL: IEP - Air Quality Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Air Quality Research Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Air Quality Research Innovations for Existing Plants Air Quality Research Ambient Monitoring Emissions Characterization Predictive Modeling & Evaluation Health Effects Regulatory Drivers Air Quality Research Reference Shelf The NETL Air Quality Research program is designed to resolve the scientific uncertainties associated with the atmospheric formation, distribution, and chemical transformation of pollutant emissions from today's coal-fired power plants, and to obtain a realistic assessment of the human health impacts of these emissions. Results of this research will help the DOE Office of Fossil Energy address policy questions regarding coal plant emissions and provide guidance for future emissions control R&D programs at

250

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

251

Multifunctional Oxides: Multifunctional Oxides: Synthesis and ...  

Science Conference Proceedings (OSTI)

Using Ultrafast Optical Spectroscopy to Explore Magneoelectric Coupling in Multiferroic Oxide Heterostructures: Y-M Sheu1; S. Trugman1; L Yan1; C-P Chuu 1; ...

252

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network (OSTI)

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement performance has not been considered adequately in pavement design. Part of the reason is that the process of asphalt oxidation in pavement is not well understood. This work focused on understanding the asphalt oxidation kinetics and on developing pavement oxidation model that predicts asphalt oxidation and hardening in pavement under environmental conditions. A number of asphalts were studied in laboratory condition. Based on kinetics data, a fast-rate ? constant-rate asphalt oxidation kinetics model was developed to describe the early nonlinear fast-rate aging period and the later constant-rate period of asphalt oxidation. Furthermore, reaction kinetics parameters for the fast-rate and constant-rate reactions were empirically correlated, leading to a simplified model. And the experimental effort and time to obtain these kinetics parameters were significantly reduced. Furthermore, to investigate the mechanism of asphalt oxidation, two antioxidants were studied on their effectiveness. Asphalt oxidation was not significantly affected. It was found that evaluation of antioxidant effectiveness based on viscosity only is not reliable. The asphalt oxidation kinetics model was incorporated into the pavement oxidation model that predicts asphalt oxidation in pavement. The pavement oxidation model mimics the oxidation process of asphalt in real mixture at pavement temperatures. A new parameter, diffusion depth, defined the oxygen diffusion region in the mastic. A field calibration factor accounted for the factors not considered in the model such as the effect of small aggregate particles on oxygen diffusion. Carbonyl area and viscosity of binders recovered from field cores of three pavements in Texas were measured and were used for model calibration and validation. Results demonstrated that the proposed model estimates carbonyl growth over time in pavement, layer-by-layer, quite well. Finally, this work can be useful for incorporating asphalt oxidation into a pavement design method that can predict pavement performance with time and for making strategic decisions such as optimal time for maintenance treatments.

Jin, Xin

2012-05-01T23:59:59.000Z

253

Corrosion of well casings in compressed air energy storage environments  

DOE Green Energy (OSTI)

The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

Elmore, R.P.; Stottlemyre, J.A.

1980-10-01T23:59:59.000Z

254

NETL: Water-Energy Interface - Improvement to Air2Air® Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling tower with relatively drier and cooler ambient air. This is done in an air-to-air heat exchanger made up of plastic sheets with two discreet air pathways. As the warm,...

255

Implications of mercury interactions with band-gap semiconductor oxides  

SciTech Connect

Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

2008-09-01T23:59:59.000Z

256

Final Report on the Clean Energy/Air Quality Integration Initiative Pilot Project of the U.S. Department of Energy's Mid-Atlantic Regional Office  

SciTech Connect

The MARO pilot project represents the first effort in the country to seek to obtain credit under a Clean Air Act (CAA) State Implementation Plan (SIP) for nitrogen oxide (NOx) emission reductions.

Jacobson, D.; O'Connor, P.; High, C.; Brown, J.

2006-08-01T23:59:59.000Z

257

Analysis of Efficiency Standards for Air Conditioners, Air ...  

U.S. Energy Information Administration (EIA)

Federal agencies to select ENERGY STAR and ... analyze the proposed air conditioner and heat pump standards, a new baseline ... square foot office building 0.4 to 0.8 ...

258

Lignite slime as activator in production of oxidized asphalts  

Science Conference Proceedings (OSTI)

The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

1988-03-01T23:59:59.000Z

259

Central Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Air Conditioning Central Air Conditioning Central Air Conditioning May 30, 2012 - 8:01pm Addthis Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. What does this mean for me? Central air conditioning systems are thermostatically controlled and convenient to use. Central air conditioning systems must be installed properly to operate efficiently. Central air conditioning systems can share ductwork with your heating system. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls,

260

Tips: Sealing Air Leaks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sealing Air Leaks Sealing Air Leaks Tips: Sealing Air Leaks May 16, 2013 - 5:03pm Addthis Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Air leaks can waste a lot of your energy dollars. One of the quickest energy-- and money-saving tasks you can do is caulk, seal, and weather strip all seams, cracks, and openings to the outside. Tips for Sealing Air Leaks Test your home for air tightness. On a windy day, carefully hold a lit incense stick or a smoke pen next to your windows, doors, electrical

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tips: Sealing Air Leaks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Sealing Air Leaks Tips: Sealing Air Leaks Tips: Sealing Air Leaks May 16, 2013 - 5:03pm Addthis Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Air leaks can waste a lot of your energy dollars. One of the quickest energy-- and money-saving tasks you can do is caulk, seal, and weather strip all seams, cracks, and openings to the outside. Tips for Sealing Air Leaks Test your home for air tightness. On a windy day, carefully hold a lit incense stick or a smoke pen next to your windows, doors, electrical

262

Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Room Air Conditioners July 1, 2012 - 5:35pm Addthis A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. What does this mean for me? Room air conditioners are less expensive and disruptive to install than central air conditioning systems. Room air conditioners can be a cost-effective alternative to central air conditioning systems. How does it work? Room air conditioners work by cooling one part of your home. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though

263

SolarAire LLC | Open Energy Information  

Open Energy Info (EERE)

SolarAire LLC Place Folsom, California Sector Solar Product Developing a solar thermal air conditioning unit. References SolarAire LLC1 LinkedIn Connections CrunchBase Profile...

264

DunoAir | Open Energy Information  

Open Energy Info (EERE)

DunoAir Jump to: navigation, search Name DunoAir Place Hessen, Germany Zip 6865 VX Sector Wind energy Product Doorwerth-based wind project developer. References DunoAir1 LinkedIn...

265

High-temperature oxidation of an alumina-coated Ni-base alloy  

Science Conference Proceedings (OSTI)

Alumina coatings were applied to Ni-20Cr (wt%) using combustion chemical vapor deposition (combustion CVD). Combustion CVD is an open air deposition technique performed in a flame. The oxidation kinetics of coated and uncoated specimens were measured by isothermal oxidation tests carried out in pure flowing air at temperatures of 800, 900, 1,000 and 1,100 C. The alumina coatings reduced the oxidation kinetics at all temperatures. The morphologies and compositions of the alumina coatings were characterized by transmission and scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy.

Hendrick, M.R.; Hampikian, J.M.; Carter, W.B.

1996-06-01T23:59:59.000Z

266

Indoor air radon  

SciTech Connect

This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references.

Cothern, C.R.

1990-01-01T23:59:59.000Z

267

Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect  

Science Conference Proceedings (OSTI)

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-09-15T23:59:59.000Z

268

buy vsd air compressor - high quality Manufacturers,Suppliers ...  

U.S. Energy Information Administration (EIA)

vsd air compressor trade offers directory and vsd air compressor business offers list. Trade leads from vsd air compressor Suppliers and vsd air ...

269

Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System  

SciTech Connect

Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

Tiax Llc

2006-02-28T23:59:59.000Z

270

Impact Dynamics of Oxidized Liquid Metal Drops  

E-Print Network (OSTI)

With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during the impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number $We^{\\star}$ is employed that uses an effective surface...

Xu, Qin; Jaeger, Heinrich M

2013-01-01T23:59:59.000Z

271

Indoor Air Quality and Volatile Organic Compounds  

Science Conference Proceedings (OSTI)

... The unit was sized to comply with the outdoor air requirements in ASHRAE Standard 62.2 Ventilation and Acceptable Indoor Air Quality in Low ...

2013-03-12T23:59:59.000Z

272

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name Aire Valley Environmental Place United Kingdom Product Leeds-based waste-to-energy project developer. References Aire Valley Environmental1 LinkedIn...

273

Radionuclide Air Emission Report for 2011  

E-Print Network (OSTI)

LBNL-470E-20Ì1 Radionuclide Air Emission Report for Preparedfor Emissions of Radionuclides Other Than Radon FromFugitive Air Emissions of Radionuclides from Diffuse Sources

Wahl, Linnea

2012-01-01T23:59:59.000Z

274

Radionuclide Air Emission Report for 2008  

E-Print Network (OSTI)

Fugitive Air Emissions of Radionuclides from Diffuse SourcesHazardous Air Pollutants (Radionuclides), Availability ofLBNL to Revise Its Radionuclide NESHAP Monitoring Approach,”

Wahl, Linnea

2009-01-01T23:59:59.000Z

275

Central Air conditioners | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Central Air conditioners Jump to: navigation, search TODO: Add description List of Central Air conditioners Incentives Retrieved...

276

Review of air flow measurement techniques  

E-Print Network (OSTI)

chamber, passive sampling, passive solar house, measurementhouse, we planed the distribution of fresh air, passivepassive perfluorocarbon tracer technique for determining air infiltration rates into houses

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

277

Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Concentrations in Air under 254 + 185 nm UV Irradiation Title Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Concentrations in Air under 254 + 185 nm UV Irradiation Publication Type Journal Article Year of Publication 2010 Authors Quici, Natalia, María L. Vera, Hyeok Choi, Gianluca Li Puma, Dionysios D. Dionysiou, Marta I. Litter, and Hugo Destaillats Journal Applied Catalysis B: Environmental Volume 95 Issue 3-4 Pagination 312-319 Date Published 04/2010 Keywords air treatment, environmental chemistry, exposure & risk group, heterogeneous photocatalysis, indoor environment department, indoors, oxidation, photocatalytic, tio2, titania, toluene, uvpco, volatile organic compounds

278

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Kansas Air Quality Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

All new air contaminant emission sources or alterations to emission sources that are required to be reported shall be in compliance with all applicable emission control regulations at the time that...

280

Manual on indoor air quality  

Science Conference Proceedings (OSTI)

This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

Diamond, R.C.; Grimsrud, D.T.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Kansas Air Quality Act (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall construct, own, operate, install, alter or use any air contaminant emission stationary source which, in accordance with rules and regulations, the secretary finds may cause or...

282

Nadir Correction of AIRS Radiances  

Science Conference Proceedings (OSTI)

A statistical method to correct for the limb effect in off-nadir Atmospheric Infrared Sounder (AIRS) channel radiances is described, using the channel radiance itself and principal components (PCs) of the other channel radiances to account for ...

Chee-Kiat Teo; Tieh-Yong Koh

2010-03-01T23:59:59.000Z

283

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

284

Long-Range Transport of Air Pollution under Light Gradient Wind Conditions  

Science Conference Proceedings (OSTI)

The long-range transport of air pollution on clew days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. ...

Hidemi Kurita; Kazutoshi Sasaki; Hisao Muroga; Hiromasa Ueda; Shinji Wakamatsu

1985-05-01T23:59:59.000Z

285

Air quality implications associated with the selection of power plants in the Pacific Northwest  

SciTech Connect

This assessment models emission inventories and pollutant emission rates for fossil fuel power plants. Ground-level air concentration of nitrogen oxides, sulfur dioxide and TSP are predicted. Pollutant deposition, non-acidic deposition, acidic deposition, ozone impacts, and visibility attenuation are considered. Human health effects, wildlife effects, effects on plants and crops, and residual environmental impacts are estimated from predicted emissions.

Baechler, M.C.; Glantz, C.S.; Edelmen, P.C.

1993-11-01T23:59:59.000Z

286

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

287

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

288

Use of oxides in thermochemical water-splitting cycles for solar heat sources. Copper oxides  

DOE Green Energy (OSTI)

Several oxides can be decomposed to oxygen and a lower oxide at temperatures that might be feasible with a solar heat source. Heat might be directly transmitted to the solid through an air window, rather than quartz, with release of oxygen to the atmosphere. The cycle utilizing CuO, I/sub 2/, and Mg (OH)/sub 2/ is similar to the previous Co/sub 3/O/sub 4/ - CoO cycle. We are concentrating on the reformation of CuO. At 448 K the rate is favorable; for example, the yield rises about linearly with time to 92% at 1.17 h and more slowly thereafter. The only difficulty is the formation of CuI as a metastable intermediate. The oxidation of CuI is thermodynamically very favorable, but its rate limits completion. Excess Mg(OH)/sub 2/ appears to increase the rate but not to the point where IO/sub 3//sup -/ oxidation of CuI competes with oxidation of Cu/sub 2/O. Nevertheless, the batch runs suggest that about 98% of the maximum possible MgI/sub 2/ could be formed. Cuprous iodide complexes formed in the concentrated MgI/sub 2/ may give the necessary improvement by providing a solution path for their oxidation by iodate. Work of others pertaining to the cycle is briefly discussed.

Jones, W.M.; Bowman, M.G.

1984-01-01T23:59:59.000Z

289

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

290

Corrosion Behavior of Interconnect Candidate Alloys under Air//Simulated Reformate Dual Exposure Conditions  

SciTech Connect

Metallic interconnects in solid oxide fuel cell (SOFC) stacks, perform in a very challenging dual environment, as they are simultaneously exposed to a reducing fuel (either hydrogen or a hydrocarbon fuel) on one side and air on the other side at elevated temperatures. Thus candidate metals or alloys for the interconnect applications must demonstrate excellent surface stability under the SOFC operating conditions. Following previous studies which led to an improved understanding of the oxidation/corrosion behavior of metals and alloys under air/hydrogen dual exposure conditions, PNNL recently investigated the behavior of Fe-Cr and Ni-Cr base interconnect candidate alloys in an air/simulated reformate dual environment. This paper reports and discusses the findings of this work.

Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

2008-11-28T23:59:59.000Z

291

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

Science Conference Proceedings (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

292

Partial oxidation catalyst  

DOE Patents (OSTI)

A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

2000-01-01T23:59:59.000Z

293

Further evaluation of a nitric oxide model  

SciTech Connect

Further verification of a predictive model for nitric oxide formation during turbulent combustion of coal containing fuels has been conducted. Computations for pulverized coal combustion in CO/sub 2/-O/sub 2/ mixtures of various percents have been completed. The predictions NO concentrations compare favorably with experimental measurements. Simulations were also completed for entrained-flow gasification in a laboratory-scale combustor. Again, reasonable agreement is demonstrated by comparing laboratory NO maps to predicted NO concentrations. The effects of pressure on NO concentrations were reliably predicted. Calculations were also completed for air-staged combustion in a one-dimensional, laboratory-scale reactor. In general, the trend of decreasing primary zone stoichiometric ratio and variation in staging air location were correctly predicted. The simplified global mechanism expressions of the NO model appear to sufficiently account for the formation and competing destruction of NO in both fuel-lean and fuel-rich environments for different reactor systems and conditions.

Boardman, R.D.; Smoot, L.D.

1987-01-01T23:59:59.000Z

294

Clean Air Interstate Rule (released in AEO2009)  

Reports and Publications (EIA)

CAIR is a cap-and-trade program promulgated by the EPA in 2005, covering 28 eastern U.S. States and the District of Columbia [29]. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help States meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

Information Center

2009-03-31T23:59:59.000Z

295

SOFC chromite sintering and electrolyte/air-electrode interface reactions  

DOE Green Energy (OSTI)

Air sintering of chromites was investigated in La(Sr)CrO{sub 3}, La(Ca)CrO{sub 3}, and Y(Ca)CrO{sub 3}. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La{sub 1-x}Sr{sub x}MnO{sub 3}. 5 refs.

Bates, J.L.; Chick, L.A.; Youngblood, G.E.

1992-04-01T23:59:59.000Z

296

SOFC chromite sintering and electrolyte/air-electrode interface reactions  

DOE Green Energy (OSTI)

Air sintering of chromites was investigated in La(Sr)CrO[sub 3], La(Ca)CrO[sub 3], and Y(Ca)CrO[sub 3]. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La[sub 1-x]Sr[sub x]MnO[sub 3]. 5 refs.

Bates, J.L.; Chick, L.A.; Youngblood, G.E.

1992-04-01T23:59:59.000Z

297

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network (OSTI)

Since terminal boxes do not have a modulation damper in constant volume (CV) air handling unit (AHU) systems, zone reheat coils have to be modulated to maintain the space temperature with constant supply airflow. This conventional control sequence causes a significant amount of reheat and constant fan power under partial load conditions. Variable Frequency Drives (VFDs) can be installed on these constant air volume systems. The fan speed can be modulated based on the maximum zone load. This paper present the procedure to control the supply fan speed and analyzes the thermal performance and major fan energy and thermal energy savings without expensive VAV retrofit through the actual system operation.

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

298

Air Breathing Direct Methanol Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Available for thumbnail of Feynman Center (505) 665-9090 Email Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol

299

Tips: Air Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Ducts Air Ducts Tips: Air Ducts June 24, 2013 - 7:23pm Addthis Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to higher energy bills. Your home's duct system is a branching network of tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other materials.

300

HIGH TEMPERATURE OXIDATION/CORROSION BEHAVIOR OF METALS AND ALLOYS UNDER A HYDROGEN GRADIENT  

Science Conference Proceedings (OSTI)

Metallic interconnects in SOFC stacks, perform in challenging environment, as they are simultaneously exposed to a reducing environment (e.g. hydrogen, reformate) on one side and an oxidizing environment (e.g. air) on the other side at elevated temperatures. To understand the oxidation/corrosion behavior of metals and alloys under the dual exposures and assess their suitability, selected metals and alloys, including nickel, Fe-Cr and Ni-Cr base chromia forming alloys, alumina forming Fecralloy®, were investigated. It was found that the oxidation/corrosion behavior of metals and alloys in the presence of dual environment can be significantly different in terms of scale structure and/or chemistry from their exposure in a single oxidizing or reducing atmosphere. The anomalous oxidization/corrosion is attributed to the presence of hydrogen diffusion flux from the fuel side to the air side under the influence of a hydrogen gradient across the metallic substrates.

Yang, Z Gary; Xia, Gordon; Walker, Matthew S.; Wang, Chong M.; Stevenson, Jeffry W.; Singh, Prabhakar

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved intake air filtration systems  

SciTech Connect

This report comprises the results of a project sponsored by the Pipeline Research Committee of the American Gas Association (Improved Intake Air Filtration Systems). The quality of the inlet air consumed by pipeline gas turbines plays a significant role in the performance, maintenance, and economy of turbine operations. The airborne contaminants may cause degradation of compressor blades and hot gas path components, primarily by erosion, corrosion, and fouling. Machines in the pipeline fleet have a typical average loss of 3.5% in output, chiefly caused by fouling of the gas turbine compressor. It also showed that: Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested.'' Filters which incorporated electrostatically charged fibers (achieved through the use of triboelectric [TE] effects) offered the most promising means for developing an improvement over paper media. The purpose of this program was to validate the use of new technology for self-cleaning air inlet filtration on gas turbine pumping applications. An approach utilizing triboelectrification of fabric filters was examined by testing to determine the penetration (efficiency), cleanability, pressure drop vs flow, and dust-holding capacity of seven pairs of filter cartridges: six fabric and one paper.

Lawson, C.C. (Lawson (Calvin C.), North Wildwood, NJ (United States))

1991-09-01T23:59:59.000Z

302

Advanced materials for solid oxide fuel cells  

DOE Green Energy (OSTI)

The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs.

Armstrong, T.; Stevenson, J.

1995-12-31T23:59:59.000Z

303

Considering Air Density in Wind Power Production  

E-Print Network (OSTI)

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Zénó Farkas

2011-03-11T23:59:59.000Z

304

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network (OSTI)

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

305

Dry oxidation and fracture of LWR spent fuels  

SciTech Connect

This report evaluates the characteristics of oxidation and fracture of light-water reactor (LWR) spent fuel in dry air. It also discusses their effects on radionuclide releases in the anticipated high-level waste repository environment. A sphere model may describe diffusion-limited formation of lower oxides, such as U{sub 4}O{sub 9}, in the oxidation of the spent fuel (SF) matrix. Detrimental higher oxides, such as U{sub 3}O{sub 8}, may not form at temperatures below a threshold temperature. The nucleation process suggests that a threshold temperature exists. The calculated results regarding fracture properties of the SF matrix agree with experimental observations. Oxidation and fracture of Zircaloy may not be significant under anticipated conditions. Under saturated or unsaturated aqueous conditions, oxidation of the SF matrix is believed to increase the releases of Pu-(239+240), Am-(241+243), C-14, Tc-99, I-129, and Cs-135. Under dry conditions, I-129 releases are likely to be small, unlike C-14, in lower oxides; Cl-36, Tc-99, I-129, and Cs-135 may be released fast in higher oxides. 79 refs.

Ahn, T.M.

1996-11-01T23:59:59.000Z

306

Investigation of Feasibility of All-Fresh Air Supply in an All-Air System  

E-Print Network (OSTI)

The feasibility of an all-fresh air supply in an all-air system is investigated in theory, and the problem of AHU-handling air in low efficiency in summer and winter conditions is analyzed. The air supply temperature is almost up to standards when a heat recovery unit is fixed in the air conditioning system.

Wang, J.; Yan, Z.

2006-01-01T23:59:59.000Z

307

inAir: Measuring and Visualizing Indoor Air Quality Sunyoung Kim & Eric Paulos  

E-Print Network (OSTI)

, air quality, domestic computing, health ACM Classification Keywords H.m. Information interfacesinAir: Measuring and Visualizing Indoor Air Quality Sunyoung Kim & Eric Paulos Human}@cs.cmu.edu ABSTRACT Good indoor air quality is a vital part of human health. Poor indoor air quality can contribute

Paulos, Eric

308

Air Showers and Geomagnetic Field  

E-Print Network (OSTI)

The influence of the geomagnetic field on the development of air showers is studied. The well known International Geomagnetic Reference Field was included in the AIRES air shower simulation program as an auxiliary tool to allow calculating very accurate estimations of the geomagnetic field given the geographic coordinates, altitude above sea level and date of a given event. Our simulations indicate that the geomagnetic deflections alter significantly some shower observables like, for example, the lateral distribution of muons in the case of events with large zenith angles (larger than 75 degrees). On the other hand, such alterations seem not to be important for smaller zenith angles. Global observables like total numbers of particles or longitudinal development parameters do not present appreciable dependences on the geomagnetic deflections for all the cases that were studied.

A. Cillis; S. J. Sciutto

1999-07-31T23:59:59.000Z

309

STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)  

SciTech Connect

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following two mitigation ideas are extensively investigated using computational fluid dynamic codes (CFD): (1) helium injection in the lower plenum, and (2) reactor enclosure opened at the bottom. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model is developed based on the GT-MHR 600MWt design. The simulation results showed that the helium replace the air flow into the core and significantly reduce the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully. The idea of the reactor enclosure with an opening at the bottom changes overall air-ingress mechanism from natural convection to molecular diffusion. This method can be applied to the current system by some design modification of the reactor cavity. To validate this concept, this study also uses CFD simulations based on the simplified 2-D geometry. The simulation results showed that the enclosure open at the bottom can successfully mitigate air-ingress into the reactor even after on-set natural circulation occurs.

Chang H. Oh

2011-03-01T23:59:59.000Z

310

Barium oxide, calcium oxide, magnesia, and alkali oxide free glass  

DOE Patents (OSTI)

A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

2013-09-24T23:59:59.000Z

311

Multifunctional Oxide Heterostructures  

Science Conference Proceedings (OSTI)

This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts.

Tsymbal, E Y [University of Nebraska, Lincoln; Dagotto, Elbio R [ORNL; Eom, Professor Chang-Beom [University of Wisconsin, Madison; Ramesh, Ramamoorthy [University of California, Berkeley

2012-01-01T23:59:59.000Z

312

METAL OXIDE NANOPARTICLES  

SciTech Connect

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

313

Defect Structure of Oxides  

Science Conference Proceedings (OSTI)

Table 1   Classification of electrical conductors: oxides, sulfides, and nitrides...2 O 4 , NiAl 2 O 4 , (Tl 2 O),

314

Oxidation of gallium arsenide  

DOE Patents (OSTI)

This invention relates to gallium arsenide semiconductors and, more particularly, to the oxidation of surface layers of gallium arsenide semiconductors for semiconductor device fabrication.

Hoffbauer, M.A.; Cross, J.B.

1991-11-16T23:59:59.000Z

315

Oxidation/Coatings  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... International Symposium on Ceramic Matrix Composites: Oxidation/ ... on combustor liners of a Solar Turbines' industrial gas turbine engine, ...

316

Selective methane oxidation over promoted oxide catalysts. Topical report, September 8, 1992--September 7, 1996  

DOE Green Energy (OSTI)

The objective of this research was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields using air at the oxidant under milder reaction conditions that heretofore employed over industrially practical oxide catalysts. The research carried out under this US DOE-METC contract was divided into the following three tasks: Task 1, maximizing selective methane oxidation to C{sub 2}{sup +} products over promoted SrO/La{sub 2}O{sub 3} catalysts; Task 2, selective methane oxidation to oxygenates; and Task 3, catalyst characterization and optimization. Principal accomplishments include the following: the 1 wt% SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} promoted catalyst developed here produced over 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550 C; V{sub 2}O{sub 5}/SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630 C with low CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and utilized to produce over 100 g methanol/kg catalyst/hr at 600 C with the presence of steam in the reactant mixture.

Klier, K.; Herman, R.G.

1996-12-31T23:59:59.000Z

317

Selective methane oxidation over promoted oxide catalysts. Quarterly report, March--May 1995  

DOE Green Energy (OSTI)

The objective of this research is the selective oxidative coupling of methane to C{sub 2}H{sub 4} hydrocarbons and oxygenates, in particular formaldehyde and methanol. Air, oxygen or carbon dioxide, rather than nitrous oxide will be utilized as the oxidizing gas at high gas hourly space velocity, but mild reaction conditions (500-700 {degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. The research is divided into the following three tasks: (1) maximizing selective methane oxidation to C{sub 2}H{sub 4} products over promoted Sr/La{sub 2}O{sub 3}; (2) selective methane oxidation to oxygenates; and (3) catalyst characterization and optimization. Task 1 dealt with the preparation, testing, and optimization of acidic promoted lanthana-based catalysts for the synthesis of C{sub 2}H{sub 4} hydrocarbons and is essentially completed. Task 2 aims at the formation and optimization of promoted catalysts for the synthesis of oxygenates, in particular formaldehyde and methanol. Task 3 involves characterization of the most promising catalysts so that optimization can be achieved under Task 2. Accomplishments for this period are presented.

Klier, K.; Herman, R.G.; Wang, Chaun-Bao; Shi, Chunlei; Sun, Qun

1995-08-01T23:59:59.000Z

318

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

319

Air Sealing Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Sealing Your Home Air Sealing Your Home Air Sealing Your Home November 26, 2013 - 6:22pm Addthis Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. What does this mean for me? Save money and energy by air sealing your house. Caulking and weatherstripping are simple, effective ways of sealing air leaks in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing techniques that offer quick returns on investment, often one year or less. Caulk is

320

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Prediction of nitric oxide in advanced combustion systems  

SciTech Connect

A computer model to predict nitric oxide (NO) concentrations has been applied to advanced-concept pulverized coal systems and evaluated by comparing model predictions with experimental data. Specifically, the effects of pressure, stoichiometric ratio, air stage location, temperature, and inert gas type on NO concentrations were predicted by the model and compared to experimental data. This work is a continuation of previous model evaluations, which found favorable prediction of NO concentrations for variation of stoichiometric air/fuel ratio, coal moisture content, particle size, and swirling and nonswirling diffusion flames.

Boardman, R.D.; Smoot, L.D.

1988-09-01T23:59:59.000Z

322

Optimal Outside Air Control for Air Handling Units with Humidity Control  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have the (air) economizer cycle to use outside air for free cooling under certain outside air conditions. Ideally the economizer cycle is enabled if outside air enthalpy is less than return air enthalpy. During the economizer cycle, outside air flow is modulated to seek mixed air temperature at a supply air temperature set point. Since the outside air may be dry during the economizer cycle, humidification is required for AHUs with humidity control. As a result, the economizer cycle saves cooling energy but requires excessive steam for humidification. Therefore the economizer cycle may not be economical. An optimal outside air control method is developed to minimize the total cost of mechanical cooling and steam humidification. The impacts of chilled water price, steam price, and space minimum humidity set point are analyzed. Finally the optimal outside air control zones are presented on a psychrometric chart under differential energy price ratios and minimum indoor humidity set points.

Wang, G.; Liu, M.

2006-01-01T23:59:59.000Z

323

Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks  

Science Conference Proceedings (OSTI)

The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-06-01T23:59:59.000Z

324

I) EXAS AIR CONTROL BLAR  

NLE Websites -- All DOE Office Websites (Extended Search)

I) EXAS AIR CONTROL BLAR 6330 HWY. 290 EAST, AUSTIN, TEXAS 78723, 512451-5711 DICK WHmINGTON, P.E. JOHN L. BLAIR CHAIRMAN MARCUS M. KEY, M.D. CALVIN 8. PARNELL, JR., Ph.D., P.E....

325

Air-leakage control manual  

Science Conference Proceedings (OSTI)

This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the ``how and why`` of controlling air leakage by means of a system called the ``Simple Caulk and Seal`` (SIMPLE{center_dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center_dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

Maloney, J. [Washington State Energy Office, Olympia, WA (United States)

1991-05-01T23:59:59.000Z

326

Air-Leakage Control Manual.  

Science Conference Proceedings (OSTI)

This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the how and why'' of controlling air leakage by means of a system called the Simple Caulk and Seal'' (SIMPLE{center dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

Maloney, Jim; Washington State Energy Office; United States. Bonneville Power Administration.

1991-05-01T23:59:59.000Z

327

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

328

ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS  

SciTech Connect

Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

Chang H Oh; Eung S Kim

2011-09-01T23:59:59.000Z

329

Oxidation Resistance of Low Carbon Stainless Steel for Applications in Solid Oxide Fuel Cells  

SciTech Connect

Alloys protected from corrosion by Cr2O3 (chromia) are recognized as potential replacements for LaCrO3–based ceramic materials currently used as bipolar separators (interconnects) in solid oxide fuel cells (SOFC). Stainless steels gain their corrosion resistance from the formation of chromia, when exposed to oxygen at elevated temperatures. Materials for interconnect applications must form uniform conductive oxide scales at 600–800o C while simultaneously exposed to air on the cathode side and mixtures of H2 - H2O, and, possibly, CHx and CO - CO2 on the anode side. In addition, they must possess good physical, mechanical, and thermal properties. Type 316L stainless steel was selected for the baseline study and development of an understanding of corrosion processes in complex gas environments. This paper discusses the oxidation resistance of 316L stainless steel exposed to dual SOFC environment for ~100 hours at ~900oK. The dual environment consisted of dry air on the cathode side of the specimen and a mixture of H2 and 3% H2O on the anode side. Post - corrosion surface evaluation involved the use of optical and scanning electron microscopy and x-ray diffraction analyses.

Ziomek-Moroz, Margaret; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Matthes, Steven A.; Dunning, John S.; Alman, David E.; Singh, P. (PNNL)

2003-10-01T23:59:59.000Z

330

Air Pollution Control (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control (Oklahoma) Air Pollution Control (Oklahoma) Air Pollution Control (Oklahoma) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Oklahoma Program Type Environmental Regulations Provider Environmental Quality This chapter enumerates primary and secondary ambient air quality standards and the significant deterioration increments. Significant deterioration refers to an increase in ambient air pollution above a baseline plus a specific increment allowed for one of three classes of areas. It is required for potential sources of air contaminants to register with the

331

AIR FORCE SPECIAL WEAPONS CENTER  

Office of Legacy Management (LM)

HEADQUARTERS aII?y HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command a n d C o n t r o l 5 O p e r a t i o n s , G r a n d ' J u n c t i o n M u n i c i p a l A i r p o r t . . ' A i r O p e r a t i o n s C e n t e r , He1 i c o p t e r P a d / ' 7.. - . M a t e r i e l : ' 8 M e d i c a l 1 9 R a d - S a f e C r a s h - R e s c u e S e c u r i t y 2 1 C o m m u n i c a t i o n s ~ d m i n i s t r a t ' i o n Summary ATTACHMENTS ATTACHMENT SUBJECI' 1 F r a g O r d e r 69-1 ( ~ r o j ' e c t RULISON) , AFSWC D

332

Screw Air Compressor 220v, Screw Air Compressor 220v Suppliers ...  

U.S. Energy Information Administration (EIA)

Source Top Quality Screw Air Compressor 220v Suppliers, screw mini air compressor 220v Companies, atlas copco screw compressor Manufacturers. Welcome. ...

333

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

334

TANGO ARRAY An Air Shower Experiment in Buenos Aires  

E-Print Network (OSTI)

A new Air Shower Observatory has been constructed in Buenos Aires during 1999, and commissioned and set in operation in 2000. The observatory consists of an array of four water \\v{C}erenkov detectors, enclosing a geometrical area of $\\sim$ 30.000 m$^{2}$, and is optimized for the observation of cosmic rays in the ``knee'' energy region. The array detects $\\sim$ 250 to $\\sim$ 1500 showers/day, depending on the selected triggering condition. In this paper, the design and construction of the array, and the automatic system for data adquisition, daily calibration, and monitoring, are described. Also, the Monte Carlo simulations performed to develop a shower database, as well as the studies performed using the database to estimate the response and the angular and energy resolutions of the array, are presented in detail.

P. Bauleo; C. Bonifazi; A. Filevich; A. Reguera

2001-04-20T23:59:59.000Z

335

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

336

Device for staged carbon monoxide oxidation  

DOE Patents (OSTI)

A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

Vanderborgh, Nicholas E. (Los Alamos, NM); Nguyen, Trung V. (College Station, TX); Guante, Jr., Joseph (Denver, CO)

1993-01-01T23:59:59.000Z

337

Simulation model air-to-air plate heat exchanger  

Science Conference Proceedings (OSTI)

A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

Wetter, Michael

1999-01-01T23:59:59.000Z

338

Thermal oxidation of tungsten-based sputtered coatings  

SciTech Connect

The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO{sub 3} and WO{sub x} phases detected in all the oxidized coatings, TiO{sub 2} and NiWO{sub 4} were also detected for W-Ti and W-Ni films, respectively. WO{sub x} was present as an inner protective compact layer covered by the porous WO{sub 3} oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E{sub a} = 234 and 218 kJ/mol, respectively, as opposed to E{sub a} {approx} 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO{sub 2}, and the formation of the external, more protective layer of NiWO{sub 4} for W-N-Ni coatings.

Louro, C.; Cavaleiro, A. [Dept. de Engenharia Mecanica-Polo II, Coimbra (Portugal)

1997-01-01T23:59:59.000Z

339

Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering  

SciTech Connect

Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

Dr. Paul A. Lessing

2012-03-01T23:59:59.000Z

340

Review of the oxidation rate of zirconium alloys.  

Science Conference Proceedings (OSTI)

The oxidation of zirconium alloys is one of the most studied processes in the nuclear industry. The purpose of this report is to provide in a concise form a review of the oxidation process of zirconium alloys in the moderate temperature regime. In the initial ''pre-transition'' phase, the surface oxide is dense and protective. After the oxide layer has grown to a thickness of 2 to 3 {micro}m's, the oxidation process enters the ''post-transition'' phase where the density of the layer decreases and becomes less protective. A compilation of relevant data suggests a single expression can be used to describe the post-transition oxidation rate of most zirconium alloys during exposure to oxygen, air, or water vapor. That expression is: Oxidation Rate = 13.9 g/(cm{sup 2}-s-atm{sup -1/6}) exp(-1.47 eV/kT) x P{sup 1/6} (atm{sup 1/6}).

Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA); Nilson, Robert H. (Sandia National Laboratories, Livermore, CA)

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

342

Evolution of US air cargo productivity  

E-Print Network (OSTI)

This thesis provides an overview of the US air cargo industry since airline deregulation in 1978, including a brief overview of the historical evolution of air cargo transport in the US from the early 1900s until the late ...

Donatelli, David J

2012-01-01T23:59:59.000Z

343

Detecting Air Leaks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detecting Air Leaks Detecting Air Leaks Detecting Air Leaks September 27, 2012 - 6:39pm Addthis For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. You may already know where some air leakage occurs in your home, such as an under-the-door draft, but you'll need to find the less obvious gaps to properly air seal your home. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. A blower door test, which depressurizes a home, can

344

Improving Regional Air Quality with Wind Power  

Wind Powering America (EERE)

Improving Regional Air Quality with Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory * Clean Air Act (CAA) framework * Air quality challenges * CAA policies as market drivers * Met. Wash. Council of Governments (MWCOG) case study * Environmental Protection Agency (EPA) guidance on State Implementation Plan (SIP) credit for EERE * Model SIP documentation for wind purchases * Related marketing innovations Overview Overview * CAA requires regional air quality plans (SIPs) * "Window of opportunity" - Revised SIPs required by 2006/2007 to meet new 8-hour ozone and PM standards - August 2004 EPA guidance and NREL model SIP documentation for wind purchases Clean Air Act Framework Clean Air Act Framework

345

Protective supplied-breathing-air garment  

DOE Patents (OSTI)

A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

Childers, E.L.; von Hortenau, E.F.

1982-05-28T23:59:59.000Z

346

Duct/Air sealing | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DuctAir sealing Jump to: navigation, search TODO: Add description List of DuctAir sealing...

347

Catalysts for Destruction of Air Pollutants  

NLE Websites -- All DOE Office Websites (Extended Search)

Destruction of Air Pollutants Catalysts for Destruction of Air Pollutants U.S. industries and the U.S. Department of Energy must manage a variety of off-gas wastes consisting of...

348

Air Pollution Control Rules (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The listed rules were enacted as directed by the Air Pollution Control Act. Together, these rules guide the monitoring, permitting and compliance enforcement of air quality in the state.

349

Quantifying Precipitation Suppression Due to Air Pollution  

Science Conference Proceedings (OSTI)

Urban air pollution and industrial air pollution have been shown qualitatively to suppress rain and snow. Here, precipitation losses over topographical barriers downwind of major coastal urban areas in California and in the land of Israel that ...

Amir Givati; Daniel Rosenfeld

2004-07-01T23:59:59.000Z

350

Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

you need to mount the air conditioner at the narrow end of a long room, then look for a fan control known as "Power Thrust" or "Super Thrust" that sends the cooled air farther...

351

Seneca Compressed Air Energy Storage (CAES) Project  

DOE Green Energy (OSTI)

This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

None

2012-11-30T23:59:59.000Z

352

Ambient Air Quality Criteria (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Manitoba Ambient Air Quality Criteria schedule lists maximum time-based pollutant concentration levels for the protection and preservation of ambient air quality within the Province of Manitoba...

353

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOE Patents (OSTI)

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

Isenberg, A.O.

1987-03-10T23:59:59.000Z

354

ARM - Campaign Instrument - dri-air  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign Instrument : Desert Research Institute Airborne Aerosol Instruments (DRI-AIR) Instrument Categories Aerosols, Airborne Observations Campaigns Aerosol IOP ...

355

South Coast Air Quality Management District  

Science Conference Proceedings (OSTI)

South Coast Air Quality Management District. NVLAP Lab Code: 101567-0. Address and Contact Information: 21865 Copley ...

2013-08-09T23:59:59.000Z

356

Do filters pollute the air? – Part 1  

E-Print Network (OSTI)

Air Infiltration Glossary-Italian Edition. TechnicalNote AIC 5.3]. Glossary-Italian Edition. Technical Note AIC

Bekö, Gabriel; Schiavon, Stefano

2008-01-01T23:59:59.000Z

357

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network (OSTI)

Through Sash/Frame Cracks . Window Operation Types . . . . .Window Operation Types . . . . .Air Leakage of Installed Windows Scattergram of Field

Weidt, John

2013-01-01T23:59:59.000Z

358

Analysis of U.S. residential air leakage database  

E-Print Network (OSTI)

installing air and vapor barriers, and sealing ducts.that will reduce air in?ltration such as sealing air leaks,

Chan, Wanyu R.; Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.

2003-01-01T23:59:59.000Z

359

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

360

Investigation of residential central air conditioning load shapes in NEMS  

E-Print Network (OSTI)

of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Performance of underfloor air distribution: Results of a field study  

E-Print Network (OSTI)

Refrigerating, and Air Conditioning Engineers. AtlantaRefrigerating, and Air Conditioning Engineers. AtlantaRefrigerating, and Air-Conditioning Engineers, Inc. ,

Fisk, William; Faulkner, David; Sullivan, Douglas

2004-01-01T23:59:59.000Z

362

Air Products Hydrogen Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems More Documents & Publications Quadrennial...

363

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions...

364

buy Adekom VSD Air Compressor - high quality Manufacturers ...  

U.S. Energy Information Administration (EIA)

Adekom VSD Air Compressor trade offers directory and Adekom VSD Air Compressor business offers list. Trade leads from Adekom VSD Air Compressor ...

365

NETL: Air Quality III Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality III Conference - September 12, 2002 Air Quality III Conference - September 12, 2002 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

366

Airvest's Breath of Fresh Air  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 The Cutting Edge: Airvest's Breath of Fresh Air Spray booths are a common sight in the industrial sector. Designed to remove pollutants during industrial processes such as spray painting or welding, a booth is a rectangular enclosure open on one side where the worker stands, and equipped on the opposite wall with a fan and filter arrangement to suck away the dirty air. The full-size mannequin in these photographs simulates a worker in a spray booth facing the exhaust filters. In experiments designed by LBL researcher Ashok Gadgil, smoke was released in front of the mannequin to simulate the spraying of paint in the booth. The photo on the left shows the spray booth during standard operation. The smoke-representing a pollutant-is entrained in the eddy that forms in

367

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

368

Clean Air Act, Section 309  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEAN AIR ACT § 309* CLEAN AIR ACT § 309* §7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and responsibilities granted pursuant to this chapter or other provisions of the authority of Administrator, contained in any (1) legislation proposed by any Federal department or agency, (2) newly authorized Federal projects for construction and any major Federal agency action (other than a project for construction) to which section 4332(2)(C) of this title applies, and (3) proposed regulations published by any department or agency of the Federal Government. Such written comment shall be made public at the conclusion of any such review. (b) In the event the Administrator determines that any such legislation, action, or regulation

369

Air pollution and lung cancer  

SciTech Connect

Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

Boehm, G.M.

1982-01-01T23:59:59.000Z

370

Compressed Air Audits using AIRMaster  

E-Print Network (OSTI)

Air compressors are a significant industrial energy user and therefore a prime target for industrial energy audits. The project goal was to develop a software tool, AIRMaster, and supporting methodology for performing compressed air system audits. Seven field audits were conducted to refine the software and methodology as well as assess the savings potential of six common Operation and Maintenance measures. Audit results yielded significant savings with short payback periods. Total estimated savings for the project were 4,056,000 kWh or 49.2% of annual compressor energy for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Capital benefits of delaying or avoiding the cost of a new compressor might double the energy benefits if a new compressor is being considered. The methodology proved to be a simple and effective audit tool.

Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

1997-04-01T23:59:59.000Z

371

Feasibility study: Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes  

DOE Green Energy (OSTI)

This study presents a preliminary evaluation of the technical and economic feasibility of selected conceptual processes for pyrolytic conversion of organic feedstocks or the decomposition/detoxification of hazardous wastes by coupling the process to the geopressured-geothermal resource. The report presents a detailed discussion of the resource and of each process selected for evaluation including the technical evaluation of each. A separate section presents the economic methodology used and the evaluation of the technically viable process. A final section presents conclusions and recommendations. Three separate processes were selected for evaluation. These are pyrolytic conversion of biomass to petroleum like fluids, wet air oxidation (WAO) at subcritical conditions for destruction of hazardous waste, and supercritical water oxidation (SCWO) also for the destruction of hazardous waste. The scientific feasibility of all three processes has been previously established by various bench-scale and pilot-scale studies. For a variety of reasons detailed in the report the SCWO process is the only one deemed to be technically feasible, although the effects of the high solids content of the geothermal brine need further study. This technology shows tremendous promise for contributing to solving the nation's energy and hazardous waste problems. However, the current economic analysis suggests that it is uneconomical at this time. 50 refs., 5 figs., 7 tabs.

Propp, W.A.; Grey, A.E.; Negus-de Wys, J.; Plum, M.M.; Haefner, D.R.

1991-09-01T23:59:59.000Z

372

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

373

Strategy Guideline: Compact Air Distribution Systems  

SciTech Connect

This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

Burdick, A.

2013-06-01T23:59:59.000Z

374

Intelligent pairing assistant for air operation centers  

Science Conference Proceedings (OSTI)

Within an Air Operations Center (AOC), planners make crucial decisions to create the air plan for any given day. They are expected to complete the plan in part by pairing targeting or collection tasks with the available platforms. Any assistance these ... Keywords: air operations center, intelligent user interface, pairing, reinforcement learning

Jeremy Ludwig; Eric Geiselman

2012-02-01T23:59:59.000Z

375

Air breathing direct methanol fuel cell  

DOE Patents (OSTI)

An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

Ren, Xiaoming (Los Alamos, NM)

2002-01-01T23:59:59.000Z

376

Workshop on indoor air quality research needs  

Science Conference Proceedings (OSTI)

Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

Not Available

1980-01-01T23:59:59.000Z

377

Air Conditioner Compressor Performance Model  

SciTech Connect

During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

Lu, Ning; Xie, YuLong; Huang, Zhenyu

2008-09-05T23:59:59.000Z

378

Residential Indoor Air Background Data  

Science Conference Proceedings (OSTI)

Soil vapor intrusion, the migration of volatile chemicals from contaminated soil or groundwater into overlying buildings, has become one of the primary exposure pathways of concern for state and federal environmental agencies regulating contaminated sites in the USA. Regulators are requesting comprehensive evaluation of the subsurface vapor-to-indoor air pathway for currently occupied buildings, areas which may be developed in the future, and closed sites for which this pathway was not previously evaluat...

2007-03-16T23:59:59.000Z

379

Clean Air Act. Revision 5  

SciTech Connect

This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

Not Available

1994-02-15T23:59:59.000Z

380

Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air  

SciTech Connect

The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

Cunningham, M.E.; Thomas, L.E.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Selective Catalytic Reduction Mercury Oxidation Data to Support Catalyst Management  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) mercury oxidation can be pivotal for Mercury and Air Toxics Standards compliance, especially for those units that rely on co-benefits as their primary method of mercury control. Much work has been done historically to understand the mercury behavior across SCRs, especially as a function of operating conditions, and in particular, flue gas composition. The present work seeks to integrate the accumulated knowledge into a practical document that will aid utilities in ...

2013-11-13T23:59:59.000Z

382

Open end protection for solid oxide fuel cells  

DOE Patents (OSTI)

A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).

Zafred, Paolo R. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA); Tomlins, Gregory W. (Pittsburgh, PA); Toms, James M. (Irwin, PA); Folser, George R. (Lower Burrell, PA); Schmidt, Douglas S. (Pittsburgh, PA); Singh, Prabhakar (Export, PA); Hager, Charles A. (Zelienople, PA)

2001-01-01T23:59:59.000Z

383

METAL INTERCONNECTS FOR SOLID OXIDE FUEL CELL POWER SYSTEMS  

DOE Green Energy (OSTI)

Interconnect development is identified by the U.S. Department of Energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm{sup 2} at 750 C in air. The oxide scale was found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm{sup 2} in humidified hydrogen at 750 C, and was stable through multiple thermal cycles. Analysis of the scale after exposure to various atmospheres showed the presence of a stable composition. When exposed to a dual (air and hydrogen) atmosphere however, the scale composition contains a mixture of phases. Based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

S. Elangovan; S. Balagopal; M. Timper; I. Bay; D. Larsen; J. Hartvigsen

2003-10-01T23:59:59.000Z

384

Multi-stage, isothermal CO preferential oxidation reactor  

DOE Patents (OSTI)

A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

Skala, Glenn William (Churchville, NY); Brundage, Mark A. (Pittsford, NY); Borup, Rodney Lynn (East Rochester, NY); Pettit, William Henry (Rochester, NY); Stukey, Kevin (W. Henrietta, NY); Hart-Predmore, David James (Rochester, NY); Fairchok, Joel (Alexander, NY)

2000-01-01T23:59:59.000Z

385

Hybrid regional air pollution models  

SciTech Connect

This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

Drake, R.L.

1980-03-01T23:59:59.000Z

386

Storage of LWR (light-water-reactor) spent fuel in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

1989-12-01T23:59:59.000Z

387

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers Title Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers Publication Type Report LBNL Report Number LBNL-4951E Year of Publication 2011 Authors Coles, Henry C., Tae Won Han, Phillip N. Price, Ashok J. Gadgil, and William F. Tschudi Date Published 03/2011 Abstract There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: "closed" and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percentage of the recirculation air is "make-up" air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both "closed" and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups:

388

Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl Injector for Ultra-Low Emissions Gas Turbines Title Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl...

389

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

E-Print Network (OSTI)

Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

Walker, Iain

2001-01-01T23:59:59.000Z

390

Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization  

SciTech Connect

The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethite and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.

Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

2009-07-01T23:59:59.000Z

391

Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System  

E-Print Network (OSTI)

This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system is offered based on the demands of saving energy. The two systems are very similar, which is analyzed in this paper. Using actual engineering, we compute the air flow rate, cold load and energy consumption in detail, and provide some good conclusions.

Guang, L.; Li, R.

2006-01-01T23:59:59.000Z

392

Oxidative Tritium Decontamination System  

DOE Patents (OSTI)

The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

2006-02-07T23:59:59.000Z

393

Analysis of Lipid Oxidation  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation is essential for further developments in analytical methodology and hyphenated techniques, with which more understanding of the reaction kinetics, mechanism, and implications will take place. ...

394

Cathodoluminescence of uranium oxides  

SciTech Connect

The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

Winer, K.; Colmenares, C.; Wooten, F.

1984-08-09T23:59:59.000Z

395

The Australian Air Quality Forecasting System. Part II: Case Study of a Sydney 7-Day Photochemical Smog Event  

Science Conference Proceedings (OSTI)

The performance of the Australian Air Quality Forecasting System (AAQFS) is examined by means of a case study of a 7-day photochemical smog event in the Sydney region. This was the worst smog event for the 2000/ 01 oxidant season, and, because of ...

G. D. Hess; K. J. Tory; M. E. Cope; S. Lee; K. Puri; P. C. Manins; M. Young

2004-05-01T23:59:59.000Z

396

Clean Air Act | Open Energy Information  

Open Energy Info (EERE)

Clean Air Act Clean Air Act Jump to: navigation, search Statute Name Clean Air Act Year 1970 Url CAA.jpg Description Congress passed the CAA in 1970 in order to combat air pollution in the United States and protect the health and general welfare of United States citizens against air pollutants. References CAA[1] Federal Oil and Gas[2] Contents 1 Introduction 2 Title I Air Pollution Prevention 3 Title II Emission Standards for Moving Sources 4 Title III General Provisions 5 Title IV Acid Deposition Control 6 Title V Permits 7 Title VI Stratospheric Ozone Protection 8 References Introduction The Clean Air Act was enacted by congress in 1990. Since then only minor changes have been made. The act is just a law ensuring that the EPA will follow certain guidelines and definitions for protecting and improving the

397

Tips: Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Air Conditioners Tips: Air Conditioners Tips: Air Conditioners June 24, 2013 - 6:31pm Addthis Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer months. In fact, a room air conditioner that's too big for the area it is supposed to cool will perform less efficiently and less effectively than a smaller, properly sized unit. The reason: an oversized unit will cool the room(s) to the thermostat set-point before proper dehumidification occurs, making the area feel "clammy"

398

Air Sealing Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Home Your Home Air Sealing Your Home November 26, 2013 - 6:22pm Addthis Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. What does this mean for me? Save money and energy by air sealing your house. Caulking and weatherstripping are simple, effective ways of sealing air leaks in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing techniques that offer quick returns on investment, often one year or less. Caulk is

399

Air Products Chemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Air Products Chemicals Inc Air Products Chemicals Inc Jump to: navigation, search Name Air Products & Chemicals Inc Place Allentown, Pennsylvania Zip 18195 Sector Hydro, Hydrogen, Services Product A global supplier of merchant hydrogen with a portfolio of products, services and solutions providing gases, performance materials and chemical intermediates. References Air Products & Chemicals Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Air Products & Chemicals Inc is a company located in Allentown, Pennsylvania . References ↑ "Air Products & Chemicals Inc" Retrieved from "http://en.openei.org/w/index.php?title=Air_Products_Chemicals_Inc&oldid=341937

400

Tips: Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Air Conditioners Tips: Air Conditioners Tips: Air Conditioners June 24, 2013 - 6:31pm Addthis Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer months. In fact, a room air conditioner that's too big for the area it is supposed to cool will perform less efficiently and less effectively than a smaller, properly sized unit. The reason: an oversized unit will cool the room(s) to the thermostat set-point before proper dehumidification occurs, making the area feel "clammy"

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alpha-environmental continuous air monitor inlet  

DOE Patents (OSTI)

A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

Rodgers, John C. (Santa Fe, NM)

2003-01-01T23:59:59.000Z

402

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

403

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

404

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

405

Air-Con International: Noncompliance Determination and Proposed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con private label do not comport...

406

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How...

407

Biological Air Emissions Control for an Energy Efficient Forest Products Industry of the Future  

Science Conference Proceedings (OSTI)

The U.S. wood products industry is a leader in the production of innovative wood materials. New products are taking shape within a growth industry for fiberboard, plywood, particle board, and other natural material-based energy efficient building materials. However, at the same time, standards for clean air are becoming ever stricter. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) during production of wood products (including methanol, formaldehyde, acetylaldehyde, and mercaptans) must be tightly controlled. Conventional VOC and HAP emission control techniques such as regenerative thermal oxidation (RTO) and regenerative catalytic oxidation (RCO) require significant amounts of energy and generate secondary pollutants such as nitrogen oxides and spent carbon. Biological treatment of air emissions offers a cost-effective and sustainable control technology for industrial facilities facing increasingly stringent air emission standards. A novel biological treatment system that integrates two types of biofilter systems, promises significant energy and cost savings. This novel system uses microorganisms to degrade air toxins without the use of natural gas as fuel or the creation of secondary pollutants. The replacement of conventional thermal oxidizers with biofilters will yield natural gas savings alone in the range of $82,500 to $231,000 per year per unit. Widespread use of biofilters across the entire forest products industry could yield fuel savings up to 5.6 trillion Btu (British thermal units) per year and electricity savings of 2.1 trillion Btu per year. Biological treatment systems can also eliminate the production of NOx, SO2, and CO, and greatly reduce CO2 emissions, when compared to conventional thermal oxidizers. Use of biofilters for VOC and HAP emission control will provide not only the wood products industry but also the pulp and paper industry with a means to cost-effectively control air emissions. The goal of this project was to demonstrate a novel sequential treatment technology that integrates two types of biofilter systems – biotrickling filtration and biofiltration – for controlling forest product facility air emissions with a water-recycling feature for water conservation. This coupling design maximizes the conditions for microbial degradation of odor causing compounds at specific locations. Water entering the biotrickling filter is collected in a sump, treated, and recycled back to the biotrickling filter. The biofilter serves as a polishing step to remove more complex organic compounds (i.e., terpenes). The gaseous emissions from the hardboard mill presses at lumber plants such as that of the Stimson Lumber Company contain both volatile and condensable organic compounds (VOC and COC, respectively), as well as fine wood and other very small particulate material. In applying bio-oxidation technology to these emissions Texas A&M University-Kingsville (TAMUK) and Bio•Reaction (BRI) evaluated the potential of this equipment to resolve two (2) control issues which are critical to the industry: • First, the hazardous air pollutant (HAP) emissions (primarily methanol and formaldehyde) and • Second, the fine particulate and COC from the press exhaust which contribute to visual emissions (opacity) from the stack. In a field test in 2006, the biological treatment technology met the HAP and COC control project objectives and demonstrated significantly lower energy use (than regenerative thermal oxidizers (RTOs) or regenerative catalytic oxidizers (RCOs), lower water use (than conventional scrubbers) all the while being less costly than either for maintenance. The project was successfully continued into 2007-2008 to assist the commercial partner in reducing unit size and footprint and cost, through added optimization of water recycle and improved biofilm activity, and demonstration of opacity removal capabilities.

Jones, K; Boswell, J.

2009-05-28T23:59:59.000Z

408

ADVANCED OXIDATION PROCESS  

DOE Green Energy (OSTI)

The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

Dr. Colin P. Horwitz; Dr. Terrence J. Collins

2003-11-04T23:59:59.000Z

409

Numerical Analysis of a Cold Air Distribution System  

E-Print Network (OSTI)

Cold air distribution systems may reduce the operating energy consumption of air-conditioned air supply system and improve the outside air volume percentages and indoor air quality. However, indoor temperature patterns and velocity field are easily non-uniform so that residents usually feel uncomfortable. The distribution of indoor airflow by cold air distribution is researched in this paper. We study indoor air distribution under different low temperature air supply conditions by numerical simulation. The simulated results agree well with the experiments.

Zhu, L.; Li, R.; Yuan, D.

2006-01-01T23:59:59.000Z

410

Air Force Announces Funding for Alternative Energy Research ...  

Air Force Announces Funding for Alternative Energy Research & Development. December 16, 2013. The Air Force Research Laboratory (AFRL) has ...

411

Night air cargo operations flyover noise mitigation by a municipality  

Science Conference Proceedings (OSTI)

A 1981 Air Force Draft Environmental ImpactAnalysis (DEIA) on converting Rickenbacker Air National Guard Base (RANGB

Angelo J. Campanella

1985-01-01T23:59:59.000Z

412

A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings  

Science Conference Proceedings (OSTI)

Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

Nair, B. G.; Singh, J. P.; Grimsditch, M.

2000-02-28T23:59:59.000Z

413

Bibliography of work on the photocatalytic removal of hazardous compounds from water and air  

DOE Green Energy (OSTI)

This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

Blake, D.M.

1994-05-01T23:59:59.000Z

414

Why sequence Alkaliphilic sulfur oxidizing bacteria for sulfur pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

Alkaliphilic sulfur oxidizing Alkaliphilic sulfur oxidizing bacteria for sulfur pollution remediation? Burning sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such as air pollution and acid rain, besides contributing to the loss of the ozone layer. One method of managing sulfur compounds released as byproducts from industrial processes is to scrub them out using chemical treatments and activated charcoal beds. A lower-cost solution relies on incorporating alkaliphic sulfur-oxidizing bacteria into biofilters to convert the volatile and toxic compounds into insoluble sulfur for easier removal. Discovered in the last decade, these bacteria have been found to thrive in habitats that span the full pH range. The bacteria could have applications

415

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

416

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

417

Ambient Operation of Li/Air Batteries  

Science Conference Proceedings (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

418

Improving air handler efficiency in houses  

SciTech Connect

Although furnaces, air conditioners and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. Substantial increases in performance could be obtained through improved air handler design and construction. A prototype residential air handler intended to address these issues has recently been developed. The prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that the prototype air handler had about twice the efficiency of the standard air handler (averaged over a wide range of operating conditions) and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the clearance between the air handler and cabinet it was placed in. These test results showed that in addition to the large scope for performance improvement, air handler fans need to be tested in the cabinets they operate in.

Walker, Iain S.

2004-05-01T23:59:59.000Z

419

DOE Requires Air-Con International to Cease Sales of Inefficient Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Requires Air-Con International to Cease Sales of Inefficient Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties September 21, 2010 - 6:43pm Addthis The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in the United States and proposing a civil penalty of $231,090 for sales of these products in violation of the applicable energy efficiency standards. This action reflects the Department's continued commitment to act aggressively to remove unlawful products from the market. In March, 2010, the Department issued a subpoena requiring Air-Con to

420

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effect of System and Air Contaminants on PEMFC Performance and Durability  

NLE Websites -- All DOE Office Websites (Extended Search)

Dinh Dinh (PI) National Renewable Energy Laboratory October 1, 2009 Effect of System and Air Contaminants on PEMFC Performance and Durability This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives To assist the DOE Fuel Cell Technologies (FCT) Program in meeting cost, durability, and performance targets in the areas of fuel cell systems. The effort is focused on system-derived contaminants, but has a small component addressing "gaps" in the area of air contaminants. Premise System-derived contaminants can have negative effect on fuel cell performance. Current density (A/cm 2 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 g ( SHE ) Average cell voltage after air oxidation exposure Average cell voltage as measured in vehicle

422

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AIR PRODUCTS AND CHEMICALS, INC. FOR AN AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-95GO10059; W(A)-96-016; CH-0908 The Petitioner, Air Products and Chemicals, Inc., has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Sorption Enhanced Reaction (SER) Process for Production of Hydrogen." The objective of the cooperative agreement is to develop and demonstrate the feasibility of performing Steam Methane Reforming (SMR) at a low temperature with a suitable metal oxide chemisorbent for the production of hydrogen. The agreement comprises three phases including, respectively, concept

423

Clean Air 2005 8th International Conference on Energy for a Clean Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technology Testing of Mercury Control Technology for Coal-Fired Power Plants: A U.S. Department of Energy R&D Program Clean Air 2005 8 th International Conference on Energy for a Clean Environment June 27-30, 2005 Lisbon, Portugal Thomas J. Feeley, III thomas.feeley@netl.doe.gov U.S. Department of Energy National Energy Technology Laboratory CleanAir 2005_Lisbon June 29, 2005 Presentation Outline * Background on Hg Emissions * U.S. DOE's Hg Control Technology R&D Program - Activated Carbon (Sorbent Injection) - Oxidation Technologies * Key Take Aways CleanAir 2005_Lisbon June 29, 2005 Global Mercury Emissions FACT: It is estimated that U.S. coal-fired power plants emit approximately 1% of annual global mercury emissions Emissions from Natural Sources (Volcanoes, Forest Fires, etc.)

424

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

1995-09-05T23:59:59.000Z

425

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

1995-01-01T23:59:59.000Z

426

Air Force Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2 Agenda  Brian Brown  Enhanced Use Lease (EUL) Overview  Energy EULs  EUL Goals  David Swanson  Energy EUL Market Drivers  Current EUL Projects  Partnering with the Air Force  Contact Information I n t e g r i t y - S e r v i c e - E x c e l l e n c e 3 Overview  Authority 10 USC 2667  An EUL is a lease  By the government  Of "non-excess" property  Under the control of the government  To a public or private sector lessee  In exchange for fair market value rental payments in cash and/or in kind consideration I n t e g r i t y - S e r v i c e - E x c e l l e n c e

427

Study of Air Ingress Across the Duct During the Accident Conditions  

Science Conference Proceedings (OSTI)

The goal of this project is to study the fundamental physical phenoena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a nupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefor, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that mimimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlaying phenomena. The combination of interdiffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. THis project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses Perform computational fluid dynamics analysis of air ingress phenomena

Hassan, Yassin

2013-05-06T23:59:59.000Z

428

A Computational Study of the Soot Formation in Methane-Air Diffusion Flame During Early Transience Following Ignition  

E-Print Network (OSTI)

Abstract — A CFD-based numerical model has been developed for the determination of the volume concentration and number density of soot in a laminar diffusion flame of methane in air, under transient condition following ignition of the flame. The transience is studied from the point of ignition till the final steady state is reached. The burner is an axisymmetric co-flowing one with the fuel issuing through a central port and air through an annular port. Both normal air (non-preheated) and preheated air have been used for this simulation to capture the effect of preheating on soot distribution. Attention is focused on various soot forming and destruction processes, like nucleation, surface growth and oxidation, during the transient phase to evaluate their relative importance. The transient soot distribution has been studied with the help of radial distributions of soot at six different axial heights of 2 cm, 4 cm, 6 cm, 8 cm, 10 cm and 12 cm respectively above the burner tip. Beyond 12 cm height, the concentration becomes very less in all cases. The contribution of surface growth towards soot formation is more significant than that of nucleation during the early periods following ignition. Once the high temperature reaches the oxygenenriched zone beyond the flame, the soot oxidation becomes important. Coagulation, on the other hand, limits the soot particle number. Preheating of air increases the soot volume fraction in the flame significantly. But, the soot distribution patterns remain almost similar to that with non-preheated air during the flame transient period and also in the steady state. Index Terms—air preheating, laminar diffusion flame, oxidation, soot, Transient modeling I.

Bijan Kumar M; Amitava Datta; Amitava Sarkar

2007-01-01T23:59:59.000Z

429

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

430

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

431

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

432

General Air Permits (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Air Permits (Louisiana) General Air Permits (Louisiana) General Air Permits (Louisiana) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any regulated air pollutant do not need a permit. The Louisiana Department of Environmental Quality issues Title V General Permits. The permit is developed based on equipment types versus facility types, the general permits are not limited in their use to a specific industry or category. Title V permits combine

433

University of Colorado Indoor Air Quality Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Image Courtesy of Ohio Image Courtesy of Ohio State University INDOOR AIR QUALITY Design Goals Design Goals Design Goals Design Goals Integrate technologically and economically innovative, low-energy strategies Minimize occupant distraction User-friendly controls Minimize pollutant sources Bio Bio Bio Bio- - - -S S S S ( ( ( (h h h h) ) ) ) ip ip ip ip indoor air quality features indoor air quality features indoor air quality features indoor air quality features Mechanical Systems Energy Recovery Ventilator Exhaust Fans Heating And Cooling Systems Passive Ventilation Low VOC materials Each of these features is described in more detail below. Mechanical Systems Energy Recovery Ventilator Knowing that our home has a tight envelope, due to our Bio-SIP construction, we needed to use mechanical ventilation to ensure suitable indoor air

434

NETL: IEP - Air Quality Research: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers DOE/NETL’s Air Quality Research Program is in direct response to the need to ensure that fossil-fuel-fired power systems continue to meet current and future environmental requirements. Specific environmental regulatory requirements driving this research are briefly summarized below: I. Clean Air Act (Including 1990 Amendments) Title I - Air Pollution Prevention and Control Part A - Air Quality and Emission Limitations Sect. 109 - National Ambient Air Quality Standards In July 1997 EPA promulgated new standards for particulate matter finer than 2.5 micrometers (PM2.5) and revised the ambient ozone standards. Sect. 111 - Standards of Performance for New Stationary Sources Part C - Prevention of Significant Deterioration of Air Quality

435

Stirling Air Conditioner for Compact Cooling  

Science Conference Proceedings (OSTI)

BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

None

2010-09-01T23:59:59.000Z

436

Underbalanced drilling with air offers many pluses  

Science Conference Proceedings (OSTI)

A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

1995-06-26T23:59:59.000Z

437

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

1989-04-11T23:59:59.000Z

438

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

439

Journal of Power Sources 153 (2006) 6875 Numerical study of a flat-tube high power density solid oxide fuel cell  

E-Print Network (OSTI)

for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat

440

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cost effective air pollution control for geothermal powerplants  

DOE Green Energy (OSTI)

Air pollution control technology developed and demonstrated at The Geysers by the Pacific Gas and Electric Company includes two different, but equally effective methods to reduce the emissions of hydrogen sulfide from geothermal power plants. These technologies may be used in other geothermal areas as well. Cost saving modifications and adaptations needed to apply these technologies in other geothermal areas with different steam composition are described. Cost estimates are presented for some typical cases. If a surface condenser gives poor H/sub 2/S partitioning with ammonia rich steam, neutralizing the ammonia with SO/sub 2/ is a cost effective alternative to secondary abatement with hydrogen peroxide. Nickel is a cost effective alternative to FeHEDTA when an oxidation catalyst is added to the cooling water of a power plant equipped with a contact condenser. 13 ref., 1 fig., 4 tabs.

Weres, O.

1985-03-01T23:59:59.000Z

442

Air-core grid for scattered x-ray rejection  

DOE Patents (OSTI)

The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

Logan, C.M.; Lane, S.M.

1995-10-03T23:59:59.000Z

443

Air-core grid for scattered x-ray rejection  

DOE Patents (OSTI)

The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

Logan, Clinton M. (Pleasanton, CA); Lane, Stephen M. (Oakland, CA)

1995-01-01T23:59:59.000Z

444

Evaporative Enhancement for Air Cooled Condensers  

Science Conference Proceedings (OSTI)

This report summarizes research into condenser air evaporative pre-cooling technologies and the associated potential for energy and peak power savings. The interest in this project is evaluation of the specific application of evaporative cooling to the inlet air of condenser coils, particularly for large roof-top type air cooled chillers. While the technology is established and understood particularly well for hot, dry climates, this report is intended to also examine evaporative ...

2013-03-06T23:59:59.000Z

445

Inlet Air Filtration Assessment: Interim Report  

Science Conference Proceedings (OSTI)

The goal of inlet air filtration is to capture the largest amount of particulate (solid or liquid) by filter media in the airflow path of the gas turbine. With engines operating at higher temperatures and with downstream components that are more susceptible to problems associated with harmful effects such as fouling, erosion, and corrosion, the need for good inlet air filtration in this newest generation of gas turbines is more important than ever. Recent advances in inlet air filtration have ...

2013-12-19T23:59:59.000Z

446

Thermally Oxidized Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

447

Ambient Air Quality Standards (New Jersey)  

Energy.gov (U.S. Department of Energy (DOE))

This article lists specific standards for ambient air quality standards for particulate matter, sulfur dioxide, carbon monoxide, ozone, lead and nitrogen dioxide.

448

Energy efficiency and air regulation | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA boiler rules New EPA regulations for industrial, commercial, and institutional boilers encourage energy efficiency measures to help reduce hazardous air pollutants. Energy...

449

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

450

Air Pollution Control (Indiana) | Open Energy Information  

Open Energy Info (EERE)

StateProvince Program Administrator Air Pollution Control Board, Indiana Department of Environmental Management Primary Website http:www.in.govlegislativeiac...

451

Microwave remote sensing of ionized air.  

SciTech Connect

We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C. (Nuclear Engineering Division)

2011-07-01T23:59:59.000Z

452

Fluid Metrology Calibration Services - Air Speed  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology provides calibration services for air speed instrumentation such as Pitot tubes, hot-wire or thermal ...

2013-02-11T23:59:59.000Z

453

Compressed Air Energy Storage Act (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

454

Development of a Novel Air Hybrid Engine.  

E-Print Network (OSTI)

??An air hybrid vehicle is an alternative to the electric hybrid vehicle that stores the kinetic energy of the vehicle during braking in the form… (more)

Fazeli, Amir

2011-01-01T23:59:59.000Z

455

The Dynamics of Air Transportation System Transition  

E-Print Network (OSTI)

Both U.S. and European Air Transportation Systems face substantial challenges in transforming to meet future demand. This paper uses a feedback model to identify

Mozdzanowska, Aleksandra

456

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

457

Lithium Air Electrodes - Available Technologies - PNNL  

Comparing metal air batteries, ... are in a race to find cutting edge technologies that deliver more powerful batteries in smaller packages and lower ...

458

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from ductwork that protrudes through a wall or roof. More Information Visit the Energy Saver website for more information about the selection and performance of air-source...

459

Advanced Manufacturing Office: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

training and other resources Training Calendar Events Calendar Tools Tools to Assess Your Energy System AIRMaster+ Tool Scorecards and Simple Calculators Compressed Air Scorecard...

460

Radionuclide Air Emission Report for 2007  

E-Print Network (OSTI)

for Emissions of Radionuclides Other Than Radon FromHazardous Air Pollutants (Radionuclides), Availability ofLBNL to Revise Its Radionuclide NESHAP Monitoring Approach,”

Wahl, Linnea

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air oxidation wao" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Radionuclide Air Emission Report for 2009  

E-Print Network (OSTI)

the public from airborne radionuclide emissions. We requestfor Emissions of Radionuclides Other Than Radon FromFugitive Air Emissions of Radionuclides from Diffuse Sources

Wahl, Linnea

2010-01-01T23:59:59.000Z

462

Air Conditioner "Evolves" in Novel NIST Study  

Science Conference Proceedings (OSTI)

... A new NIST tool combining principles of engineering with those of natural evolution yielded the design for a more energy-efficient roof-top air ...

2013-09-03T23:59:59.000Z

463

Liquid phase thermal swing chemical air separation  

DOE Patents (OSTI)

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

Erickson, D.C.

1988-05-24T23:59:59.000Z

464

Future Air traffic management Concepts Evaluation Tool ...  

Solar Photovoltaic; Solar Thermal; Startup ... Actual air traffic data and weather information are utilized to evaluate an aircraft’s flight-plan ...

465

Regulations for Air Quality (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

This Regulation establishes emission standards for particulates and gases, emission opacity standards, standards of air quality and control measures to prevent, eliminate or reduce the emission of...

466

Solid oxide fuel cell systems with hot zones having improved reactant distribution  

Science Conference Proceedings (OSTI)

A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

2012-11-06T23:59:59.000Z

467

Solid oxide fuel cell systems with hot zones having improved reactant distribution  

Science Conference Proceedings (OSTI)

A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

2013-12-24T23:59:59.000Z

468

Molecular water oxidation catalyst  

DOE Patents (OSTI)

A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

469

Development of a Zirconia-Based Electrochemical Sensor for the Detection of Hydrogen in Air  

DOE Green Energy (OSTI)

Mixed potential sensors utilizing a machined, dense indium-tin oxide working electrode (In{sub 2}O{sub 3}:SnO{sub 2}; 90%:10%), a Pt wire counter electrode, and porous YSZ electrolyte were prepared using ceramic tape casting methods. The response of these devices to hydrogen concentrations up to 2% in