National Library of Energy BETA

Sample records for air handling system

  1. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.

    1997-12-31

    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  2. Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review | Department of Energy Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel

  3. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  4. Tritium handling in vacuum systems

    SciTech Connect (OSTI)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  5. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  6. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  7. Automated Proactive Techniques for Commissioning Air-Handling Units

    SciTech Connect (OSTI)

    Katipamula, Srinivas ); Brambley, Michael R. ); Luskay, Larry

    2003-08-30

    Many buildings today use sophisticated building automation systems (BASs) to manage a wide and varied range of building systems. Although the capabilities of the BASs seem to have increased over time, many buildings still are not properly commissioned, operated or maintained. Lack of or improper commissioning, the inability of the building operators to grasp the complex controls, and lack of proper maintenance leads to inefficient operations and reduced lifetimes of the equipment. If regularly scheduled manual maintenance or re-commissioning practices are adopted, they can be expensive and time consuming. Automated proactive commissioning and diagnostic technologies address two of the main barriers to commissioning: cost and schedules. Automated proactive continuous commissioning tools can reduce both the cost and time associated with commissioning, as well as enhance the persistence of commissioning fixes. In the long run, automation even offers the potential for automatically correcting problems by reconfiguring controls or changing control algorithms dynamically. This paper will discuss procedures and processes that can be used to automate and continuously commission the economizer operation and outdoor-air ventilation systems of an air-handling unit.

  8. Automated system for handling tritiated mixed waste

    SciTech Connect (OSTI)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  9. LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Legacy Management, | Department of Energy System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, (472.43 KB) More Documents & Publications LM

  10. Maintaining System Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment.

  11. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  12. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  13. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  14. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  15. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling...

    Office of Scientific and Technical Information (OSTI)

    Unit Chilled Water Valve Citation Details In-Document Search Title: Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve A virtual ...

  16. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  17. LM Records Handling System (LMRHS01) - Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illness Compensation Program Act, Office of Legacy Management | Department of Energy Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees

  18. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management (470.9 KB) More Documents

  19. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy ...

  20. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  1. Air quality data systems integration

    SciTech Connect (OSTI)

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  2. Method and system rapid piece handling

    DOE Patents [OSTI]

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  3. Air Products Hydrogen Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems (423.04 KB) More Documents & Publications QTR Ex Parte Communications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Hydrogen Fuel for Material Handling

  4. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  5. LM Records Handling System-Fernald Historical Records System, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Management | Department of Energy Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management (489.96 KB) More Documents & Publications LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

  6. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  7. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  8. System and method for slurry handling

    SciTech Connect (OSTI)

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  9. A Semi-automated Commissioning Tool for VAV Air Handling Units:Functional Test Analyzer

    SciTech Connect (OSTI)

    Haves, Philip; Kim, Moosung; Najafi, Massieh; Xu, Peng

    2007-01-01

    A software tool that automates the analysis of functional tests for air-handling units is described. The tool compares the performance observed during manual tests with the performance predicted by simple models of the components under test that are configured using design and of information catalog data. Significant differences between observed and expected performance indicate the presence faults. Fault diagnosis is performed by analyzing the variation of these differences with operating points using expert rules and fuzzy inferencing. The tool has a convenient user interface to facilitate manual entry of measurements made during a test. A graphical display compares the measured and expected performance, highlighting significant differences that indicate the presence of faults. The tool is designed to be used by commissioning providers conducting functional tests as part of either new building commissioning or retrocommissioning as well as by building owners and operators conducting routine tests to check the performance of their HVAC systems. This paper describes the input data requirements of the tool, the software structure, and the graphical interface and summarizes the development and testing process used.

  10. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  11. Plutonium Immobilization Process: Puck Handling Module Supervisory Control System

    SciTech Connect (OSTI)

    Smail, T.R.

    2001-01-29

    This paper discusses the Supervisory Control and Data Acquisition for green puck handling. Also discussed is the overall control scheme implemented by the supervisory computer, the individual inspections completed on the puck, and the checks and balances between the computer, tray loading system and robot.

  12. LM Records Handling System-Freedom of Information/Privacy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling ...

  13. Compressed Air System Control Strategies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance.

  14. Australian liquids-handling system cuts surges to LPG plant

    SciTech Connect (OSTI)

    McKee, G.; Stenner, T.D. )

    1990-08-06

    This paper reports how a pipeline liquids-handling facility recently commissioned allows gas production to be quickly ramped up to meet customer demand. Its design eliminates trouble-some liquid surges which had hampered plant operations. The pipeline-loop system, located at the Wallumbilla LPG processing plant, Queensland, was built for 60 of the cost of an equivalently sized conventional slug catcher. Its control system enables automatic, unattended handling of liquid surges and pigging slugs from the 102-km Silver Springs to Wallumbilla two-phase pipeline. Because of this system's simple hydraulics, normal slug-catcher piping design problems are eliminated. Safety is improved because the potentially hazardous condensate liquid is contained in a buried pipeline.

  15. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  16. Determining the Right Air Quality for Your Compressed Air System

    Broader source: Energy.gov [DOE]

    This tip sheet outlines the main factors for determining the right air quality for compressed air systems.

  17. LM Records Handling System-Freedom of Information/Privacy Act, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy management | Department of Energy Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management (503.75 KB) More Documents & Publications LM Records Handling System-Fernald Historical Records System, Office of

  18. Automated cassette-to-cassette substrate handling system

    DOE Patents [OSTI]

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  19. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect (OSTI)

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  20. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  1. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  2. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  3. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  4. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  5. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  6. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  7. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  8. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System...

  9. Magnus air turbine system

    DOE Patents [OSTI]

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  10. Development of a Bulk-Format System to Harvest, Handle, Store...

    Broader source: Energy.gov (indexed) [DOE]

    a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage generaprojectabstract1.pdf More Documents & Publications Development of a Bulk-Format System to Harvest,...

  11. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  12. Training: Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Systems Training: Compressed Air Systems April 16, 2014 - 6:32pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional compressed air system resources. Compressed Air Systems Tools Training - 2-hour webcast Availability: Online webcast A two-hour webcast on the use of the Compressed Air Challenge (CAC®) Toolkit and the AIRMaster+ software tool is available that introduces

  13. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  14. Advanced Management of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  15. Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Compressed Air Systems Compressed Air Systems Applying best energy management practices and purchasing energy-efficient equipment can lead to significant savings in compressed air systems. Use the software tools, training, and publications listed below to improve performance and save energy. Compressed Air Tools Tools to Assess Your Energy System AIRMaster+ Tool AIRMaster+ LogTool Qualified Specialists Qualified Specialists have passed a rigorous competency examination on

  16. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  17. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  18. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  19. Analyzing Your Compressed Air System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyzing Your Compressed Air System Analyzing Your Compressed Air System This tip sheet outlines the process to analyze industrial compressed air systems and ensure proper system configuration. COMPRESSED AIR TIP SHEET #4 Analyzing Your Compressed Air System (August 2004) (243.47 KB) More Documents & Publications Compressed Air System Control Strategies Determining the Right Air Quality for Your Compressed Air System Determine the Cost of Compressed Air for Your Plant

  20. Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer

    DOE Patents [OSTI]

    Chastgner, P.

    1991-05-08

    This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

  1. Improving Compressed Air System Performance Third Edition | Department...

    Energy Savers [EERE]

    Compressed Air System Performance Third Edition Improving Compressed Air System Performance Third Edition PDF icon Improving Compressed Air Sourcebook version 3.pdf More Documents ...

  2. Preventive Maintenance Strategies for Compressed Air Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suggested Actions * Establish a regular, well-organized maintenance program in accordance ... that all compressed air system maintenance needs are performed properly, on ...

  3. TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM

    SciTech Connect (OSTI)

    T. A. Misiak

    1998-05-21

    This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

  4. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  5. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect (OSTI)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  6. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  7. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  8. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  9. Pressure Regain Strategies for Existing Air Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Regain Strategies for Existing Air Distribution Systems Pressure Regain Strategies for Existing Air Distribution Systems This presentation was delivered at the U.S. ...

  10. Improving Compressed Air System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry, Third Edition Improving Compressed Air System Performance: A Sourcebook for Industry, Third Edition AMO's "Improving Compressed Air System Performance: A Sourcebook for ...

  11. Effect of System and Air Contaminants on PEMFC Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of System and Air Contaminants on PEMFC Performance and Durability Effect of System and Air Contaminants on PEMFC Performance and Durability Presented at the Department of ...

  12. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  13. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect (OSTI)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  14. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect (OSTI)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  15. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-12-31

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  16. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  17. Advanced Overfire Air system and design

    SciTech Connect (OSTI)

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  18. Preventive Maintenance Strategies for Compressed Air Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Preventive Maintenance Strategies for Compressed Air Systems Preventive Maintenance Strategies for Compressed Air Systems This tip sheet discusses preventive maintenance strategies for compressed air systems to avoid high equipment repair and replacement costs. COMPRESSED AIR TIP SHEET #6 Preventive Maintenance Strategies for Compressed Air Systems (August 2004) (245.23 KB) More Documents & Publications Effect of Intake on Compressor Performance Maintaining System Air Quality

  19. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOE Patents [OSTI]

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  20. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  1. Enforcement Policy Statement: Split-System Central Air Conditioners...

    Energy Savers [EERE]

    Split-System Central Air Conditioners Without HSVC December 16, 2015 In the November 9, 2015 central air conditioner test procedure supplemental notice of proposed rulemaking (80 ...

  2. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  3. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  4. A warm air poultry brooding system

    SciTech Connect (OSTI)

    Nulte, W.H.

    1980-12-01

    As the energy crisis escalated during the mid-70's, it became apparent that energy intensive industries must seek alternate fuel sources. Georgia Tech realized that one of these industries was the poultry industry. Consequently, a demonstration project of a wood-fired, warm air poultry brooding system was designed and built. Since its completion in mid-1978, the system has demonstrated considerable cost savings as well as being a very functional and reliable system. The system consists of 3 main components--a wood burning furnace, a supply distribution and return duct, and 20 flexible ducts which simulate the function of the propane brooders by providing warm air close to the ground. A separate structure houses the furnace and wood supply. This house is located at the midpoint of the growout house to allow symmetrical and naturally balanced air distribution. Since the system became operational, 16 flocks of birds have been brooded. During this time, wood usage has averaged approximately 30 cords per year while in a neighboring house, that is used as a control house, the propane usage has averaged 3,800 gallons per year. In the area of Georgia where the demonstration project is located, the cost of fuelwood has remained stable over the last 2 years, whereas the price of propane has continually increased. Thus the grower has the benefit of constantly increasing cost savings while utilizing a renewable resource as fuel.

  5. The International Authority on Air Movement Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Authority on Air Movement Systems TO: expartecommunications@hq.doe.gov (sent via email) CC: Ashley.Armstrong@ee.doe.gov FROM: Mark Stevens, Executive Director of AMCA International DATE: November 9, 2015 RE: Memorandum Memorializing Ex Parte Communication, November 9, 2015 related to DOE impending coverage for commercial and industrial fans, blowers, and fume hoods, Docket No. EERE---2011---BT---DET---0045. Meeting Purpose: The meeting was requested by AMCA International to inform

  6. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect (OSTI)

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  7. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  8. Guidelines for Selecting a Compressed Air System Service Provider

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... see first hand the type of repair shop and parts warehouse with which you will be dealing. ... of Compressed Air Systems and Advanced Management of Compressed Air Systems training to ...

  9. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    SciTech Connect (OSTI)

    Jim Jnatt

    2001-08-24

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the

  10. IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY Improving Compressed Air System Performance A Sourcebook for Industry Third Edition U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy ADVANCED MANUFACTURING OFFICE IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGEMENTS Improving Compressed Air System Performance: A Sourcebook for Industry is a cooperative effort of the U.S. Department of Energy's Office of Energy Efficiency

  11. Maintaining System Air Quality; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air applica- tions and determine the required level of air quality for each. * Review the ...

  12. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    SciTech Connect (OSTI)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully

  13. Acceptance Test Procedure: SY101 air pallet system

    SciTech Connect (OSTI)

    Koons, B.M.

    1995-05-30

    The purpose of this test procedure is to verify that the system(s) procured to load the SY-101 Mitigation Test Pump package fulfills its functional requirements. It will also help determine the man dose expected due to handling of the package during the actual event. The scope of this procedure focuses on the ability of the air pallets and container saddles to carry the container package from the new 100 foot concrete pad into 2403-WD where it will be stored awaiting final disposition. This test attempts to simulate the actual event of depositing the SY-101 hydrogen mitigation test pump into the 2403-WD building. However, at the time of testing road modifications required to drive the 100 ton trailer into CWC were not performed. Therefore a flatbed trailer will be use to transport the container to CWC. The time required to off load the container from the 100 ton trailer will be recorded for man dose evaluation on location. The cranes used for this test will also be different than the actual event. This is not considered to be an issue due to minimal effects on man dose.

  14. CWS-Fired Residential Warm-Air Heating System

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  15. ASE/CAGI Meeting about Compressors and Compressed Air System...

    Energy Savers [EERE]

    ASECAGI Meeting about Compressors and Compressed Air System Efficiency On April 25, 2013, several representatives of energy ... Natural Gas Transmission, Storage and Distribution System ...

  16. Improving Compressed Air System Performance: A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance.

  17. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the

  18. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    p Hydrogen Fuel for Hydrogen Fuel for Material Handling Tom Joseph © Air Products & Chemicals, Inc., 2009 7201 Hamilton Blvd Allentown PA 18195 7201 Hamilton Blvd., Allentown PA 18195 Fuel Cell Packs for MHE Form Fit and Function Battery Replacement Form, Fit and Function Battery Replacement © Air Products & Chemicals, Inc., 2009 Courtesy of Ballard Power Systems 31.1 x 13.2 x 31.6 LWH MHE Classes and Pack size 4kW 9kW 14kW 4kW 9kW 14kW CLASS 1 Forklift 32 x 38.6 x 22.7" LWH CLASS

  19. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  20. Enforcement Policy: Split-System Central Air Conditioners Without HSVC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Split-System Central Air Conditioners Without HSVC Enforcement Policy: Split-System Central Air Conditioners Without HSVC December 16, 2015 DOE issued an enforcement policy that it would begin investigating the methods manufacturers are using to rate split-system central air conditioners that do not have a highest sales volume combination (HSVC) to test as required by the applicable regulations and that it would assess penalties for units manufactured after February 1,

  1. Energy savings potential in air conditioners and chiller systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  2. Energy savings potential in air conditioners and chiller systems

    SciTech Connect (OSTI)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  4. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  5. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  6. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  7. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect (OSTI)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  8. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Predictive Materials Modeling for Li-Air Battery Systems PI Name: Larry Curtiss PI Email: curtiss@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 50 Million Year: 2015 Research Domain: Materials Science A rechargeable lithium-air (Li-air) battery can potentially store five to ten times the energy of a lithium-ion (Li-ion) battery of the same weight. Realizing this enormous potential presents a challenging

  9. Designing Forced-Air HVAC Systems

    SciTech Connect (OSTI)

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  10. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  11. Development of a Bulk-Format System to Harvest, Handle, Store...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & ... potential, and inhibitors will be determined by Dupont-Danisco Cellulosic Ethanol. ...

  12. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  13. Air-flow regulation system for a coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  14. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 * August 2004 Industrial Technologies Program Suggested Actions * Understand your system require- ments by developing a pressure and a demand profle before investing in ...

  15. Measurement results obtained from air quality monitoring system

    SciTech Connect (OSTI)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  16. Improving Compressed Air System Performance: A Sourcebook for Industry, Third Edition

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO's “Improving Compressed Air System Performance: A Sourcebook for Industry, Third Edition” has been recently revised introducing industry to compressed air systems, performance opportunities and...

  17. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOE Patents [OSTI]

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  18. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  19. New challenges to air/gas cleaning systems

    SciTech Connect (OSTI)

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  20. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  1. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  2. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  3. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  4. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  5. Hybrid System for Separating Oxygen from Air - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Hybrid System for Separating Oxygen from Air Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (765 KB) Technology Marketing Summary Sandia has developed a portable, oxygen generation system capable of delivering oxygen gas at purities greater than 98 percent and flow rates significantly greater than commercially

  6. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  7. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  8. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy

    SciTech Connect (OSTI)

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  9. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  10. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  11. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  12. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  13. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System ...

  14. Power Air H Plus Korean Back up Power System JV | Open Energy...

    Open Energy Info (EERE)

    Plus Korean Back up Power System JV Jump to: navigation, search Name: Power AirH-Plus Korean Back-up Power System JV Place: Korea (Republic) Product: Power Air signed a MOU with...

  15. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect (OSTI)

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  16. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L.; Vaughn, Mark R.; Miller, A. Keith; Cornelius, Christopher J.

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  17. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is

  18. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T. )

    1992-03-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  19. DOE Technical Targets for Fuel Cell System Humidifiers and Air Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy System Humidifiers and Air Compression Systems DOE Technical Targets for Fuel Cell System Humidifiers and Air Compression Systems These tables list the U.S. Department of Energy (DOE) technical targets for transportation fuel cell system humidifiers and air compression systems. These targets have been developed with input from the U.S. DRIVE Partnership, which includes automotive and energy companies, and specifically the Fuel Cell Technical Team. The guideline

  20. CWS-fired residential warm-air heating system

    SciTech Connect (OSTI)

    Balsavich, J.C.; Becker, F.E.; Smolensky, L.A.

    1990-03-01

    The objective of the CWS-Fired Residential Warm-Air Heating System program was the development of an economically viable coal water slurry (CWS) fueled furnace that is competitive with current oil and natural gas systems. During the first phase of the program, a novel state-of-the-art Inertial Reactor with Internal Separation (IRIS) combustor was designed and tested. The second phase of the program focused on evaluating the interaction between the individual components and system design optimization. Testing was conducted on the prototype furnace. This work concentrated on optimizing the combustor configuration to yield high combustion efficiencies and prevent the possible agglomeration of coal within the combustor. Also, a new twin-fluid CWS atomizer was designed and tested. This atomizer employed a supersonic airstream to shear the CWS external to the nozzle and thereby eliminated erosion problems. Also, a new furnace system was designed, constructed, and extensively tested. This furnace, called the third-generation system, served as a basis for a manufacturing prototype and included all the necessary controls needed for automatic operation. In life testing of the third-generation furnace system, the unit operated for 200 hours and burned 1,758 pounds of CWS. This translated into an average input rate throughout the test period of 87,200 Btu/hr. During this period, combustion efficiencies ranged from 98.2 to 99.1 percent, with a noted increase in efficiency with time. This furnace was also tested in a cyclic manner for an additional period of 54 hours to evaluate the effect of thermal transients. During cyclic testing, the furnace went through repeated transient cycles, which included startup on oil, transition to CWS, and cool-down. As part of an economic evaluation the high volume cost of a CWS-fired warm air furnace was determined. 90 figs., 7 tabs.

  1. Tuned intake air system for a rotary engine

    SciTech Connect (OSTI)

    Corbett, W.D.

    1992-06-09

    This patent describes a rotary internal combustion engine for an outboard board motor. It comprises a plenum chamber attached to the rear of the engine; and the plenum chamber including an inner wall attached to the exhaust manifold; an inlet conduit connecting the cooling air exit passage and the inlet air opening; an outlet conduit connecting the outlet air opening and the combustion air inlet; and the outlet conduit terminating in a combustion air outlet in the inner wall of the plenum chamber.

  2. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  3. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOE Patents [OSTI]

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  4. System for lubrication of a brake air compressor associated with a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Spencer, J.C.

    1992-10-13

    This patent describes a system for use with a vehicle which includes a turbocharged internal combustion engine having a lubricating system wherein lubricating oil from an engine oil reservoir is circulated within the engine and also to and from an associated brake system air compressor which supplies compressed air for operation of the vehicle air braking system. This patent describes improvement in passing supercharged air to an oil crankcase of the air compressor to cause lubricating oil to drain therefrom and return to the engine oil reservoir.

  5. ASE/CAGI Meeting about Compressors and Compressed Air System Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ASE/CAGI Meeting about Compressors and Compressed Air System Efficiency ASE/CAGI Meeting about Compressors and Compressed Air System Efficiency On April 25, 2013, several representatives of energy efficiency advocacy organizations met with staff and members of the Compressed Air and Gas Institute (CAGI) along with some compressed air experts at the offices of the Alliance to Save Energy to explore and discuss a consensus approach to advancing energy efficiency of

  6. Improving Energy Efficiency of Compressed Air System Based onSystem Audit

    SciTech Connect (OSTI)

    Shanghai, Hongbo Qin; McKane, Aimee

    2007-06-01

    Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

  7. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  8. Guidelines for Selecting a Compressed Air System Service Provider

    Broader source: Energy.gov [DOE]

    This publication is meant to help industrial compressed air users become informed consumers by discussing what to look for when selecting service providers.

  9. Improving Compressed Air System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Aftercooler and Lubricant Cooler Control Panel Air Inlet ... The oldest method of driving compressors is through the use ... Less sophisticated network controls use the cascade set ...

  10. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-29

    This paper discusses development and testing of the robots and specialized automation involved in handling green pucks from the cold press through placing sintered pucks on the transfer trays.

  11. Compressed Air System Optimization Saves Energy and Improves Production at Synthetic Textile Plant (Solutia, Inc. Plant)

    SciTech Connect (OSTI)

    2001-05-01

    BestPractices technical case study gives an overview of a compressed air system improvement in a textile plant in South Carolina.

  12. Y-12 Completes Major Upgrade of Compressed Air Systems | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Major Upgrade of Compressed Air Systems September 26, 2007 Microsoft Office document icon NR-09-07

  13. Compressed Air System Upgrade Generates Significant Energy Savings at a Steel Mill

    SciTech Connect (OSTI)

    2010-06-25

    In 1996, U.S. Steel completed a project in which the main compressed air system at their Edgar Thomson plant in Braddock, Pennsylvania was overhauled.

  14. Unvented Drum Handling Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-08-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The

  15. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  16. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect (OSTI)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  17. Air cooled turbine component having an internal filtration system

    DOE Patents [OSTI]

    Beeck, Alexander R.

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  18. IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR...

    Broader source: Energy.gov (indexed) [DOE]

    ... A. A glossary defining terms used in the compressed air ... crankcase, can enter the lubricant-free cylinder area. ... To search for these opportunities see the DSIRE database at ...

  19. Hollow-Fiber Membrane Compressed Air Drying System

    Broader source: Energy.gov [DOE]

    With the support of a NICE3 grant, a new hollow-fiber membrane for dehydrating gases has been developed by Air Products and Chemicals, Inc. The membrane has 5 times higher water vapor permeation...

  20. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  1. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.

    2015-09-04

    In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). We introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for any atomistic model.

  2. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine

    2015-01-01

    This study discusses the potential problems and currently available solutions in modeling powder-diffraction-based pair distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometre length scale, such as finite nanoparticles, nanoporous networks and nanoscale precipitates in bulk materials. The implications of an experimental finite minimumQvalue are reviewed by simulation, which also demonstrates the advantages of combining PDF data with small-angle scattering data. A simple Fortran90 code, DShaper, is introduced, which may be incorporated into PDF data fitting routines in order to approximate the so-called `shape function' for any atomistic model.

  3. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOE Patents [OSTI]

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  4. Air stripping of volatile organic chlorocarbons: System development, performance, and lessons learned

    SciTech Connect (OSTI)

    McKillip, S.T.; Sibley, K.L.; Horvath, J.G.

    1991-12-31

    The Savannah River Site, which has been in operation since the 1950`s, is a 780-square kilometer reservation that produces tritium for the national defense program. As a result of past waste handling practices, the ground water at several locations on the Site has become contaminated with solvents, metals, and radionuclides. In 1981, the ground water located under the Site`s fuel and target rod fabrication area (M-Area) was found to be contaminated with degreasing solvents, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1983, a program was started to evaluate air stripping and determine its applicability to cleanup of M-Area contamination. Lessons learned regarding the efficiency and effectiveness of air stripping technology are presented.

  5. Air stripping of volatile organic chlorocarbons: System development, performance, and lessons learned

    SciTech Connect (OSTI)

    McKillip, S.T.; Sibley, K.L.; Horvath, J.G.

    1991-01-01

    The Savannah River Site, which has been in operation since the 1950's, is a 780-square kilometer reservation that produces tritium for the national defense program. As a result of past waste handling practices, the ground water at several locations on the Site has become contaminated with solvents, metals, and radionuclides. In 1981, the ground water located under the Site's fuel and target rod fabrication area (M-Area) was found to be contaminated with degreasing solvents, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1983, a program was started to evaluate air stripping and determine its applicability to cleanup of M-Area contamination. Lessons learned regarding the efficiency and effectiveness of air stripping technology are presented.

  6. Feedback air-fuel control system for Stirling engines

    SciTech Connect (OSTI)

    Monahan, R.

    1991-11-19

    This patent describes improvement in combination with a Stirling engine having an air-fuel ratio control and an exhaust gas emission outlet. The improvement comprises an oxygen sensor in communication with the exhaust gas emission outlet for generating an output signal representative of the oxygen content in the outlet; a sensor signal conditioning unit for adapting the output signal to a conditioned input signal for a microprocessor; and a microprocessor controlled pilot for adjusting the air-fuel control in response to the control input signal.

  7. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  8. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  9. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  10. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  11. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility electron density obtained from a density functional theory Shown here is the electron density obtained from a density functional theory (DFT) calculation of lithium oxide (Li2O) performed with the GPAW code. This visualization was the result of a simulation run on Intrepid, a supercomputer at the Argonne Leadership Computing Facility. Kah Chun Lau, Aaron Knoll and Larry A. Curtiss, Argonne National Laboratory Predictive Materials Modeling for Li-Air Battery

  12. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-03

    The Plutonium Immobilization Project (PIP) is a joint venture between the Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL). This project will disposition excess weapons grade plutonium in a solid ceramic form. The plutonium, in oxide powder form, will be mixed with uranium oxide powder, ceramic precursors and binders. The combined powder mixture will be milled and possibly granulated; this processed powder will then be dispensed to a (dual action) cold press where it will be formed into green (unsintered) compacts. The compact will have the shape of a puck measuring approximately 3 1/2'' in diameter and 1 3/8'' thick. The green puck, once ejected from the press die, will be picked up by a robot and transferred into the Puck Handling Glovebox. Here the green puck will be inspected and then palletized onto furnace trays. The loaded furnace trays will be stacked/assembled and transported to the furnace where sintering operations will be performed. Finally the sintered pucks will be off loaded, inspected and transferred onto Transfer Trays which will carry the pucks from the Puck Handling Glovebox downstream to subsequent Bagless Transfer Can (BTC) operations. Due to contamination potential and high radiation rates, all Puck Handling Glovebox operations will be performed remotely using robots and specialized automation.

  13. Analytical modeling of a hydraulically-compensated compressed-air energy-storage system

    SciTech Connect (OSTI)

    McMonagle, C.A.; Rowe, D.S.

    1982-12-01

    A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

  14. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  15. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  16. DOE Technical Targets for Fuel Cell System Humidifiers and Air...

    Energy Savers [EERE]

    ... DOE Hydrogen and Fuel Cells Program Record 15015, "Fuel Cell System Cost-2015." Technical Targets: Cathode Humidification System and Humidifier Membrane for 80-kWe Transportation ...

  17. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy In an attempt to eliminate equipment failures and downtime issues ...

  18. Compressed Air System Project Improves Production at a Candy Making Facility

    SciTech Connect (OSTI)

    2002-03-01

    The H.B. Reese Company successfully completed an upgrade of this compressed air system at its facility in Hershey, PA. The plant took two compressors offline while increasing throughput and quality.

  19. U.S. NO₂ trends (2005-2013): EPA air quality system (AQS) data...

    Office of Scientific and Technical Information (OSTI)

    U.S. NO trends (2005-2013): EPA air quality system (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI) Prev Next Title: U.S. NO trends ...

  20. Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program

    SciTech Connect (OSTI)

    2009-01-14

    Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.

  1. Energy Department Releases Study of Electricity System Ahead of Proposed EPA Air Quality Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    In anticipation of forthcoming Environmental Protection Agency proposals for clean air standards, DOE released a new report examining the potential impact those proposed standards could have on the reliability of our nation’s energy systems.

  2. Measure Guideline. Air Sealing Mechanical Closets in Slab-on-Grade Homes

    SciTech Connect (OSTI)

    Dickson, Bruce

    2012-02-01

    This measure guideline describes two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  3. Measure Guideline: Air Sealing Mechanical Closets in Slab-On-Grade Homes

    SciTech Connect (OSTI)

    Dickson, B.

    2012-02-01

    This measure guideline describes covers two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  4. Materials that Improve the Cost-Effectiveness of Air Barrier Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials that Improve the Cost-Effectiveness of Air Barrier Systems Materials that Improve the Cost-Effectiveness of Air Barrier Systems 1 of 3 3M has developed a primer-less self-adhered membrane that serves as an air, liquid water, and water vapor barrier. This technology installs in up to half the time of asphalt-based membranes, which will lead to installed costs that are similar or lower than that of asphalt-based membranes. Image: 3M 2 of 3 3M has developed a

  5. CWS-Fired Residential Warm-Air Heating System. Quarterly report, February 1, 1989--April 30, 1989

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  6. Solid handling valve

    DOE Patents [OSTI]

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  7. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  8. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  9. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  10. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect (OSTI)

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  11. Test report for calibration grooming and alignment of the LDUA purge air supply (LDUA SYSTEM 5230)

    SciTech Connect (OSTI)

    Potter, J.D.

    1996-05-21

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. National Electric Code requirements mandate that the in-tank portions of the LDUA be maintained at a positive pressure for entrances into a flammable atmosphere. The LDUA Purge Air Supply System (PASS) uses small portable air compressors to provide a constant low flow of instrument grade air for this purpose. This document contains the results, conclusions and recommendations arrived at by the calibration grooming and alignment tests performed on the PASS in accordance with WHC-SD-WM-TC-070.

  12. A "Plug-n-Play" Air Delivery System for Low-Load Homes and Evaluation of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Thermal Comfort Rating Method | Department of Energy A "Plug-n-Play" Air Delivery System for Low-Load Homes and Evaluation of a Residential Thermal Comfort Rating Method A "Plug-n-Play" Air Delivery System for Low-Load Homes and Evaluation of a Residential Thermal Comfort Rating Method Traditional air distribution system. Graphic courtesy of IBACOS, Inc. Traditional air distribution system. Graphic courtesy of IBACOS, Inc. "Plug-n-Play" air delivery

  13. Effect of System and Air Contaminants on PEMFC Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report on combined system and fuel impurity studies M 1.4 Identify impact of operating conditions Is SO2 data set complete to allow fully predictive modeling to be accomplished? ...

  14. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  15. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  16. Residential forced-air-distribution system study. Semi-annual report March-September 1982

    SciTech Connect (OSTI)

    Orlando, J.A.; Pettit, V.E.; Gamze, M.G.

    1982-11-01

    Tracer gas techniques have frequently been used to determine the air change characteristics for various structures. Previously, GKCO had utilized a tracer gas procedure to measure intrastructural air flows as a basis for computing the heat loss due to forced air distribution systems. Testing of several gas furnace hot air systems indicated that distribution losses can be significant and were affected by the characteristics of the heat source. In a subsequent study, the field testing was expanded to other heating system components including an electric heat pump, a gas heat pump, and a gas furnace/electric heat pump hybrid system. In addition, cooling mode data were taken as a basis for an annual analysis of distribution system efficiency. The report describes the detailed instrumentation of a single test home with a tracer gas and with flowmeters and temperature sensors installed in the duct system, the calibration of these flowmeters, and two alternative analyses of the resulting data. It also includes results from data collection in two additional structures - a two story structure with the duct system located in the basement and attic, and a one story rambler with a radial duct system buried in the building slab. Distribution system efficiencies ranged from 66% to over 74%.

  17. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  18. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  19. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect (OSTI)

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  20. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee Zia Mirza

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to

  1. Method and apparatus for operating a self-starting air heating system

    DOE Patents [OSTI]

    Heinrich, Charles E.

    1983-12-06

    A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

  2. Three-wheel air turbocompressor for PEM fuel cell systems

    DOE Patents [OSTI]

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  3. Tritium Handling and Safe Storage

    Broader source: Energy.gov (indexed) [DOE]

    ... Individual mm Millimeter mrem Millirem NFPA National Fire Protection Association NP ... Handling of Tritium, published in 1991; and U.S. Department of Energy (DOE) publications. ...

  4. Tritium Handling and Safe Storage

    Broader source: Energy.gov (indexed) [DOE]

    ... Level mm Millimeter mrem Millirem NFPA National Fire Protection Association NMMSS ... Safe Handling of Tritium, published in 1991, in addition to the French Nuclear Safety ...

  5. Tritium Handling and Safe Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Individual mm Millimeters mrem Millirem NFPA National Fire Protection Association NPDWR ... "Safe Handling of Tritium," published in 1991; and U.S. Department of Energy (DOE) ...

  6. REMOTE HANDLING ARRANGEMENTS

    DOE Patents [OSTI]

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  7. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    SciTech Connect (OSTI)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  8. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect (OSTI)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  9. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  10. Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

  11. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  12. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  13. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  14. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  15. Systemic effects of urban form on air pollution and environmental quality

    SciTech Connect (OSTI)

    Okamoto, P.C.

    1997-12-31

    The form and design of cities and towns have a direct impact on the quality of the natural environment, particularly air and water quality. This paper illustrates some of the dynamic relationships between the form of urban environments and air and water pollution. Recent research suggests how urban form affects environmental quality in at least three ways: (a) how suburban development and its dependency on the private motor vehicle increases air pollution, (b) how exterior building materials help to generate urban heat islands and ozone precursors, and (c) how conventional stormwater drainage systems transport polluted urban runoff into waterways. Today`s aging urban infrastructure provides an important and timely opportunity to re-examine the design of cities and towns with a goal of enhancing overall environmental quality. Many miles of roads, freeways, bridges, and stormwater culverts and pipes are in poor condition and need to be repaired or replaced, while many cities are now failing to meet air and water quality standards designed to protect human and environmental health. This paper also explores seven urban planning and design concepts that could reduce the magnitude of air and water pollution in urban environments and help to improve the health of both cities and their residents.

  16. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  17. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  18. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  19. Operating Experience Level 3, Losing Control: Material Handling Dangers

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

  20. Ergonomic material-handling device

    DOE Patents [OSTI]

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  1. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy at a Lehigh Southwest Cement Plant

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  2. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  3. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  4. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  5. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect (OSTI)

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  6. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect (OSTI)

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  7. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  8. Property:TwitterHandle | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name TwitterHandle Property Type Text Description A Twitter handle in @Whatever format (not the full url) Pages using the property...

  9. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOE Patents [OSTI]

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  10. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect (OSTI)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  11. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  12. Non-contact handling device

    DOE Patents [OSTI]

    Reece, Mark; Knorovsky, Gerald A.; MacCallum, Danny O.

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  13. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  14. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  15. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    SciTech Connect (OSTI)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D.

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  16. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  17. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  18. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    none,

    2004-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the project's cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  19. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    Not Available

    2001-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the projects cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  20. Air pollution control systems in WtE units: An overview

    SciTech Connect (OSTI)

    Vehlow, J.

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  1. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  2. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    SciTech Connect (OSTI)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D.

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  3. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    SciTech Connect (OSTI)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed.

  4. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  5. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  6. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  7. Air/fuel supply system for use in a gas turbine engine

    DOE Patents [OSTI]

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  8. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Xinliang Chen; Jiangang Qu; Minqi Shi

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  9. Self-correcting Controls for Air Handling Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio...

  10. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    SciTech Connect (OSTI)

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.