National Library of Energy BETA

Sample records for air density change

  1. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  2. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  3. File:Air Density Lab.pdf | Open Energy Information

    Open Energy Info (EERE)

    Air Density Lab.pdf Jump to: navigation, search File File history File usage Metadata File:Air Density Lab.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600...

  4. Research on Factors Relating to Density and Climate Change |...

    Open Energy Info (EERE)

    on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency...

  5. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect (OSTI)

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires

  6. Opening Remarks, Achieving Air Quality and Climate Change Goals...

    Broader source: Energy.gov (indexed) [DOE]

    Bevan CARB May 14, 2014 Sacramento California Healthy Air Quality for All ... still breathing unhealthy air * California has 7 of 10 most ozone polluted cities ...

  7. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    SciTech Connect (OSTI)

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-08-10

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  8. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect (OSTI)

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  9. Opening Remarks, Achieving Air Quality and Climate Change Goals through Energy and Transportation Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Quality and Climate Change Goals through Energy and Transportation Transformation Analisa Bevan CARB May 14, 2014 Sacramento California  Healthy Air Quality for All Californians  Continued progress towards ozone attainment  Reduce localized exposure to pollutants and toxics  Stable Global Climate  Reduce greenhouse gases (GHG) 80% below 1990 levels by 2050 Driving Forces Behind CARB Policies 2 Source: American Lung Association Over 90% of Californians still breathing unhealthy

  10. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect (OSTI)

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  11. Concentration and density changes at an electrode surface and the principle of unchanging total concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stephen W. Feldberg; Lewis, Ernie R.

    2016-02-17

    In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (Xz11 and Xz22) plus one or more non-electroactive species (Xz33,Xz44...Xzjmaxjmax) where Xzjj is the jth species with charge zj and concentration; cj. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation, i.e.: Σjmaxj=1[Xzjj]=Σjmaxj=1 cj = SP With this principle we deduce the electrochemically induced difference betweenmore » the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.« less

  12. Impacts of Future Climate and Emission Changes on U.S. Air Quality

    SciTech Connect (OSTI)

    Penrod, Ashley; Zhang, Yang; Wang, K.; Wu, Shiang Yuh; Leung, Lai-Yung R.

    2014-06-01

    Changes in climate and emissions will affect future air quality. In this work, simulations of present (2001-2005) and future (2026-2030) regional air quality are conducted with the newly released CMAQ version 5.0 to examine the individual and combined impacts of simulated future climate and anthropogenic emission projections on air quality over the U.S. Current (2001-2005) meteorological and chemical predictions are evaluated against observational data to assess the models capability in reproducing the seasonal differences. Overall, WRF and CMAQ perform reasonably well. Increased temperatures (up to 3.18 C) and decreased ventilation (up to 157 m in planetary boundary layer height) are found in both future winter and summer, with more prominent changes in winter. Increases in future temperatures result in increased isoprene and terpene emissions in winter and summer, driving the increase in maximum 8-h average O3 (up to 5.0 ppb) over the eastern U.S. in winter while decreases in NOx emissions drive the decrease in O3 over most of the U.S. in summer. Future concentrations of PM2.5 in winter and summer and many of its components including organic matter in winter, ammonium and nitrate in summer, and sulfate in winter and summer, decrease due to decreases in primary anthropogenic emissions and the concentrations of secondary anthropogenic pollutants and increased precipitation in winter. Future winter and summer dry and wet deposition fluxes are spatially variable and increase with increasing surface resistance and precipitation (e.g., NH4+ and NO3- dry and wet deposition fluxes increase in winter over much of the U.S.), respectively, and decrease with a decrease in ambient particulate concentrations (e.g., SO42- dry and wet deposition fluxes decrease over the eastern U.S. in summer and winter). Sensitivity simulations show that anthropogenic emission projections dominate over changes in climate in their impacts on the U.S. air quality in the near future. Changes in

  13. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  14. Air stable n-doping of WSe{sub 2} by silicon nitride thin films with tunable fixed charge density

    SciTech Connect (OSTI)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-09-01

    Stable n-doping of WSe{sub 2} using thin films of SiN{sub x} deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN{sub x} act to dope WSe{sub 2} thin flakes n-type via field-induced effect. The electron concentration in WSe{sub 2} can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN{sub x} through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe{sub 2} junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe{sub 2} n-MOSFETs with a mobility of ?70 cm{sup 2}/V?s.

  15. Energy conversion system involving change in the density of an upwardly moving liquid

    DOE Patents [OSTI]

    Petrick, Michael (Jolliet, IL)

    1989-01-01

    A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.

  16. Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

  17. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect (OSTI)

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  18. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect (OSTI)

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  19. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    SciTech Connect (OSTI)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less

  20. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  1. Lithium Air Electrodes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. Comparing metal air batteries, Li-air delivers the highest specific energy. Comparing metal air batteries, Li-air delivers the highest specific energy. Technology Marketing Summary With

  2. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect (OSTI)

    Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study

  3. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    SciTech Connect (OSTI)

    Rotstein, S.; Lax, I.; Svane, G. )

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered to 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.

  4. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of DEVAP prototype validates modeled predictions of 40% to 85% energy savings. Researchers in the NREL Buildings group are moving the award-winning desiccant enhanced evaporative (DEVAP) air conditioning technol- ogy further toward commercialization by demonstrating that its energy-saving perfor- mance matches closely with thermodynamic model predictions. Industry partners Synapse Product Development and AIL Research built two prototypes of DEVAP based on NREL's design and modeling,

  5. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  6. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  7. Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40-110 dpa at 400-750°C in FFTF

    SciTech Connect (OSTI)

    Toloczko, Mychailo B.; Garner, Frank A.; Maloy, Stuart A.

    2012-12-30

    An irradiation creep and swelling study was performed on tubing constructed from the Y2O3-strengthened ODS ferritic steel MA957. As a result of the reduction operations during manufacture, the grains in the tubing were highly elongated in the direction of the tubing axis, with an aspect ratio of ~10:1. Pressurized creep tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 dpa to 110 dpa at temperatures ranging from 400 to 750°C. The diametral strains produced during irradiation exhibit very strong transient strains that are linearly dependent on stress and increase with irradiation temperature before reaching temperature-independent steady-state creep rates of 0.6-0.7 X 10-6 (MPa dpa)-1. Contributions to transient strains may not arise only from classical thermal creep or irradiation creep considerations, but also may result from an irradiation-stimulated growth process whereby the highly elongated grain structure reduces the aspect ratio to produce fatter grains and thereby increases in the tube diameter. One manifestation of this process is a change in tube diameter that is not accompanied by a density change characteristic of void swelling or precipitation-induced changes in lattice parameter. These results provide the first conclusive demonstration that resistance to irradiation creep can be extended to higher temperatures by dispersoid addition, and most importantly, this resistance is maintained to high radiation damage levels. However, the irradiation creep compliance is not reduced by dispersoid addition, casting some doubt on various proposed climb and glide mechanisms of irradiation creep.

  8. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  9. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  10. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  11. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  12. Air Sealing

    SciTech Connect (OSTI)

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  13. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  14. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  15. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  16. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

  17. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  18. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  19. Density functional theory and conductivity studies of boron-based...

    Office of Scientific and Technical Information (OSTI)

    The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based ...

  20. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  1. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  6. Attractor comparisons based on density

    SciTech Connect (OSTI)

    Carroll, T. L.

    2015-01-15

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.

  7. Maintaining System Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment.

  8. Tips: Air Conditioners

    Broader source: Energy.gov [DOE]

    How to operate your air conditioner efficiently, or consider alternatives to air conditioning that can cool effectively in many climates.

  9. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  10. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  11. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  12. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  13. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  14. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  15. air_water.cdr

    Office of Legacy Management (LM)

    122011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring ...

  16. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  17. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  18. Visualization of electronic density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  19. Visualization of electronic density

    SciTech Connect (OSTI)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atoms volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  20. Core density turbulence in the HSX Stellarator

    SciTech Connect (OSTI)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.

    2015-10-23

    Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.

  1. Density-dependent covariant energy density functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  2. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  3. Clean Air Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation’s air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources.

  4. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility electron density obtained from a density functional theory Shown here is the electron density obtained from a density functional theory (DFT) calculation of lithium oxide (Li2O) performed with the GPAW code. This visualization was the result of a simulation run on Intrepid, a supercomputer at the Argonne Leadership Computing Facility. Kah Chun Lau, Aaron Knoll and Larry A. Curtiss, Argonne National Laboratory Predictive Materials Modeling for Li-Air Battery

  5. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS AT IDAHO NATIONAL LABORATORY: DESCRIPTION AND SUMMARY OF DATA

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2010-09-01

    Idaho National Laboratory performed air ingress experiments as part of validating computational fluid dynamics code (CFD). An isothermal stratified flow experiment was designed and set to understand stratified flow phenomena in the very high temperature gas cooled reactor (VHTR) and to provide experimental data for validating computer codes. The isothermal experiment focused on three flow characteristics unique in the VHTR air-ingress accident: stratified flow in the horizontal pipe, stratified flow expansion at the pipe and vessel junction, and stratified flow around supporting structures. Brine and sucrose were used as heavy fluids and water was used as light fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between heavy and light fluids is generated even for very small density differences. The code was validated by conducting blind CFD simulations and comparing the results to the experimental data. A grid sensitivity study was also performed based on the Richardson extrapolation and the grid convergence index method for modeling confidence. As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  6. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  7. Combustor air flow control method for fuel cell apparatus

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  8. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  9. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  10. Isokinetic air sampler

    DOE Patents [OSTI]

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  11. Beijing ChangLi Union Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Product: China-based technology company that research in zinc-air batteries (fuel cells). References: Beijing ChangLi Union Energy Company1 This article is a...

  12. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  13. Maintaining Your Air Conditioner

    Broader source: Energy.gov [DOE]

    Regular maintenance extends the life of your air conditioner and helps it run as efficiently as possible.

  14. Minimize Compressed Air Leaks

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

  15. In-Air Station - Facilities - Radiation Effects Facility / Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute / Texas A&M University In-Air Station Full view of in-air station. Our in-air station is located at the end of our dedicated beam-line. The station consist of a rotating platform and a removable target mounting fixture. most users to our facility prefer the in-air station over the vacuum chamber due to its easy access for set-up and target changes. Target Mounting In-Air target mounting frame. The mounting fixture for the in-air station has the same dimensions as the vacuum

  16. Density Equalizing Map Projections

    Energy Science and Technology Software Center (OSTI)

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  17. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  18. Determining the Right Air Quality for Your Compressed Air System

    Broader source: Energy.gov [DOE]

    This tip sheet outlines the main factors for determining the right air quality for compressed air systems.

  19. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  20. Energy in density gradient

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  1. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  2. Density Log | Open Energy Information

    Open Energy Info (EERE)

    Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration...

  3. Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...

  4. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  5. Common Air Conditioner Problems

    Broader source: Energy.gov [DOE]

    When your air conditioner is not operating properly, there are a few things you can check before calling a service professional.

  6. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  7. Adsorption air conditioner

    DOE Patents [OSTI]

    Rousseau, Jean L. I.

    1979-01-01

    A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

  8. Hill Air Force Base

    Broader source: Energy.gov [DOE]

    Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy...

  9. Gedanken densities and exact constraints in density functional theory

    SciTech Connect (OSTI)

    Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  10. High Energy Density Capacitors

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  11. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  12. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  13. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  14. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  15. Protective air lock

    DOE Patents [OSTI]

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  16. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  17. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  18. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  19. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  20. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  1. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  2. Vision for 2025: A Framework for Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change in the near future. ...

  3. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  4. air.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air force NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Range in Nevada on October 20, 2015. "This demonstration of effective end-to-end system... The man who trains everyone on the bombs Mark Meyer, training coordinator and field

  5. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  6. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  9. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  10. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  11. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  12. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  13. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  14. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  15. ARM - Lesson Plans: Air Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Pressure Objective The objective of this ... Important Points to Understand Air has weight and exerts pressure on everything with which ...

  16. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  17. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  18. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-12-01

    An apparatus to measure the heat flux through horizontally applied loosefill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  19. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  20. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect (OSTI)

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  1. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect (OSTI)

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  2. Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility The electronic charge density of a lithium oxide (Li2O) nanoparticle consists of 1500 atoms obtained from Density Functional Theory simulation. Kah Chun Lau (MSD, ANL), Aaron Knoll (MCS, ANL), Larry A Curtiss (MSD/CNM, ANL). Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air PI Name: Jack Wells PI Email: wellsjc@ornl.gov Institution: Oak Ridge National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 25 Million Year:

  3. ISOTHERMAL AIR-INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2013-01-01

    Idaho National Laboratory has conducted airingress experiments as part of a campaign to validate computational fluid dynamics (CFD) calculations for very high-temperature gas-cooled reactor (VHTR) analysis. An isothermal test loop was designed to recreate exchange or stratified flow that occurs in the lower plenum of VHTR after a break in the primary loop allows helium to leak out and reactor building air to enter the reactor core. The experiment was designed to measure stratified flow in the inlet pipe connecting to the lower plenum of the General Atomics gas turbine–modular helium reactor (GT-MHR). Instead of helium and air, brine and sucrose were used as heavy fluids, and water was used as the lighter fluid to create, using scaling laws, the appropriate flow characteristics of the lower plenum immediately after depressurization. These results clearly indicate that stratified flow is established even for very small density differences. Corresponding CFD results were validated with the experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations. The calculated current speed showed very good agreement with the experimental data, indicating that current CFD methods are suitable for simulating density gradient stratified flow phenomena in an air-ingress accident.

  4. Pressure-induced changes in the electron density distribution...

    Office of Scientific and Technical Information (OSTI)

    Search DOE PAGES for author "Li, Rui" Search DOE PAGES for ORCID "0000000311760454" Search orcid.org for ORCID "0000000311760454" ; Liu, Jing 2 ; Bai, Ligang 3 ; Tse, John S. ...

  5. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  6. The Diesel Paradox: Why Dieselization Will Lead to Cleaner Air

    SciTech Connect (OSTI)

    Eberhardt, James J.

    2000-08-20

    There are challenges facing the U.S. and the world that are brought on by the growing demand for transporting people and goods. These include the growing consumption of petroleum, urban air pollution, and global climate change.

  7. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  8. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  10. Air Proportional Counter

    DOE Patents [OSTI]

    Simpson, J.A. Jr.

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  11. Category:Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...

  12. Emerging Latin American air quality regulation

    SciTech Connect (OSTI)

    Hosmer, A.W.; Vitale, E.M.; Guerrero, C.R.; Solorzano-Vincent, L.

    1998-12-31

    Latin America is the most urbanized region in the developing world. In recent years, significant economic growth has resulted in population migration from rural areas to urban centers, as well as in a substantial rise in the standard of living within the Region. These changes have impacted the air quality of Latin American countries as increased numbers of industrial facilities and motor vehicles release pollutants into the air. With the advent of new free trade agreements such as MERCOSUR and NAFTA, economic activity and associated pollutant levels can only be expected to continue to expand in the future. In order to address growing air pollution problems, many Latin America countries including Argentina, Brazil, Chile, Columbia, Costa Rica, and Mexico have passed, or will soon pass, new legislation to develop and strengthen their environmental frameworks with respect to air quality. As a first step toward understanding the impacts that this increased environmental regulation will have, this paper will examine the regulatory systems in six Latin American countries with respect to ambient air quality and for each of these countries: review a short history of the air quality problems within the country; outline the legal and institutional framework including key laws and implementing institutions; summarize in brief the current status of the country in terms of program development and implementation; and identify projected future trends. In addition, the paper will briefly review the international treaties that have bearing on Latin American air quality. Finally, the paper will conclude by identifying and exploring emerging trends in individual countries and the region as a whole.

  13. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  14. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ...,2354,2114,2054,"Q","Q" "District Chilled Water ......",2750,2750,"Q",336,359,2750,386,72...

  15. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ..."Q",21,43,16,43,"Q","Q" "District Chilled Water ......",50,50,"Q",4,"Q",50,1,"Q","Q","Q" ...

  16. National Security Science and Technology Initiative: Air Cargo Screening

    SciTech Connect (OSTI)

    Bingham, Philip R; White, Tim; Cespedes, Ernesto; Bowerman, Biays; Bush, John

    2010-11-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive

  17. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  18. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  19. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  20. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  1. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  2. Membrane Based Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Based Air Conditioning 2016 Building Technologies Office Peer Review Brian Johnson, brian.johnson@daisanalytic.com Dais Analytic Corporation INSERT PROJECT SPECIFIC PHOTO (replacing this shape) 2 Project Summary Timeline: Start date: October 1, 2015 NEW PROJECT Planned end date: September 30, 2017 Key Milestones 1. System Design Review; March 2016 2. Compressor testing review; September 2016 3. Go/No-Go based on bench testing; September 2016 4. Experimental evaluation of V1 prototype;

  3. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  4. ARM - Instrument - ccn-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ccn-air" does not exist.

  5. ARM - Instrument - cpc-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cpc-air" does not exist.

  6. ARM - Instrument - hk-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshk-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "hk-air" does not exist.

  7. ARM - Instrument - met-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmet-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "met-air" does not exist.

  8. ARM - Instrument - pcasp-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspcasp-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "pcasp-air" does not exist.

  9. ARM - Instrument - tracegas-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstracegas-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "tracegas-air" does not exist.

  10. ARM - Instrument - uhsas-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsuhsas-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "uhsas-air" does not exist.

  11. UNDERSTANDING THE AIR SAMPLING DATA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more comparisons, see the millirem comparisons poster. Dose estimates have been calculated based on the low-volume air sampler results. Low-volume air samplers collect samples ...

  12. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  13. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  14. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  15. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  16. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  17. Air-flow regulation system for a coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  18. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Compressed Air System Control Strategies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance.

  20. Contaminant and heat removal effectiveness and air-to-air heat/energy recovery for a contaminated air space

    SciTech Connect (OSTI)

    Irwin, D.R.; Simonson, C.J.; Saw, K.Y.; Besant, R.W.

    1998-12-31

    Measured contaminant and heat removal effectiveness data are presented and compared for a 3:1 scale model room, which represents a smoking room, lounge, or bar with a two-dimensional airflow pattern. In the experiments, heat and tracer gases were introduced simultaneously from a source to simulate a prototype smoking room. High-side-wall and displacement ventilation schemes were investigated, and the latter employed two different types of ceiling diffuser,low-velocity slot and low-velocity grille. Results show that thermal energy removal effectiveness closely follows contaminant removal effectiveness for each of the ventilation schemes throughout a wide range of operating conditions. The average mean thermal and contaminant removal effectiveness agreed within {+-}20%. Local contaminant removal effectiveness ranged from a low of 80% for a high-wall slot diffuser to more than 200% for a low-velocity ceiling diffuser with displacement ventilation. Temperature differences between the supply and the indoor air were between 0.2 C (0.36 F) and 41.0 C (73.8 V) and ventilation airflow rates ranged from 9.2 to 36.8 air changes per hour at inlet conditions. For small temperature differences between supply and exhaust air, all three ventilation schemes showed increased contaminant removal effectiveness near the supply diffuser inlet with decreasing values toward the exhaust outlet. For the high-side-wall slot diffuser, effectiveness was up to 140% near the inlet and 100% near the exhaust, but for the second displacement scheme (low-velocity grille) the effectiveness was more than 200% near the inlet and 110% near the exhaust. This paper also shows a potential significant reduction in cooling load for a 50-person-capacity smoking lounge that utilizes an air-to-air heat/energy exchanger to recover heat/energy from the exhaust air.

  1. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1993-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  2. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1991-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  3. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  4. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  5. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  6. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  7. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  8. Simulations of liquid ribidium expanded to the critical density

    SciTech Connect (OSTI)

    Ross, M; Yang, L H; Pilgrim, W

    2006-05-16

    Quantum molecular dynamic simulations were used to examine the change in atomic and electronic structure in liquid rubidium along its liquid-vapor coexistence curve. Starting from the liquid at the triple point, with increasing expansion we observe a continuous increase in the electron localization leading to ion clustering near the metal-nonmetal transition at about twice the critical density, in agreement with electrical measurements, and to the presence of dimers near and below the critical density.

  9. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  11. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  12. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL ._~ AtFx=b.-zf .7.-i- M r. s. .II. Gown -~ Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l/2" biscuits will:be 107'poutids approximately; i.e. 100 pounds of thorium per biscuit. A four biscuit charge is not feasible because of crucible dimensions, availability, etc. A three biscuit charge will, when molten, fill the proposed crucible half full. This condition is un- desirable because, due to the low heat of fusion of thorium and the

  13. CS Chang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CS Chang CS Chang FES Requirements Worksheet 1.1. Project Information - Center for Plasma Edge Simulation Document Prepared By CS Chang Project Title Center for Plasma Edge...

  14. High Density Sensor Network Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Density Sensor Network Development

  15. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  16. Tips: Air Ducts | Department of Energy

    Energy Savers [EERE]

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy ...

  17. Tips: Air Ducts | Department of Energy

    Energy Savers [EERE]

    Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and ...

  18. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  19. Chemiluminescent detection of organic air pollutants (Conference...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 ENVIRONMENTAL SCIENCES; POLLUTANTS; CHEMILUMINESCENCE; AIR POLLUTION; CHEMICAL COMPOSITION; ORGANIC COMPOUNDS; AIR POLLUTION MONITORING; OZONE; ...

  20. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  1. Remove Condensate with Minimal Air Loss

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality.

  2. Clean Air Act Title V: Knocking on your door

    SciTech Connect (OSTI)

    Hosford, R.B. )

    1993-01-15

    The Clean Air Act Amendments of 1990 made several significant changes in the clean air program. One of the key elements of the Amendments was the inclusion of an operating permit program in Title V. The purpose of the program is to establish a central point for tracking all applicable air quality requirements for every source required to obtain a permit. This article provides a brief description of the most significant provisions. In addition, the subject of permit modification is discussed in some detail.

  3. Calibration models for density borehole logging - construction report

    SciTech Connect (OSTI)

    Engelmann, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Two machined blocks of magnesium and aluminum alloys form the basis for Hanford`s density models. The blocks provide known densities of 1.780 {plus_minus} 0.002 g/cm{sup 3} and 2.804 {plus_minus} 0.002 g/cm{sup 3} for calibrating borehole logging tools that measure density based on gamma-ray scattering from a source in the tool. Each block is approximately 33 x 58 x 91 cm (13 x 23 x 36 in.) with cylindrical grooves cut into the sides of the blocks to hold steel casings of inner diameter 15 cm (6 in.) and 20 cm (8 in.). Spacers that can be inserted between the blocks and casings can create air gaps of thickness 0.64, 1.3, 1.9, and 2.5 cm (0.25, 0.5, 0.75 and 1.0 in.), simulating air gaps that can occur in actual wells from hole enlargements behind the casing.

  4. De-icing thermostat for air conditioners

    SciTech Connect (OSTI)

    Levine, M.R.

    1986-12-09

    This patent describes an electronic thermostat adapted to be connected to an air-cooling apparatus to control the operative state of the apparatus. The thermostat includes a means for generating a digital electrical signal representative of a desired temperature setpoint and means for generating a digital electrical signal representative of the ambient temperature at the thermostat. The improvement described here comprises: means for generating control signals for the aircooling apparatus in order to inhibit the accumulation of ice on the cooling element of the air-cooling apparatus when the ambient temperature is above the temperature setpoint; means, responsive to the control signals, for deenergizing the compressor in the air-cooling apparatus for a first preselected period of time whenever the compressor is determined to have run continuously for a second preselected period of time; and means for adaptively adjusting the length of at least one of the first or second preselected periods of time as a function of the change in the rate of change of the ambient temperature.

  5. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  7. DOE Releases Climate Change Technology Program Strategic Plan...

    Energy Savers [EERE]

    ... and others - have the potential to transform our economy in fundamental ways and can address not just climate change, but energy security, air pollution, and other pressing needs." ...

  8. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  9. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  10. Plasma digital density determining device

    DOE Patents [OSTI]

    Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.

    1976-01-01

    The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

  11. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  12. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  13. Statistical density modification using local pattern matching

    DOE Patents [OSTI]

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  14. Air Force Renewable Energy Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  15. Solid State Magnetocaloric Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory 2 Cooling Effect: Solid State Magnetocaloric Air Conditioner T cold T ... and fabricate permanent magnets Communications: * Abstract accepted for the Purdue ...

  16. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  17. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  18. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  19. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  20. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An air conditioner cools your home with a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and ...

  1. Air Conditioner Ready to Change Industry - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Aiming to Green NASCAR's Future: Q&A with Driver Leilani Munter Aiming to Green NASCAR's Future: Q&A with Driver Leilani Munter August 2, 2010 - 10:00am Addthis Leilani Münter adopts an acre of rainforest for every race she drives in. | Photo courtesy of Phil Cavali Leilani Münter adopts an acre of rainforest for every race she drives in. | Photo courtesy of Phil Cavali Lindsay Gsell "I feel being a part of NASCAR is where I can make a really big impact

  2. Building a Universal Nuclear Energy Density Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

  3. Recirculating industrial air: The impact on air compliance and workers. Safety case study: Hill Air Force Base C-130 painting operations

    SciTech Connect (OSTI)

    LaPuma, P.T.

    1998-06-29

    The 1990 Clean Air Act Amendment resulted in new environmental regulations called the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Industries such as painting facilities may have to treat large volumes of air, which drives the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. A guided computer model written in Microsoft Excel 97% is developed to analyze worker safety and compliance costs with a focus on recirculation. The model has a chemical database containing over 1300 chemicals and requires inputs such as tasks performed, hazardous products used, and chemical make-up of the products. The model will predict indoor air concentrations in relation to occupational exposure limits (OELs). A case study is performed on a C-130 aircraft painting facility at Hill AFB, UT. The Aerospace NESHAP requires air pollution reductions in aircraft painting operations. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the OEL. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered prior to recirculation. The next highest chemical, hexamethylene diisocyanate (HDI), increases from 2.6 to 10.5 times the OEL at 0% and 75% recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75%. The initial cost of a VOC control system with no recirculation is $4.5 million and $1.8 million at 75% recirculation. To decide the best operating conditions for a facility, all options such as product substitution, operational changes or recirculation should be explored. The model is an excellent tool to evaluate these options.

  4. AVIC Changli Union Energy | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Product: China-based JV to manufacture and sell zinc-air batteries. References: AVIC Changli Union Energy1 This article is a stub. You can help...

  5. Density impact on performance of composite Si/graphite electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.

    2016-01-27

    The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less

  6. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  7. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  8. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  9. ARM - Instrument - co-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsco-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Monoxide- Airborne (CO-AIR) Instrument Categories Airborne Observations, Atmospheric Carbon Contact(s) Stephen Springston Brookhaven National Laboratory (631) 344-4477 srs@bnl

  10. ARM - Instrument - gustprobe-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgustprobe-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aircraft Gust Probe (GUSTPROBE-AIR) Instrument Categories Airborne Observations Contact(s) Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl

  11. ARM - Instrument - rad-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrad-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Airborne Radiometers (RAD-AIR) Instrument Categories Radiometric, Airborne Observations

  12. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  13. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  14. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  15. Lithium-Air and ionic Liquids

    SciTech Connect (OSTI)

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  16. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  17. Radioxenon spiked air

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  18. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change I - Signatories X II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in...

  19. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change X I - Signatories II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in...

  20. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect (OSTI)

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  1. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  2. Continuous air monitor filter changeout apparatus

    DOE Patents [OSTI]

    Rodgers, John C.

    2008-07-15

    An apparatus and corresponding method for automatically changing out a filter cartridge in a continuous air monitor. The apparatus includes: a first container sized to hold filter cartridge replacements; a second container sized to hold used filter cartridges; a transport insert connectively attached to the first and second containers; a shuttle block, sized to hold the filter cartridges that is located within the transport insert; a transport driver mechanism means used to supply a motive force to move the shuttle block within the transport insert; and, a control means for operating the transport driver mechanism.

  3. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  4. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  5. OSCAR experiment high-density network data report: Event 3 - April 16-17, 1981

    SciTech Connect (OSTI)

    Dana, M.T.; Easter, R.C.; Thorp, J.M.

    1984-12-01

    The OSCAR (Oxidation and Scavenging Characteristics of April Rains) experiment, conducted during April 1981, was a cooperative field investigation of wet removal in cyclonic storm systems. The high-density component of OSCAR was located in northeast Indiana and included sequential precipitation chemistry measurements on a 100 by 100 km network, as well as airborne air chemistry and cloud chemistry measurements, surface air chemistry measurements, and supporting meteorological measurements. Four separate storm events were studied during the experiment. This report summarizes data taken by Pacific Northwest Laboratory (PNL) during the third storm event, April 16-17. The report contains the high-density network precipitation chemistry data, air chemistry and cloud chemistry data from the PNL aircraft, and meteorological data for the event, including standard National Weather Service products and radar and rawindsonde data from the network. 4 references, 76 figures, 6 tables.

  6. Radioxenon spiked air

    SciTech Connect (OSTI)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  7. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  8. DENSITY CONTROL IN A REACTOR

    DOE Patents [OSTI]

    Marshall, J. Jr.

    1961-10-24

    A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

  9. Building America Case Study: Air Leakage and Air Transfer Between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project builds on previous work by Rudd and Bergey (2013) to further examine and evaluate the problem of unwanted air transfer from garage to living space and the ...

  10. DOE Announces Webinars on Climate Change Impacts and Indian Country,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pneumatic Control Retrofits and Air-Side Control Peer Exchange, and More | Department of Energy Climate Change Impacts and Indian Country, Pneumatic Control Retrofits and Air-Side Control Peer Exchange, and More DOE Announces Webinars on Climate Change Impacts and Indian Country, Pneumatic Control Retrofits and Air-Side Control Peer Exchange, and More April 3, 2014 - 9:21am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and

  11. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  12. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  13. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  14. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  15. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  16. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOE Patents [OSTI]

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  17. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  18. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect (OSTI)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  19. DunoAir | Open Energy Information

    Open Energy Info (EERE)

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  20. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  1. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling ... of a long room, then look for a fan control known as "Power Thrust" or "Super ...

  2. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    SciTech Connect (OSTI)

    Post, Ellen S.; Grambsch, A.; Weaver, C. P.; Morefield, Philip; Huang, Jin; Leung, Lai-Yung R.; Nolte, Christopher G.; Adams, P. J.; Liang, Xin-Zhong; Zhu, J.; Mahoney, Hardee

    2012-11-01

    Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

  3. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  4. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  5. ARM - Instrument - inletcvi-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletcvi-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletcvi

  6. ARM - Instrument - inletisok-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletisok-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletisok

  7. Manual on indoor air quality

    SciTech Connect (OSTI)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  8. PFT Air Infiltration Measurement Technique

    Broader source: Energy.gov [DOE]

    The airtightness of a building can be determined by using several methods. Learn how the PFT (PerFluorocarbon tracer gas) technique provides information about air leakage and energy loss.

  9. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  10. Air Conditioner Regional Standards Brochure

    Broader source: Energy.gov [DOE]

    DOE has adopted energy conservation standards for split-system air conditioners that vary depending on when and where a unit is installed. This brochure is designed to provide information about the new standards to distributors, contractors (installers), and consumers.

  11. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  12. Determination of the transient electron temperature in a femtosecond-laser-induced air plasma filament

    SciTech Connect (OSTI)

    Sun Zhanliang; Chen Jinhai; Rudolph, Wolfgang

    2011-04-15

    The transient electron temperature in a weakly ionized femtosecond-laser-produced air plasma filament was determined from optical absorption and diffraction experiments. The electron temperature and plasma density decay on similar time scales of a few hundred picoseconds. Comparison with plasma theory reveals the importance of inelastic collisions that lead to energy transfer to vibrational degrees of freedom of air molecules during the plasma cooling.

  13. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect (OSTI)

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  14. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  15. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Performance but Not Fuel Economy | Department of Energy 8: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy A February 2009 study conducted by Oak Ridge National Laboratory found that for modern computer-controlled, fuel-injected engines, changing a clogged air filter has no measurable affect on fuel economy but does

  16. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  17. Tips: Sealing Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrical outlets, ceiling fixtures, attic hatches, and other places where air may leak. ... Use foam sealant on larger gaps around windows, baseboards, and other places where air may ...

  18. Maintaining System Air Quality; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air applica- tions and determine the required level of air quality for each. * Review the ...

  19. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System...

  20. Property:AirMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Barometric Pressure (Air);Precipitation (Air);Relative...

  1. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present » Is there something in the air? Is there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 Clouds over Los Alamos Clouds over Los Alamos Why does LANL sample air? Air is the most significant pathway. Air is monitored to ensure that any possible release is quickly detected. LANL samples and analyzes air to assess effects on: workers the public animals and plants Control the Present: Air Is there something in the

  2. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  3. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    frequently. Based on size alone, an air conditioner generally needs 20 Btu for each square foot of living space. Other important factors to consider when selecting an air...

  4. Save the World Air | Open Energy Information

    Open Energy Info (EERE)

    the World Air Jump to: navigation, search Name: Save the World Air Place: Santa Barbara, California Zip: 93101 Product: California-based, device manufacturer for better fuel...

  5. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  6. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  7. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow ...

  8. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  9. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  10. CS Chang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CS Chang CS Chang FES Requirements Worksheet 1.1. Project Information - Center for Plasma Edge Simulation Document Prepared By CS Chang Project Title Center for Plasma Edge Simulation Principal Investigator CS Chang Participating Organizations New York University, ORNL, PPPL, LBNL, MIT, Columbia U., Rutgers U. Lehigh U., Georgia Tech, Auburn U., U. Colorado, U. California at Irvine, Caltech, Hinton Associates Funding Agencies DOE SC DOE NSA NSF NOAA NIH Other: 2. Project Summary & Scientific

  11. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  12. Combination of emulsion chamber and air shower array at Mt. Chacaltaya

    SciTech Connect (OSTI)

    Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K. ); Matano, T. ); Mori, K.; Inoue, N.; Ticona, R. ); Ohsawa, A. ); Tamada, M. ); Martinic, N.; Aliaga, Z.; Reguerin, A.; Aguirre, C. )

    1993-06-15

    Data of 34 familes with the accompanying air showers, observed by the combination of emulsion chamber and air shower array at Mt. Chacaltaya, are presented. Comparison with the simulation calculation concludes that a change is necessary in the characteristics of hadron interactions in [ital E][sub 0][ge]10[sup 15] eV.

  13. Air protection strategy in Poland

    SciTech Connect (OSTI)

    Blaszczyk, B.

    1995-12-31

    Air quality is one of the basic factors determining the environmental quality and influencing the life conditions of people. There is a shortage of proper quality air in many regions of Poland. In consequence, and due to unhindered transport, air pollution is the direct cause of losses in the national economy (reduction of crops, losses in forestry, corrosion of buildings and constructions, worsening of people`s health). Poland is believed to be one of the most contaminated European countries. The reason for this, primarily, is the pollution concomitant with energy-generating fuel combustion; in our case it means the use of solid fuels: hard coal and lignite. This monocultural economy of energy generation is accompanied by low efficiency of energy use (high rates of energy loss from buildings, heat transmission pipelines, energy-consuming industrial processes). This inefficiency results in the unnecessary production of energy and pollution. Among other reasons, this results from the fact that in the past Poland did not sign any international agreements concerning the reduction of the emission of pollution. The activities aimes at air protection in Poland are conducted based on the Environmental Formation and Protection Act in effect since 1980 (with many further amendments) and the The Ecological Policy of the state (1991). The goals of the Polish air pollution reduction program for the period 1994-2000 are presented.

  14. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    SciTech Connect (OSTI)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.; Brewer, W. A.; Miller, Matthew A.; Hall, Andrew M.; Burleyson, Casey D.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer wind (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.

  15. DOE Requires Air-Con International to Cease Sales of Inefficient Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditioners and Proposes Penalties | Department of Energy Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties September 21, 2010 - 6:43pm Addthis The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in the

  16. School Air: Order (2016-CE-43004)

    Broader source: Energy.gov [DOE]

    DOE ordered School Air Mfg. Corp. d/b/a School Air, Inc. to pay a $8,000 civil penalty after finding School Air had failed to certify that certain models of single package vertical air conditioning and heating equipment comply with the applicable energy conservation standards.

  17. New challenges to air/gas cleaning systems

    SciTech Connect (OSTI)

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  18. Fuel cell stack with passive air supply

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  19. Hickam Air Force Base | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Hickam Air Force Base Hickam Air Force Base Photo of hybrid fuel cell bus at Hickam Air Force Base Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters. With support from the Hawaii Center for Advanced Transportation Technologies and the Air Force Advanced Power Technology Office, Hickam added a fuel cell hybrid electric bus to its fleet in

  20. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A February 2009 study conducted by Oak Ridge National Laboratory found that for modern computer-controlled, fuel-injected engines, changing a clogged air filter has no measurable ...

  1. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  2. Air quality data systems integration

    SciTech Connect (OSTI)

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  3. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  4. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  5. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  6. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  7. Climate Change

    Broader source: Energy.gov [DOE]

    The Energy Department is fighting climate change with research, clean fossil energy technology, domestic renewable energy development and more energy efficient appliances, homes, businesses and vehicles.

  8. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Log Change Log NERSC-8 / Trinity Benchmarks Change Log 09/03/2013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability Improvement measurements do not require 10,000 MPI ranks per k-point. 08/06/2013 Various pages have changed to remove "draft" status 08/02/2013 Correction added to FLOP Counts for "Small" Single-Node Miniapplication Tests page 07/12/2013 README files updated for IOR benchmark to correct an error in wording

  9. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC-8 Trinity Benchmarks Change Log 09032013 Correction applied to MiniDFT web-page ... results spreadsheet (linked on SSP web page); clarification to benchmark run rules ...

  10. ARM - Instrument - nav-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnav-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Navigational Location and Attitude for Aircraft (NAV-AIR) Instrument Categories Airborne Observations Contact(s) John Hubbe Pacific Northwest National Laboratory associate (509) 372-6134 John.Hubbe@pnnl.gov Brian Ermold Pacific Northwest National Laboratory Developer (509) 375-2277 brian.ermold@pnnl.gov Cristina

  11. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air

  12. Training: Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Systems Training: Compressed Air Systems April 16, 2014 - 6:32pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional compressed air system resources. Compressed Air Systems Tools Training - 2-hour webcast Availability: Online webcast A two-hour webcast on the use of the Compressed Air Challenge (CAC®) Toolkit and the AIRMaster+ software tool is available that introduces

  13. Effect of low emission sources on air quality in Cracow

    SciTech Connect (OSTI)

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  14. Coal conversion and the Clean Air Act: help from DOE

    SciTech Connect (OSTI)

    Frank, S.A.; Spiewak, S.A.

    1982-08-19

    While a large number of fuels conversions have occurred since the 1973-1974 oil embargo, there are still many opportunities for additional conversions. Many of the conversions which have occurred to date have been under federal order because of the legal benefits which accrue to them under the Clean Air Act. The Omnibus Budget Reconciliation Act changed the thrust of the federal program from a mandatory one to a voluntary one. A number of utilities have remained in the program or elected for certification under the new regulation because of the same Clean Air Act benefits. The DOE Office of Fuels Conversion, aside from being responsible for grants of Clean Air Act exemptions, possesses certain unique resources, including capabilities for engineering, finance, fuel supply, transportation, and environmental analysis. These capabilities are available to assist utilities seeking to convert to coal in numerous ways. In addition, assistance can be and is being provided to a state public service commission. 2 figures.

  15. Continuous Change Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    ecause it takes time to establish institutional change, federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability goals.

  16. Strong interactions in air showers

    SciTech Connect (OSTI)

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  17. Radiation resistance testing of high-density polyethylene. [Gamma rays

    SciTech Connect (OSTI)

    Dougherty, D.R.; Adams, J.W.

    1983-01-01

    Mechanical tests following gamma inrradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to assess the adequacy of this material for use in high-integrity containers (HICs). These tests were motivated by experience in nuclear power plants in which polyethylene electrical insulation detoriorated more rapidly than expected due to radiation-induced oxidation. This suggested that HDPE HICs used for radwaste disposal might degrade more rapidly than would be expected in the absence of the radiation field. Two types of HDPE, a highly cross-linked rotationally molded material and a non-cross-linked blow molded material, were used in these tests. Gamma-ray irradiations were performed at several dose rates in environments of air, Barnwell and Hanford backfill soils, and ion-exchange resins. The results of tensile and bend testing on these materials following irradiation will be presented along with preliminary results on creep during irradiation.

  18. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  19. Mexico City air quality research initiative, volume 3, modeling and simulation

    SciTech Connect (OSTI)

    Mauzy, A.

    1994-06-01

    The objective of the modeling and simulation task was to develop, test, and apply an appropriate set of models that could translate emission changes into air quality changes. Specifically, we wanted to develop models that could describe how existing measurements of ozone (O{sub 3}), carbon monoxide (CO), and sulfur dioxide (SO{sub 2}) would be expected to change if their emissions were changed. The modeling must be able to address the effects of difference in weather conditions and changes in land use as well as the effects of changes in emission levels. It must also be able to address the effects of changes in the nature and distribution of the emissions as well as changes in the total emissions. A second objective was to provide an understanding of the conditions that lead to poor air quality in Mexico City. We know in a general sense that Mexico City`s poor air quality is the result of large quantities of emissions in a confined area that is subject to light winds, but we did not know much about many aspects of the problem. For example, is the air quality on a given day primarily the result of emissions on that day...or is there an important carryover from previous nights and days? With a good understanding of the important meteorological circumstances that lead to poor air quality, we learn what it take duce an accurate forecast of impending quality so that we can determine the advisability of emergency measures.

  20. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  1. Quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  2. High Density Fuel Development for Research Reactors

    SciTech Connect (OSTI)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  3. The Quantum Energy Density: Improved E

    SciTech Connect (OSTI)

    Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.

    2013-01-01

    We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

  4. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect (OSTI)

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  5. Geographical distribution of benzene in air in northwestern Italy and personal exposure

    SciTech Connect (OSTI)

    Gilli, G.; Scursatone, E.; Bono, R.

    1996-12-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene air pollution at three sites in northwestern Italy throughout 1991 and 1994; to examine the relationship between benzene air pollution in indoor, outdoor, and personal air as measured by a group of nonsmoking university students; and to determine the influence of environmental tobacco smoke on the level of benzene exposure in indoor air environments. The results indicate a direct relationship between population density and levels of contamination; an indoor/outdoor ratio of benzene air pollution higher than 1 during day and night; a similar level of personal and indoor air contamination; and a direct relationship between levels of personal exposure to benzene and intensity of exposure to tobacco smoke. Human exposure to airborne benzene has been found to depend principally on indoor air contamination not only in the home but also in many other confined environments. 29 refs., 2 figs., 6 tabs.

  6. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  7. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Log Change Log Crossroads/NERSC-9 Benchmarks Change Log 05/25/2016 Updated to latest version 3.0 release of the HPCG distribution. For the APEX benchmark, the -DHPCG_CONTIGUOUS_ARRAYS flag is now used which improves the baseline performance on Edison significantly. Please refer to the updated SSI spreadsheet for the new baseline value. 05/17/2016 Updated source distribution. README.APEX now states to use "Grind Time" as the figure of merit. Failed to do this on the 5/10/2016

  8. Method of synthesizing a low density material

    DOE Patents [OSTI]

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  9. Density Distributions and CO2 Sorption in a Confined Coal Sample for Carbon Sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, T.R.; Smith, D.H.

    2007-04-01

    A confined core of a Pittsburgh #8 coal obtained from a mine near Waynesburg, Pennsylvania, has been investigated using computerized tomography. The 3-D density distribution of the coal was calculated for the stressed and confined core with, and without CO2 sorption. We used a dual energy technique to quantify volumetric variations in bulk density and effective atomic number. CO2 sorption of coal was then investigated at predetermined injection pressures. The density changes in the coal matrix were calculated and correlated with the CO2 adsorbed for a multitude of regions of interest (ROI) chosen in slices perpendicular to the bedding plane. The results show that even in small core samples, coal heterogeneity is high. Large variation of density was observed in small regions of interest compared to the average density of slices. Also, the coal density distribution was changed significantly due to the CO2 uptake. This technique seems very useful in calculating density distribution for stressed and confined coal samples and the change in volumetric density distribution due to CO2 adsorption. Furthermore the kinetics of heterogeneous adsorption and swelling in coal can be determined.

  10. Effect of Title V air permitting on pipeline operations

    SciTech Connect (OSTI)

    Bost, R.C.; Donnan, G.T.

    1995-12-31

    Pursuant to the passage of the Clean Air Act Amendments of 1990, the US Environmental Protection Agency has promulgated what are known as Title V permitting requirements for major sources of air pollutants, including pipeline operations. In contrast to most existing air permitting programs, the new Title V regulations will require periodic certification of compliance with applicable air regulations. In the same way that water dischargers report their own discharge violations to regulatory agencies pursuant to the NPDES permitting system, Title V permittees must implement an acceptable monitoring program and similarly report violations of permit conditions or applicable air regulations. Only those facilities whose potential emissions are less than or can be controlled to be less than certain regulatory limits will be exempt from standard Title V permitting. If a facility`s throughput or the concentration levels of certain volatile toxic levels in a particular crude or natural gas were to exceed corresponding regulatory limits, then the facility could be in violation. If an operator were to expand a field, then the changes in the gathering system and emission levels could constitute a violation. Constraints on operations can be avoided by careful strategizing of an operator`s Title V permit application.

  11. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Bertulani, Carlos A.

    2014-09-10

    This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.

  12. 3-D capacitance density imaging system

    DOE Patents [OSTI]

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  13. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  14. Screening potential in high density plasmas

    SciTech Connect (OSTI)

    Amari, M.; Arranz, J. P.; Butaux, J.; Nguyen, H.

    1997-01-05

    On the basis of a two-ion center model, an accurate closed form of the screening potential is suggested for intermediate and high density plasmas.

  15. Universal Nuclear Energy Density Functional (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear structure; nuclear energy density functional Word Cloud ...

  16. Mini-review of Electron Density Visualization

    SciTech Connect (OSTI)

    Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R

    2015-01-01

    We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.

  17. Uncertainty Quantification for Nuclear Density Functional Theory...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...

  18. Chiral dynamics and peripheral transverse densities Granados...

    Office of Scientific and Technical Information (OSTI)

    dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...

  19. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf (1.95 MB) More Documents & Publications High Energy Density Ultracapacitors ...

  20. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  1. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  2. Detecting Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Air Sealing » Detecting Air Leaks Detecting Air Leaks For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. You may already know where some air leakage occurs in your home, such as an under-the-door draft, but

  3. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  4. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect (OSTI)

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  5. Fabrication of thin-wall hollow nickel spheres and low density syntactic foams

    SciTech Connect (OSTI)

    Clancy, R.B.; Sanders, T.H. Jr.; Cochran, J.K.

    1991-12-31

    A process has been developed to fabricate thin-wall hollow spheres from conventional oxide powders at room temperature. The polymer- bonded powder shells are fired in air to sinter the walls, leaving the shells either impervious or porous. Alternatively, the oxide shells can be preferentially reduced to produce thin-wall hollow metal spheres which can be bonded together to produce an ultra light weight closed-cell foam. Processing and properties of this class of low density structures will be discussed.

  6. U.S. Air Force (USAF) Air Force Research Laboratory (AFRL)

    Broader source: Energy.gov (indexed) [DOE]

    Benjamin Leever U.S. Air Force (USAF) Air Force Research Laboratory (AFRL) DOE - DoD ... level - Fourth level Fifth level - - - DOD Application Commercial Counterparts Sensor ...

  7. OSCAR experiment high-density network data report: Event 1 - April 8-9, 1981

    SciTech Connect (OSTI)

    Dana, M.T.; Easter, R.C.; Thorp, J.M.

    1984-12-01

    The OSCAR (Oxidation and Scavenging Characteristics of April Rains) experiment, conducted during April 1981, was a cooperative field investigation of wet removal in cyclonic storm systems. The high-densiy component of OSCAR was located in northeast Indiana and included sequential precipitation chemistry measurements on a 100 by 100 km network, as well as airborne air chemistry and cloud chemistry measurements, surface air chemistry measurements, and supporting meteorological measurements. Four separate storm events were studied during the experiment. This report summarizes data taken by Pacific Northwest Laboratory (PNL) during the first storm event, April 8-9. The report contains the high-density network precipitation chemistry data, air chemistry data from the PNL aircraft, and meteorological data for the event, including standard National Weather Service products and radar data from the network. 4 references, 72 figures, 5 tables.

  8. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  9. Laboratory Study Of Magnetic Reconnection With A Density Asymmetry Across The Current Sheet

    SciTech Connect (OSTI)

    Yoo, Joseph; Yamada, Massaaki; Ji, Hantao; Meyers,, Clayton E.; Jara-Almonte,; Chen, Li-Jen

    2014-04-18

    The effects of an upstream density asymmetry on magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant upstream density asymmetry of up to 10, the reconnecting magnetic field pro file is not signifi cantly changed. On the other hand, the out-of-plane magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to the quadrupolar structure in the symmetric configuration. The in-plane ion flow pattern and the electrostatic potential pro file are also affected by the density asymmetry. Strong bulk electron heating is observed near the low-density-side separatrix together with electromagnetic fluctuations in the lower hybrid frequency range. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations.

  10. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  11. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  12. High bandwidth vapor density diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  13. High density laser-driven target

    DOE Patents [OSTI]

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  14. Enhancing critical current density of cuprate superconductors

    DOE Patents [OSTI]

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  15. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  16. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: October 1, 2011 Planned end date: September 30, 2015 Key Milestones: 1. Complete preliminary simulations to predict design point performance; March 31, 2012 2. Testing of Lab Breadboard; September 30 2013 3. Design production ready unit; March 31 2014 Budget:

  17. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Advanced Air Cooling Desikan Bharathan National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 ARRA funded Project Officer: Tim Reinhardt Total Project Funding: $1079K April 22-25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Do not include any proprietary or confidential information. Your presentation is public and will be posted to the DOE Geothermal Technologies Office website. You must include the

  18. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid ...

  19. ARM - Campaign Instrument - sp2-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Single Particle Soot Photometer - Airborne (SP2-AIR)...

  20. ARM - Campaign Instrument - mmcr94-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 94 GHz, W-band Airborne Cloud Radar (MMCR94-AIR)...

  1. Heating, Ventilation and Air Conditioning Efficiency

    Energy Savers [EERE]

    Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement 15 - 20 CFM outside air per person or CO2 less than 1,000 PPM ASHRAE 62 - 1989 ...

  2. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  3. Protective supplied-breathing-air garment

    DOE Patents [OSTI]

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  4. Advanced Management of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  5. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 Clouds over Los Alamos Clouds over Los Alamos Why does LANL...

  6. 2016 National Tribal Forum on Air Quality

    Broader source: Energy.gov [DOE]

    Hosted by the Seneca Nation of Indians, the National Tribal Forum on Air Quality provides environmental professionals to meet and discuss current policies, regulatory initiatives, funding, and technical topics in air quality.

  7. SolarAire LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Folsom, California Sector: Solar Product: Developing a solar thermal air conditioning unit. References: SolarAire LLC1 This article is a stub. You can help OpenEI by...

  8. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air ducts: out of sight, out of mind. ...

  9. ESPC Success Story - Dyess Air Force Base

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DYESS AIR FORCE BASE DYESS, TEXAS Water Conservation and Green Energy ESPC SUCCESS STORY Dyess Air Force Base and surrounding west Texas has been under extreme-drought water ...

  10. Density functional theory for carbon dioxide crystal

    SciTech Connect (OSTI)

    Chang, Yiwen; Mi, Jianguo Zhong, Chongli

    2014-05-28

    We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.

  11. Neutral depletion and the helicon density limit

    SciTech Connect (OSTI)

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.

    2013-12-15

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  12. (Air flow patterns within buildings)

    SciTech Connect (OSTI)

    Harrje, D.T.

    1990-10-15

    As Annex 20 enters the final year, deliverables in the form of reports, guidelines, and data formats are nearing completion. The Reporting Guidelines for the Measurement of Air Flows and Related Factors in Buildings will be published by the AIVC next month and was presented to the research community at the 11th AIVC Conference. Measurement guidelines and state-of-the-art equipment descriptions are part of a comprehensive manual, Measurement Techniques Related to Air Flow Patterns Within Buildings -- An Application Guide, in the final stages of preparation in Part 2 of Annex 20, together with reports on how to estimate the effects of flow through large openings, as well as contaminant movements in buildings. The Measurement Manual will include the latest information from the AIVC. The next AIVC Conference, in Ottawa, September 1991, will feature more than 12 presentations of Annex 20 results, including the information from Part 1 which has focused on the detailed air flow patterns in a variety of single-room configurations. Both complex modelling (including CFD) and detailed measurements have been completed, and it is now desirable that added tests be made in the next months by the University of Illinois, BERL, representing the US in Part 1 for the first time.

  13. Compressed Air Best Practices Tools Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Best Practices Tools Compressed Air Challenge® DOE AIRMaster+ Software CAC LogTool Software Date: May 15, 2007 Instructor: Tom Taranto Agenda Training Webcast Introduction Introduction of Tools - 10 minutes Compressed Air Challenge ® Tools - 25 minutes AIRMaster+ Software Tool - 25 minutes LogTool v2 - 25 minutes ESA Process - 20 minutes Q&A / Summary - 15 minutes Training Web Cast Series Purpose: To provide information on Compressed Air BestPractices tools used during DOE's

  14. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET #1 Preheated Combustion Air (November 2007) (232.65 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Load

  15. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  16. FAA Air Traffic Organization Safety Management

    Broader source: Energy.gov [DOE]

    Presenter: Mark DeNicuolo, Manager Performance and Analyses Air Traffic Organization Safety and Technical Training Federal Aviation Administration

  17. Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Compressed Air Systems Compressed Air Systems Applying best energy management practices and purchasing energy-efficient equipment can lead to significant savings in compressed air systems. Use the software tools, training, and publications listed below to improve performance and save energy. Compressed Air Tools Tools to Assess Your Energy System AIRMaster+ Tool AIRMaster+ LogTool Qualified Specialists Qualified Specialists have passed a rigorous competency examination on

  18. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  19. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  20. Ions in solution: Density corrected density functional theory (DC-DFT)

    SciTech Connect (OSTI)

    Kim, Min-Cheol; Sim, Eunji; Burke, Kieron

    2014-05-14

    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

  1. Analyzing Your Compressed Air System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyzing Your Compressed Air System Analyzing Your Compressed Air System This tip sheet outlines the process to analyze industrial compressed air systems and ensure proper system configuration. COMPRESSED AIR TIP SHEET #4 Analyzing Your Compressed Air System (August 2004) (243.47 KB) More Documents & Publications Compressed Air System Control Strategies Determining the Right Air Quality for Your Compressed Air System Determine the Cost of Compressed Air for Your Plant

  2. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  3. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect (OSTI)

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J; Kalinin, Sergei V; Lai, Keji; Demkov, Alexander A.

    2015-01-01

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  4. Improved association in a classical density functional theory for water

    SciTech Connect (OSTI)

    Krebs, Eric J.; Schulte, Jeff B.; Roundy, David

    2014-03-28

    We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.

  5. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  6. Improving Compressed Air System Performance Third Edition | Department...

    Energy Savers [EERE]

    Compressed Air System Performance Third Edition Improving Compressed Air System Performance Third Edition PDF icon Improving Compressed Air Sourcebook version 3.pdf More Documents ...

  7. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  8. 2011 Air Quality Regulations Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Quality Regulations Report 2011 Air Quality Regulations Report PDF icon 2011 Air Quality Regulations Report120111.pdf More Documents & Publications 2011:...

  9. 2011: Air Quality Regulations Report | Department of Energy

    Office of Environmental Management (EM)

    : Air Quality Regulations Report 2011: Air Quality Regulations Report PDF icon 2011 Air Quality Regulations ReportA120911.pdf More Documents & Publications 2011...

  10. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality(Redirected from RAPIDOverviewGeothermalAir QualityAlaska) Jump to: navigation, search RAPID...

  11. Purchasing Energy-Efficient Residential Air Source Heat Pumps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Source Heat Pumps Purchasing Energy-Efficient Residential Air Source Heat Pumps The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air ...

  12. Attic Air Sealing Guide - Building America Top Innovation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Air Sealing Guide - Building America Top Innovation Attic Air Sealing Guide - Building America Top Innovation Image showing step-by-step instructions for air sealing. One of ...

  13. ENHANCEMENT OF ENVIRONMENTAL SAMPLING THROUGH AN IMPROVED AIR MONITORING TECHNIQUE

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-07

    Environmental sampling (ES) is a key component of International Atomic Energy Agency (IAEA) safeguarding approaches throughout the world. Performance of ES (e.g. air, water, vegetation, sediments, soil and biota) supports the IAEAs mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a State and has been available since the introduction of safeguards strengthening measures approved by the IAEA Board of Governors (1992-1997). A recent step-change improvement in the gathering and analysis of air samples at uranium/plutonium bulk handling facilities is an important addition to the international nuclear safeguards inspector's toolkit. Utilizing commonly used equipment throughout the IAEA network of analytical laboratories for particle analysis, researchers are developing the next generation of ES equipment for air grab and constant samples. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) silicon substrate has been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. The new collection equipment will allow IAEA nuclear safeguards inspectors to develop enhanced safeguarding approaches for complicated facilities. This paper will explore the use of air monitoring to establish a baseline environmental signature of a particular facility that could be used for comparison of consistencies in declared operations. The implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Technical aspects of the air monitoring device and the analysis of its environmental samples will demonstrate the essential parameters required for successful application of the system.

  14. Chiral dynamics and peripheral transverse densities

    SciTech Connect (OSTI)

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  15. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect (OSTI)

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  16. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  17. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  18. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  19. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  20. Air Traffic Operations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  1. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  2. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  3. Quick-change filter cartridge

    DOE Patents [OSTI]

    Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  4. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  5. Computational model of collisional-radiative nonequilibrium plasma in an air-driven type laser propulsion

    SciTech Connect (OSTI)

    Ogino, Yousuke; Ohnishi, Naofumi

    2010-05-06

    A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperature range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.

  6. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring

  7. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  8. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2012-02-07

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  9. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2010-02-16

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  10. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  11. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  12. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  13. Chiral dynamics and peripheral transverse densities (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chiral dynamics and peripheral transverse densities Citation Details ... Report Number(s): JLAB-THY--13-1763; DOEOR--23177-2641 Journal ID: ISSN 1029-8479; TRN: ...

  14. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  15. Communication: Embedded fragment stochastic density functional theory

    SciTech Connect (OSTI)

    Neuhauser, Daniel; Baer, Roi; Rabani, Eran

    2014-07-28

    We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.

  16. Breast Density and Cancer | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in ...

  17. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf (1.09 MB) More Documents & Publications High Energy Density Ultracapacitors High ...

  18. High-Energy-Density Plasmas, Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The

  19. Air shower detectors in gamma-ray astronomy

    SciTech Connect (OSTI)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  20. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  1. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  2. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  3. InMAP: a new model for air pollution interventions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations the air pollution outcome generally causing the largest monetized health damages attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmorechemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The In

  4. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  5. Global change monitoring with lichens

    SciTech Connect (OSTI)

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  6. Temporal evolution of femtosecond laser induced plasma filament in air and N{sub 2}

    SciTech Connect (OSTI)

    Papeer, J.; Botton, M.; Zigler, A.; Gordon, D.; Sprangle, P.

    2013-12-09

    We present single shot, high resolution, time-resolved measurements of the relaxation of laser induced plasma filaments in air and in N{sub 2} gas. Based on the measurements of the time dependent electromagnetic signal in a waveguide, an accurate and simple derivation of the electron density in the filament is demonstrated. This experimental method does not require prior knowledge of filament dimensions or control over its exact spatial location. The experimental results are compared to numerical simulations of air plasma chemistry. Results reveal the role of various decay mechanisms including the importance of O{sub 4}{sup +} molecular levels.

  7. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None, None

    2012-11-30

    of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for

  8. Ammonia usage in vapor compression for refrigeration and air...

    Office of Scientific and Technical Information (OSTI)

    ... AMMONIA; PERFORMANCE; REFRIGERATING MACHINERY; REFRIGERANTS; CHLOROFLUOROCARBONS; AIR POLLUTION ABATEMENT; AIR CONDITIONERS; DISTRICT COOLING; COOLING SYSTEMS; WORKING FLUIDS; ...

  9. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  10. Chaos and structure of level densities (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chaos and structure of level densities Citation Details In-Document Search Title: Chaos and structure of level densities The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if

  11. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  12. INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES

    SciTech Connect (OSTI)

    Chen, C. H. K.; Sorriso-Valvo, L.; afrnkov, J.; N?me?ek, Z.

    2014-07-01

    The intermittency of density fluctuations in the solar wind at kinetic scales has been examined using high time resolution Faraday cup measurements from the Spektr-R spacecraft. It was found that the probability density functions (PDFs) of the fluctuations are highly non-Gaussian over this range, but do not show large changes in shape with scale. These properties are statistically similar to those of the magnetic fluctuations and are important to understanding the dynamics of small scale turbulence in the solar wind. Possible explanations for the behavior of the density and magnetic fluctuations are discussed.

  13. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  14. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  15. Orbital-optimized density cumulant functional theory

    SciTech Connect (OSTI)

    Sokolov, Alexander Yu. Schaefer, Henry F.

    2013-11-28

    In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.

  16. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  17. Enclosed rotary disc air pulser

    DOE Patents [OSTI]

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  18. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    SciTech Connect (OSTI)

    Leonard, T.; Lander, B.; Seifert, U.; Speck, T.

    2013-11-28

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  19. Core density gradient fluctuation measurement by differential interferometry in the helically symmetric experiment stellarator

    SciTech Connect (OSTI)

    Deng, C. B.; Brower, D. L.

    2012-10-15

    The interferometer system on the Helically Symmetric eXperiment (HSX) stellarator uses an expanded beam and linear detector array to realize a multichord measurement. Unlike conventional interferometry which determines the plasma phase shift with respect to a reference, directly evaluating the phase between two adjacent chords can be employed to measure the change in plasma phase with impact parameter. This approach provides a measure of the equilibrium density gradient or the density gradient fluctuations and is referred to as differential interferometry. For central chords, measurements are spatially localized due to a geometrical weighting factor and can provide information on core density gradient fluctuations. The measurement requires finite coherence between fluctuations in the two spatially offset chords. This technique is applied on the HSX stellarator to measure both broadband turbulence and coherent modes. Spatial localization is exploited to isolate core turbulence changes associated with change in magnetic configuration or heating location.

  20. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect (OSTI)

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  1. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Room Air Conditioners -- v1.6 (147.68 KB) More Documents & Publications

  2. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  3. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  4. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  5. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy

    SciTech Connect (OSTI)

    Li, Zhigang; Zhang, Lanting; Sun, Nairong; Sun, Yanle; Shan, Aidang

    2014-09-15

    The nickel based alloys with different Σ3 boundary density were achieved by cold-rolling and subsequent annealing treatment. Electron backscattered diffraction analysis showed that the grain size distribution changed with the processing parameters, and the discontinuous Σ3 boundary became continuous with the increase of prior deformation level. Furthermore, the Σ3 boundary density was found to be manipulated by both grain size distribution and Σ3 boundary density per grain which showed an increasing trend with prior deformation level and annealing temperature. - Highlights: • The prior deformation amount influenced the morphology of Σ3 boundary. • The grain size was not the only factor influencing Σ3 boundary density. • The fact that grain size distribution had an important effect on Σ3 boundary density was confirmed. • The nature of grain size distribution on Σ3 boundary density was revealed. • There was a great deviation in Σ3 boundary density between experimental results and predictions.

  6. Statistical approach to nuclear level density

    SciTech Connect (OSTI)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2014-10-15

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  7. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  8. Fabrication of low density ceramic material

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  9. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies (August 2004) (258.48 KB) More Documents & Publications Compressed Air System Control Strategies Stabilizing System Pressure Effect of Intake on Compressor Performance

  10. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 * August 2004 Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be benefcial. * Examine the ...

  11. Maintaining Your Air Conditioner | Department of Energy

    Office of Environmental Management (EM)

    filters is a critical maintenance task. | Photo courtesy of iStockphotofiremanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo ...

  12. Preventive Maintenance Strategies for Compressed Air Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suggested Actions * Establish a regular, well-organized maintenance program in accordance ... that all compressed air system maintenance needs are performed properly, on ...

  13. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  14. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  15. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, Donald C.

    1988-01-01

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

  16. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, D.C.

    1988-05-24

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

  17. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sandia Cooler) vapor chamber hydrodynamic air bearing heat-sink-impeller Dr. Jeff Koplow, jkoplow@sandia.gov Sandia National Laboratories Project Summary Timeline: Start date: ...

  18. Washington Environmental Permit Handbook - Air Operating Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - Air Operating PermitPermitting...

  19. International Air Transport Association (IATA) | Open Energy...

    Open Energy Info (EERE)

    Name: International Air Transport Association (IATA) Address: 800 Place Victoria PO Box 113 Place: Montreal, Quebec Phone Number: 1 514 874 0202 Website: www.iata.org...

  20. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Sonde Support ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AIRS Validation Sonde Support 2003.11.01 - 2004.02.28 Lead Scientist : Ted Cress For data sets, see below. Abstract ARM conducted a special series of radiosonde launches in support of validation studies for the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite (http://www-airs.jpl.nasa.gov). The AIRS

  1. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  2. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  3. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  4. United Cool Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon UnitedCoolAir.pdf More Documents & Publications AeroSys: Noncompliance Determination (2010-SE-0302) Haier: Compromise Agreement (2011-SE-1428) GE Appliances: Order ...

  5. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  6. Air Liquide Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Air Liquide Group Place: Paris, France Zip: 75321 Sector: Hydro, Hydrogen Product: Paris-based manufacturer of industrial and medical gases. The company is...

  7. Air Products Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Air Products & Chemicals Inc Place: Allentown, Pennsylvania Zip: 18195 Sector: Hydro, Hydrogen, Services Product: A global supplier of merchant hydrogen with a portfolio of...

  8. PNNL: About: Air Emissions (Radioactive) Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from unacceptable risks resulting from its operations. These reports document PNNL Campus and Marine Science Laboratory (MSL) radionuclide air emissions that result in the...

  9. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  10. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  11. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.

    1984-01-01

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  12. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, A.T.

    1982-03-03

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  13. Phonon densities of states of face-centered-cubic Ni-Fe alloys

    SciTech Connect (OSTI)

    Lucas, Matthew; Mauger, L; Munoz, Jorge A.; Halevy, I; Horwath, J; Semiatin, S L; Leontsev, S. O.; Stone, Matthew B; Abernathy, Douglas L; Xiao, Yuming; Chow, P; Fultz, B.

    2013-01-01

    Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.

  14. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Follow Secretary Chu on his Facebook page. Media contact(s): (202) 586-4940 Addthis Related Articles DOE Requires Air-Con International to Cease Sales of Inefficient Air ...

  15. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  16. Explosively driven low-density foams and powders

    DOE Patents [OSTI]

    Viecelli, James A.; Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.

    2010-05-04

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  17. Durable high-density data storage

    SciTech Connect (OSTI)

    Stutz, R.A.; Lamartine, B.C.

    1996-09-01

    This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.

  18. Density waves in the Calogero model - revisited

    SciTech Connect (OSTI)

    Bardek, V. Feinberg, J. Meljanac, S.

    2010-03-15

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  19. Interferometer for the measurement of plasma density

    DOE Patents [OSTI]

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  20. Quantum crystallographic charge density of urea

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wall, Michael E.

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  1. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  2. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    SciTech Connect (OSTI)

    Bakosi, Jozsef; Ristorcelli, Raymond J

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  3. Production of nitrogen from air

    SciTech Connect (OSTI)

    Hubbard, C.; Duckett, M.; Limb, D.I.

    1985-01-29

    In the single column process for the recovery of nitrogen from air wherein reflux for the distillation is provided by condensing a first portion of the overhead stream by indirect heat exchange in a reflux condenser with oxygen-rich liquid from the bottom of the column which has been subjected to a first expansion to an intermediate pressure, refrigeration for the process is provided by work expanding evaporated oxygen-rich liquid from the reflux condenser, and prior to said first expansion, the oxygen-rich liquid recovered from the bottom of the column is sub-cooled by indirect heat exchange in a sub-cooler with the work-expanded evaporated oxygen-rich liquid, nitrogen recovery is increased by work expanding the evaporated oxygen-rich liquid at a temperature not substantially greater than that at which it is recovered from the reflux condenser or by first passing it through said sub-cooler at a temperature not substantially greater than that at which it is recovered from the reflux condenser and thereafter work-expanding it at a temperature not substantially greater than that at which it is recovered from the sub-cooler, and feeding the work-expanded evaporated oxygen-rich liquid directly to the sub-cooler.

  4. Understanding Long-term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Aaron, D; Hamilton, Choo Yieng; Tsouris, Costas

    2010-01-01

    Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium weremeasuredusing electrochemicalimpedancespectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 decreased the anode impedance to 1.4 , with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 , respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ( 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for theMFCwas 0.017 k cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.

  5. Distribution of Radiation Density in a Homogeneous Cloudy Laye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Radiation Density in a Homogeneous Cloudy Layer S. V. Dvoryashin, K. A. Shukorov, A. H. ... method) allowing calculating radiation density in homogeneous and non-uniform ...

  6. Real-Time Simultaneous Measurements of Size, Density, and Composition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...

  7. Density Functional Theory Approach to Nuclear Fission (Conference...

    Office of Scientific and Technical Information (OSTI)

    Density Functional Theory Approach to Nuclear Fission Citation Details In-Document Search Title: Density Functional Theory Approach to Nuclear Fission You are accessing a document ...

  8. Density Functional Theory Study of Surface Carbonate Formation...

    Office of Scientific and Technical Information (OSTI)

    Density Functional Theory Study of Surface Carbonate Formation on BaO(001) Citation Details In-Document Search Title: Density Functional Theory Study of Surface Carbonate Formation ...

  9. Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...

  10. Time Adaptive Conditional Kernel Density Estimation for Wind...

    Office of Scientific and Technical Information (OSTI)

    Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting Citation Details In-Document Search Title: Time Adaptive Conditional Kernel Density Estimation for ...

  11. Combinatorial nuclear level-density model (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model You are accessing a document from the Department ...

  12. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...

  13. Error Analysis in Nuclear Density Functional Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...

  14. Error Analysis in Nuclear Density Functional Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...

  15. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  16. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  17. Controlling the Actuation Rate of Low Density Shape Memory Polymer...

    Office of Scientific and Technical Information (OSTI)

    Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Authors: ...

  18. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  19. Pairing Nambu-Goldstone Modes within Nuclear Density Functional...

    Office of Scientific and Technical Information (OSTI)

    Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details ... Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: ...

  20. Accuracy of density functionals for molecular electronics: The...

    Office of Scientific and Technical Information (OSTI)

    Accuracy of density functionals for molecular electronics: The Anderson junction Title: Accuracy of density functionals for molecular electronics: The Anderson junction Authors: ...

  1. Molecular adsorption on metal surfaces with van der Waals density...

    Office of Scientific and Technical Information (OSTI)

    Molecular adsorption on metal surfaces with van der Waals density functionals Title: Molecular adsorption on metal surfaces with van der Waals density functionals Authors: Li, Guo ...

  2. Low density biodegradable shape memory polyurethane foams for...

    Office of Scientific and Technical Information (OSTI)

    Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory...

  3. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  4. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...

  5. Probability Density Function Method for Langevin Equations with...

    Office of Scientific and Technical Information (OSTI)

    Probability Density Function Method for Langevin Equations with Colored Noise Citation Details In-Document Search Title: Probability Density Function Method for Langevin Equations ...

  6. Stabilizing laser energy density on a target during pulsed laser...

    Office of Scientific and Technical Information (OSTI)

    Patent: Stabilizing laser energy density on a target during pulsed laser deposition of thin films Citation Details In-Document Search Title: Stabilizing laser energy density on a ...

  7. A New Mechanism of Charge Density Wave Discovered in Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...

  8. The problem of the universal density functional and the density matrix functional theory

    SciTech Connect (OSTI)

    Bobrov, V. B. Trigger, S. A.

    2013-04-15

    The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.

  9. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

    SciTech Connect (OSTI)

    Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

    2010-11-24

    KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

  10. Investigation of vessel exterior air cooling for an HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    2000-07-01

    The secure transportable autonomous reactor (STAR) concept under development at Argonne National Laboratory provides a small [300-MW(thermal)] reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100% + natural-circulation heat removal from the low-power-density/low-pressure-drop ultralong lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the reactor exterior cooling system (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the reactor vessel auxiliary cooling system (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  11. Investigation of vessel exterior air cooling for a HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J. J.; Spencer, B. W.

    2000-01-13

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  12. Pure Air`s Bailly scrubber: A four-year retrospective

    SciTech Connect (OSTI)

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  13. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect (OSTI)

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  14. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOE Patents [OSTI]

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  15. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  16. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  17. Inductor Geometry With Improved Energy Density

    SciTech Connect (OSTI)

    Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E

    2014-10-01

    The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.

  18. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, Andr

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  19. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  20. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.