Sample records for air conditioning power

  1. The investigation of exhaust powered, automotive air cycle air conditioning

    E-Print Network [OSTI]

    Holley, James Andrew

    1978-01-01T23:59:59.000Z

    domestic automobiles and trucks because of its proven success. This system requires approximately 4 hp (2. 983 kW)[3] for operation snd employs a pressurized fluorinated hydrocarbon (R-12), hereafter fluorocarbon, as a refrigerant. Most of the research... extraction and avoid the use of a fluorocarbon refrigerant. The maJority of work involved with the new units has associated itself in the area of utilizing an absorption cycle or air cycle. The absorption air conditioning unit differs significantly from...

  2. Gas Powered Air Conditioning Absorption vs. Engine-Drive

    E-Print Network [OSTI]

    Phillips, J. N.

    1996-01-01T23:59:59.000Z

    It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although...

  3. Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building

    E-Print Network [OSTI]

    Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

    2006-01-01T23:59:59.000Z

    Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes...

  4. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-13T23:59:59.000Z

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  5. Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

  6. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  7. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

  8. Enhanced Operation Strategies for Air-Conditioning and Lighting Systems Toward Peak Power Reduction for an Office Building in Kuwait

    E-Print Network [OSTI]

    Alghimlas, F.; Al-Mulla, A.; Maheshwari, G.P.; Al-Nakib, D.

    2012-01-01T23:59:59.000Z

    Enhanced?Operation?Strategies?for?Air? Conditioning?and?Lighting? Systems?Toward?Peak?Power?Reduction? for?an?Office?Building?in?Kuwait F. Alghimlas A. Al-Mulla G.P. Maheshwari D. Al-Nakib Building and Energy Technologies Department...?Increase?in?Power?and?Energy? 6160 6450 6750 7250 7480 7750 8400 8900 9070 9710 27.0 27.5 29.3 31.1 33.1 35.6 37.9 41.6 42.6 45.2 25 30 35 40 45 50 5500 6500 7500 8500 9500 10500 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Y e a r l y E...

  9. Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 k...

  10. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31T23:59:59.000Z

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  11. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01T23:59:59.000Z

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  12. E-Print Network 3.0 - air conditioning plants Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning plants...

  13. E-Print Network 3.0 - air conditioning engineering Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning engineering...

  14. E-Print Network 3.0 - air conditioning plant Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning plant...

  15. E-Print Network 3.0 - air conditioning engineers Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineers Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning engineers...

  16. E-Print Network 3.0 - air conditioning equipments Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equipments Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning equipments...

  17. E-Print Network 3.0 - air conditioning equipment Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equipment Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning equipment...

  18. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

  19. Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system

    E-Print Network [OSTI]

    Zhang, Hui Ph.D; Kim, DongEun; Arens, Edward A; Buchberger, Elena; Bauman, Fred; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    way that when the spot cooling supply fan is on, it deliversnozzle. When the spot cooling supply fan is off, the localducted supply of cool air (called the spot cooling line) to

  20. A New Approach to Industrial Air Conditioning

    E-Print Network [OSTI]

    Gravenstreter, T.

    1982-01-01T23:59:59.000Z

    -dryer Systems Division, has marketed industrial drying machinery. These heat reactivated dryers can handle latent loads in industrial air conditioning systems. Through waste heat conservation, air conditioning costs can be reduced 25 to 50%, with applications...

  1. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Oleg P. Ledenyov; Ivan M. Neklyudov

    2013-06-14T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

  2. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

    1998-01-01T23:59:59.000Z

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  3. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30T23:59:59.000Z

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  4. Optimization of Air Conditioning Cycling

    E-Print Network [OSTI]

    Seshadri, Swarooph

    2012-10-19T23:59:59.000Z

    on a 3-ton residential air conditioner are then presented to intuitively understand the effect of expansion valve and evaporator fan cycling in a real system. A real time optimization method is explored and the feasibility, recommendations for a...

  5. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P

    2013-01-01T23:59:59.000Z

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  6. Study of thermoelectric technology for automobile air conditioning

    SciTech Connect (OSTI)

    Mathiprakasam, B.; Heenan, P. (Midwest Research Inst., Kansas City, MO (United States)); Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States))

    1991-01-01T23:59:59.000Z

    An analytical study was conducted to determine the feasibility of employing thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper, a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,80 Btu/h) in a 38{degree}C (100{degree}F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper.

  7. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015Services » Advanced ResearchBusinessAConditioning Air

  8. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Farkas, Zénó

    2011-01-01T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  9. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Zénó Farkas

    2011-03-11T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  10. U.S.Air Force Advanced Power

    E-Print Network [OSTI]

    efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

  11. Alternatives to Electric Air Conditioning Systems

    E-Print Network [OSTI]

    Lindsay, B. B.; Koplow, M. D.

    1988-01-01T23:59:59.000Z

    , and exposed to a purge air stream to remove the moisture. The drier air eliminates the need for low evaporator temperatures, allowing the compressor to operate more efficiently, providing only sensible cooling. The synergy of the desiccant/engine chiller... during the summer, including solar gain and high ambient temperatures, the air conditioning system must also handle the heat generated by lighting, personnel, and office equipment. These internal loads dominate in large buildings, especially where...

  12. E-Print Network 3.0 - air conditioning problemas Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: air conditioning problemas Page: << < 1 2 3 4 5 > >> 1 Problema Tema 1: Integraci en n...

  13. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Energy Savers [EERE]

    Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These...

  14. Off-peak air conditioning; A major energy saver

    SciTech Connect (OSTI)

    MacCracken, C.D.

    1991-12-01T23:59:59.000Z

    Today, the mission given to manufacturers is changing to include saving energy (kWh). Until now, saving energy was ignored because the utilities were happy to fill their night valley to reach a higher load factor. There also was a general feeling that making ice was much less efficient than standard air conditioning, and that anyone saying otherwise was a dreamer. This article discusses the energy savings based on the more prevalent ice storage technology, the similar suction temperatures of the various types of ice storage, and how storage is applied. Included are baseload power generation, partial storage with chiller priority, using air cooled condensers when making ice at night, colder duct air, heat recovery, central rooftop systems, smart controls, electric/gas combinations, supply side transmission and distribution losses, and cooling of air entering gas turbine generators during peak conditions.

  15. Alternative Refrigerants for Building Air Conditioning

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

  16. Roswell International Air Center Airport (ROW) Pavement Condition and Analysis

    E-Print Network [OSTI]

    Cal, Mark P.

    Roswell International Air Center Airport (ROW) Pavement Condition and Analysis Submitted to: Jane M ................................................1. Conditions at Roswell International Air Center (ROW) 4 .................................Figure 1. Geographic Location of Roswell International Air Center (ROW) 4 ..............................Table 1

  17. Seawater Air Conditioning for Downtown Engineering Project Manager

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Seawater Air Conditioning for Downtown Honolulu Scott Higa Engineering Project Manager Honolulu Seawater Air Conditioning, LLC Abstract As a tropical island state, Hawaii has a year-round demand for air conditioning. Conventional air conditioning systems are energy intensive and represent close to 50 percent

  18. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01T23:59:59.000Z

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  19. The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow

    E-Print Network [OSTI]

    Liu, J.; Mai, Y.; Liu, X.

    2006-01-01T23:59:59.000Z

    At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

  20. Geothermal Power Plants — Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  1. Power Characteristics of Industrial Air Compressors

    E-Print Network [OSTI]

    Schmidt, C.; Kissock, K.

    and with different loads are discussed as case studies. The case studies illustrate how to identify the type of control, and potential problems such as inadequate compressed air storage, over-sized compressors, and compressed air leaks from the power signatures...

  2. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

  3. Alternative non-CFC mobile air conditioning

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01T23:59:59.000Z

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  4. Influence of air conditioning management on heat island in Paris air street temperatures

    E-Print Network [OSTI]

    Ribes, Aurélien

    Influence of air conditioning management on heat island in Paris air street temperatures Brice 2012 Available online 13 March 2012 Keywords: Air conditioning Heat island mitigation Urban heat island killer'', is exacerbated in urban areas owing to the heat island effect. Air conditioning (A/C) is a key

  5. Experimental Investigation on the Operation Performance of a Liquid Desiccant Air-conditioning System

    E-Print Network [OSTI]

    Liu, J.; Wang, J.; Wu, Z.; Gu, W.; Zhang, G.

    2006-01-01T23:59:59.000Z

    A large share of energy consumption is taken by an air-conditioning system. It worsens the electricity load of the power network. Therefore, more and more scholars are paying attention to research on new types of air-conditioning systems...

  6. STATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS

    E-Print Network [OSTI]

    cooling with the compressor). Yes No #12;STATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS CECSTATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS CEC-CF-6R-MECH-08 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units

  7. Solving an Air Conditioning System Problem using Constraint Satisfaction

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Solving an Air Conditioning System Problem using Constraint Satisfaction Raphaël Chenouard1 An air conditioning system problem 1.1 Context The design process is a sequence of phases ranging from States (2007)" DOI : 10.1007/978-3-540-74970-7_4 #12;In this paper, an air conditioning system (ACS

  8. Modeling of Proposed Changes to SIUC Central Heating, Air-Conditioning, and Power Plant Incorporating Variable Frequency Drive (VFD) and High Efficiency Turbine.

    E-Print Network [OSTI]

    Su, Heyin

    2011-01-01T23:59:59.000Z

    ??Currently, the Southern Illinois University Carbondale (SIUC) power plant produces steam at high pressure to drive a high pressure (HP) turbine to make a portion… (more)

  9. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30T23:59:59.000Z

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  10. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won [Texas Transportation Institute; Zietsman, Josias [Texas Transportation Institute; Farzaneh, Mohamadreza [Texas Transportation Institute; Li, Wen-Whai [University of Texas, El Paso; Olvera, Hector [University of Texas, El Paso; Storey, John Morse [ORNL; Kranendonk, Laura [ORNL

    2009-01-01T23:59:59.000Z

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  11. Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures

    E-Print Network [OSTI]

    Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures Improved Refrigerant Charge Purpose Component packages require in some climate zones that split system air refrigerant charge. For the performance method, the proposed design is modeled with less efficiency

  12. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15T23:59:59.000Z

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  13. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect (OSTI)

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01T23:59:59.000Z

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  14. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    highlighted in the video series. Addthis Related Articles National Renewable Energy Laboratory engineer Eric Kozubal examines a prototype air flow channel of the DEVAP, a...

  15. air conditioning technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  16. air conditioning technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  17. air conditioning load: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.; Deying, L. 2006-01-01 2 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Computer Technologies and Information Sciences Websites Summary: 1...

  18. air conditioning loads: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  19. Identifying Efficiency Degrading Faults in Split Air Conditioning Systems

    E-Print Network [OSTI]

    Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    Studies estimate that as much as 50% of packaged air conditioning systems operate in faulty conditions that degrade system efficiency. Common faults include: under- and over-charged systems (too much or too little refrigerant), faulty expansions...

  20. Research on Fuzzy Regulation Strategies in the Constant Air Volume Air Conditioning System

    E-Print Network [OSTI]

    Bai, T.; Zhang, J.; Ning, N.; Tong, K.; Wu, Y.; Wang, H.

    2006-01-01T23:59:59.000Z

    The energy consumption of the constant air volume (CAV) system largely depends on the regulation strategies. Although some air conditioning systems are equipped with automatic regulation devices, others lack effective regulation strategies. To avoid...

  1. Direct Digital Control in Air Conditioning Systems for Energy Efficiency

    E-Print Network [OSTI]

    Liu, W.; Ye, A.; Li, D.

    2006-01-01T23:59:59.000Z

    the function and the level of the building, but also save energy. At present, air-conditioning design in internal commercial buildings is becoming more complex and enormous. The proportion of air conditioning systems in the whole building is getting larger...

  2. Importance of Design Conditions for Sizing Air-Conditioning Plant

    E-Print Network [OSTI]

    Shaban, N.; Maheshwari, G. P.; Suri, R. K.

    2000-01-01T23:59:59.000Z

    . The proposed design conditions specific to the location and the application are drastically different than currently used single design conditions for all application and locations. Cooling load estimates fro two building located in Kuwait have been analyzed...

  3. Air-Conditioning Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashington AutoYour Home Air Sealing

  4. Fuel cell power conditioning for electric power applications: a summary

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Fuel cell power conditioning for electric power applications: a summary X. Yu, M.R. Starke, L.M. Tolbert and B. Ozpineci Abstract: Fuel cells are considered to be one of the most promising sources, multiple complications exist in fuel cell operation. Fuel cells cannot accept current in the reverse

  5. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  6. Innovative Systems for Solar Air Conditioning of Buildings

    E-Print Network [OSTI]

    Kessling, W.; Peltzer, M.

    2004-01-01T23:59:59.000Z

    for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

  7. Reducing Air-Conditioning System Energy Using a PMV Index

    E-Print Network [OSTI]

    Li, H.; Zhang, Q.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-4-1 Reducing Air-Conditioning System Energy Using a PMV Index Hui Li Qingfan Zhang Associate professor...

  8. RHEOLOGICAL STUDY OF AN HYDRATE SLURRY FOR AIR CONDITIONNING APPLICATION

    E-Print Network [OSTI]

    Boyer, Edmond

    . These slurries seems to be well appropriate for cold storage and transportation in the case of air- conditioning as secondary refrigerants. Concerning hydrates, they have been used as PCM for cold storage for years

  9. Demonstration of Air-Power-Assist (APA) Engine Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

  10. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    OF AIR COOLING FOR USE WITH AUTOMOTIVE POWER ELECTRONICS Desikan Bharathan, Kenneth Kelly National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado, 80401...

  11. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    Motors (APEEM) technical targets * Air is a poor heat-transfer fluid - low specific heat - low density - low conductivity * Parasitic power * Perception and novelty The...

  12. E-Print Network 3.0 - air conditioning heat Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, Purdue University Collection: Engineering 30 ME 4321 Refrigeration and Air Conditioning (Elective) Catalog Description: ME 4321 Refrigeration and Air...

  13. INFLUENCE OF DESIGN AND OPERATING CONDITIONS ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Underfloor Air Distribution (UFAD) Design Guide. Atlanta:to design and operate underfloor air distribution (UFAD)DESIGN AND OPERATING CONDITIONS ON UNDERFLOOR AIR DISTRIBUTION (

  14. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13T23:59:59.000Z

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  15. The Influence of Air-Conditioning Efficiency in the Peak Load Demand for Kuwait

    E-Print Network [OSTI]

    Ali, A. A.; Maheshwari, G. P.

    2007-01-01T23:59:59.000Z

    A model co-relating the peak load demand of a utility with the allowable power rating (PR) of air-conditioning (AC) systems has been developed in this paper through a well defined methodology. The model is capable to predict the extent of allowable...

  16. Air Conditioner Efficiency Under Hot Dry and Hot Humid Conditions - The Utility Perspective

    E-Print Network [OSTI]

    Amarnath, A.

    Air Conditioner Efficiency under Hot Dry and Hot Humid Conditions - The Utility Perspective Ammi Amarnath Technical Leader, Energy Efficiency & Demand Response Program Electric Power Research Institute 3420 Hillview Avenue Palo Alto, CA... are summarized below. Recommendations ? Establish a utility and energy efficiency agency coordinating council for regional standards; ? Identify regional centers to provide the institutional support; ? Develop recommended best practices for regionally based...

  17. Problem Type Problem Type Description Air Conditioning Air conditioner not working, leaking, etc

    E-Print Network [OSTI]

    Tennessee, University of

    Problem Type Problem Type Description Air Conditioning Air conditioner not working, leaking, etc, Microfridges Doors and Hardware Door repair/replace Lock, latch or hinge repair, key stuck; Lost or stolen key, repair or replace Shades/Blinds Window treatment - repair or replace Washer/Dryer Washer/Dryer repair

  18. E-Print Network 3.0 - air-conditioning system driven Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (3-0-3) Summary: and design of air-conditioning, heating, and refrigeration systems; including consideration of vapor... ME 4321 Refrigeration and Air Conditioning...

  19. "Table HC15.7 Air-Conditioning Usage Indicators by Four Most...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Air Conditioning...

  20. Study of solar-assisted thermoelectric technology for automobile air conditioning

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C. [Oak Ridge National Lab., Oak Ridge, TN (United States); Mathiprakasam, B.; Heenan, P. [Midwest Research Inst., Kansas City, MO (United States)

    1993-11-01T23:59:59.000Z

    An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38 C (100 F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior which significantly reduces the peak cooling load when the car is parked in bright sunlight.

  1. Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions

    E-Print Network [OSTI]

    Zhang, Wei

    heaters are examples of TCLs. They use local hysteresis control to maintain either air or water units and water heaters is developed in [7] using detailed physical models. In all the aforementioned for a large fraction of electric demand. HVAC (Heating, Ventilation and air conditioning) systems and water

  2. Analysis of Air Conditioning Effectiveness vs. Outdoor Conditions: Traditional Bins or Joint Frequency Bins?

    E-Print Network [OSTI]

    Cohen, B. M.

    1998-01-01T23:59:59.000Z

    There are a number of methods used to estimate the effectiveness of air conditioning equipment in handling loads. Full hourly computer simulations are probably the most accurate, but lack flexibility and are more cumbersome to use than more compact...

  3. Date | 1Refrigeration and Air Conditioning EMA Education and Training Date | 2Refrigeration and Air Conditioning EMA Education and Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Date | 1Refrigeration and Air Conditioning EMA Education and Training #12;Date | 2Refrigeration operating pressure (MOP) 5. De-humidifying (Te control) 6. Defrost funtions 7. Loss of charge detection (LOC control) 6. Defrost funtions 7. Loss of charge detection (LOC) 8. Bleed function 9. Sensor placement tips

  4. Air Electrode Design for Sustained High Power Operation of Li/air Batteries

    SciTech Connect (OSTI)

    Williford, Ralph E.; Zhang, Jiguang

    2009-08-31T23:59:59.000Z

    The rapid development of portable electronic devices increasingly requires much more energy to support advanced functions. However, currently available batteries do not meet the high energy requirement of these devices. Metal/air batteries, especially Li/air batteries, have a much higher specific energy than most other available batteries, but their power rate is limited by the accumulation of reaction products in the air electrode. Several approaches to improve the power rate of Li/air batteries have been analyzed in this work, including adjustment of air electrode porosity and catalyst reactivity distributions to minimize diffusion limitations and maximize air electrode material utilization. An interconnected dual pore system (one catalyzed and one noncatalyzed) is proposed to improve oxygen transport into the inner regions of the air electrode, but this approach alone cannot supply high power for long term applications. A time-release multiple catalyst approach is analyzed to provide temporal release of reactivity in the air electrode. When coupled with the dual pore configuration and catalysts with high reactivities, the time-release catalyst concept can extend the duration of higher powers to longer times, and result in maximum utilization of air electrode materials.

  5. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  6. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01T23:59:59.000Z

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  7. E-Print Network 3.0 - air-conditioning units part Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fans... : Use of mechanical equipment such as refrigeration, air conditioning, heating systems, ventilating fans... -handling units and mechanical, compressed air, and electric ......

  8. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  9. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  10. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1993-09-21T23:59:59.000Z

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  11. Clean Air Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 Stowe Drive Place: Poway,

  12. Augmented air supply for fuel cell power plant during transient load increases

    SciTech Connect (OSTI)

    Beal, D.W.; Scheffer, G.W.

    1988-03-08T23:59:59.000Z

    In a fuel cell power plant, a system for supplying air to an oxygen side of the cells in the plant is described comprising: (a) conduit means for feeding air to the oxygen side of the plant; (b) a constant speed blower connected to the conduit means for blowing an air stream into the conduit means at a constant velocity; (c) a motorized control valve in the conduit means between the blower and the oxygen side, the control valve being adjustable to vary the amount of air flowing to the oxygen side; (d) branch conduit means opening into the conduit means for providing an air flow path from the blower to the oxygen side which bypasses the control valve; (e) fast acting valve means in the branch conduit means, the fast acting valve means being relatively instantly transformable from a closed condition to an open condition and return, and the fast acting valve means being normally in the closed condition; (f) flow meter means in the conduit means for measuring amounts of oxygen flowing from the control valve from the control valve and the fast acting valve means to the oxygen side; (g) current monitoring means connected to a loaf line from the power plant for monitoring load changes imposed upon the cells in the power plant; and (h) microprocessor means for controlling operation of the system, the microprocessor means being operably connected to the current monitoring means, to the flow meter means, to the fast acting valve means and to the control valve.

  13. Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices

    E-Print Network [OSTI]

    Elsamni, O. A.; Sahmarani, K.J.; Obied, F. K.

    2010-01-01T23:59:59.000Z

    A simple prototype air conditioning unit driven entirely by solar energy is proposed aiming at replacing the conventional vapor compression air conditioning systems which are reasonable for the global warming. The proposed model is supposed...

  14. Submersible Survey Along the Honolulu Sea Water Air Conditioning LLC Pipe Route to Provide Data

    E-Print Network [OSTI]

    1 Submersible Survey Along the Honolulu Sea Water Air Conditioning LLC Pipe Route to Provide Data, University of Hawaii 2Honolulu Seawater Air Conditioning, LLC KOK & Pisces V #12;2 HSWAC Pipe Route Survey

  15. Numerical Analysis of Heat and Moisture Transfer in Underground Air-conditioning Systems

    E-Print Network [OSTI]

    Wang, Q.; Miao, X.; Cheng, B.; Fan, L.

    2006-01-01T23:59:59.000Z

    In view of the influence of humidity of room air on room heat load, indoor environment and building energy consumption in underground intermittent air-conditioning systems, numerical simulation was used to dynamically analyze the coupling condition...

  16. "Table HC10.7 Air-Conditioning Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Usage...

  17. The Effect of Pressure Difference Control on Hydraulic Stability in a Variable Flow Air Conditioning System

    E-Print Network [OSTI]

    Zhang, Z.; Fu, Y.; Chen, Y.

    2006-01-01T23:59:59.000Z

    This paper analyzes the effects of different pressure difference control methods on hydraulic stability in a variable flow air conditioning system when it is applied to different air conditioning water systems. According to control method and water...

  18. E-Print Network 3.0 - air conditioning maintenance Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... : Use of mechanical equipment...

  19. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL

    2009-02-01T23:59:59.000Z

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  20. Investigating the Performance of Solar Air Conditioning Motivation/Background Findings

    E-Print Network [OSTI]

    Investigating the Performance of Solar Air Conditioning Motivation/Background Findings Two Building-thermal collectors We investigated 3 types of solar cooling technologies: · Air conditioning consumes 10% of all conditioning can reduce energy consumption, only if paired with a suitable system · Conventional office air

  1. E-Print Network 3.0 - alternative automative air-conditioning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as developing countries. Because... of the energy demand from refrigeration and air conditioning. The thesis' first assessment discusses the effect... conditioning...

  2. Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System

    E-Print Network [OSTI]

    Guang, L.; Li, R.

    2006-01-01T23:59:59.000Z

    This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system...

  3. Power Conditioning and Control Applications for Energy Conservation

    E-Print Network [OSTI]

    Brushwood, J. S.

    1982-01-01T23:59:59.000Z

    Electrical power conditioning and control (PCC) systems are finding cost effective applications in AC motor drives, lamp ballasts and power supplies. Substantial system efficiency improvements are being realized when the appropriate PCC system...

  4. Simulation- Assisted Audit of an Air Conditioned Office Building

    E-Print Network [OSTI]

    Bertagnolio, S.; Lebrun, J.; Hannay, J.; Silva, C. A.

    Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 performances of the installation. Finally, some significant retrofit opportunities are proposed. BUILDING DESCRIPTION Building design The considered building is an existing... Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 In nominal heating conditions (outdoor : -10?C/RH 90%; indoor : 20?C/RH50%), with ?t = 30 K, this gives a sensible power demand of: g1843g4662g3046,g3041g3042g3040 =g343623...

  5. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27T23:59:59.000Z

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  6. ENSC 461 PROJECT: Next generation air conditioning systems for vehicles Assigned date: Feb. 21, 2011 Due date: April 11, 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    to significant power consumption of vapour-compression systems, finding a new "green" refrigerant is another vehicles (HEVs), as it is the second most energy consuming system after the electric motor. Further, HVAC air conditioning systems used in the automotive industry are based on vapour-compression refrigeration

  7. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect (OSTI)

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01T23:59:59.000Z

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e.g., DOE's EnergyPlus building energy simulation program, http://www.energyplus.gov ).

  8. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  9. Operation of Energy-Efficient Air-Conditioned Buildings: An Overview

    E-Print Network [OSTI]

    Khalil, E. E.

    2010-01-01T23:59:59.000Z

    To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air-conditioned...

  10. air quality conditions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dynamics in the South Coast Air Basin of California. It has also been modified to model pollution in South Korea, Mexico Manohar, Rajit 71 Predicting Air Quality: Current Status...

  11. Commissioning and Diagnosis of VAV Air-Conditioning Systems

    E-Print Network [OSTI]

    Qin, J.; Wang, S.; Chan, C.; Xiao, F.

    2006-01-01T23:59:59.000Z

    This paper presents a fault detection and diagnosis (FDD) strategy based on system knowledge, qualitative states and object-oriented statistical process control (SPC) models for typical pressure-independent variable air volume (VAV) air...

  12. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL)

    1980-01-01T23:59:59.000Z

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  13. Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings

    E-Print Network [OSTI]

    Abernethy, D.

    "Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants...

  14. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  15. Intelligent Residential Air-Conditioning System with Smart-Grid Functionality

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Intelligent Residential Air-Conditioning System with Smart-Grid Functionality Auswin George residential air-conditioning (A/C) system controller that has smart grid functionality. The qualifier, conditional on anticipated retail energy prices. The term "smart- grid functionality" means that retail energy

  16. air conditioning system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be eliminated. Physical principals governing airflow in fan systems predict available energy savings from using premium air filters. This energy savings may offset the...

  17. air conditioning systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be eliminated. Physical principals governing airflow in fan systems predict available energy savings from using premium air filters. This energy savings may offset the...

  18. E-Print Network 3.0 - automotive air-conditioning system Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EGTE456 Fundamentals of Heating, Ventilation and Air Conditioning ELEG420 Solar Electric Systems... CIEG351 Transportation Engineering MEEG425 Automotive Powertrain...

  19. E-Print Network 3.0 - air conditioning hvac Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems play an important role in providing comfort in residential, commercial... of Heating, Refrigerating, and Air-Conditioning Engineers. Batterman S. and Burge H. 1995. "HVAC...

  20. E-Print Network 3.0 - air-conditioning systems based Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVENTION, APPLICATION NO. 61297,958 OF 25 JAN 2010 Summary: for Efficient Heating, Cooling, Refrigeration, and Air Conditioning BY MILIVOJE M. KOSTIC, SYCAMORE, IL......

  1. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

  2. "Table HC11.7 Air-Conditioning Usage Indicators by Northeast...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census...

  3. Table HC15.7 Air-Conditioning Usage Indicators by Four Most...

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 Total... 111.1 7.1 7.0 8.0...

  4. "Table HC13.7 Air-Conditioning Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division"...

  5. "Table HC12.7 Air-Conditioning Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division"...

  6. E-Print Network 3.0 - air-conditioning applications final Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is increasing in industrialized as well as developing countries. Because... of the energy demand from refrigeration and air conditioning. The thesis' first assessment...

  7. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint

    SciTech Connect (OSTI)

    Farrington, R.; Rugh, J.

    2000-09-22T23:59:59.000Z

    Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

  8. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    Efficiency of Room Air Conditioners in India: OpportunitiesStar Labeled room Air Conditioners. ” Ministry of Power (of Superefficient Room Air Conditioners,” Lawrence Berkeley

  9. Test and Reconstruction of Air Conditioning System in a Hotel Lobby

    E-Print Network [OSTI]

    Wang, G.; Hu, Y.; Hu, S.; Chen, Q.

    2006-01-01T23:59:59.000Z

    Two air conditioning systems are equipped in a hotel lobby. It is found from the field test that the actual air rate is 40% and 16% of the nominal value, respectively, of the two systems, which is far lower than the design requirement. The air rate...

  10. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Broader source: Energy.gov (indexed) [DOE]

    of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. DOE EX Parte Memo.pdf More Documents & Publications 3rd Semi-Annual Report to...

  11. Development of Optimization Tool for Air Conditioning System Operation

    E-Print Network [OSTI]

    Sumiyoshi, D.; Akashi, Y.

    Operations, Berlin, Germany, October 20-22, 2008 Outside air temperature and the absolute air humidity are predicted by the Auto-regressive Integrated Moving Average (ARIMA) model [1],[2]. The solar radiation on a horizontal surface... of the error margin Energy Consumption (set value A) Energy Consumption (set value B) ESL-IC-08-10-55 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 J VAV unit is also operated under...

  12. Improving the Performance of Air-Conditioning Systems in an ASEAN Climate

    E-Print Network [OSTI]

    Busch, J. F.; Warren, M. L.

    1988-01-01T23:59:59.000Z

    This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one...

  13. Air Distribution and Microenvironment Evaluation of a Desktop Task Conditioning System

    E-Print Network [OSTI]

    Zheng, G.

    2006-01-01T23:59:59.000Z

    Task conditioning aims to provide each occupant with personalized clean air direct to the breathing zone. The microenvironment of a typical office workplace, consisting of two desktop task conditioning systems (a Horizontal Desk Grill (HDG...

  14. The Use of Conditioned Air for Maintaining Quality of Stored Sorghum Grain.

    E-Print Network [OSTI]

    Person, Nat K. Jr.; Sorenson, J. W. Jr.; McCune, W. E.; Hobgood, Price

    1967-01-01T23:59:59.000Z

    .- ...... '. .................................... 21 .............................................. Design Method No: 3 21 Effects of Conditioned-air Storage on Grain Quality ........................................................... II! Insect Control...,~ of controlled storage environments for bulk yain are discussed. The initial vapor pressure of tile moisture in the grain and the partial pressure of !lie vapor in the conditioned air circulating through llle grain mass were found to be very important tl...

  15. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development

  16. A web based CBR system for heating ventilation and air conditioning systems sales support

    E-Print Network [OSTI]

    Watson, Ian

    A web based CBR system for heating ventilation and air conditioning systems sales support D describes the implementation of a case-based reasoning (CBR) system to support heating ventilation and air conditioning systems (HVAC) sales staff operating in remote locations. The system operates on the world wide

  17. RHEOLOGICAL STUDY OF TWO-PHASE SECONDARY FLUIDS FOR REFRIGERATION AND AIR CONDITIONING.

    E-Print Network [OSTI]

    Boyer, Edmond

    , indirect refrigeration systems renews interest as they enable to notably reduce the use of environmental the refrigeration applications to the air-conditioning systems. However, this kind of process only remainsRHEOLOGICAL STUDY OF TWO-PHASE SECONDARY FLUIDS FOR REFRIGERATION AND AIR CONDITIONING. Mylène

  18. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  19. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect (OSTI)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12T23:59:59.000Z

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  20. NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT (APU)

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT Air pollution Noise pollution Engine life Remedy Fuel cell APU Quieter Low emissions Exhaust Heat, Case History: Noise control approaches for an air-compressor in a fuel-cell auxiliary power unit, Noise

  1. Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin

    E-Print Network [OSTI]

    Zhao, T.; Zhang, J.; Li, Y.

    2006-01-01T23:59:59.000Z

    This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

  2. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01T23:59:59.000Z

    G. Henderson (2005) Home air conditioning in Europe – howhigher growth in Indian air conditioner saturation duringand A.A. Pavlova ( 2003). Air conditioning market saturation

  3. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01T23:59:59.000Z

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  4. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01T23:59:59.000Z

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  5. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect (OSTI)

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01T23:59:59.000Z

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  6. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  7. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency Huawei Zhu Zhejiang Urban and Rural Planning Design Institute... conditioning system has led to extensive criticism. 2. THE CHARACTERISTICS OF THE VARIABLE REFRIGERANT VOLUME AIR CONDITIONING SYSTEM AND ITS PRESENT APPLICATION ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 2...

  8. Energy Conservation of Air Conditioning Systems in Large Public Buildings

    E-Print Network [OSTI]

    Liu, P.; Li, D.

    2006-01-01T23:59:59.000Z

    cold seasons, the closed middle air layer absorbs the solar energy, and becomes the buffer layer of space between the inside and outside because of the glasshouse effect. In this case, the indoor heat loss can be reduced. While during the hot... and natural climatic microenvironment for the people indoor. Considering the energy conservation and the ecological environmental protection, this system not only satisfies the aesthetic need of the architecture, but also is the need of developing...

  9. Air entrainment by a plunging jet under intermittent vortex conditions

    E-Print Network [OSTI]

    Kim, Kevin Jin; Li, Kevin; Kiger, Ken T

    2011-01-01T23:59:59.000Z

    This fluid dynamic video entry to the 2011 APS-DFD Gallery of Fluid Motion details the transient evolution of the free surface surrounding the impact region of a low-viscosity laminar liquid jet as it enters a quiescent pool. The close-up images depict the destabilization and breakup of the annular air gap and the subsequent entrainment of bubbles into the bulk liquid.

  10. Development of empirical temperature and humidity-based degraded-condition indicators for low-tonnage air conditioners

    E-Print Network [OSTI]

    Watt, James Bonner

    1997-01-01T23:59:59.000Z

    A split-system direct-expansion air conditioner was used to empirically determine temperature and return-air humidity indicators that could detect performance degradation resulting from degraded conditions. The air conditioner test bench...

  11. E-Print Network 3.0 - air-borne power ultrasonic Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: air-borne power ultrasonic Page: << < 1 2 3 4 5 > >> 1 Center for Industrial Sensors and Measurements Department Materials Science & Engineering Summary:...

  12. Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    Bharathan, D.

    2009-05-01T23:59:59.000Z

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

  13. POWER CHARACTERISTICS OF INDUSTRIAL AIR COMPRESSORS Chris Schmidt

    E-Print Network [OSTI]

    Kissock, Kelly

    of control, and potential problems such as inadequate compressed air storage, over-sized compressors are compared to suggested guidelines for energy-efficient air compression. INTRODUCTION Compressed air's annual electric costs, and the unit energy cost of compressed air ranges from about $0.15 to $0.35 per

  14. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  15. Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space

    E-Print Network [OSTI]

    Mohamed, E.; Abdalla, K. N.

    2010-01-01T23:59:59.000Z

    This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

  16. Analysis of Energy Saving in a Clean Room Air-conditioning System

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    simulated and compared the summer energy consuming conditions of the two systems. Results prove the superiority of the 2nd return air system, and the validity of the simulation. Also, the air system energy performance in summer was illustrated with typical...

  17. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01T23:59:59.000Z

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  18. E-Print Network 3.0 - automative air-conditioning systems Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Page: << < 1 2 3 4 5 > >> 1 PLEASE HELP SAVE ENERGY Learn how to control the heating system for your room. Summary: & SW Heat & air conditioning control Cary E & NE &...

  19. "Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

  20. Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions

    E-Print Network [OSTI]

    Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

    2006-01-01T23:59:59.000Z

    channel wheel heat exchanger under different ambient conditions using the model developed. These include frost formation on the surface of the channel wheel heat exchanger, and impacts on the operational performance of the channel wheel fresh air...

  1. "Table HC4.7 Air-Conditioning Usage Indicators by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied...

  2. "Table HC14.7 Air-Conditioning Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total...

  3. Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems

    E-Print Network [OSTI]

    Li, L.; Zhang, Z.; Sun, Y.; Li, D.; Xie, H.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Co ntrol Systems for Energy Efficiency and Comfort, Vol. V-5-2 Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems Lianyou LI Zhihong ZHANG Yong...

  4. Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

  5. Analysis of a Retrofitted Thermal Energy Storage Air-conditioning System of a Marine Museum.

    E-Print Network [OSTI]

    Yu, Po-wen

    2005-01-01T23:59:59.000Z

    ??Thermal energy storage(TES) air-conditioning system is a electrical load management technology with great potential to shift load from peak to off-peak utility periods. TES is… (more)

  6. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01T23:59:59.000Z

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  7. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01T23:59:59.000Z

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  8. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [° C]lss. AirConditioning - a Modelica li- o brary for dynamic

  9. Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning

    E-Print Network [OSTI]

    Vliet, G. C.

    1994-01-01T23:59:59.000Z

    It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

  10. Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions

    E-Print Network [OSTI]

    Zheng, W.; Gong, F.; Lou, X.; Cheng, J.

    2006-01-01T23:59:59.000Z

    Introducing several kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an overall conception for air-conditioning energy...

  11. Environmental Justice? An analysis of air pollution and power plants in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Environmental Justice? An analysis of air pollution and power plants in California by Anita Milman: _______________________________________ Date #12;#12;I would like to thank the following people and institutions for their support: The Energy............................................................................................ 11 Power Plants Evaluated

  12. Direct-Expansion Air-Conditioning System Performance in Low Humidity Applications: A Case Study

    E-Print Network [OSTI]

    Khattar, M. K.; Keebaugh, D.

    1987-01-01T23:59:59.000Z

    DIRECT-EXPANSION AIR-CONDITIONING SYSTEM PERFORMANCE IN LOW HUMIDITY APPLICATIONS: A CASE STUDY MUKESH K. KHATTAR, P.E. DENNIS KEEBAUGH, P.E. Senior Systems Engineer Senior Research Engineer Florida Solar Energy Center Shenandoah Solar Center... warehouse. The flat gravel roof is exposed to sun. The 16' ceiling is insulated with two inch spray foam. Entrance to the warehouse is through sealed and insulated doors located on the west partition wall. The air -conditioning sys tem on this leased...

  13. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01T23:59:59.000Z

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  14. September 10, 2013 What is Seawater Air Conditioning (SWAC)?

    E-Print Network [OSTI]

    customer electrical consumption by up to 40% Aligns with Hawaii Clean Energy Initiatives Substantial water · Letters of Intent for 42% of Waikiki SWAC design load Customers · City, State, & Federal agency conditioning usage #12;Why SWAC in Waikiki? Electrical rates are near the highest in the U.S. Hawaii relies

  15. Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus

    E-Print Network [OSTI]

    Zhou, Y.; Wu, J.; Wang, R.; Shiochi, S.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-2 Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus Yanping Zhou Jingyi..., especially for those who ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-2 show some interest about high-efficiency systems like VRF, it becomes of interest to compare the VRF to other systems and evaluate VRF?s performance...

  16. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHC

  17. Application of the VRV Air-Conditioning System Heat Recovery Series in Interior Zone and Analysis of its Energy Saving

    E-Print Network [OSTI]

    Zhang, Q.; Li, D.; Zhang, J.

    2006-01-01T23:59:59.000Z

    To reduce the energy consumption of air conditioning systems, we can use the VRV air conditioning system to supply cold loads in the winter for rooms in the construction inner zone where cold loads need to be supplied. The VRV air-conditioning...

  18. Direct Expansion Air Conditioning System Selection for Hot & Humid Climates

    E-Print Network [OSTI]

    Browning, B. K.

    2002-01-01T23:59:59.000Z

    Capacity at Part-Load Conditions In 1996, Henderson and Rengarajan4 published a method for modeling the latent capacity degradation of DX equipment with constant blower operation. This latent degradation model provided critical information need... to match the moisture removal capacity of the selected system to the moisture load. However, the model required an iterative solution and knowledge of equipment parameters that were not readily available during design. In 1998, Henderson published a...

  19. Energy Efficient Design, Air Conditioning Correspondence to Author:

    E-Print Network [OSTI]

    Parth Patel; Parth Patel

    ABSTRACT: HVAC maintain both comfort and safety of indoor air quality. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. The greatest opportunities for energy efficiency exist at the design stage for HVAC systems in new industrial facilities. By sizing components of HVAC systems generally include dampers, supply and exhaust fans, filters, humidifiers, dehumidifiers, heating and cooling coils, ducts, and various sensors properly and designing energy efficiency into a new facility, an industry can minimize the energy consumption and operational costs of its plant HVAC systems from the outset. Optimizing system design and operations, such as minimizing laboratory ventilation, can also lead to significant reductions in energy use. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the industry to reduce energy consumption in a cost-effective manner.

  20. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect (OSTI)

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2009-11-15T23:59:59.000Z

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  1. A comparison between the use of natural air and air containing ozone in conditioning farm products

    E-Print Network [OSTI]

    Wilkes, Lambert Henry

    1953-01-01T23:59:59.000Z

    H3 Ave, Air Volume& Otme 42EOO 52e98 45e 66 46e48 40, 65 56, 64 47, 31 48, 20 43. 65 51, 66 48. 99 48, 10 55. 98 52e98 42 00 50. 32 39EOO 41e31 41e 64 COe 65 39EOO 41, 25 41. 64 40. 63 , tatio Pressures In, H. C. ~ 4...

  2. Model Based Sensor System for Temperature Measurement in R744 Air Conditioning Systems

    E-Print Network [OSTI]

    Reitz, Sven; Schneider, Peter

    2008-01-01T23:59:59.000Z

    The goal is the development of a novel principle for the temperature acquisition of refrigerants in CO2 air conditioning systems. The new approach is based on measuring the temperature inside a pressure sensor, which is also needed in the system. On the basis of simulative investigations of different mounting conditions functional relations between measured and medium temperature will be derived.

  3. Electronic power conditioning for dynamic power conversion in high-power space systems

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01T23:59:59.000Z

    require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

  4. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01T23:59:59.000Z

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  5. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    * FY10 - Develop novel micro-fin air cooled heat sink - prototype and test - Research new novel cooling technologies - synthetic jets - Evaluate fan efficiency for input into...

  6. Theoretical Study of a Novel Control Method of VAV Air-conditioning System Based on MATLAB

    E-Print Network [OSTI]

    Shi, Z.; Hu, S.; Wang, G.; Li, A.

    2006-01-01T23:59:59.000Z

    ). If the system can be transformed into linear system by mathematic method, control strategy will be simplified. It is noted that differential geometry theory is applicable to simplify the system described by equation (4). 3. DIFFERENTIABLE HOMEOMORPHI..., stability and other aspects. Key words: VAV; differentiable homeomorphism; nonlinear feedback; simulation 1. INTRODUCTION In order to maintain indoor air temperature at set value, there are two methods in the air-conditioning system. One method...

  7. A diffusion approximation approach to stochastic modeling of air conditioning type loads

    E-Print Network [OSTI]

    Roy, Teresa Henryka

    1981-01-01T23:59:59.000Z

    that the air conditioning unit is on and off. In the followino equations, TNIN and TNAX are the lower and upper limit temperatures of the thermostat deadband and To is the outside temperature. Gi 2Gw To Tw Cw Ci $ QeXt To - outside temperature Tw - wall... temperature Ti - inside temperature Gw ? thermal conductance of wall Gi - thermal conductance of air Cw - thermal capacitance of wall Ci ? thermal capacitance of air Qe - rated capacity of cooling unit Xt - zero-one process describing the switching...

  8. Influence Of Upper Air Conditions On The Patagonia Icefields L. A. Rasmussen, H. Conway, C. F. Raymond

    E-Print Network [OSTI]

    Rasmussen, L.A.

    Influence Of Upper Air Conditions On The Patagonia Icefields L. A. Rasmussen, H. Conway, C. F, Second Fig ABSTRACT. Upper-air conditions archived in the NCEP-NCAR Reanalysis have been used cannot be determined, so the investigation is limited to examining relative changes in those upper air

  9. OPTIMAL EFFICIENCY-POWER TRADEOFF FOR AN AIR MOTOR/COMPRESSOR WITH VOLUME VARYING HEAT TRANSFER CAPABILITY

    E-Print Network [OSTI]

    Li, Perry Y.

    of air. These results could ben- efit applications such as compressed air energy storage where both high and expansion is both energy efficient and power-dense. An ex- ample would be compressed air energy storage. One density of compressed air storage (about 20 times greater than hydraulic accumulators), and the high power

  10. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, HuaZhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-01-14T23:59:59.000Z

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  11. The effect of hardware configuration on the performance of residential air conditioning systems at high outdoor ambient temperatures

    E-Print Network [OSTI]

    Bain, Joel Alan

    1995-01-01T23:59:59.000Z

    A study was performed which investigated the effect of hardware configuration on air conditioning cooling system performance at high outdoor temperatures. The initial phase of the investigation involved the testing of ten residential air...

  12. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    Keywords: Distributed generation Central generation Air quality modeling Reactivity a b s t r a c by the widespread installation of many stationary power generators close to the point of electricity use within from which electricity must be transmitted to end users. However, increasing electricity demand

  13. Investigation of coal stockpiles of Tuncbilek thermal power plant with respect to time under atmospheric conditions

    SciTech Connect (OSTI)

    Ozdeniz, A.H. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

    2009-07-01T23:59:59.000Z

    Thermal power plants have delayed the coal that they will use at stockpiles mandatorily. If these coal stockpiles remain at the stockyards over a certain period of time, a spontaneous combustion can be started itself. Coal stocks under combustion threat can cost too much economically to coal companies. Therefore, it is important to take some precautions for saving the stockpiles from the spontaneous combustion. In this research a coal stockpile at Tuncbilek Thermal Power Plant which was formed in 5 m wide, 10 m long, and 3 m height with a weight of 120 tons to observe internal temperature changes with respect to time under normal atmospheric conditions. Later, internal temperature measurements were obtained at 20 points distributed all over two layers in the stockpile. The parameters, such as air temperature, humidity, atmosphere pressure, wind speed and direction, which are effective on the stockpiles, were measured and used to obtain the graphs of stockpiles' internal temperature.

  14. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect (OSTI)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31T23:59:59.000Z

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

  15. Cold side thermal energy storage system for improved operation of air cooled power plants

    E-Print Network [OSTI]

    Williams, Daniel David

    2012-01-01T23:59:59.000Z

    Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

  16. Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air May 14-17, 2007, Montreal manuscript, published in "Proceedings of GT2007, ASME Turbo Expo, Canada (2007)" #12;INTRODUCTION The current

  17. State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  18. Control system and method for a universal power conditioning system

    SciTech Connect (OSTI)

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02T23:59:59.000Z

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  19. Solar-air power plant. Interim report, January 1, 1980-November 1, 1981

    SciTech Connect (OSTI)

    Chen, I.

    1982-01-01T23:59:59.000Z

    The chimney conversion efficiency of transferring solar energy into wind energy for the proposed solar-air power plant has been investigated. The application of a chimney as the air-cooling system for a large-scale photovoltaic concentration power plant to transfer solar energy into electricity has also been studied. Several conclusions in reference to this basic research project and suggestions for further research phases are also summarized in this report.

  20. CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System

    E-Print Network [OSTI]

    Xiang, H.; Yinming, L.; Junmei, W.

    2006-01-01T23:59:59.000Z

    , and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils...

  1. Start-Up of Air Conditioning Systems After Periods of Shutdown (Humidity Considerations)

    E-Print Network [OSTI]

    Todd, T. R.

    1986-01-01T23:59:59.000Z

    In many cases the single most important energy conservation measure that can be taken is to turn equipment off when it is not needed. In the case of air conditioning, this generally means turning it off when occupants leave and turning it back...

  2. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    E-Print Network [OSTI]

    Zhang, Wei

    1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an increasingly impor- tant role in the efficient loads is especially important to evaluate the effec- tiveness of various demand response strategies

  3. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect (OSTI)

    Hassan, Yassin

    2013-05-06T23:59:59.000Z

    The goal of this project is to study the fundamental physical phenoena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a nupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefor, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that mimimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlaying phenomena. The combination of interdiffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. THis project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses Perform computational fluid dynamics analysis of air ingress phenomena

  5. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  6. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01T23:59:59.000Z

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  7. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30T23:59:59.000Z

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  8. INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units (Page 1 of 2)

    E-Print Network [OSTI]

    cooling with the compressor). Yes No #12;INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage AirINSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units (Page 1 of 2) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ice Storage Air

  9. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2013-01-01T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

  10. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect (OSTI)

    Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

    1995-12-31T23:59:59.000Z

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  11. aerospace power conditioning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Electronics Simulation Workshop 2004 Satellite Attitude Control System Design Simon, Dan 3 Powered "Passive" Dynamic Walking The Sibley School of Mechanical and...

  12. Air-Cooled Condensers for Next Generation Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission,Air

  13. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01T23:59:59.000Z

    Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

  14. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01T23:59:59.000Z

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  15. The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing

    E-Print Network [OSTI]

    Sheng, G.; Xie, G.

    2006-01-01T23:59:59.000Z

    In this paper, we show that the air-conditioning usage in residential buildings in Beijing grows rapidly in relation to the development of civil construction. More and more people are not satisfied with the current style of only using split air-conditioning...

  16. Development of a high efficiency compressor/expander for an air cycle air conditioning system. Final report

    SciTech Connect (OSTI)

    Summers, R.L.; Smolinski, R.E.

    1982-11-15T23:59:59.000Z

    This document presents the methods and procedures used and the results obtained in the design, fabrication, and testing of a rotary vane type compressor operated on air cycle thermodynamics. The history and results of the testing of a similar expander are summarized and the full report of that work is referenced. The machine design used was based on one patented by Ecton Corporation. The goal of the reported effort was to demonstrate the attainable efficiencies of these machines. Appropriate test rigs were assembled and the machines were tested at various operating conditions. The compressor testing did not achieve the full design speed because of time constraints but important data was obtained at 87% speed (3000 rpm). The maximum measured total efficiencies were 78% for the expander and 71% for the compressor. Various design improvements which may yield improved performance were identified and reported.

  17. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  18. Identification of the Flow Resistance Coefficient and Validation of a Building Air Conditioning System

    E-Print Network [OSTI]

    Hou, Z.; Lian, Z.

    2006-01-01T23:59:59.000Z

    for HRC estimation is investigated in this paper. And some conclusions can be got as follows: 1) The MGO method is applicable for S value identification. The method is based on the principle for multi goal optimization. The process can be widely used...ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-2 Zhijian Hou Identification of the Flow Resistance Coefficient and Validation of a Building Air Conditioning System Zhiwei Lian...

  19. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  20. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission, StorageIndustry andAir|

  1. Comparison of global warming impacts of automobile air-conditioning concepts

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The global warming impacts of conventional vapor compression automobile air conditioning using HFC-134a are compared with the potential impacts of four alternative concepts. Comparisons are made on the basis of total equivalent warming impact (TEWI) which accounts for the effects of refrigerant emissions, energy use to provide comfort cooling, and fuel consumed to transport the weight of the air conditioning system. Under the most favorable assumptions on efficiency and weight, transcritical compression using CO{sub 2} as the refrigerant and adsorption cooling with water and zeolite beds could reduce TEWI by up to 18%rlative to HFC-134a compression air conditioning. Other assumptions on weight and efficiency lead to significant increases in TEWI relative to HFC-134a, and it is impossible to determine which set of assumptios is valid from existing data, Neither Stirling cycle or thermoelectric cooling will reduce TEWI relative to EFC-134a. Brief comments are also made concerning technical barriers that must be overcome for succesful development of the new technologies.

  2. Comment on 'Air Emissions Due to Wind and Solar Power'

    SciTech Connect (OSTI)

    Mills, A.; Wiser, R.; Milligan, M.; O'Malley, M.

    2009-01-01T23:59:59.000Z

    Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power, is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators ''achieve {approx}80% of the emission reductions expected if the power fluctuations caused no additional emissions.'' They find even lower NO{sub x} emission reduction benefits with steam injected gas turbines and a 2--4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt.

  3. Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  4. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    E-Print Network [OSTI]

    Kühnl-Kinel, J

    2000-01-01T23:59:59.000Z

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  5. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01T23:59:59.000Z

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  6. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect (OSTI)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30T23:59:59.000Z

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  7. Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector , Redouane Seraouib

    E-Print Network [OSTI]

    Boyer, Edmond

    Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine Jie.zio@ecp.fr Abstract In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP monitoring, Nuclear power plant, Point prediction hal-00790421,version1-12Jun2013 Author manuscript

  8. Fuel-cell based power generating system having power conditioning apparatus

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Pradhan, Sanjaya K. (Des Plaines, IL)

    2010-10-05T23:59:59.000Z

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  9. Design and Realization of Autonomous Power CMOS Single Phase Inverter and Rectifier for Low Power Conditioning Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and Realization of Autonomous Power CMOS Single Phase Inverter and Rectifier for Low Power operate as an inverter or as a rectifier in a wide range of power flows and input voltages. Three of the inverter reaches up to 92% as a function of input voltage with these conditions. The second experimental

  10. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  11. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect (OSTI)

    Rugh, J. P.

    2010-04-01T23:59:59.000Z

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  12. Commentary: Air-conditioning as a risk for increased use of healthservices

    SciTech Connect (OSTI)

    Mendell, Mark J.

    2004-06-01T23:59:59.000Z

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et al. [2004], PRs allow a more appropriate estimate of the increase in each outcome associated with the risk factor of air-conditioning. The increase in prevalence was roughly estimated as [100* (crude PR * adjusted OR/crude OR)-100] %. Based on the data in Table 2 of Preziosi et al. [ 2004], estimates for the increased prevalence associated with air-conditioned offices include increases of 120% in otorhinolaryngology visits, and 40% in sickness absence. If these associated increases represented valid causal relationships, it would indicate enormous costs for employers and for society associated with air-conditioning systems, from increased health care and for reduced workplace productivity from sickness absence, in addition to a large burden of disease on workers.

  13. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21T23:59:59.000Z

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  14. Field Measurements of Efficiency and Duct Effectiveness in Residential Forced Air Distributions Systems

    E-Print Network [OSTI]

    Jump, D.A.

    2011-01-01T23:59:59.000Z

    power for air conditioning, heat pumps and electricwith 13 air conditioners, eight heat pumps (one house hadPre Post * A C : air conditioning, HP : heat pump, GF : gas

  15. Supporting Information Power generation by packed-bed air-cathode microbial fuel cells

    E-Print Network [OSTI]

    1 Supporting Information Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan b a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU­ VEOLIA Informatics, China University of Mining and Technology, Xuzhou 221116, PR China * Corresponding author: E

  16. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  17. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  18. Dynamic air deposited coatings for power and black liquor recovery boilers

    SciTech Connect (OSTI)

    Verstak, A.A.; Baranovski, V.E. [Advanced Surface Technologies Inc., Richmond, VA (United States)

    1999-11-01T23:59:59.000Z

    Dynamic Air Deposition (DyAir) is a novel coating method designed to protect the tubing of power and black liquor recovery boilers against corrosion attack at elevated temperatures. The method utilizes the energy of combustion of gaseous fuel and air to heat the powder material to a temperature just below its melting point and accelerate it over 600 m/s to form a coating. The Ni-Cr and Ni-Cr-Mo DyAir coatings revealed no gas permeability and extremely low oxygen content. Compared to the electric arc and HVOF-sprayed coatings, the DyAir coatings exhibited higher hardness and better crack resistance. During aging at 400 and 700 C the bond strength and crack resistance of the DyAir coatings increased dramatically due to intensive diffusion processes in absence of internal corrosion attack. The DyAir coatings revealed outstanding resistance to corrosion, such as sulfidation attack in presence of hydrochloric acid gas at 400 C, oxidation attack at 700 C and oxidation attack in presence of chlorine at 400 C.

  19. Co-benefits of Carbon Standards Part 1: Air Pollution Changes under Different 111d Options for Existing Power Plants

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    Co-benefits of Carbon Standards Part 1: Air Pollution Changes under Different 111d Options for existing power plants would decrease emissions of co-pollutants that contribute to local and regional air pollution standard would improve air quality and decrease the deposition of harmful pollutants. It is well

  20. Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer

    E-Print Network [OSTI]

    Miyashita, Yasushi

    Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

  1. Shipboard condition based maintenance and integrated power system initiatives

    E-Print Network [OSTI]

    Barber, Darrin E. (Darrin Eugene)

    2011-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on developing and implementing a robust integrated power system aboard future combatants, there has been an ever increasing effort to guarantee an electrical distribution system that ...

  2. The effect of respiration heat of sorghum grain on the design of conditioned-air storage systems

    E-Print Network [OSTI]

    Haile, Danel Gene

    1967-01-01T23:59:59.000Z

    THE EFFECT OF RESPIRATION HEAT OF SORGHUM GRAIN ON THE DESIGN OF CONDITIONED-AIR STORAGE SYSTEMS A Thesis by DANEL GENE HAILE Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1967 Major Subject: Agricultural Engineering THE EFFECT OF RESPIRATION HEAT OF SORGHUM GRAIN ON THE DESIGN OF CONDITIONED-AIR STORAGE SYSTEMS A Thesis by DANEL GENE HAILE Approved as to style and content by: C airman...

  3. Aging and service wear of air-operated valves used in safety-related systems at nuclear power plants

    SciTech Connect (OSTI)

    Cox, D.F.; McElhaney, K.L.; Staunton, R.H.

    1995-05-01T23:59:59.000Z

    Air-operated valves (AOVs) are used in a variety of safety-related applications at nuclear power plants. They are often used where rapid stroke times are required or precise control of the valve obturator is required. They can be designed to operate automatically upon loss of power, which is often desirable when selecting components for response to design basis conditions. The purpose of this report is to examine the reported failures of AOVs and determine whether there are identifiable trends in the failures related to predictable causes. This report examines the specific components that comprise a typical AOV, how those components fail, when they fail, and how such failures are discovered. It also examines whether current testing frequencies and methods are effective in predicting such failures.

  4. Advances in the development of energy efficient technologies: Sea Water Air Conditioning (SWAC)

    SciTech Connect (OSTI)

    Coony, J.E. [Boston Pacific Co., Inc., Washington, DC (United States)

    1996-11-01T23:59:59.000Z

    Sea water air conditioning (SWAC) is a cost effective and environmentally friendly alternative to and/or enhancement of air conditioning from mechanical chillers. SWAC pumps cold sea water from the appropriate ocean depths (50 to 3,000 feet depending on the climate and local characteristics) to the shore where it replaces (by direct cooling) or enhances (through use as condenser water) large mechanical chillers found in coastal facilities. SWAC direct cooling uses less than twenty per cent of the electricity of a mechanical chiller and uses no refrigerants whatsoever. Indirect cooling also offers substantial energy savings. Both systems dispense with the need for a cooling tower. Technical advances over the last twenty years in corrosion resistant alloys (titanium or aluminum), bio-fouling deterrence, and deep ocean pipeline deployment allow SWAC installations to use reliable, off-the-shelf technology. SWAC works in a variety of climates (existing installations are in Hawaii and Halifax, Nova Scotia), giving it significant domestic and international potential. Economy-of-scale advantages make it attractive to district cooling schemes.

  5. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01T23:59:59.000Z

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  6. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  7. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect (OSTI)

    Greg Mines

    2005-10-01T23:59:59.000Z

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  8. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  9. Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2013-02-18T23:59:59.000Z

    The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

  10. E-Print Network 3.0 - air filter condition Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fans... , water treatment equipment, elevators (electric and hydraulic), sewer lift pumps, filter servicing in air... : Use of mechanical equipment such as refrigeration, air...

  11. E-Print Network 3.0 - air conditioning energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences 3 Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock Summary: Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter...

  12. High efficiency photovoltaic power conditioning system Hosam Sharabash, DVMM Krishna, Norbert Frhleke and Joachim Bcker

    E-Print Network [OSTI]

    Paderborn, Universität

    , Germany sharabash@lea.upb.de Abstract A new topology for photovoltaic Power Conditioning System (PCS, this redundant topol- ogy consists of two new components, one for DC/DC converter and one for inverter. The preHigh efficiency photovoltaic power conditioning system Hosam Sharabash, DVMM Krishna, Norbert

  13. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC solar-powered DC air-conditioning heat pump produced byRoom Air Conditioners Geothermal Heat Pumps Lighting-efficiency of an air source electric heat-pump water heater

  14. Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon

    E-Print Network [OSTI]

    Boyer, Edmond

    Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring safety constraints: nuclear power plants. Key components of such systems are motor-operated valves (MOVs

  15. Condition Monitoring of Electrical Power Plant Components During Operational

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the condition monitoring of a gas turbine during start-up transients. * Corresponding author. E-mail: piero reconstruction, AAKR, Haar transform, Gas turbine, Start-up transients LIST OF SYMBOLS AND ACRONYMS AAKR Auto of a component is typically based on an empirical model that estimates the values of some measurable variables

  16. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01T23:59:59.000Z

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  17. Geomagnetic effects on cosmic ray propagation under different conditions for Buenos Aires and Marambio, Argentina

    E-Print Network [OSTI]

    Masías-Meza, Jimmy J

    2014-01-01T23:59:59.000Z

    The geomagnetic field (Bgeo) sets a lower cutoff rigidity (Rc) to the entry of cosmic particles to Earth which depends on the geomagnetic activity. From numerical simulations of the trajectory of a proton using different models for Bgeo (performed with the MAGCOS code), we use backtracking to analyze particles arriving at the location of two nodes of the net LAGO (Large Aperture Gamma ray burst Observatory) that will be built in the near future: Buenos Aires and Marambio (Antarctica), Argentina. We determine the asymptotic trajectories and the values of Rc for different incidence directions, for each node. Simulations were done using several models for Bgeo that emulate different geomagnetic conditions. The presented results will help to make analysis of future observations of the flux of cosmic rays done at these two LAGO nodes.

  18. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect (OSTI)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01T23:59:59.000Z

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  19. Application of Genetic Algorithm to Optimal Design of Central Air-Conditioning Water System

    E-Print Network [OSTI]

    Feng, X.; Zou, Y.; Long, W.

    2006-01-01T23:59:59.000Z

    .25 150 121.86 0.1182 1.92 200 131.55 0.0218 376.9729 1.0864 19 19 20 4.5 150 99.58 0.1013 1.57 150 107.18 0.1013 1163.561 1.6857 20 20 21 1.8 80 22.29 0.965 1.17 65 24.28 2.3884 1408.019 1.8046 21 22 23 1 80 22.29 0.5361 1.17 80 24.24 0.5361 315.0493... Wuxi, P. R. China, 214122 Shanghai? P. R. China, 200070 fxp_99@126.com Zouyun_22@126.com WeidingLong@163.com Abstract: The optimal design of air-conditioning water system is an optimization problem of functions that depend on a series...

  20. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOE Patents [OSTI]

    Scudiere, Matthew B

    2012-11-13T23:59:59.000Z

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  1. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect (OSTI)

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01T23:59:59.000Z

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  2. Regression analysis of residential air-conditioning energy consumption at Dhahran, Saudi Arabia

    SciTech Connect (OSTI)

    Abdel-Nabi, D.Y.; Zubair, S.M.; Abdelrahman, M.A.; Bahel, V. (Energy Systems Group, Div. of Energy Resources, Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (SA))

    1990-01-01T23:59:59.000Z

    The energy consumption of a house air conditioner located at Dhahran, Saudi Arabia, is modeled as a function of weather parameters and total (global) solar radiation on a horizontal surface. The selection of effective parameters that significantly influence energy consumption is carried out using general stepping regression methods. The problem of collinearity between the regressors is also investigated. The final model involves parameters of total solar radiation on a horizontal surface, wind speed, and temperature difference between the indoor and outdoor condition. However, the model coefficients are functions of relative humidity and/or temperature difference between the indoor and outdoor condition. Model adequacy is examined by the residual analysis technique. Model validation is carried out by the data-splitting technique. The sensitivity of the model indicates that relative humidity and temperature difference strongly influence the cooling energy consumption. It was found that an increase in relative humidity from 20% to 100% can cause a 100% increase in cooling energy consumption during the high cooling season.

  3. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17T23:59:59.000Z

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  4. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01T23:59:59.000Z

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  5. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  6. Air bottoming cycle: Use of gas turbine waste heat for power generation

    SciTech Connect (OSTI)

    Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

    1996-04-01T23:59:59.000Z

    This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

  7. Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar

    Broader source: Energy.gov [DOE]

    This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

  8. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air june 8-12, 2009, Orlando, Florida, USA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air GT2009 june 8-12, 2009, Orlando are constructed with another finite element mesh which 1 Copyright c 2009 by ASME hal-0068

  9. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    SciTech Connect (OSTI)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. (Disciplines of Paediatrics, University of Newcastle, New South Wales (Australia))

    1991-01-01T23:59:59.000Z

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

  10. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A. [S.M. Stoller Corporation, Rocky Flats Site, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  11. Condition Data Aggregation with Application to Failure Rate Calculation of Power Transformers

    E-Print Network [OSTI]

    be used in system-level simulation and decision tools. The system is illustrated using dis- solved gas-in-oil for condition monitoring and failure rate prediction of power transformers. Specif- ically, the system uses field data for assessing the deteriora- tion level of power transformer insulating oil. Keywords: Data

  12. Study of seismic design bases and site conditions for nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  13. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

  14. Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems

    E-Print Network [OSTI]

    Maheshwari, G. P.; Mulla Ali, A. A.

    2004-01-01T23:59:59.000Z

    consumptions. The cooling capacities for WC and AC systems were 373 and 278 tons-of- refrigeration, respectively. It was found that for the same cooling production, the peak power demand and the daily energy consumption of the WC system were 45 and 32% less...

  15. SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY

    E-Print Network [OSTI]

    Perez, Richard R.

    SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

  16. A CycloDissipativity Condition for Power Factor Improvement in Electrical Circuits

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    A Cyclo­Dissipativity Condition for Power Factor Improvement in Electrical Circuits Romeo Ortega compensation problem for electrical circuits. Namely, we prove that a necessary condition for a (shunt of the source are functions of time and are denoted by the column vectors vs, is Rq . The load is described

  17. Problem of Vain Energy Consumption in a VAV Air Conditioning System Shared By an Inner Zone and Exterior Zone

    E-Print Network [OSTI]

    Wenji, G.; Ling, C.; Dongdong, L.; Mei, S.; Li, Z.

    2006-01-01T23:59:59.000Z

    in winter and summer. Taking a practical project as example, this paper analyzes the energy consumption of a VAV air conditioning system that is shared by inner zone and exterior zone. The paper also points out the serious problem of useless energy...

  18. Implementation of Smart Operation Strategies for Air-Conditioning and Lighting Systems for Ministries Complex in the State of Kuwait

    E-Print Network [OSTI]

    Al-Mulla, A.; Maheshwari, G. P.; Al-Nakib, D.; Ishaqali, H.

    The smart operation strategies were implemented for Air-Conditioning (A/C) and lighting systems to reduce the national load at Ministries Complex (MC) in the state of Kuwait. The A/C system in MC is a district cooling system that comprises of 8...

  19. E-Print Network 3.0 - air conditioning devices Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interaction Institute, Carnegie... cities of the developing world, urban air pollution has worsened, which has been detrimental... to the health of their populations. At...

  20. E-Print Network 3.0 - air conditioning committee Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Meeting Minutes January 16, 2008 Darden 126 Attendees... Transit Service, Maintenance Shop, Operations, Administration, Air and HSCMedical Center. Major Source: Whittle,...

  1. INFLUENCE OF DESIGN AND OPERATING CONDITIONS ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    zones. Variable speed fan coil units (VSFCU) provide air tounit (AHU) including an airside economizer, a chilled water cooling coil, and a relief fan.

  2. E-Print Network 3.0 - air conditioning absorption Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    after cooling with excess air andor heat ... Source: Columbia University - Waste-to-Energy Research and Technology Council (WTERT) Collection: Renewable Energy 17 A broadband...

  3. E-Print Network 3.0 - air conditioning automatic Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management and standard environmen- tal analysis of air pollution, data from remote sensing (aerial... and satellite images) can ehance all data sets. In spite of the...

  4. E-Print Network 3.0 - air conditioning applications Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motors, materials handling and welding. Estimates... Page 1 of 8 2011-xx-xxxx Improving Compressed Air Energy Efficiency in Automotive Plants Nasr... are typically large users of...

  5. E-Print Network 3.0 - air conditioning conference Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization 13 The Effect of Pour Time and Head Height on Air Entrainment Malcolm Blair, Technical and Research Director, SFSA Summary: at this...

  6. E-Print Network 3.0 - air conditioning Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use... -294-5798 FOR MORE INFORMATION Concrete Property Test www.cptechcenter.org Air Entrainment 3-2: ... Source: Iowa State University, Department of Civil, Construction,...

  7. Une mthode simple de prvision des tempratures de l'air et de la surface du sol en conditions de geles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Une méthode simple de prévision des températures de l'air et de la surface du sol en conditions de l'air et du sol, on a tracé des abaques qui expriment le refroidissement en conditions de ciel clair frost conditions. A one-dimensional model of nocturnal change in soil and air temperature has been used

  8. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  9. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  10. Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

  11. Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

  12. Case Study: The Effective Use of an Extensive Logical rule Based Data Analytics Approach in Establishing Root Cause of Performance Issues in Widespread Deployments of Unitary Space Air Conditioning Units

    E-Print Network [OSTI]

    Brady, N.

    2013-01-01T23:59:59.000Z

    Today a significant percentage of office spaces are air conditioned using widely deployed unitary systems, either Fan Coil Units (FCU) or Variable Air Volume (VAV) boxes, to achieve high degrees of air conditioned zonal control. However establishing...

  13. Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning

    E-Print Network [OSTI]

    Liu, D.; Tang, G.; Zhao, F.

    2006-01-01T23:59:59.000Z

    ):319-344. [3] CHEN Q, MORSER A, SUTER P. A numerical study of indoor air quality and thermal comfort under six kinds of air diffusion [J]. ASHRAE Transactions, 1992, 98 (1):203-217. [4] ETHERIDGE D W, SANDBERG M. Building Ventilation: Theory...

  14. 1 Copyright 20xx by ASME Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea and Air

    E-Print Network [OSTI]

    Dabiri, John O.

    1 Copyright © 20xx by ASME Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea and Air on a simple 8th power velocity scaling law for jet noise generation. Thus, highly effective subsonic jet noise and author of correspondence #12;2 Copyright © 20xx by ASME the same mechanisms for which these devices have

  15. Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air June 14-18, 2010, Glasgow, UK

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT2010 June 14-18, 2010, Glasgow approach for power generation with CO2 capture and storage [1]. In this process, the fuel is burned in pure by ASME hal-00497963,version1-6Jul2010 Author manuscript, published in "ASME Turbo Expo 2010, United

  16. Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air June 14-18, 2010, Glasgow, UK

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT2010 June 14-18, 2010, Glasgow by sweeping the forcing frequency. It is then possible to conduct 1 Copyright c 2010 by ASME hal-00825511,version1-23May2013 Author manuscript, published in "Journal of Engineering for Gas Turbines and Power 133

  17. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Production cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model

  18. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01T23:59:59.000Z

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  19. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  20. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    I. M. Neklyudov; A. N. Dovbnya; N. P. Dikiy; O. P. Ledenyov; Yu. V. Lyashko

    2013-06-21T23:59:59.000Z

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT3, in the AU1500 iodine air filter are also researched. The possible influences by the standing acoustic wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

  1. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  2. E-Print Network 3.0 - air-borne dust conditions Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L., Guo, J., Dan, M., Zhang, W., Wang, Z., and Hao, Z.: The air-borne particulate pollution... Discussions Regional characteristics of spring Asian dust and its impact on...

  3. E-Print Network 3.0 - automotive air conditioning Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 > >> 1 Page 1 of 8 2011-xx-xxxx Summary: Page 1 of 8 2011-xx-xxxx Improving Compressed Air Energy Efficiency in Automotive Plants Nasr... . This paper describes typical...

  4. A laboratory for instruction and research in air conditioning and refrigeration

    E-Print Network [OSTI]

    Hall, Ray Allison

    1950-01-01T23:59:59.000Z

    complicated due to the combination of many simple units into elaborate assemblies. The functional relation- ship of condmnsers, compressors, cooling towersp evaporators, air distri- bution systems~ controls, snd other parts of an installation are often...

  5. Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D. L.; Haberl, J. S.

    1992-01-01T23:59:59.000Z

    enthalpies at six locations were calculated using the refrigerant property calculation program developed by Kartsounes[26]. Air-side enthalpy, humidity and specific volume were calculated by a psychrometric program developed at the Energy Systems Laboratory... procedure based on measurement of refrigerant and air side temperatures. n TABLE OF CONTENTS CHAPTER Page I INTRODUCTION 1 E LITERATURE REVIEW 3 Service and failure patterns 3 Degradation studies 4 HI MODEL DEVELOPMENT 6 Theory of operation 6 Degraded...

  6. Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners

    SciTech Connect (OSTI)

    Bai, Tiejun

    1996-10-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

  7. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31T23:59:59.000Z

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  8. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I

    SciTech Connect (OSTI)

    NONE

    1996-01-30T23:59:59.000Z

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  9. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect (OSTI)

    NONE

    1996-01-30T23:59:59.000Z

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  10. A new route for energy efficiency diagnosis and potential analysis of energy consumption from air-conditioning system

    E-Print Network [OSTI]

    Ma,R.J.; Yu,N.Y.

    2014-01-01T23:59:59.000Z

    1 A new route for energy efficiency diagnosis and potential analysis of energy consumption from air-conditioning system Rong-Jiang Ma Nan-Yang Yu PhD candidate Professor School of Mechanical Engineering, Southwest Jiaotong... in buildings is to save energy without compromising comfort, health and productivity levels. In other words, the idea is to consume less energy while providing equal or improved building services, that is, being more energy efficient (Pérez-Lombard et al...

  11. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    SciTech Connect (OSTI)

    Armstrong, P.R.; Katipamula, S.

    1996-10-01T23:59:59.000Z

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  12. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01T23:59:59.000Z

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  13. Model Based Commissioning Tool for Air-Conditioning Distribution Systems-APCBC

    E-Print Network [OSTI]

    Yoshida, H.; Noda, T.

    2014-01-01T23:59:59.000Z

    of VWV System 4. Example of VAV System 5. Conclusions 2 ESL-IC-14-09-06 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 ? Energy consumption of air and water distribution in air...-09-06 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 1. Issues 2. Simulation Model of Distribution System 3. Example of VWV System 4. Example of VAV System 5. Conclusions 7 ESL-IC-14...

  14. Influence of Fault and Optimization of PID Parameters in Building Air-Conditioning System

    E-Print Network [OSTI]

    Kuniyoshi, K.; Akashi, Y.; Sumiyoshi, D.; Song, Y.

    2005-01-01T23:59:59.000Z

    200 400 600 800 0 200 400 600 800 8 10 12 14 16 18 Supply air flow volume A ir flo w v ol um e[ m 3 / h] A ir flo w v ol um e[ m 3 / h] (b)Supply air flow volume Time[hour] 0 10 20 0.6 0.8 1 1.2 1....4 18161412108 Time[hour] Secondary inlet water temp. Secondary outlet water temp. Secondary pump water flow volume w at er fl ow v ol um e[ m 3 / h] Te m p. [d eg .C ] (d)Secondary inlet & outlet water temp. / water flow volume 10...

  15. E-Print Network 3.0 - air conditioning fuel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    output power ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

  16. PowerSaver Loans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    doors and windows; heating, ventilation, and air conditioning systems; water heaters; solar panels; and geothermal systems. The PowerSaver program is currently in a pilot...

  17. AN UPDATE ON THE STATUS OF THE NIF POWER CONDITIONING SYSTEM

    SciTech Connect (OSTI)

    Arnold, P A; Hulsey, S; Ullery, G T; Petersen, D E; Pendleton, D L; Ollis, C W; Newton, M A; Harwell, T; Cordoza, D; Hadovski, L

    2007-09-06T23:59:59.000Z

    The National Ignition Facility (NIF) Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) stores up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 {micro}s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production and commissioning by early 2008, while maintaining an aggressive operation schedule. To date, more than 97% of the required modules have been assembled, shipped and installed in the facility, representing more that 380 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations.

  18. Evaluation of a Local Air Conditioning Duty Cycling Device as a Load Management Tool

    E-Print Network [OSTI]

    Schneider, K.; Thedford, M.

    1986-01-01T23:59:59.000Z

    the air conditioners were controlled. The local control device and the direct control device were both found to reduce demand of the compressor by about 0.65 kW at 100°F ambient temperature. Also, the kW reduction achieved was found to increase with higher...

  19. Analysis of oscillation characteristics and optimal conditions for high power operation of Gyrotron FU CW GIII

    SciTech Connect (OSTI)

    Tatematsu, Y., E-mail: tatema@fir.u-fukui.ac.jp; Yamaguchi, Y.; Kawase, T.; Ichioka, R.; Ogawa, I.; Saito, T.; Idehara, T. [Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507 (Japan)

    2014-08-15T23:59:59.000Z

    The oscillation characteristics of Gyrotron FU CW GIII and its wave frequency and output power dependences on the magnetic field strength, the gun coil current, and the anode voltage were investigated experimentally. The experimental results were analyzed theoretically using a self-consistent code that included the electron properties in the cavity, corresponding to the actual operating conditions in the experiments. As a result, it was found that the variation in frequency with the magnetic field strength was related to an axial profile change in the electromagnetic wave in the cavity. In addition, the optimal condition that gives the maximum output power was found to be determined by the pitch factor rather than by the electron beam radius under the given operating conditions.

  20. E-Print Network 3.0 - air-conditioning systemsfor occupant Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Collection: Biology and Medicine 3 Introduction Prior research has shown that energy savings are Summary: conditions for human occupancy. American Society of Heating,...

  1. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01T23:59:59.000Z

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  2. Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan Zhang a,b

    E-Print Network [OSTI]

    Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan Zhang a,b , Juan Shi c Laboratory of Environment Simulation and Pollution Control, THU­VEOLIA Environment Joint Research Center Park, PA 16802, USA c School of Environment Science and Spatial Informatics, China University of Mining

  3. Versatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department of Aerospace and Mechanical Engineering

    E-Print Network [OSTI]

    temperature (250°C ­ 400°C), a catalyst is required. Breakdown products of chemical-agent molecules eitherVersatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department Number: CBDIF-2006-PRO01 (Individual Protection) Motivation and approach Practically all chemical

  4. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01T23:59:59.000Z

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  5. 23.11.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers

    E-Print Network [OSTI]

    Zevenhoven, Ron

    23.11.2014Ã?bo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers Ron Zevenhoven Ã?bo Akademi University Thermal and Flow Engineering Laboratory Engineering Piispankatu 8, 20500 Turku 2/36 7.1 Humid air #12;23.11.2014 Ã?bo Akademi Univ - Thermal and Flow

  6. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    SciTech Connect (OSTI)

    NONE

    1995-04-28T23:59:59.000Z

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  7. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01T23:59:59.000Z

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  8. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01T23:59:59.000Z

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  9. Distortions of Experimental Muon Arrival Time Distributions of Extensive Air Showers by the Observation Conditions

    E-Print Network [OSTI]

    R. Haeusler; A. F. Badea; H. Rebel; I. M. Brancus; J. Oehlschlaeger

    2001-10-17T23:59:59.000Z

    Event-by-event measured arrival time distributions of Extensive Air Shower (EAS) muons are affected and distorted by various interrelated effects which originate from the time resolution of the timing detectors, from fluctuations of the reference time and the number (multiplicity) of detected muons spanning the arrival time distribution of the individual EAS events. The origin of these effects is discussed, and different correction procedures, which involve detailed simulations, are proposed and illustrated. The discussed distortions are relevant for relatively small observation distances (R < 200 m) from the EAS core. Their significance decreases with increasing observation distance and increasing primary energies. Local arrival time distributions which refer to the observed arrival time of the first local muon prove to be less sensitive to the mass of the primary. This feature points to the necessity of arrival time measurements with additional information on the curvature of the EAS disk.

  10. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect (OSTI)

    Sudip K. Mazumder

    2005-12-31T23:59:59.000Z

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  11. THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER PLANTS*

    E-Print Network [OSTI]

    California at San Diego, University of

    THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER. The characterization of heat loads developed for ITER1 can be applied to power plants to better develop the operating, and heating type for the divertor and first wall (FW). A particular power plant design is used, referred

  12. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji (Energy International, Inc., Bellevue, WA (USA))

    1990-02-01T23:59:59.000Z

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  13. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  14. DEST Software to Analyze System Zoning and Energy Consumption in Air Conditioning Systems

    E-Print Network [OSTI]

    Fan, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    This paper reports on a study on how to appropriately divide system zoning by using DeST software to calculate the basis dynamic temperature and load of all rooms in an office building. Influent factors of weather conditions, building envelope...

  15. A Study to Determine the Energy Impact of Adding Polarshield to Air Conditioning Systems

    E-Print Network [OSTI]

    Cromer, C. J.

    2001-01-01T23:59:59.000Z

    unit operating under typical hot outdoor conditions (95 degrees F). The test was operated in a “before” - “after” manner with each before-after segment operated for twelve days and three tests were conducted - one on a new 2.5 ton system where 1.25 oz...

  16. 2416, Page 1 International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2010

    E-Print Network [OSTI]

    evaporators defrost more often than fin-and-tube heat pump units, operating under similar conditions understanding of the heat and mass transfer characteristics of coils during frosting and defrosting transient-15, 2010 Experimental Investigation of Frost Growth on Microchannel Heat Exchangers Ehsan Moallem1

  17. Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates

    SciTech Connect (OSTI)

    Kaya, M.H. [State of Hawaii, Honolulu, HI (United States). Dept. of Business, Economic Development, and Tourism

    1996-10-01T23:59:59.000Z

    Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

  18. 15 KJ FLASH LAMP, POWER CONDITIONING UNIT DESIGNED FOR SAFTY, RELIABILITY & MANUFACTURABILITY*

    SciTech Connect (OSTI)

    James, G; Merritt, B; Dreifuerst, G; Strickland, S

    2007-08-07T23:59:59.000Z

    A 15kJoule, Flash Lamp Power Conditioning Unit has been successfully designed, developed, and deployed in the National Ignition Facility (NIF) Preamplifier Modules (PAM). The primary design philosophy of this power conditioning unit (PCU) is safety, reliability, and manufacturability. Cost reduction over commercially equivalent systems was also achieved through an easily manufactured packaging design optimized to meet NIF requirements. While still maintaining low cost, the PCU design includes a robust control system, fault diagnostic system, and safety features. The pulsed power design includes 6 PFN modules, each including a dual series injection trigger transformer, that drive a total of 12 flash lamp loads. The lamps are individually triggered via a 20kV pulse produced by a 1kV, MCT switched capacitive discharge unit on the primary side of the trigger transformer. The remote control interface includes an embedded controller that captures flash lamp current wave forms and fault status for each shot. The embedded controller provides the flexibility of remotely adjusting both the main drive voltage from 1.6 to 2.5 kV and the trigger voltage from 0 to 20 kV.

  19. Parameter Estimation of Dynamic Air-conditioning Component Models Using Limited Sensor Data

    E-Print Network [OSTI]

    Hariharan, Natarajkumar

    2011-08-08T23:59:59.000Z

    .1). ?? , is the area of orifice opening and ?? is the coefficient of discharge of the expansion valve at that specific condition. Coefficient of discharge is a dependent on the EEV geometry and the thermal?fluid properties of the refrigerant flowing through... Area of application of bulb pressure ?2 Area of application of evaporator pressure ?? External surface area of the TEV bulb ??? Area of heat conduction between the refrigerant and the bulb ?? Area of opening for refrigerant flow in expansion...

  20. Neutronic and thermal calculation of blanket for high power operating condition of fusion reactor

    SciTech Connect (OSTI)

    Sagawa, H.; Shimakawa, S.; Kuroda, T. [Oarai Research Establishement of JAERI, Ibaraki (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Internal (breeding region) structures of ceramic breeder blanket to accommodate high power operating conditions such as a DEMO reactor have been investigated. The conditions considered here are the maximum neutron wall load of 2.8 MW/m{sup 2} at outboard midplane corresponding to a fusion power of 3.0 GW and the coolant temperature of 200{degrees}C. Structure of a blanket is based on the layered pebble bed concept, which has been proposed by Japan since the ITER CDA. Lithium oxide with 50% enriched {sup 6}Li is used in a shape of small spherical pebbles which are filled in a 316SS can avoid its compatibility issue with Be. Beryllium around the breeder can is filled also in a shape of spherical pebbles which works not only as a neutron multiplier but also as a thermal resistant layer to maintain breeder temperature for effective in-situ tritium recovery. Diameters and packing fractions of both pebbles are {<=} 1 mm and 65%, respectively. A layer of block Be between cooling panels is introduced as a neutron multiplier (not as the thermal resistant layer) to enhance tritium breeding performance. Inlet temperature of water coolant is 200{degrees}C to meet the high temperature conditioning requirement to the first wall which is one of walls of the blanket vessel. Neutronics calculations have been carried out by one-dimensional transport code, and thermal calculations have also been carried out by one-dimensional slab code.

  1. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

  2. Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement

    SciTech Connect (OSTI)

    Buys, A.; Gladden, C.; Kutscher, C.

    2006-01-01T23:59:59.000Z

    Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

  3. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    SciTech Connect (OSTI)

    Podder, A; Kapner, M; Morse, T

    1981-02-01T23:59:59.000Z

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  4. E-Print Network 3.0 - air transport safety Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    teex.orgitsi Code Enforcement Disaster... Management Electric Power Environmental Heating, Ventilation, and Air Conditioning Heavy Equipment Highway Source: Texas A&M...

  5. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect (OSTI)

    Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

    2006-01-01T23:59:59.000Z

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  6. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect (OSTI)

    Thompson, T R [Tennessee Valley Authority, Chattanooga, TN (United States)] [Tennessee Valley Authority, Chattanooga, TN (United States); Boss, W H; Chapman, J N [Tennessee Univ., Tullahoma, TN (United States). Space Inst.] [Tennessee Univ., Tullahoma, TN (United States). Space Inst.

    1992-03-01T23:59:59.000Z

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  7. Atmospheric Environment 40 (2006) 55085521 Air quality impacts of distributed power generation in the South

    E-Print Network [OSTI]

    Dabdub, Donald

    2006-01-01T23:59:59.000Z

    in the South Coast Air Basin of California 1: Scenario development and modeling analysis M.A. Rodriguez, M scenarios of DG implementation in the South Coast Air Basin (SoCAB) of California. Realistic scenarios reflect an anticipated level of DG deployment in the SoCAB by the year 2010. Spanning scenarios

  8. Drag coefficient for the air-sea exchange: foam impact in hurricane conditions

    E-Print Network [OSTI]

    Golbraikh, Ephim

    2014-01-01T23:59:59.000Z

    A physical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, C_d, with reference to the wind speed U10 in stormy and hurricane conditions. In the present model C_d is approximated by partitioning the sea surface into foam-covered and foam-free areas. Based on the available optical and radiometric measurements of the fractional foam coverage and the characteristic roughness of the sea-surface in the saturation limit of the foam coverage, the model yields the resulting dependence of C_d vs U10. This dependence is in fair agreement with that evaluated from field measurements of the vertical variation of the mean wind speed.

  9. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat pumps, air conditioning...

  10. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  11. Evaluation criteria and procedure for nuclear power plant temporary loads/temporary conditions

    SciTech Connect (OSTI)

    Tang, H.T. [Electric Power Research Inst., Palo Alto, CA (United States); Minichiello, J.C. [Commonwealth Edison Co., Downers Grove, IL (United States); Olson, D.E. [Sargent and Lundy, Chicago, IL (United States)

    1996-12-01T23:59:59.000Z

    Operating nuclear power plants frequently encounter temporary loads/temporary conditions in plant normal operation and maintenance (O and M). The most obvious examples are installation of temporary shielding and scaffolding, or removal of certain supports, to facilitate plant refueling and maintenance outage activities. Short-term operability calls such as those due to snubber failures or unanticipated transients also create temporary loads/temporary conditions. These temporary situations often generate loads that are outside the original plant design basis. Consequently, separate evaluations are needed to ensure that plant structures, systems and components (SSCs) maintain their integrity and functionality while these temporary loads are active. Also, the temporary structures and components need to be evaluated to ensure their integrity during the temporary duration of use. Three types of approaches are normally adopted either individually or in combination to perform needed evaluations: relax the design allowables, use a more refined analysis model but retain the design basis acceptance criteria, or offset temporary loads by eliminating or reducing part of the design basis loads based on short duration considerations. This paper reviews temporary loading/temporary condition issues and the current industry criteria and procedures proposed in dealing with these issues. Where appropriate, regulatory positions on temporary loads/temporary conditions are discussed.

  12. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01T23:59:59.000Z

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  13. Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1990-01-01T23:59:59.000Z

    Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

  14. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14T23:59:59.000Z

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  15. FANTM: The First Article NIF Test Module for the Laser Power Conditioning System

    SciTech Connect (OSTI)

    Hammon, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-06-24T23:59:59.000Z

    Designing and developing the 1.7 to 2. 1-MJ Power Conditioning System (PCS) that powers the flashlamps for the National Ignition Facility (NIF), currently being constructed at Lawrence Livermore National Labs (LLNL), is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM. It was built at SNL and has operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final till NIF system will require 192 of them (48 in each of four capacitor bays). This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20%/cm with 24 capacitors.

  16. Technical and economic assessment of the use of ammonia expanders for energy recovery in air-cooled power plants

    SciTech Connect (OSTI)

    Hauser, S.G.; Hane, G.J.; Johnson, B.M.

    1982-07-01T23:59:59.000Z

    Binary cycle power plants have been the subject of much discussion among engineers and scientists for nearly 100 years. Current economic and environmental concerns have stimulated new interest and research. Ammonia has been recommended by other studies as the leading contender for use as simply the heat rejection medium in an air-cooled power plant. This study investigates the technical feasibility and economic potential of including an expander in the heat rejection system of an air-cooled power plant. The expander would be used during certain parts of the year to increase the total output of the power plant. Five different plant locations (Miami, San Francisco, Bakersfield, Chicago, Anchorage) were investigated to show the effect which climate has on the economic potential of this ammonia bottoming cycle. The study shows that the expected energy costs for the bottoming cycle only will be less than 50 mills/kWh for any of the five plant locations. This cost assumes that an ammonia phase-change heat rejection system is already a part of the existing plant. The colder climates of Chicago and Anchorage demonstrate an even smaller energy cost of less than 15 mills/kWh. Further investigation of the concept is merited to substantiate these costs and determine the needed technology.

  17. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  18. An air-breathing, portable thermoelectric power generator based on a microfabricated silicon combustor

    E-Print Network [OSTI]

    Marton, Christopher Henry

    2011-01-01T23:59:59.000Z

    The global consumer demand for portable electronic devices is increasing. The emphasis on reducing size and weight has put increased pressure on the power density of available power storage and generation options, which ...

  19. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect (OSTI)

    Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2010-12-15T23:59:59.000Z

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  20. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect (OSTI)

    Dennis Cartlidge; Hans Schellhase

    2003-07-31T23:59:59.000Z

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid number (TAN), which includes both mineral acids and organic acids, is therefore a useful indicator which can be used to monitor the condition of the system in order to perform remedial maintenance, when required, to prevent system failure. The critical TAN value is the acid level at which remedial action should be taken to prevent the onset of rapid acid formation which can result in system failure. The level of 0.05 mg KOH/g of oil was established for CFC/mineral oil systems based on analysis of 700 used lubricants from operating systems and failed units. There is no consensus within the refrigeration industry as to the critical TAN value for HFC/POE systems, however, the value will be higher than the CFC/mineral oil systems critical TAN value because of the much weaker organic acids produced from POE. A similar study of used POE lubricants should be performed to establish a critical TAN limit for POE systems. Titrimetric analysis per ASTM procedures is the most commonly used method to determine TAN values in lubricants in the refrigeration industry and other industries dealing with lubricating oils. For field measurements, acid test kits are often used since they provide rapid, semi-quantitative TAN results.

  1. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect (OSTI)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03T23:59:59.000Z

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

  2. Systematic method for the condition assessment of central heating plants in Air Force Logistics Command. Master's thesis

    SciTech Connect (OSTI)

    Starmack, G.J.

    1990-09-01T23:59:59.000Z

    Air Force Logistics Command (AFLC), facing decreasing funds and aging utility systems, needed a method to objectively rate its central heating plants. Such a rating system would be used to compare heating plants throughout the command to identify potential problem areas and prioritize major repair projects. This thesis used a Delphi questionnaire to gather opinions from heating plant experts in order to identify and prioritize components considered most critical to overall plant operation. In addition, the experts suggested measurements which could be used to evaluate component conditions. By combining expert opinions and reading from technical literature, component model rating schemes were developed for AFLC's steam and high temperature hot water plants. Based on measurements and observations of critical components in the plant, a score between 0 and 100 is assigned to each component (for example, condensate piping, deaerator, etc.), each plant subsystem (distribution system, water treatment system, etc.), and to the plant as a whole. These component model rating schemes and the resultant overall condition index scores will enable AFLC to focus their management attention and allocate needed resources to the plants in greatest need of repair.

  3. Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage

    E-Print Network [OSTI]

    Wang, S.; Xu, X.; Ma, Z.

    2006-01-01T23:59:59.000Z

    . These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess...

  4. Journal of Power Sources 162 (2006) 388399 Model-based condition monitoring of PEM fuel cell using

    E-Print Network [OSTI]

    Ding, Yu

    2006-01-01T23:59:59.000Z

    Journal of Power Sources 162 (2006) 388­399 Model-based condition monitoring of PEM fuel cell using of polymer electrolyte membrane (PEM) fuel cell systems, temporary faults in such systems still might occur/uncertainty of the fuel cell system, and the measurement noise. In this research, we propose a model-based condition

  5. E-Print Network 3.0 - air power insurgency Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 Colloquium Series (ER295) Summary: . Employing critical theories of power and a political-economic frame of analysis, my dissertation analyzes... . Overall, this research...

  6. Intra-hour wind power variability assessment using the conditional range metric : quantification, forecasting and applications.

    E-Print Network [OSTI]

    Boutsika, Thekla

    2013-01-01T23:59:59.000Z

    ??The research presented herein concentrates on the quantification, assessment and forecasting of intra-hour wind power variability. Wind power is intrinsically variable and, due to the… (more)

  7. Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

  8. The Clean Air Act's Impact on Environmental Regulation and Electric Power Conservation and Production

    E-Print Network [OSTI]

    Ashley, H.

    The demand for electric power in Texas is expected to grow at about 2.3 percent over the next 15 years. Utilities plan to satisfy this demand by increasing the number of power generating facilities and improving energy conservation programs. New...

  9. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    SciTech Connect (OSTI)

    Goldman, Charles

    2007-03-01T23:59:59.000Z

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  10. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31T23:59:59.000Z

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  11. On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

    2012-01-01T23:59:59.000Z

    The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

  12. On the structurization of coal dust precipitations and their influence on aerodynamic resistance by granulated mediums in air filters at nuclear power plants

    E-Print Network [OSTI]

    I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

    2012-07-02T23:59:59.000Z

    The processes of structurization of dust precipitations in granulated filtering mediums, formed by the monolithic glass spherical granules with the diameters of 2mm and 3mm, are re-searched. The distinctions between the distributions of filtered coal dust masses in the air filters with cylindrical granules and the air filters with spherical granules, are found. The influences by the filtered dust masses on the air resistance of both the air filters with the cylindrical granules and the air filters with the spherical granules are described. The conclusions on a possibility of the use of various chemical adsorbents with different geometric forms and volumetric dimensions to improve the filtering properties of granulated filtering mediums in air filters at nuclear power plants are formulated.

  13. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  14. Air quality analysis and related risk assessment for the Bonneville Power Administration's Resource Program Environmental Impact Statement

    SciTech Connect (OSTI)

    Glantz, C S; Burk, K W; Driver, C J; Liljegren, J C; Neitzel, D A; Schwartz, M N; Dana, M T; Laws, G L; Mahoney, L A; Rhoads, K

    1992-04-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) is considering 12 different alternatives for acquiring energy resources over the next 20 years. Each of the alternatives utilizes a full range of energy resources (e.g., coal, cogeneration, conservation, and nuclear); however, individual alternatives place greater emphases on different types of power-producing resources and employ different timetables for implementing these resources. The environmental impacts that would result from the implementation of each alternative and the economic valuations of these impacts, will be an important consideration in the alternative selection process. In this report we discuss the methods used to estimate environmental impacts from the resource alternatives. We focus on pollutant emissions rates, ground-level air concentrations of basic criteria pollutants, the acidity of rain, particulate deposition, ozone concentrations, visibility attenuation, global warming, human health effects, agricultural and forest impacts, and wildlife impacts. For this study, pollutant emission rates are computed by processing BPA data on power production and associated pollutant emissions. The assessment of human health effects from ozone indicated little variation between the resource alternatives. Impacts on plants, crops, and wildlife populations from power plant emissions are projected to be minimal for all resource alternatives.

  15. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    E-Print Network [OSTI]

    potential as a tech- nology for sustainable bioenergy production due to their ability to generate., 2004) can also affect power generation. Through optimization of MFC architecture and solution chemis

  16. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  17. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01T23:59:59.000Z

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  18. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01T23:59:59.000Z

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  19. Regenerative zinc/air and zinc/ferricyanide batteries for stationary power applications

    SciTech Connect (OSTI)

    Cooper, J.F.; Keene, L.E.; Noring, J.; Maimoni, A.; Peterman, K.

    1994-05-01T23:59:59.000Z

    The authors report a novel configuration for a zinc-particle, packed-bed anode in which an open structure of high hydraulic permeability is maintained indefinitely in a cell with closely spaced walls by the formation of particle bridges and associated gaps. The configuration minimizes electrolyte pumping costs, allows rapid refueling and partial recharge, and provides for 100% zinc consumption. This approach benefits zinc/air fuel batteries by allowing nearly continuous operation and fuel recycle without commercial infrastructure; it benefits Zn/[Fe(CN){sub 6}]{sup {minus}3} batteries by eliminating shape-change and polarization problems found with planar anodes.

  20. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  1. Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

  2. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    SciTech Connect (OSTI)

    NONE

    1995-02-21T23:59:59.000Z

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  3. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect (OSTI)

    Clark Atlanta University

    2002-12-02T23:59:59.000Z

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  4. Proposal for the award of a contract for the supply and installation of an air-conditioning system for the CERN Computer Centre

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    This document concerns the award of a contract for the supply and installation of an air-conditioning system for the CERN Computer Centre. The Finance Committee is invited to agree to the negotiation of a contract with INIZIATIVE INDUSTRIALI (IT), the lowest bidder, for the supply and installation of an air-conditioning system for the CERN Computer Centre for a total amount of 2 375 280 euros (3 654 277 Swiss francs) not subject to revision, with options for additional chillers, chilled water coils and sound attenuation, for an additional amount of 539 053 euros (829 312 Swiss francs), bringing the total amount to 2 914 333 euros (4 483 589 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender.

  5. The design, construction, and instrumentation of a chamber to study heat, mass, and momentum transfer from humid air to metal under conditions of frosting and free convection

    E-Print Network [OSTI]

    Hutchison, James P

    1961-01-01T23:59:59.000Z

    THE DESIGN? CONSTRUCTION? AND INSTRUMENTATION OF A CEAMSER TO STUDY HEAT, MASS? AND MOSNTUM TRANSFER FROM HUMID AIR TO METAL UNDER CONDITIONS OF FROSTING AND FREE CONVECTION A Thesis By James P. Hutchison Submitted to the Graduate School... temperatures a cryogenic pump wss necessary. The sire of the pump was computed on the basis of maintaining a one degree Fahrenheit drop of the coolant temperature through the supply systms. The greatest heat load on the supply system being 3718 BTU per hour...

  6. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01T23:59:59.000Z

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  7. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael; O'Malley, Mark

    2009-03-18T23:59:59.000Z

    Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The authors recognize that several of their assumptions to the contrary are incorrect and that their estimates therefore provide at best an upper bound to the emissions degradation caused by fluctuating output. Yet they still present the strong conclusion: 'Carbon dioxide emissions reductions are likely to be 75-80% of those presently assumed by policy makers. We have shown that the conventional method used to calculate emissions is inaccurate, particularly for NO{sub x} emissions.' The inherently problematic methodology used by the authors makes such strong conclusions suspect. Specifically, assuming that each variable plant requires a dedicated natural gas backup plant to create a flat block of power ignores the benefits of diversity. In real power systems, operators are required to balance only the net variations of all loads and all generators, not the output of individual loads or generators; doing otherwise would ensure an enormous amount of unnecessary investment and operating costs. As a result, detailed studies that aggregate the variability of all loads and generators to the system level find that the amount of operating reserves required to reliably integrate variable resources into the grid are on the order of 10% of the nameplate capacity of the variable generators, even when upto25%of gross demand is being met by variable generation. The authors implicit assumption that incremental operating reserves must be 100% of the nameplate capacity of the variable generation, and be available at all times to directly counter that variability, excludes the option of decommitting conventional units when the load net of variable generation is low. In real power systems, generation response to wind variation can typically be met by a combination of committed units, each operating at a relatively efficient point of their fuel curves. In the Supporting Information, we conceptually demonstrate that the CO{sub 2} and NO{sub x} efficiency penalty found by the authors can be significantly reduced by considering the unit commitment decision with just five plants. Real systems often have tens to hundreds of plants that can be committed and decommitted over various time frames. Ignoring the flexibility of the unit commitment decision therefore leads to unsupportable results. Anumber of analyses of the fuel savings and CO{sub 2} emission benefits of variable generation have considered realistic operating reserve requirements and unit commitment decisions in models that include the reduction in part load efficiency of conventional plants. The efficiency penalty due to the variability of wind in four studies considered by Gross et al. is negligible to 7%, for up to a 20% wind penetration level. In short, for moderate wind penetration levels, 'there is no evidence available to

  9. Parallel, staged opening switch power conditioning techniques for flux compression generator applications

    SciTech Connect (OSTI)

    Reinovsky, R.E.; Levi, P.S.; Bueck, J.C.; Goforth, J.H.

    1985-01-01T23:59:59.000Z

    The Air Force Weapons Laboratory, working jointly with Los Alamos National Laboratory, has conducted a series of experiments directed at exploring composite, or staged, switching techniques for use in opening switches in applications which require the conduction of very high currents (or current densities) with very low losses for relatively long times (several tens of microseconds), and the interruption of these currents in much shorter times (ultimately a few hundred nanoseconds). This paper reports the results of those experiments.

  10. High-frequency transformer isolated power conditioning system for fuel cells to utility interface.

    E-Print Network [OSTI]

    Rathore, Akshay Kumar

    2010-01-01T23:59:59.000Z

    ??This thesis presents interfacing of fuel cells to a single-phase utility line using a high-frequency transformer isolated power converter. This research contributes towards selecting a… (more)

  11. Analysis of the Window Side Thermal Environment Formed by Air Barrier Technique in Winter Conditions and Its Economy

    E-Print Network [OSTI]

    Huang, C.; Jia, Y.; Liu, L.; Wang, X.

    2006-01-01T23:59:59.000Z

    the energy-saving potential and thermal comfort of the air barrier technique used in office buildings. It also analyzes the surface temperature of the window by using the simulation software Airpak. According to the results, we can obtain the key control...

  12. E-Print Network 3.0 - active power-line conditioning Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANTENNAS AND PROPAGATION, VOL. 47, NO. 12, DECEMBER 1999 1807 Millimeter-Wave Radar Phenomenology of Summary: are not limited by bad weather conditions. In this paper, the...

  13. Improved assessment of population doses and risk factors for a nuclear power plant under accident conditions

    E-Print Network [OSTI]

    Meyer, Christopher Martin

    1985-01-01T23:59:59.000Z

    In order to assess the doses received by the members of the public due to an accident at a nuclear power plant, a number of physical processes must be modeled. These processes include the release of radioactive materials, the atmospheric dispersion... representative of the industry. Generic reactor sites must be conceptualized in order to obtain meteorologic data which is representative of the areas within the United States in which nuclear power facilities have been sited, Information such as population...

  14. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    SciTech Connect (OSTI)

    Manohar S. Sohal

    2005-09-01T23:59:59.000Z

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

  15. Power MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    is that air- entrainment is achieved without additional air container or micro pump, and thus the systemPower MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan J=132 J Abstract We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key component of the ejector

  16. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  17. ORIGINAL ARTICLE Ambient Air Pollution

    E-Print Network [OSTI]

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

  18. Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel components can be downsized for demand instead of supply. A novel Compressed Air Energy Storage (CAES

  19. Dose-projection considerations for emergency conditions at nuclear power plants

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Ramsdell, J.V.; Poeton, R.W.; Powell, D.C.; Desrosiers, A.E.

    1983-05-01T23:59:59.000Z

    The purpose of this report is to review the problems and issues associated with making environmental radiation-dose projections during emergencies at nuclear power plants. The review is divided into three areas: source-term development, characterization of atmospheric dispersion and selection of appropriate dispersion models, and development of dosimetry calculations for determining thyroid dose and whole-body dose for ground-level and elevated releases. A discussion of uncertainties associated with these areas is also provided.

  20. Innovative Method for Performance Inspections often save 20-30% through Optimization of Air-Conditioning and Refrigeration

    E-Print Network [OSTI]

    Berglof, K.

    2010-01-01T23:59:59.000Z

    of performance?. (Nordtest.) Esbo, Finland. 16. NT VVS 116, 1997. ?Refrigeration and heat pump equipment: Check-ups and performance data inferred from measurements under field conditions in the refrigerant system?. (Nordtest.) Esbo, Finland. ESL-IC-10...

  1. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  2. Modeling Effects of Relative Humidity, Moisture, and Extreme Environmental Conditions on Power Electronic Performance

    E-Print Network [OSTI]

    Lehman, Brad

    this knowledge during the design phase can improve the reliability of the equipment, thereby reducing failures and dropping maintenance costs. Some of the environmental conditions affecting electronic equipment and systems]. For instance in a data center or computer room, relative humidity has to be maintained between 45% and 55

  3. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

  4. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

  5. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    Demand Response Research Center Staff Scientist, Lawrence Berkeley National Laboratory 1 Cyclotron, Building

  6. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01T23:59:59.000Z

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  7. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01T23:59:59.000Z

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  8. Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003

    E-Print Network [OSTI]

    Frey, H. Christopher

    Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management emission factors from coal-fired power plants vary over time due to variation in coal composition fed or to evaluate the variability of NOx emission rates for coal-fired power plants of the 100 largest electric

  9. Experimental Study in Energy Performance of Temperature and Humidity Independent Control System with Multiple Split Air-Conditioning System

    E-Print Network [OSTI]

    Kawano,M.

    2014-01-01T23:59:59.000Z

    ? 2? 22 ? 2? 26 ? 2? 27 ? 2? 28 ? ? ? ? ? ? ? ? [k W h/ ? ] (2) Measurements of equipment efficiency and power consumption 0 0.05 0.1 0.15 0.2 0.25 0.3 7? 6? 7? 10 ? 7? 11 ? 7? 12 ? 7? 20 ? 7? 23 ? 7? 24 ? 7? 25 ? 7? 26 ? 7? 27 ? 8? 15 ? 8? 16 ? 8?.../ 27 -0 ? ? ? ? ?k W ) 0 5 10 15 20 25 30 35 12 /3 -0 12 /4 -0 12 /5 -0 12 /6 -0 12 /7 -0 12 /1 0- 0 12 /1 1- 0 12 /1 2- 0 12 /1 3- 0 12 /1 4- 0 12 /1 7- 0 12 /1 8- 0 12 /1 9- 0 12 /2 0- 0 12 /2 1- 0 12 /2 5- 0 12 /2 6- 0 12 /2 7- 0 12 /2 8- 0 1/ 4- 0 1...

  10. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01T23:59:59.000Z

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  11. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    Driven Unitary  Air?Conditioning and Heat Pump Equipment”.  Air Conditioning &  Air?source Heat Pump Equipment.  Air?apply to the air handlers of heat pumps and electric 

  12. IEEE Transaction on Power Apparatus and Systems, Vol. PAS-103, No. 12, December 1984 EFFICIENT LARGE-SCALE HYDRO SYSTEM SCHEDULING WITH FORCED SPILL CONDITIONS

    E-Print Network [OSTI]

    Gross, George

    releases from each reservoir and through each power house so as to optimize the total benefit of the hydroIEEE Transaction on Power Apparatus and Systems, Vol. PAS-103, No. 12, December 1984 EFFICIENT LARGE-SCALE HYDRO SYSTEM SCHEDULING WITH FORCED SPILL CONDITIONS Yoshiro Ikura George Gross Systems

  13. Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation

    SciTech Connect (OSTI)

    Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

    2011-09-15T23:59:59.000Z

    The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

  14. Air Conditioner Compressor Performance Model

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05T23:59:59.000Z

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  15. With harmful ozone concentrations tied to meteorological conditions, EPA investigates the U.S. air quality implications of a changing climate.

    E-Print Network [OSTI]

    Cohen, Ronald C.

    %, vehicle miles traveled increased 103% and energy consumption increased 30% (U.S. EPA 2008). Air pollution- port emphasized that the U.S. air quality management system must be "flexible and vigilant" to ensure

  16. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01T23:59:59.000Z

    an air conditioner for the first time, or by replacements ofair conditioner lifetime. Each retirement generates another replacementreplacements. Step 1 is described in detail in the section called Forecasting Air Conditioner

  17. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01T23:59:59.000Z

    an air conditioner for the first time, or by replacements ofair conditioner lifetime. Each retirement generates another replacementand replacements. Step 1 is described in detail in the section called Forecasting Air Conditioner

  18. 1 Copyright 2010 by ASME Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air

    E-Print Network [OSTI]

    Thole, Karen A.

    above material melting limits. Turbine components must be cooled to withstand mechanical stresses motivation to design gas turbines capable of burning alternative fuels such as coal derived synthesis gas matter in the fuel and air can deposit on turbine hardware reducing the effectiveness of film cooling

  19. Reducing Air Compressor Work by Using Inlet Air Cooling and Dehumidification

    E-Print Network [OSTI]

    Hardy, Mark James

    2011-02-22T23:59:59.000Z

    . These compressors can account for a significant portion of a manufacturing facility?s electric consumption and any increase in efficiency can lead to economic benefits. Air compressors are sensitive to ambient conditions, as evidenced by the fact... fall as low as 20% below their 4 rated generation capacity (standard ISO power output at 59?F ambient) when temperatures are over 95?F. Further, warmer days result in increased electric power demand due to the need for household cooling. In order...

  20. .......Agnew Hall .......Air Conditioning Facility

    E-Print Network [OSTI]

    Buehrer, R. Michael

    /Burleson Tennis Center .......Burruss Hall .......Campbell Hall .......Cassell Coliseum .......Central Stores .......Dietrick Hall .......Durham Hall .......Eggleston Hall .......Engel Hall D.....English Field .......Femoyer .......Golf Course Clubhouse .......Graduate Life Center at ........Donaldson Brown .......Greenhouses

  1. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgendaConditioning AirWhy » Air

  2. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  3. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  4. Empowering wind power; On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands.

    E-Print Network [OSTI]

    Agterbosch, S.

    2006-01-01T23:59:59.000Z

    ??This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind… (more)

  5. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; /SLAC; ,

    2010-11-17T23:59:59.000Z

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  6. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect (OSTI)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10T23:59:59.000Z

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  7. Direct power control of shunt active filter using high selectivity filter (HSF) under distorted or unbalanced conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .A. Djaffar) Abstract This paper describes the design of a new configuration of direct power control (DPC inverter voltage vector in order to minimize instantaneous active and reactive power errors using two powers by selecting the optimal switching states of the inverter. Simulation results have proved

  8. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  9. Tennessee Air Quality Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Tennessee Air Quality Act (AQA) delegates the power to maintain air quality in the State to the Department of Environment and Conservation. Under the Department of the Environment and...

  10. Louisiana Air Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    This law states regulations for air quality control and states the powers and duties of the secretary of environmental quality. It provides information about permits and licenses, air quality...

  11. air bag parameter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air temperatures... conditions. The design of this study was based on the relation- ship of four parameters: air temperature, air velocity, radiant heat, and globe...

  12. High-Efficiency Window Air Conditioners - Building America Top...

    Broader source: Energy.gov (indexed) [DOE]

    Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

  13. EMISSIONS TO AIR OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    EMISSIONS TO AIR OPERATIONAL PROCEDURE Swansea University Estates Services Singleton Park Swansea to Air Department: Estates and Facilities Site: All Author: Ambreen Jahangir Approved by: Mark Durdin PURPOSE: To minimise emissions and discharges to air from boilers, fume cupboards, air conditioning

  14. Performance of ECM controlled VAV fan powered terminal units

    E-Print Network [OSTI]

    Cramlet, Andrew Charles

    2009-05-15T23:59:59.000Z

    signal from low pass filter h Enthalpy HVAC Heating, Ventilation, & Air Conditioning IRMS RMS value of current (amps) ? ? m mass flow rate Piav Inlet air velocity differential pressure Pdown Downstream static pressure Punit... Static pressure inside terminal unit Pup Upstream static pressure Powerfan Power consumption of terminal unit fan PF Power Factor PSC Permanent Split Capacitor ? ? Q Change in heat input per unit time Qfan Amount of airflow through...

  15. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  16. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19T23:59:59.000Z

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  17. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  18. Compressed Air Energy Storage for Offshore

    E-Print Network [OSTI]

    Perry Y. Li; Eric Loth; Terrence W. Simon; James D. Van De Ven; Stephen E. Crane

    2011-01-01T23:59:59.000Z

    transmitting peak power levels. A solution to these issues is a novel high-efficiency compressed air energy

  19. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    check in the air conditioning products category is indicatednumber of domestic air conditioning product manufacturers100 million worth of air conditioner products to 14 major

  20. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data...

  1. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Bai, T.

    1997-01-01T23:59:59.000Z

    This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

  2. The ultra-thin solar cells that could generate power through windows

    E-Print Network [OSTI]

    Rogers, John A.

    The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

  3. Air pollution: Coal based power plants major culprit : HindustanTimes.com http://www.hindustantimes.com/news/5922_1646830,001500250000000... 1 of 2 3/10/2006 7:45 AM

    E-Print Network [OSTI]

    Singh, Ramesh P.

    Air pollution: Coal based power plants major culprit : HindustanTimes.com http://www.hindustantimes.com/news/5922_1646830,001500250000000... 1 of 2 3/10/2006 7:45 AM Advertisement Friday, March 10, 2006 | 02 Archives » About Us Advertise Investors Register HindustanTimes.com » Print Editions » Lucknow » Metro » Pg

  4. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  5. CONDITIONING TECHNOLOGY FOR RADIOACTIVE WASTE RESULTED FROM THE TREATMENT OF LIQUID WASTE FROM THE ROMANIAN NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    ARSENE, CARMEN; ANDREI, VERONICA; NEGOIU, DUMITRU

    2003-02-27T23:59:59.000Z

    For the conditioning of spent resins contaminated with radionuclides, such as: 137Cs, 134Cs, 60Co, 58Co, 57Co, 54Mn, etc., techniques of direct immobilization in cement, bitumen and organic polymers have been tested. The selected process was the bituminization using industrial bitumen, I 60-70, made in Romania, which had very good characteristics. The paper presents stages of the research project, technical conditions for the process and advantages of the bituminization of spent resins.

  6. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 4, NOVEMBER 2010 1823 Season-Dependent Condition-Based Maintenance

    E-Print Network [OSTI]

    Ding, Yu

    to the total energy production cost is 10%­20% for a wind farm. Vachon [4] shows that the O&M costs can account energy. I. INTRODUCTION P ROPELLED by the pressures of mitigating the effects of climate change and high energy costs, wind power becomes one of the fastest growing renewable energy sources around the world

  7. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    wind- diesel-compressed air energy storage system for remotestudy for the compressed air energy storage technology bydesign of compressed air energy storage electric power

  8. Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part I: Theoretical Model and Simulation

    E-Print Network [OSTI]

    Liu, M.; Feng, J.; Wang, Z.; Wu, L.; Zheng, K.; Pang, W.

    2007-01-01T23:59:59.000Z

    As for a variable air volume (VAV) system, the air duct static pressure is a typical control variable maintained by modulating supply fan speed. The static pressure equals to the summation of the duct pressure loss downstream of the sensor...

  9. E-Print Network 3.0 - air-to-air heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions... data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper... of operation 10, 197778, the Control House ......

  10. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

    1996-01-01T23:59:59.000Z

    Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

  11. E-Print Network 3.0 - assessing air pollution Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution Search Powered by Explorit Topic List Advanced Search Sample search results for: assessing air pollution Page: << < 1 2 3 4 5 > >> 1 Air Quality: Reporting...

  12. Air breathing lithium power cells

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15T23:59:59.000Z

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  13. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01T23:59:59.000Z

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  14. STRATEGIC PLAN TO REDUCE THE ENERGY IMPACT OF AIR CONDITIONERS

    E-Print Network [OSTI]

    Acknowledgements This report represents the efforts of many experts from the air conditioning industry who Manufacturer Freus Air Conditioning Jim Bazemore Consultant Energy Market Innovations, Inc. Doug Beaman of Heating and Air Conditioning Industries Kahn Air Conditioning Tav Commins Staff, Buildings

  15. Introduction Air Quality and Nitrogen Dioxide

    E-Print Network [OSTI]

    - Global update 2005. Primary sources of air pollutants include combustion products from power generationIntroduction Air Quality and Nitrogen Dioxide Air pollution can be defined as "the presence effects to man and/or the environment". (DEFRA) "Clean air is considered to be a basic requirement

  16. Electronics Come of Age: A Taxonomy for Miscellaneous and Low Power Products

    E-Print Network [OSTI]

    Nordman, Bruce; Sanchez, Marla C.

    2006-01-01T23:59:59.000Z

    heating, point of use tank Traditional End Uses HVAC Lighting, residential Air conditioning, central Air conditioning, heat pump

  17. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities

    E-Print Network [OSTI]

    Lee, W.; Chen, H.

    2006-01-01T23:59:59.000Z

    Water-cooled air-conditioning systems (WACS) are in general more energy efficient than air-cooled air-conditioning systems (AACS), especially in subtropical climates where the outdoor air is hot and humid. Related studies focused on evaluating...

  18. Environmental Conditions Environmental Conditions

    E-Print Network [OSTI]

    Environmental Conditions Environmental Conditions Appendix II The unique geology, hydrology and instream habitat. This chapter examines how environmental conditions in the Deschutes watershed affect, the discussion characterizes the environmental conditions within three watershed areas: the Lower Deschutes

  19. Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions

    SciTech Connect (OSTI)

    Ju, Yiguang; Sun, Wenting; Burke, M. P.; Gou, Xiaolong; Chen, Zheng

    2011-01-01T23:59:59.000Z

    The flame regimes of ignition and flame propagation as well as transitions between different flame regimes of n-heptane-air mixtures in a one-dimensional, cylindrical, spark assisted homogeneously charged compression ignition (HCCI) reactor are numerically modeled using a multi-timescale method with reduced kinetic mechanism. It is found that the initial mixture temperature and pressure have a dramatic impact on flame dynamics. Depending on the initial temperature gradient, there exist at least six different combustion regimes, an initial single flame front propagation regime, a coupled low temperature and high temperature double-flame regime, a decoupled low temperature and high temperature double-flame regime, a low temperature ignition regime, a single high temperature flame regime, and a hot ignition regime. The results show that the low temperature and high temperature flames have distinct kinetic and transport properties as well as flame speeds, and are strongly influenced by the low temperature chemistry. The pressure and heat release rates are affected by the appearance of different flame regimes and the transitions between them. Furthermore, it is found that the critical temperature gradient for ignition and acoustic wave coupling becomes singular at the negative temperature coefficient (NTC) region. The results show that both the NTC effect and the acoustic wave propagation in a closed reactor have a dramatic impact on the ignition front and acoustic interaction.

  20. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    Environments. Proceedings of Indoor Air 2005: 10 thInternational Conference on Indoor Air Quality and Climate,displacement ventilation hybrid air conditioning system-

  1. iPower: An Energy Conservation System for Intelligent Buildings by Wireless Sensor Networks

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    of energy consumption is spent on HVAC systems, which include heating, ventilating, air conditioning by HVAC systems is due to improper use of electric appliances. Therefore, how to exploit the context the electric appliances in the room through some power-line control devices. In this way, the iPower system can

  2. Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad fuel ce · SOFC based truck APU will reduce long haul truck fuel usage and dependence on foreign oil Long-haul trucks require electrical power to operate lights, heating/air conditioning and televisions

  3. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01T23:59:59.000Z

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  4. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and

    E-Print Network [OSTI]

    Boyer, Edmond

    plants in Japan. Diesel backup power sys- tems should have sustained the reactors cooling processEstimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b

  5. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21T23:59:59.000Z

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15?±?0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  6. About Nuccio Heating & Air Headquartered in Tampa, Florida, Nuccio Heating & Air serves

    E-Print Network [OSTI]

    Fisher, Kathleen

    ­ the majority being highly mobile ­ sell and service heating and air conditioning systems for the company customer service Industry Focus Heating and air conditioning services Size 52 employees Case Study Nuccio Fixing Problems Fast In Florida's competitive air conditioning industry, the differentiator is "speed

  7. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable...

  8. Compressed Air 101: Getting Compressed Air to Work

    E-Print Network [OSTI]

    Burke, J. J.; Bessey, E. G.

    plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy...

  9. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    Williams, Compressed air energy storage: Theory, resources,study for the compressed air energy storage technology byplant for compressed air energy storage power generation,

  10. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

  11. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

  12. 96 ASHRAE Transactions: Research Current duct design methods for variable air volume

    E-Print Network [OSTI]

    .Hourlyairflowrequirements, part-load fan characteristics, and duct static pressure control are incorporated into the problem airflow. Fan power is also influ- enced if static pressure at the end of the longest duct line for effective, energy-efficient, and comfortable heating, ventilat- ing, and air-conditioning (HVAC) systems

  13. Optimize the Supply Air Temperature Reset Schedule for a Single-Duct VAV System

    E-Print Network [OSTI]

    Wei, G.; Claridge, D. E.; Liu, M.

    2000-01-01T23:59:59.000Z

    air temperature. However, resetting the supply air temperature not only impacts the cooling and heating energy consumption, but also the fan power consumption. If reset improperly, it may cause indoor air humidity problems or result in a fan power...

  14. Utilization of CO2 as cushion gas for porous media compressed air energy storage

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01T23:59:59.000Z

    design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

  15. E-Print Network 3.0 - air heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: air heat pumps...

  16. Paper Number (Assigned by IFPE Staff) Compressed Air Energy Storage for Offshore Wind Turbines

    E-Print Network [OSTI]

    Perry Y. Li; Eric Loth; Terrence W. Simon; James D. Van De Ven; Stephen E. Crane

    transmitting peak power levels. A solution to these issues is a novel highefficiency compressed air energy

  17. E-Print Network 3.0 - air pollution source Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    source Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution source...

  18. E-Print Network 3.0 - air pollution assessment Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessment Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution assessment...

  19. E-Print Network 3.0 - air pollution study Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution study...

  20. E-Print Network 3.0 - ambient air pollution Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollution Search Powered by Explorit Topic List Advanced Search Sample search results for: ambient air pollution...

  1. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01T23:59:59.000Z

    -Enhanced Cooling and Dehumidification System," ASBRAE Transactions 1994, V.100, Pt. 2, #3816, American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA, 1994 [7] Chant, E. E., Transient and Stearj, State Simulations of an Advanced..., the Electric Power Research Institute (EPRI) estimate from their surveys that 30% of their customers use dehumidifiers. [1] In supermarkets, where much of the sensible cooling is already done by the display cases, wasteful overcooling is done...

  2. Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part 2: Case Demonstration for a Typical Climate System

    E-Print Network [OSTI]

    Liu, M.; Zheng, K.; Wu, L.; Wang, Z.; Johnson, C.

    2007-01-01T23:59:59.000Z

    . In this part, a simulated air handling unit (AHU) system in Omaha NE is used to demonstrate the energy savings performance in one typical climate year. This AHU system has a static pressure reset system and two constant static pressure systems, one having...

  3. EVENT CLOUDS : lighter than air architectural structures

    E-Print Network [OSTI]

    Peydro Duclos, Ignacio

    2014-01-01T23:59:59.000Z

    EVENT CLOUD is a versatile covering system that allows events to happen independently to weather conditions. It consists of a lighter than air pneumatic structure, filled either with helium or hot air, that covers spaces ...

  4. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  5. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  6. Alternative Air Conditioning Technologies: Underfloor Air Distribution (UFAD)

    E-Print Network [OSTI]

    Webster, Tom

    2004-01-01T23:59:59.000Z

    trends in today’s office environment make it increasingly more difficult for conventional centralized HVAC

  7. Investigation of Feasibility of All-Fresh Air Supply in an All-Air System

    E-Print Network [OSTI]

    Wang, J.; Yan, Z.

    2006-01-01T23:59:59.000Z

    The feasibility of an all-fresh air supply in an all-air system is investigated in theory, and the problem of AHU-handling air in low efficiency in summer and winter conditions is analyzed. The air supply temperature is almost up to standards when a...

  8. Characterization of air toxics from a laboratory coal-fired combustor and utility scale power plants. Quarterly progress report No. 14, January--March, 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report summarized progress on Task 3, Power Plant Studies, and Task 4, Technical Management and Reporting. Task 3 this quarter involved sampling of flue gas from Units 6 and 7 of the host power plant. The operating parameters during the sampling period are given. Laboratory analyses are in progress. Under Task 4, internal and external QA/QC audits were conducted. A data base management system was prepared. An appendix contains a data compilation of plant operating data.

  9. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23T23:59:59.000Z

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  10. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01T23:59:59.000Z

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  11. Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  12. Assessing the Impact of Measurement Policy on the Accuracy of Certified Energy Efficiency Ratio for Split-System Air Conditioners

    E-Print Network [OSTI]

    Yu, Bingyi

    2013-01-01T23:59:59.000Z

    of Unitary Air Conditioners and Heat Pumps, ASHRAE, 1791of Unitary Air Conditioner and Heat Pump Simulation Modelsfor Rating Unitary Air-Conditioning and Heat Pump Equipment,

  13. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUp Home Energy-EfficiencyCelebrAsian 30thPlant

  14. Heating, Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecember 29,

  15. E-Print Network 3.0 - air-to-water heat pump Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Fuels 20 piwf AFR ( )piwttp AkR Summary: for simulating refrigeration and air conditioning equipment of all types: air-to-air, air-to-water, water... flow is...

  16. air suspension system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System Texas A&M University - TxSpace Summary: Based on the heating and air-conditioning system...

  17. air suspension systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System Texas A&M University - TxSpace Summary: Based on the heating and air-conditioning system...

  18. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-07-01T23:59:59.000Z

    A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

  19. Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

  20. E-Print Network 3.0 - air station fallon Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TECHNOLOGY UTC Power AFCC AC Transit Santa Clara VTA SunLine Transit Air Products Praxair Proton... future, increasing energy efficiency and reducing or eliminating air...