Powered by Deep Web Technologies
Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal storage HVAC system retrofit provides economical air conditioning  

Science Conference Proceedings (OSTI)

This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation included installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.

Smith, S.F. (Wendel Engineers, P.C., Buffalo, NY (United States))

1993-03-01T23:59:59.000Z

2

HVAC Technology Report: A Review of Heating, Ventilation and Air Conditioning Technology and Markets  

Science Conference Proceedings (OSTI)

For many of us, roughly 95 percent of our time is spent indoors. To enable humans to spend this much time inside, mechanical equipment is necessary to provide space conditioning to control the temperature (heating and cooling), ventilation, humidity, and indoor air quality. This report introduces the heating, ventilation, and air-conditioning (HVAC) industry to EPRI member utility employees. The document describes the most common technologies and applications and provides an overview of industry statisti...

2000-12-14T23:59:59.000Z

3

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

4

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

5

R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment  

SciTech Connect

The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

Chiu, S.A.; Zaloudek, F.R.

1987-03-01T23:59:59.000Z

6

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

7

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

8

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Integrated Simulation for HVAC Per- formance Prediction:air-conditioning equipment models (HVAC BESTEST), volume 1:air-conditioning equipment models (HVAC BESTEST), volume 2:

Trcka, Marija

2010-01-01T23:59:59.000Z

9

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network (OSTI)

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

10

HVAC System Design Strategies to Address Indoor Air Quality Standards  

Science Conference Proceedings (OSTI)

This report describes strategies that can be employed in the design and operation of heating, ventilating, and air conditioning (HVAC) systems to address the ASHRAE Standard 62 "Ventilation for Acceptable Indoor Air Quality" requirements. The report examines a wide variety of approaches to meeting the standard and their impact on energy consumption, occupant comfort, and other factors.

1999-12-09T23:59:59.000Z

11

Dynamic modeling and global optimal operation of multizone variable air volume HVAC systems.  

E-Print Network (OSTI)

??Energy conservation and indoor environment concerns have motivated extensive research on various aspects of control of Heating, Ventilating and Air-Conditioning (HVAC) and building systems. The (more)

Zheng, Guo Rong

1997-01-01T23:59:59.000Z

12

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network (OSTI)

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate the economic attractiveness of retrofitting HVAC industrial energy recovery equipment.

Graham, E. L.

1980-01-01T23:59:59.000Z

13

Indoor Air Quality Primer for HVAC System Design  

Science Conference Proceedings (OSTI)

Heating, ventilating, and air conditioning (HVAC) systems are major energy users in commercial and institutional buildings. Increased ventilation for acceptable indoor air quality (IAQ), besides increasing energy use, may result in unacceptably high indoor humidity, particularly in humid climates and/or applications requiring high ventilation rates. This report analyzes how increased ventilation affects the dehumidification capabilities of air conditioning systems in three applications -- offices, retail...

2002-02-21T23:59:59.000Z

14

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

15

Indoor Air Quality Impacts of Residential HVAC Systems ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 5559 Indoor Air Quality Impacts of Residential HVAC Systems Phase 11.AReport: Baseline and Preliminary Simulations ...

1997-09-03T23:59:59.000Z

16

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

17

Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS  

E-Print Network (OSTI)

Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

Siegel, Jeffrey

18

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

19

Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems  

Science Conference Proceedings (OSTI)

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

20

Renovating Residential HVAC Systems HVAC Systems  

E-Print Network (OSTI)

- 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker and Air Conditioning), and Stacy Hunt and Ananda Harzell (IBACOS). #12;- 3 - Renovating Residential HVAC Guideline for Residential HVAC Retrofits (http

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Large HVAC Codes and Standards Update 2000: American Society of Heating, Refrigerating and Air-Conditioning Engineers  

Science Conference Proceedings (OSTI)

This report documents EPRI activities in the year 2000 related to building codes and standards. The following activities are covered: attendance at the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) meetings and participation in technical committee and subcommittee meetings related to ASHRAE Standard 90.l; review of relevant U.S Department of Energy (DOE) appliance standards; review of developments of other building energy code organizations; and participation in the E...

2000-12-13T23:59:59.000Z

22

Nuclear Maintenance Applications Center: Heating, Ventilating, and Air Conditioning Specialist Guide  

Science Conference Proceedings (OSTI)

The people responsible for heating, ventilating, and air conditioning (HVAC) in the nuclear power industry are known by various titles--HVAC specialist, HVAC component engineer, HVAC system manager, and HVAC system engineer, to name a few. Although HVAC duties and responsibilities are often spread across several departments, such as maintenance, operations, engineering, and procurement, it is up to the HVAC specialist to ensure that HVAC system and component health and reliability are maintained. This re...

2011-11-28T23:59:59.000Z

23

Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced  

E-Print Network (OSTI)

ModelPredictiveControlofHVACSystems: Implementationand air conditioning (HVAC) account for 27% of thereductionpotentialofHVACsystemswith activethermal

Haves, Phillip

2010-01-01T23:59:59.000Z

24

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.  

DOE Green Energy (OSTI)

This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

Neymark J.; Judkoff, R.

2004-12-01T23:59:59.000Z

25

Modeling and Identification for HVAC Systems.  

E-Print Network (OSTI)

??Heating, Ventilation and Air Conditioning (HVAC) systems consist of all the equipment that control the conditions and distribution of indoor air. Indoor air must be (more)

Scotton, Francesco

2012-01-01T23:59:59.000Z

26

HVAC system study: a data-driven approach.  

E-Print Network (OSTI)

?? The energy consumed by heating, ventilating, and air conditioning (HVAC) systems has increased in the past two decades. Thus, improving efficiency of HVAC systems (more)

Xu, Guanglin

2012-01-01T23:59:59.000Z

27

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network (OSTI)

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

28

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

29

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris*  

E-Print Network (OSTI)

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris* , Kerry A and Environmental Engineering * Corresponding email: Fedenoris@mail.utexas.edu SUMMARY HVAC filters are long heavy metal (Pb, Cd and As) concentrations. HVAC filter microbial concentrations appear to be consistent

Siegel, Jeffrey

30

Thermovote: participatory sensing for efficient building HVAC conditioning  

Science Conference Proceedings (OSTI)

Thermal comfort has traditionally been measured solely by temperature. While other methods such as Predicted Mean Vote (PMV) are available for measuring thermal comfort, the parameters required for an accurate value are overly complicated to obtain and ... Keywords: HVAC conditioning, PMV, phones, thermal comfort

Varick L. Erickson; Alberto E. Cerpa

2012-11-01T23:59:59.000Z

31

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE HVAC Systems The purpose of a Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

32

Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units  

SciTech Connect

This report documents the self-correction algorithms developed in the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls project funded jointly by the Bonneville Power Administration and the Building Technologies Program of the U.S. Department of Energy. The algorithms address faults for temperature sensors, humidity sensors, and dampers in air-handling units and correction of persistent manual overrides of automated control systems. All faults considered create energy waste when left uncorrected as is frequently the case in actual systems.

Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas

2009-12-31T23:59:59.000Z

33

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network (OSTI)

Air- Conditioning Engineers HVAC & R Research, vol. 50, Sep.andradianthydronicslabHVACsystem. Paul RAFTERY a,* ,of a novel integrated HVAC system. This system combines an

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

34

Definition: HVAC | Open Energy Information  

Open Energy Info (EERE)

HVAC HVAC Jump to: navigation, search Dictionary.png HVAC An abbreviation for the heating, ventilation, and air-conditioning system; the system or systems that condition air in a building.[1] View on Wikipedia Wikipedia Definition HVAC is the technology of indoor and vehicular environmental comfort. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers). HVAC is important in the design of medium to large industrial and office buildings such as skyscrapers and in marine environments such as aquariums, where safe and

35

Airborne Particulate Matter in HVAC Systems and its Influence on Indoor Air Quality  

E-Print Network (OSTI)

This paper first reviews the mechanisms governing movement of PMs in HVAC systems. Then, the basic equations governing PM deposition in ducts are introduced and investigations on airborne PMs distribution in HVAC systems are reviewed. The influence of PMs on indoor air quality and effectiveness of corresponding controlling measures is discussed extensively in the paper. Finally, recommendations for further research are given.

Fu, Z.; Li, N.; Wang, H.

2006-01-01T23:59:59.000Z

36

Cooling and Dehumidification HVAC Technology for 1990s  

E-Print Network (OSTI)

Desiccant Cooling and Dehumidification HVAC Technology for 1990s HVAC: Heating, Ventilation Research Trusts SERI #12;Challenges Facing HVAC Industry in 1990's * Reduction of CFCs * Indoor air quality to solve the problems of the HVAC industry faced in1990's for space conditioning. SERI #12;l- = m mN a- mg

Oak Ridge National Laboratory

37

Decentralized nonlinear adaptive control of an HVAC system  

Science Conference Proceedings (OSTI)

This paper presents a new decentralized nonlinear adaptive controller (DNAC) for a heating, ventilating, and air conditioning (HVAC) system capable of maintaining comfortable conditions under varying thermal loads. In this scheme, an HVAC system is considered ...

Zhang Huaguang; Lilong Cai

2002-11-01T23:59:59.000Z

38

HVAC Testing, Adjusting, and Balancing Guideline  

Science Conference Proceedings (OSTI)

This report provides practical guidelines that can be used by power plant personnel to diagnose and troubleshoot heating, ventilating, and air conditioning (HVAC) system and component performance problems.

2001-10-24T23:59:59.000Z

39

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

40

Improving air handler efficiency in residential HVAC applications  

SciTech Connect

In continuing the development of energy efficiency standards, consideration has turned to air handlers used for heating and air conditioning of consumer residences. These air handlers have typical efficiencies of about 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. This study was undertaken to examine some of these performance issues, under carefully controlled laboratory conditions, to support potential regulatory changes. In addition, this study examined the performance of a prototype air handler fan assembly that offers the potential for substantial increases in performance. This prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL which was specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that, averaged over a wide range of operating conditions, the prototype air handler had about twice the efficiency of the standard air handler and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the space between the air handler and the cabinet it was installed in. Therefore any fan rating needs to be performed using the actual cabinet it will be used in.

Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A plug and play framework for an HVAC air handling unit and temperature sensor auto recognition technique.  

E-Print Network (OSTI)

??A plug and play framework for an HVAC air handling unit control system is proposed in this study. This is the foundation and the first (more)

Zhou, Xiaohui

2010-01-01T23:59:59.000Z

42

Integrated Ice Storage/Sprinkler HVAC System Sharply Cuts Energy Costs and Air-Distribution First Costs  

E-Print Network (OSTI)

Integrated ice thermal storage/sprinkler HVAC systems developed and applied by the author in several commercial applications shift a major portion of electric utility demand to cheaper off-peak hours, while also reducing significantly the first cost of distribution ductwork. Savings of up to 80% in primary duct and air handler costs (compared to a traditional all-air HVAC system) partially offset the first cost of ice storage equipment, which in turn permits a 50% reduction in utility energy costs for air conditioning in some facilities. The basic ice storage/sprinkler HVAC system is described as well as optional subsystems, such as cogeneration, that are cost-effective under certain conditions. The system's design parameters, psychrometric process, and thermodynamic characteristics are presented and two installations are described, a 223,000-sq ft shopping center and a 150,000-sq ft, two-story retail store. Reductions in the size and first cost of primary air-handling equipment and ductwork are achieved by distributing a small quantity (0.1 to 0.2 cfm/sq ft) of very dry, 40F primary air. All dehumidification is handled by the ice-chilled primary air, which is distributed in variable, volume, determined by the space dehumidification requirement, to fan-coil induction terminal units. The primary air is mixed with fan-induced room air in the terminals prior to distribution to the space at a constant volume. The fan-induction terminals contain cooling coils connected to the integrated sprinkler system, which circulates chilled water from the central plant through the coils when additional sensible cooling is required. This chilled water is at a thermodynamically efficient elevated temperature (58-68F), since it handles sensible cooling load only.

Meckler, G.

1986-01-01T23:59:59.000Z

43

Automatic HVAC Air Recirculation Made Easy with Stepper Motors  

E-Print Network (OSTI)

TND416/D Abstract: This paper highlights the system requirements and operating conditions of automatic air recirculation valves and reviews compatibility of existing actuator types with these requirements. When comparing the available technologies, it becomes clear that air recirculation flap actuators containing a bipolar stepper motor offer key advantages over actuators with other motor types. It is shown how specific bipolar stepper motor drive techniques can contribute to the overall system performance while the total system cost is minimized. The paper elaborates on availability and key features of motor driver integrated circuits that allow advanced control of these novel actuators. 1.

unknown authors

2010-01-01T23:59:59.000Z

44

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

45

A multi-sensor based occupancy estimation model for supporting demand driven HVAC operations  

Science Conference Proceedings (OSTI)

Heating, ventilation, and air conditioning (HVAC) is a major energy consumer in buildings, and implementing demand driven HVAC operations is a way to reduce HVAC related energy consumption. This relies on the availability of occupancy information, which ... Keywords: HVAC, building energy consumption, demand driven, non-intrusive sensor, occupancy estimation

Zheng Yang; Nan Li; Burcin Becerik-Gerber; Michael Orosz

2012-03-01T23:59:59.000Z

46

The influence of HVAC systems on secondary organic aerosol formation Michael S. Waring1  

E-Print Network (OSTI)

The influence of HVAC systems on secondary organic aerosol formation Michael S. Waring1 , Jeffrey A, ventilation, and air- conditioning (HVAC) system. This study models the influence of HVAC systems on SOA. The most influential HVAC parameters are the flow rates, particle filtration, and indoor temperature

Siegel, Jeffrey

47

HVAC Room Temperature Prediction Control Based on Neural Network Model  

Science Conference Proceedings (OSTI)

HVAC (Heating Ventilating &Air-conditioning) system is a nonlinear complex system with delay. It is very difficult to build a mathematical model of HVAC and implement model-based control. Since a BP (Back Propagation) neural network can fully approximate ... Keywords: BP neural network, predictive control, HVAC, least squares method

Shujiang Li, Shuang Ren, Xiangdong Wang

2013-01-01T23:59:59.000Z

48

Handover Performance of HVAC Duct Based Indoor Wireless Networks  

E-Print Network (OSTI)

Handover Performance of HVAC Duct Based Indoor Wireless Networks A. E. Xhafa, P. Sonthikorn, and O in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts.e., new call blocking and handover dropping probabilities, of an IWN that uses HVAC ducts are up to 6

Stancil, Daniel D.

49

Monitoring-based HVAC Commissioning of an Existing Office  

E-Print Network (OSTI)

LBNL-5940E Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiency thereof or The Regents of the University of California. #12;1 Monitoring-based HVAC Commissioning@lbl.gov, Tel: 1-510-486-4921 Abstract The performance of Heating, Ventilation and Air Conditioning (HVAC

50

An update on acoustics designs for HVAC (Engineering) K. Marriott  

E-Print Network (OSTI)

An update on acoustics designs for HVAC (Engineering) K. Marriott IOA, 29a Ashburton Road, Croydon and Air Conditioning (HVAC) engineer is to engineer ways for keeping these factors under control the HVAC engineer's environmental requirements while minimizing noise generated in the process considering

Paris-Sud XI, Université de

51

MATERIALS AND INFORMATION FLOWS FOR HVAC DUCTWORK FABRICATION AND SITE  

E-Print Network (OSTI)

MATERIALS AND INFORMATION FLOWS FOR HVAC DUCTWORK FABRICATION AND SITE INSTALLATION Matt Holzemer,1, and air-conditioning (HVAC) systems requires a set of complex activities and handoffs between multiple architecture-, engineering-, and construction practitioners. This paper highlights one part of the HVAC

Tommelein, Iris D.

52

Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor -Global  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor - Global Overview The purpose of this project is to develop a heating, ventilation, and air conditioning (HVAC) monitoring a residential, forced flow, multi-zone HVAC filter needs to be replaced, and then alerts the users

Demirel, Melik C.

53

Algoritmi per la previsione del carico in applicazioni HVAC.  

E-Print Network (OSTI)

??Il lavoro si pone come obiettivo lapplicazione di metodi e algoritmi per la previsione del carico in sistemi HVAC (Heating, Ventilating and Air Conditioning). La (more)

Simmini, Francesco

2010-01-01T23:59:59.000Z

54

The impact of filter loading on residential hvac performance.  

E-Print Network (OSTI)

??Buildings are the primary user of energy in the USA. Within homes, the heating, ventilation, and air condition (HVAC) system is the largest energy consumer. (more)

Kruger, Abraham J.

2013-01-01T23:59:59.000Z

55

HVAC Improvements for Existing Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Improvements for Existing Houses HVAC Improvements for Existing Houses Speaker(s): Chryséis Bovagnet Date: September 5, 2002 - 12:00pm Location: Bldg. 90 Many older houses in the US are either not well designed from a thermal point of view or have HVAC (Heating Ventilation and Air Conditioning) systems in need of repairs or improvements. The building envelopes tend to have poor insulation and lots of leakage, and the HVAC systems are inefficient. The cooling/heating equipment is often located outside of the conditioned space (e.g. in attics or crawlspaces) with ducts that leak and have poor insulation, which cause energy loss and bad occupant comfort on peak days or in extreme climates. We developed a series of retrofits that will allow us to reduce the energy consumption of residential HVAC

56

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

57

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

58

Air Conditioning and lungs  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Conditioning and lungs Name: freeman Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What affect does air conditioning have upon the lungs of the...

59

Sound quality descriptors for HVAC equipment from ARI Standards  

Science Conference Proceedings (OSTI)

The Air Conditioning and Refrigeration Institute (ARI) has several standards that provide methods to evaluate the sound quality of heating ventilating and air?conditioning (HVAC) equipment. These include Standard 270 Sound rating of outdoor unitary equipment

2003-01-01T23:59:59.000Z

60

Empirical Methodologies for Improving HVAC Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical Methodologies for Improving HVAC Efficiency Empirical Methodologies for Improving HVAC Efficiency Speaker(s): Anil Aswani Date: September 21, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter This talk describes the use of empirical methodologies that we have developed for the purpose of improving heating, ventilation, and air-conditioning (HVAC) efficiency through better control algorithms and configuration. We show that semiparametric regression can both identify simplified models of thermal HVAC dynamics while also estimating time-varying heating loads using only real-time temperature measurements from thermostats. These models can be used with our learning-based model predictive control (LBMPC) method in order to improve the energy-efficiency of HVAC. Experiments on testbeds with different types of HVAC show the

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Commercial Building HVAC: How it Affects People  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building HVAC: How it Affects People Commercial Building HVAC: How it Affects People Speaker(s): William Fisk Date: November 13, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner Commercial building heating, ventilating, and air conditioning (HVAC) systems are designed primarily to maintain a reasonable level of thermal comfort while limiting first costs and energy consumption. However, research conducted predominately within the last decade suggests that commercial building HVAC significantly influences human outcomes other than thermal comfort, including the health, satisfaction, and work performance of the building's occupants. This presentation will review the relationships of these outcomes with HVAC system type, filtration system efficiency, indoor air temperature, and outside air ventilation rate.

62

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network (OSTI)

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system, (more)

Chen, S

2011-01-01T23:59:59.000Z

63

HVAC Fans and Dampers Maintenance Guide  

Science Conference Proceedings (OSTI)

Heating, ventilation, and air conditioning (HVAC) systems serve an important function in nuclear power plants because these systems are responsible for maintaining many environmental conditions throughout the facility. Failure of these components can induce undesirable radiological conditions and stressful working conditions, and can compromise the life of qualified equipment. Some HVAC fan and damper failures are preventable by monitoring operating parameters and performing recommended maintenance activ...

1999-08-26T23:59:59.000Z

64

Movements in air conditioning.  

E-Print Network (OSTI)

??Movements in Air Conditioning is a collection of poems that explores the obstacles inherent in creating a new sense of home in a country that (more)

Hitt, Robert D. (Robert David)

2013-01-01T23:59:59.000Z

65

Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system  

Science Conference Proceedings (OSTI)

In this paper, a HVAC (heating, ventilating and air-conditioning) system has two different zones was designed and fan motor speed to minimize energy consumption of the HVAC system was controlled by a conventional (proportional-integral-derivative) PID ... Keywords: ANFIS, Air flow control, Energy saving, Fan motor speed predicting, HVAC system, PID control, Temperature control

Servet Soyguder; Hasan Alli

2009-05-01T23:59:59.000Z

66

RF propagation in an HVAC duct system: impulse response characteristics of the channel  

E-Print Network (OSTI)

RF propagation in an HVAC duct system: impulse response characteristics of the channel Pavel V, the heating, ventilation, and air conditioning (HVAC) duct system in buildings is a complex network of hollow at RF and microwave frequencies of com- mon interest. HVAC ducts can be used as a wireless communication

Stancil, Daniel D.

67

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity  

E-Print Network (OSTI)

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity, for the first time, experimental results on channel capacity of heating, ventilation, and air-conditioning (HVAC through a building HVAC duct system demonstrate the ability to transmit with a spectral efficiency of 3

Stancil, Daniel D.

68

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture  

E-Print Network (OSTI)

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture Ariton E. Xhafa, Paisarn-- In this paper, we present an innovative solution to the handover problem in multi-story buildings using HVAC of the indoor wireless networks that use the heating, ventilation, and air conditioning (HVAC) ducts

Stancil, Daniel D.

69

Tile of the document: HVAC system component-based modeling and implementation  

E-Print Network (OSTI)

1 Abstract Tile of the document: HVAC system component-based modeling and implementation Karam the foundation for modeling components that are used in HVAC systems (heating, ventilation, and air conditioning such functionalities. #12;2 HVAC system component-based modeling and implementation By Karam H. Rajab Scholarly

Austin, Mark

70

Tecniche di machine learning per la ricerca guasti in impianti HVAC.  

E-Print Network (OSTI)

??Il corretto funzionamento degli impianti di tipo HVAC (Heating Ventilating and Air Conditioning) di taglia medio/grande, risulta cruciale al fine di garantire un adeguato livello (more)

Corso, Lorenzo

2012-01-01T23:59:59.000Z

71

Building Energy Software Tools Directory: HVAC Solution  

NLE Websites -- All DOE Office Websites (Extended Search)

design and specify HVAC equipment. Pick familiar objects like boilers, pumps, fan coils and air handlers and using drag and drop methods, connect them to form a HVAC...

72

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

Wright, Condition monitoring in HVAC subsystems using firstmonitoring packaged HVAC equipment. ASHRAE Transactions,Detection and Diagnosis of HVAC Systems Using Support Vector

Najafi, Massieh

2010-01-01T23:59:59.000Z

73

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network (OSTI)

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air conditioning in the building are provided using the minimum energy value that does not violate physical law.

Tanskyi, O.

2011-01-01T23:59:59.000Z

74

ETME 422 -REFRIGERATION & HVAC SYSTEMS FALL 2011 LEC -10:00 -10:50am M W F RH 312  

E-Print Network (OSTI)

10/31/2011 ETME 422 - REFRIGERATION & HVAC SYSTEMS FALL 2011 LEC - 10:00 - 10:50am M W F RH 312 Catalog Description ETME 422 PRINCIPLES OF HVAC I F 3 cr. LEC 3 PREREQUISITE: EMEC 320 or EGEN 324. -- Refrigeration and heating, ventilating and air-conditioning (HVAC) for comfort and industrial applications

Dyer, Bill

75

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

LBL-34045 UC-1600 Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting-uses include Heating, Ventilation and Air Conditioning (HVAC). Our analysis uses the modeling framework provided by the HVAC module in the Residential End-Use Energy Planning System (REEPS), which was developed

76

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

77

Operation of Energy-Efficient Air-Conditioned Buildings: An Overview  

E-Print Network (OSTI)

To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air-conditioned spaces. The present evaluation study defines the current status, future requirements, and expectations. It has been found that, the experimental investigations should be considered in the new trend of studies, not to validate the numerical tools only, but also to provide a complete database of the airflow characteristics in the air-conditioned spaces. Based on this analysis and the vast progress of computers and associated software, the artificial intelligent technique will be a competitor candidate to the experimental and numerical techniques. Finally, the researches that relate between the different designs of the HVAC systems and energy consumption should concern with the optimization of airside design as the expected target to enhance the indoor environment.

Khalil, E. E.

2010-01-01T23:59:59.000Z

78

Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors  

Science Conference Proceedings (OSTI)

This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

Burdick, A.

2012-05-01T23:59:59.000Z

79

Temporal model-based diagnostics generation for HVAC control systems  

Science Conference Proceedings (OSTI)

Optimizing energy usage in buildings requires global models that integrate multiple factors contributing to energy, such as lighting, "Heating, Ventilating, and Air Conditioning" (HVAC), security, etc. Model transformation methods can then use these ...

Marion Behrens; Gregory Provan

2010-06-01T23:59:59.000Z

80

Neural network based optimal control of HVAC&R systems.  

E-Print Network (OSTI)

??Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged (more)

Ning, Min

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HVAC system modeling and optimization: a data-mining approach.  

E-Print Network (OSTI)

?? Heating, ventilating and air-conditioning (HVAC) system is complex non-linear system with multi-variables simultaneously contributing to the system process. It poses challenges for both system (more)

Tang, Fan

2010-01-01T23:59:59.000Z

82

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

E-Print Network (OSTI)

Practices for Residential HVAC Systems. Boston, MA. Jump,techniques for measuring HVAC grille air flows". ASHRAEPractices Guide for Residential HVAC Retrofits. LBNL 53592.

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-01-01T23:59:59.000Z

83

Self-Correcting HVAC Controls Project Final Report  

SciTech Connect

This document represents the final project report for the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls Project jointly funded by Bonneville Power Administration (BPA) and the U.S. Department of Energy (DOE) Building Technologies Program (BTP). The project, initiated in October 2008, focused on exploratory initial development of self-correcting controls for selected HVAC components in air handlers. This report, along with the companion report documenting the algorithms developed, Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units (Fernandez et al. 2009), document the work performed and results of this project.

Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas; Cho, Heejin; Goddard, James K.; Dinh, Liem H.

2010-01-04T23:59:59.000Z

84

Solar air conditioning  

DOE Green Energy (OSTI)

Development of a hybrid solar-assisted air conditioning system that combines a vapor compression section for sensible cooling with a desiccant section for dehumidification and that uses both solar energy and condenser waste heat to drive the dehumidifier has been under way for the last two years (1981 and 1982). The results of this research are included in this report: utilizing solar energy in an economical way has proven quite difficult.

Robison, H.

1981-01-01T23:59:59.000Z

85

Randomized Model Predictive Control for HVAC Systems  

Science Conference Proceedings (OSTI)

Heating, Ventilation and Air Conditioning (HVAC) systems play a fundamental role in maintaining acceptable thermal comfort and Indoor Air Quality (IAQ) levels, essentials for occupants well-being. Since performing this task implies high energy requirements, ... Keywords: Copulas, Learning, Randomized Model Predictive Control, Smart Buildings, Sustainable Control Systems

Alessandra Parisio, Damiano Varagnolo, Daniel Risberg, Giorgio Pattarello, Marco Molinari, Karl H. Johansson

2013-11-01T23:59:59.000Z

86

Compression effects on pressure loss in flexible HVAC ducts  

E-Print Network (OSTI)

to Determine Flow Resistance of HVAC Air Ducts and Fittings.Pressure Loss in Flexible HVAC Ducts Bass Abushakra, Ph.D.to Determine Flow Resistance of HVAC Air Ducts and Fittings.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-01-01T23:59:59.000Z

87

Fouling of HVAC fin and tube heat exchangers  

E-Print Network (OSTI)

air ? air ? part ? part FPI HVAC REFERENCES Anonymous, 1987,LBNL-47668 Fouling of HVAC Fin and Tube Heat ExchangersCIEE SPONSOR. FOULING OF HVAC FIN AND TUBE HEAT EXCHANGERS

Siegel, Jeffrey; Carey, Van P.

2001-01-01T23:59:59.000Z

88

Identifying Efficiency Degrading Faults in Split Air Conditioning Systems  

E-Print Network (OSTI)

Studies estimate that as much as 50% of packaged air conditioning systems operate in faulty conditions that degrade system efficiency. Common faults include: under- and over-charged systems (too much or too little refrigerant), faulty expansions valves (stuck valves, valve hunting, poorly tuned valve controllers), and fouled evaporators and condensers. Furthermore, air conditioning systems can often be adjusted to improve efficiency while continuing to meet cooling loads (adjusting system pressures, decreasing superheat setpoints). This study presents the design of a low cost device that can non-invasively measure system operating conditions, diagnose faults, estimate potential energy savings, and provide recommendations on how the system should be adjusted or repaired. Using eight external temperature measurements, the device potentially can detect and diagnose up to ten faults commonly found in HVAC systems. Steady state temperatures are compared to threshold values obtained from literature and HVAC manufacturers to detect and determine the severity of faults and subsequent reductions in coefficient of performance. Preliminary tests reveal the potential for the device to detect and diagnose common efficiency-degrading faults in HVAC systems.

Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

89

ZonePAC: Zonal Power Estimation and Control via HVAC Metering and Occupant Feedback  

Science Conference Proceedings (OSTI)

Heating Ventillation and Air Conditioning (HVAC) systems account for nearly 40% of primary energy consumption by commercial buildings. Yet, these systems by and large operate in an open-loop with the building occupants. While the monitoring and feedback ... Keywords: Energy Estimation, HVAC, Thermostat, User Interface, Variable Air Volume

Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, Yuvraj Agarwal

2013-11-01T23:59:59.000Z

90

A Simple Path Loss Prediction Model for HVAC Systems O. K. Tonguz, D. D. Stancil, A. E. Xhafa, A. G. Cepni, P. V. Nikitin  

E-Print Network (OSTI)

1 A Simple Path Loss Prediction Model for HVAC Systems O. K. Tonguz, D. D. Stancil, A. E. Xhafa, A, and air conditioning (HVAC) cylindrical ducts in 2.4-2.5 GHz frequency band. The model we propose predicts the average power loss between a transmitter-receiver pair in an HVAC duct network. This prediction model

Stancil, Daniel D.

91

Laboratory Testing of the Heating Capacity of Air-Source Heat Pumps at Low Outdoor Temperature Conditions  

Science Conference Proceedings (OSTI)

Air-source heat pump systems offer an alternative to the common heating, ventilating, and air conditioning (HVAC) configuration of single split unitary air conditioners with gas heating. In simple terms, heat pumps are traditional air conditioning units with the added capability of running in reverse as required by the building load. Thus, where the traditional air conditioning unit has an indoor evaporator to remove heat from the space and an outdoor condenser to reject heat to the ambient environment, ...

2010-12-22T23:59:59.000Z

92

Optimized Fan Control In Variable Air Volume HVAC Systems Using Static Pressure Resets: Strategy Selection and Savings Analysis  

E-Print Network (OSTI)

The potential of static pressure reset (SPR) control to save fan energy in variable air volume HVAC systems has been well documented. Current research has focused on the creation of reset strategies depending on specific system features. As the commissioning process has begun to require the prediction of savings, knowledge of the extent to which various SPR control strategies impact fan energy has become increasingly important. This research aims to document existing SPR control strategies and utilize building data and simulation to estimate fan energy use. A comprehensive review of the literature pertaining to SPR control was performed and the results were organized into a top-down flow chart tool. Based on the type of feedback available from a particular system, or lack thereof, this tool will facilitate the selection of a SPR control strategy. A field experiment was conducted on a single duct variable air volume system with fixed discharge air temperature and static pressure setpoints. Finally, an air-side model of the experimental system was created using detailed building design information and calibrated using field measurements. This model was used to estimate the fan energy required to supply the trended airflow data using fixed static pressure (FSP) and SPR control based on zone demand, system demand, and outside air temperature. While utilizing trend data from November 1, 2008 to February 12, 2009, the FSP control of the experimental system was used as the baseline for ranking the energy savings potential of nine different forms of duct static pressure control. The highest savings (73-74%) were achieved using zonal demand based SPR control. System demand based SPR control yielded savings ranging from 59 to 76%, which increased when the duct sensor was positioned near the fan discharge and under similar zone load conditions. The outside air temperature based SPR control yielded savings of 65% since the experimental system supplied primarily perimeter zones. Finally, increasing the FSP setpoint from 2 to 3 inWG increased fan energy by 45%, while decreasing the setpoint from 2 to 1 inWG decreased fan energy by 41%.

Kimla, John

2009-12-01T23:59:59.000Z

93

The Application of Ultraviolet Germicidal Technology in HVAC Systems  

E-Print Network (OSTI)

One of the most significant issues for today's HVAC (Heating, Ventilation, and Air Conditioning) engineer is Indoor Air Quality (IAQ). Many building owners, operators, and occupants complain of foul odors emanating from HVAC systems. The objectionable odor is the byproduct of the microbial growth (mold and fungus) that accumulates and develops on wet surfaces of HVAC units, causing foul odors to emanate from affected systems and degrading the IAQ and unit performance. This objectionable odor has been appropriately named the "Dirty Sock" syndrome. Less obvious to the building occupants, but of equal importance, are the physical effects the microbial organisms have on HVAC equipment. They restrict the airflow and limit the heat transfer capability, which increases the operating costs of the equipment. Fortunately, IAQ degradation, foul odor, and increased expenses can be eliminated with the installation of the ultraviolet 'C' band (W-C) lamps. The ultraviolet germicidal lamps are designed to kill odor causing mold and fungus that grow in wet evaporator sections of HVAC units. These lamps are installed inside HVAC systems and irradiate areas inhabited by the offending organisms, making it impossible for them to survive. The organisms disappear, the odors disappear, and most importantly, the IAQ complaints disappear. This guide will discuss the microbial growth and IAQ contaminant problems in the HVAC industry, the W-C lamp and other possible solutions, and the benefits of using the HVAC Duty W-C lamp.

Taylor, M. J.

2000-01-01T23:59:59.000Z

94

Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.  

E-Print Network (OSTI)

and energy conservation in buildings," HVAC&R Research, 14(3), 359-372. A Dual Airflow Window for Indoor Air. For commercial buildings IAQ can be regulated by the HVAC system that mixes fresh outdoor air with return air

Chen, Qingyan "Yan"

95

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning Conditioning Air Conditioning July 1, 2012 - 6:28pm Addthis Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment. Two-thirds of all homes in the United States have air conditioners. Air conditioners use about 5% of all the electricity produced in the United States, at an annual cost of more than $11 billion to homeowners. As a

96

Optimization of Air Conditioning Cycling.  

E-Print Network (OSTI)

??Systems based on the vapor compression cycle are the most widely used in a variety of air conditioning applications. Despite the vast growth of modern (more)

Seshadri, Swarooph

2012-01-01T23:59:59.000Z

97

An "ageing" operator and its use in the highly constrained topological optimization of HVAC system design  

Science Conference Proceedings (OSTI)

The synthesis of novel heating, ventilating, and air-conditioning (HVAC), system configurations is a mixed-integer, non-linear, highly constrained, multi-modal, optimization problem, with many of the constraints being subject to time-varying boundary ... Keywords: HVAC, evolutionary algorithms, system design, topological optimization

Jonathan Wight; Yi Zhang

2005-06-01T23:59:59.000Z

98

Co-design of control algorithm and embedded platform for building HVAC systems  

Science Conference Proceedings (OSTI)

The design of heating, ventilation and air conditioning (HVAC) systems is crucial for reducing energy consumption in buildings. As complex cyber-physical systems, HVAC systems involve three closely-related subsystems -- the control algorithm, the physical ... Keywords: building energy efficiency, co-design, platform-based design

Mehdi Maasoumy, Qi Zhu, Cheng Li, Forrest Meggers, Alberto Sangiovanni-Vincentelli

2013-04-01T23:59:59.000Z

99

Computer controlled air conditioning systems  

SciTech Connect

This patent describes an improvement in a computer controlled air conditioning system providing for circulation of air through an air conditioned house in contact with concrete walls requiring a humidity within a critical range. The improvement consists of: a computer for processing sensed environmental input data including humidity and oxygen to produce output control signals for affecting the humidity of the air in the house; provision for an air flow circulation path through the house in contact with the concrete walls; sensing responsive to the amount of oxygen in the house for providing input signals to the computer; mixing for combining with the air in the house a variable amount of fresh atmospheric air to supply fresh oxygen; and humidity modifying means for modifying the humidity of the air flowing in the flow path responsive to the control signals.

Dumbeck, R.F.

1986-02-04T23:59:59.000Z

100

Luminaire/plenum/HVAC simulator  

SciTech Connect

This paper describes a new apparatus designed to model the physical parameters that affect fluorescent lamp performance under realistic operating conditions. These parameters include fixture type, mounting configuration, HVAC integration, and room air temperature, which directly determine the minimum lamp wall temperature (MLWT) and, therefore, the resulting light output of the lamp/ballast system. This apparatus is used principally to measure MLWT under operating conditions, which enables us to identify the effects the major parameters have on lamp/ballast system performance. Initial parametric results illustrate the use of this apparatus to provide representative MLWTs for a range of application conditions.

Siminovitch, M.J.; Rubinstein, F.M.; Clark, T.A.; Verderber, R.R.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Applying brain emotional learning algorithm for multivariable control of HVAC systems  

Science Conference Proceedings (OSTI)

In this paper, we apply a modified version of Brain Emotional Learning (BEL) controller for Heating, Ventilating and Air Conditioning (HVAC) control system whose multivariable, nonlinear and non-minimum phase nature makes the task difficult. The proposed ...

N. Sheikholeslami; D. Shahmirzadi; E. Semsar; C. Lucas; M. J. Yazdanpanah

2006-01-01T23:59:59.000Z

102

Application of computational intelligence in modeling and optimization of HVAC systems.  

E-Print Network (OSTI)

?? HVAC (Heating Ventilating and Air-Conditioning) system is multivariate, nonlinear, and shares time-varying characteristics. It poses challenges for both system modeling and performance optimization. Traditional (more)

Li, Mingyang

2009-01-01T23:59:59.000Z

103

Building HVAC Requirements Overview Page 4-1 4 Building HVAC Requirements  

E-Print Network (OSTI)

Building HVAC Requirements ­ Overview Page 4-1 4 Building HVAC Requirements 4.1 Overview 4 conditioning (HVAC) systems. The requirements are presented in this chapter so that it may serve as a single. 2008 Residential Compliance Manual August 2009 #12;Page 4-2 Building HVAC Requirements ­ Overview 4

104

Chapter 5: Lighting, HVAC, and Plumbing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Lighting, : Lighting, HVAC, and Plumbing High-Performance Engineering Design Lighting System Design Mechanical System Design Central Plant Systems Plumbing and Water Use Building Control Systems Electrical Power Systems Metering LANL | Chapter 5 High-Performance Engineering Design Lighting, HVAC, and Plumbing By now, the building envelope serves multiple roles. It protects the occupants from changing weather condi- tions and it plays a key part in meeting the occupants' comfort needs. The heating, ventilating, air-conditioning, and lighting (HVAC&L) systems complement the archi- tectural design, govern the building's operation and maintenance costs, and shape the building's long-term environmental impact. The architectural design maximizes the potential for a high-performance building, but it is the

105

Simulation and Optimization of HVAC Systems  

E-Print Network (OSTI)

We developed a mathematical model of a simple Heating, Ventilation and Air Conditioning (HVAC) system and implemented the model using the VisSim simulation language. We used Fourier methods to approximate (and simplify) temperature and humidity data for the model. We created an objective function to be minimized which recorded the cost of running this HVAC system. We studied different methods for minimizing the cost function, including direct search methods using VisSim and completed preliminary studies of a Dynamic Programming programming approach to simplify the optimization problem. ii Contents 0 Executive Summary 1 1 Introduction 2 2 Evaluation of Simulation Packages 3 3 Simple Room Model for an HVAC System 5 3.1 Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Mixer . . . ....

Ane Coughlin; George D. Ellington; Ellen Phifer; Brian Rieksts

1998-01-01T23:59:59.000Z

106

Development of an automated methodology for calibration of simplified air-side HVAC system models and estimation of potential savings from retrofit/commissioning measures  

E-Print Network (OSTI)

This dissertation provides one methodology to determine potential energy savings of buildings with limited information. This methodology is based upon the simplified energy analysis procedure of HVAC systems and the control of the comfort conditions. Numerically, the algorithm is a tailored exhaustive search over all the independent variables that are commonly controlled for a specific type of HVAC system. The potential energy savings methodology has been applied in several buildings that have been retrofitted and/or commissioned previously. Results from the determined savings for the Zachry building at Texas A&M after being commissioned show a close agreement to the calculated potential energy savings (about 85%). Differences are mainly attributed to the use of simplified models. Due to the restriction of limited information about the building characteristics and operational control, the potential energy savings method requires the determination of parameters that characterize its thermal performance. Thus, a calibrated building is needed. A general procedure has been developed to carry out automated calibration of building energy use simulations. The methodology has been tested successfully on building simulations based on the simplified energy analysis procedure. The automated calibration is the minimization of the RMSE of the energy use over daily conditions. The minimization procedure is fulfilled with a non-canonical optimization algorithm, the Simulated Annealing, which mimics the Statistical Thermodynamic performance of the annealing process. That is to say, starting at a specified temperature the algorithm searches variable-space states that are steadier, while heuristically, by the Boltzmann distribution, the local minima is avoided. The process is repeated at a new lower temperature that is determined by a specific schedule until the global minimum is found. This methodology was applied to the most common air-handler units producing excellent results for ideal cases or for samples modified with a 1% white noise.

Baltazar Cervantes, Juan Carlos

2006-12-01T23:59:59.000Z

107

Impacts of Static Pressure Set Level on the HVAC Energy Consumption and Indoor Conditions  

E-Print Network (OSTI)

Air static pressure must be maintained at a certain level leaving the air-handing unit (AHU) to force a suitable amount of air through the terminal boxes. However, an excessive static pressure level is often used due to ( 1 ) lack of a control device in a constant volume system (CV); (2) malfunctioning control device in a variable volume (VAV) system; and (3) fear of failure to maintain room temperature. High static pressure often develops excessive damper leakage in older mixing boxes. This results in an inappropriate mixing of hot and cold air and an excessive amount of air entering the space. Consequently, the actual fan power, heating and cooling energy consumption all become significantly higher than the design values. Even worse, the system may not be able to maintain room conditions due to unwanted simultaneous heating and cooling, and may be noisy due to the excessive static pressure. This paper proposes to control the hot duct pressure and the Variable Frequency Drives ( VFD's) to control the fan static i.e. the cold duct pressure. Both a theoretical analysis and a case study results are presented in this paper.

Liu, M.; Zhu, Y.; Claridge, D. E.; White, E.

1996-01-01T23:59:59.000Z

108

Porous insulation in HVAC systems  

Science Conference Proceedings (OSTI)

Porous insulation used to line the air stream surfaces of HVAC equipment provides a locus for the accumulation of dirt and debris. Dirt and debris are hydrophilic and the insulation on the air stream surfaces of mechanical cooling systems thus provides a niche for mold growth. The mold growing on porous insulation unlike moldy debris on a hard surface such as sheetmetal cannot be removed by duct cleaning. Actions for proactively preventing biocontamination of HVAC insulation include the following. (1) Porous insulation shall not be used to line the air stream surfaces of HVAC plenums where wetting is likely such as in the vicinity of cooling coils

Philip R. Morey

1995-01-01T23:59:59.000Z

109

Air conditioning: Impact on the built environment  

Science Conference Proceedings (OSTI)

The topics discussed in this book are: Introduction. 1. Air Conditioning - An Ever Expanding Market. 2. Building Envelope Design and Air Contitioning. 3. Air Conditioning and Energy - The CIBSE Building Energy Code. 4. Thermal Storage in Air Conditioning Systems. 5. Good Practice in the Design and Construction of Air Conditioning Systems. 6. Software for Air Conditioning Load Analysis and Design. 7. Lloyd's of London - The Architecture of Air Conditioning - Prediction of the Environment.

Sherratt, A.F.C.

1987-01-01T23:59:59.000Z

110

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

Mara Jos Gacto; Rafael Alcal; Francisco Herrera

2012-03-01T23:59:59.000Z

111

Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus  

E-Print Network (OSTI)

As a high-efficiency air conditioning scheme, the variable refrigerant flow (VRF) air-conditioning system is finding its way into medium-sized office buildings. Based on a generic dynamic building energy simulation environment, EnergyPlus, a new module is developed and the energy usage of the VRF system is investigated. This paper compares the energy consumption of the VRF system with that of two conventional air-conditioning systems, namely, the variable air volume (VAV) system and the fan-coil plus fresh air (FPFA) system. A generic office building is used to accommodate the different types of heating, ventilating, and air conditioning (HVAC) systems. Our objective is to examine the energy consumption of the VRF system applied to office buildings and make suggestions for evaluating and making decisions on HVAC systems in the early stages of building design. Simulation results show that the energy-saving potential of the VRF system is expected to achieve 22.2 percent and 11.7 percent, compared to the VAV system and the FPFA system, respectively. An energy-usage breakdown of electricity end-users in various systems is also presented.

Zhou, Y.; Wu, J.; Wang, R.; Shiochi, S.

2006-01-01T23:59:59.000Z

112

Direct Digital Control- A Tool for Energy Management of HVAC Systems  

E-Print Network (OSTI)

Direct digital control (DDC) applied to heating, ventilating, and air-conditioning (HVAC) systems corrects many of the deficiencies of conventional automatic temperature control systems. By applying new control sequences, DDC optimizes HVAC energy use. DDC can reduce HVAC operation and maintenance time and provide the environmental conditions needed to maximize production. DDC technology uses standalone, microprocessor based controllers. Controllers directly sense and process control variables (e.g. temperature, pressure) and provide a control signal to an actuator. Personal computers provide remote or local access to the digital controllers and give HVAC mechanics, energy managers, and facility engineers capabilities that conventional control systems do not offer. This paper discusses the most common deficiencies of conventionally controlled HVAC systems, advantages of DOC systems, and a case study retrofit from pneumatic control to digital control.

Swanson, K.

1993-03-01T23:59:59.000Z

113

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

114

Detection and diagnosis of faults and energy monitoring of HVAC systems with least-intrusive power analysis  

E-Print Network (OSTI)

Faults indicate degradation or sudden failure of equipment in a system. Widely existing in heating, ventilating, and air conditioning (HVAC) systems, faults always lead to inefficient energy consumption, undesirable indoor ...

Luo, Dong, 1966-

2001-01-01T23:59:59.000Z

115

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

116

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

117

Central Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Air Conditioning Central Air Conditioning Central Air Conditioning May 30, 2012 - 8:01pm Addthis Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. What does this mean for me? Central air conditioning systems are thermostatically controlled and convenient to use. Central air conditioning systems must be installed properly to operate efficiently. Central air conditioning systems can share ductwork with your heating system. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls,

118

Fuzzy Control of HVAC Systems Optimized by Genetic Algorithms  

Science Conference Proceedings (OSTI)

This paper presents the use of genetic algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems concerning energy performance and indoor comfort requirements. This problem ... Keywords: HVAC systems, fuzzy logic controllers, genetic tuning, multiple criteria

Rafael Alcal; Jose M. Bentez; Jorge Casillas; Oscar Cordn; Ral Prez

2003-03-01T23:59:59.000Z

119

Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California  

E-Print Network (OSTI)

SPECIFY UNITS) when heat (of HVAC) is turned off?using the heat (from HVAC)? A. B. C. D. January Februaryair conditionmg (from HVAC)? A. B. C. D. January February

Shendell, Derek Garth

2010-01-01T23:59:59.000Z

120

Energy-Efficient Building HVAC Control Using Hybrid System LBMPC  

E-Print Network (OSTI)

Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulation of residential HVAC system performance  

SciTech Connect

In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this paper were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic--which accounts for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance.

Walker, I.S.; Siegel, J.A.; Degenetais, G.

2001-05-01T23:59:59.000Z

122

DOE Convening Report on Certification of Commercial HVAC and CRE Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Convening Report on Certification of Commercial HVAC and CRE Products, October 2, 2012 Convening Report on Certification of Commercial HVAC and CRE Products, October 2, 2012 1 U.S. DEPARTMENT OF ENERGY CONVENING REPORT ON THE FEASIBILITY OF A NEGOTIATED RULEMAKING TO REVISE THE CERTIFICATION PROGRAM FOR COMMERCIAL HEATING, VENTILATING AIR CONDITIONING AND COMMERCIAL REFRIGERATION EQUIPMENT October 2, 2012 Alan W. Strasser, Esq., MA Convener

123

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

124

Building Energy Software Tools Directory : HVAC Solution  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Solution Back to Tool Screenshot for HVAC Solution. Screenshot for HVAC Solution. Screenshot for HVAC Solution...

125

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

126

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and...

127

Investigation of residential central air conditioning load shapes in NEMS  

E-Print Network (OSTI)

of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-01-01T23:59:59.000Z

128

Reliability and Functional Availability of HVAC Systems  

E-Print Network (OSTI)

This paper presents a model to calculate the reliability and availability of heating, ventilation and air conditioning systems. The reliability is expressed in the terms of reliability, maintainability and decision capability. These terms are a function of the mean time between failure, mean time to repair and decision time. The availability is expressed as an operational and functional availability of the systems. These terms are a function of both the technical and human characteristics to maintain the systems in correct operational state. The result is based on a large amount data from operational organisations, the compulsory inspection of ventilation systems and momentary and continuous measurements made in HVAC-systems.

Myrefelt, S.

2004-01-01T23:59:59.000Z

129

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1  

E-Print Network (OSTI)

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1 , David for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most in a substantial increase in energy use. For example, failure of an HVAC fan may prevent cool air from one

130

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

131

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

132

The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?  

E-Print Network (OSTI)

The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

Khnl-Kinel, J

2000-01-01T23:59:59.000Z

133

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

134

Long Range Passive UHF RFID System Using HVAC Ducts  

E-Print Network (OSTI)

INVITED P A P E R Long Range Passive UHF RFID System Using HVAC Ducts To provide a potential communications channel, HVAC ducts can function as electromagnetic waveguides; a 30-m read range has been-conditioning (HVAC) ducts as a potential communication channel between passive ultrahigh-frequency (UHF) radio

Hochberg, Michael

135

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

136

Troubleshooting the residential air conditioning system  

Science Conference Proceedings (OSTI)

In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

Puzio, H. [Sussex County Vocational Technical School, Sparta, NJ (United States)

1996-01-01T23:59:59.000Z

137

Quantitative Methods for Comparing Different HVAC Control Schemes  

E-Print Network (OSTI)

Experimentally comparing the energy usage and comfort characteristics of different controllers in heating, ventilation, and air-conditioning (HVAC) systems is difficult because variations in weather and occupancy conditions preclude the possibility of establishing equivalent experimental conditions across the order of hours, days, and weeks. This paper is concerned with defining quantitative metrics of energy usage and occupant comfort, which can be computed and compared in a rigorous manner that is capable of determining whether differences between controllers are statistically significant in the presence of such environmental fluctuations. Experimental case studies are presented that compare two alternative controllers (a schedule controller and a hybrid system learning-based model predictive controller) to the default controller in a building-wide HVAC system. Lastly, we discuss how our proposed methodology may also be able to quantify the efficiency of other building automation systems.

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

138

Identification of chiller model in HVAC system using fuzzy inference rules with Zadeh's implication operator  

Science Conference Proceedings (OSTI)

In the heating, ventilating, and air-conditioning (HVAC) system, chiller is the central part and one of the primary energy consumers. For the purpose of saving energy, the identification of the chiller model is of great significance. In this paper, based ... Keywords: chiller, fuzzy inference system, implication operator, improved genetic algorithm

Yukui Zhang; Shiji Song; Cheng Wu; Kang Li

2010-09-01T23:59:59.000Z

139

An Evaluation of the HVAC Load Potential for Providing Load Balancing Service  

Science Conference Proceedings (OSTI)

This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

Lu, Ning

2012-09-30T23:59:59.000Z

140

Software tools for HVAC research  

Science Conference Proceedings (OSTI)

Energy saving methods can be employed to reduce energy consumption in buildings, or improve indoor thermal conditions. An example of those methods is the use of permeable coverings, but there are other important parameters like thermal inertia. To understand ... Keywords: Building, Computer, Design, Energy saving, HVAC, Software tools

Jos A. Orosa; Armando C. Oliveira

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

142

HVAC Maintenance and Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC - HVAC - Maintenance and Technologies Federal Utility Partnership Working Group Meeting Providence, Rhode Island April 15, 2010 BY Ramin Faramarzi, P.E. Technology Test Centers (TTC) Design and Engineering Services Southern California Edison (SCE) www.sce.com/rttc 2 Outline * Introduction to SCE's TTC * Overview of energy challenges in California (CA) * Role of HVAC in CA's energy and demand equations * Factors affecting HVAC performance * Focus on SCE's research on maintenance faults * Next generation of HVAC equipment * HVAC technologies on SCE's TTC radar * Black boxes - do they all work? 3 SCE's Technology Test Centers * SCE applied research facilities located in Irwindale, CA comprised of 3 test beds: * Refrigeration * HVAC * Lighting * Coming Soon! - A new ZNE lab 4 Refrigeration Testing

143

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Installed Performance HVAC Installed Performance ESI, Tim Hanes Context * The building envelope has historically been the focus in residential homes. * The largest consumer of energy in residential homes is typically the HVAC system. * Testing the performance of the HVAC system has not been pursued to its full potential. Technical Approach * Currently very little performance testing is being done to the HVAC system. * The only way to know if a HVAC system is operating correctly is to measure the Btu/h. * This should be done at the equipment and at the the system. Recommended Guidance * Training of HVAC technicians, installers, and salespeople is a must. * If only the technician is trained than implementing the change will not happen. * Public awareness of proper installation and its

144

Aero?acoustic predictions of automotive dashboard HVAC (heating, ventilating, and air?conditioning ducts).  

Science Conference Proceedings (OSTI)

The flow?induced noisegenerated by automotive climate control systems is today emerging as one of the main noisesources in a vehicle interior. Numerical simulation offers a good way to analyze these mechanisms and to identify the aerodynamic noisesources in an industrial context driven by permanent reduction in programs timing and development costs

Stephane Detry; Julien Manera; Yves Detandt; Diego d'Udekem

2010-01-01T23:59:59.000Z

145

Acoustical prediction methods for heating, ventilating, and air?conditioning (HVAC) systems  

Science Conference Proceedings (OSTI)

The goal of this project is to compare and contrast various aspects of acoustical prediction methods for heating

2005-01-01T23:59:59.000Z

146

Optimization Control Strategies for HVAC Terminal Boxes  

E-Print Network (OSTI)

The HVAC terminal boxes are one of the major building HVAC components. They directly impact the building room comfort conditions and the energy costs. How to operate the box in a highly energy efficient way and maintain the room comfort level is an important topic in today's building energy management and HVAC control field. The authors developed novel optimized control strategies and operation schedules for the terminal boxes for both occupied and non-occupied hours. The optimized control schedules were implemented in a medical complex during the commissioning. This not only improved the building comfort conditions but also reduced the energy costs.

Zhu, Y.; Batten, T.; Noboa, H.; Claridge, D. E.; Turner, W. D.; Liu, M.; Zhou, J.; Cameron, C.; Keeble, D.; Hirchak, R.

2000-01-01T23:59:59.000Z

147

A study of membrane properties on air conditioning performance.  

E-Print Network (OSTI)

??Energy consumption due to heating, ventilation, and air conditioning amounts to 10-20% of global electrical energy usage. Air conditioning alone uses one trillion kilowatt hours (more)

Boyer, Elizabeth J.

2013-01-01T23:59:59.000Z

148

Does the Air-Conditioning Engineering Rubric Work in Residences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Does the Air-Conditioning Engineering Rubric Work in Residences? Title Does the Air-Conditioning Engineering Rubric Work in Residences? Publication Type Conference Paper LBNL...

149

Automobile air-conditioning unit. Final report  

SciTech Connect

In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

Schaetzle, W.J.

1982-12-01T23:59:59.000Z

150

Rotating heat pipe for air-conditioning  

SciTech Connect

A unique rotary hermetic heat pipe is disclosed for transferring heat from an external source to an external heat sink. The heat pipe has a tapered condensing surface which is curved preferably to provide uniform pumping acceleration, the heat pipe being rotated at a velocity such that the component of centrifugal acceleration in an axial direction parallel to the tapered surface is greater than lG and so that the condensing surface is kept relatively free of liquid at any attitude. The heat pipe may be incorporated in an air conditioning apparatus so that it projects through a small wall opening. In the preferred air conditioning apparatus, a hollow hermetic air impeller is provided which contains a liquefied gaseous refrigerant, such as freon, and means are provided for compressing the refrigerant in the evaporator region of the heat pipe.

Gray, V.H.

1976-12-28T23:59:59.000Z

151

Plutonium Finishing Plant (PFP) HVAC System Component Index  

SciTech Connect

This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-18 19. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item. The Plutonium Finishing Plant (PFP) HVAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.''

DIAZ, E.N.

2000-03-30T23:59:59.000Z

152

Multiple sensors with single HVAC system control  

E-Print Network (OSTI)

sensor; HVAC; control system; optimization; multi channeloptimization method is designed to be independent of the HVAC

Lin, Craig; Federspiel, Clifford; Auslander, David

2002-01-01T23:59:59.000Z

153

Importance of Design Conditions for Sizing Air-Conditioning Plant  

E-Print Network (OSTI)

Design conditions based on the meteorological data collected at two weather stations located less than 10 km away from each other within Kuwait City are presented for dry-bulb temperature (DBT) and web-bulb temperature (WBT) prioritization. The proposed design conditions specific to the location and the application are drastically different than currently used single design conditions for all application and locations. Cooling load estimates fro two building located in Kuwait have been analyzed for the proposed and the current design conditions to highlight over- or under-sizing the air-conditioning (A/C) plant capacity. Finally, a number of recommendations are made for architects and designers to use proper design conditions to ensure year-round comfort and energy conservation.

Shaban, N.; Maheshwari, G. P.; Suri, R. K.

2000-01-01T23:59:59.000Z

154

Residential Forced Air System Cabinet Leakage and Blower Performance  

SciTech Connect

This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

2010-03-01T23:59:59.000Z

155

Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Question #4: What are the Best Off-the-Shelf HVAC Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes and Apartments? Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes and Apartments? What is currently in the market? What are the limitations of these systems? What are the desired specifications for these systems? What are the realistic space conditioning loads of these high-performance homes and apartments? cq4_forced_air_systems_walker.pdf cq4_simplified_space_cond_prahl.pdf cq4_ground_heat_exchanger_im.pdf More Documents & Publications Track C - Market-Driven Research Solutions Track B - Critical Guidance for Peak Performance Homes Energy Storage & Power Electronics 2008 Peer Review - Power Electronics

156

Realt-Time Building Occupancy Sensing for Supporting Demand Driven HVAC Operations  

E-Print Network (OSTI)

Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for Heating, Ventilation and Air-conditioning (HVAC) systems. However, a precise and reliable measurement of occupancy still remains difficult. Existing technologies are plagued with a number of issues ranging from unreliable data, maintaining privacy and sensor drift. More effective control of HVAC systems may be possible using a smart sensing network for occupancy detection. A low-cost and non-intrusive sensor network is deployed in an open-plan office, combining information such as sound level and motion, to estimate occupancy numbers, while an infrared camera is implemented to establish ground truth occupancy levels. Symmetrical uncertainty analysis is used for feature selection, and selected multi-sensory features are fused using a neuralnetwork model, with occupancy estimation accuracy reaching up to 84.59%. The proposed system offers promising opportunities for reliable occupancy sensing, capable of supporting demand driven HVAC operations.

Ekwevugbe, T.; Brown, N.; Pakka, V.

2013-01-01T23:59:59.000Z

157

On the capacity limits of hvac duct channel for high-speed internet access  

E-Print Network (OSTI)

AbstractIn this paper, we report theoretical and experimental channel-capacity estimates of heating, ventilation, and air conditioning (HVAC) ducts based on multicarrier transmission that uses-ary quadrature amplitude modulation and measured channel responses at the 2.4-GHz industrial, scientific, and medical band. It is shown theoretically that data rates in excess of 1 Gb/s are possible over distances up to 500 m in straight ducts in which reflections have been suppressed. Our experimental results also show that even in the case of more complex HVAC duct networks (i.e., HVAC duct networks that include bends, tees, etc.) data rates over 2 Gb/s are possible. Our estimations in this case are valid for distances of up to 22 m, which was the maximum distance of our experimental setup. These experimental results, measured with a large-scale testbed set

Ariton E. Xhafa; Ozan K. Tonguz; Ahmet G. Cepni; Student Member; Daniel D. Stancil; Pavel V. Nikitin; Dagfin Brodtkorb

2005-01-01T23:59:59.000Z

158

RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM  

Science Conference Proceedings (OSTI)

A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF.

N. Ramirez

2004-12-16T23:59:59.000Z

159

A PDI for your HVAC System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/3/2012 Technical Approach Develop a PDI for HVAC PDI focus is on Inspecting Installation - a $10 Chinese sweatshop t-shirt gets a QA/QC sticker, why not a $10k HVAC system? Develop & require diagnostics that confirm good installations: - Air flow, duct leakage, refrigerant charge, delivered temperatures, system pressures, filter requirements, fan power, noise - On board diagnostics (OBD) for flow, pressures, fan power, charge Make it a warranty requirement, code requirement, permit requirement, etc. Recommended Guidance Develop the PDI checklist and label (include target and system test results) - External Tests: duct leaks - Internal Tests: OBD for system pressures, air flow, charge, fan power - Labels: Certify tight equipment

160

Residential Heating, Ventilating, and Air Conditioning Research Workshop  

Science Conference Proceedings (OSTI)

The residential HVAC load contributes $23 billion to electric utility energy sales and significantly to peak demands. Participants at this 1986 workshop identified fifteen areas of research needed to improve HVAC components, systems, and applications.

1987-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)  

SciTech Connect

This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

Kozubal, E.

2013-02-01T23:59:59.000Z

162

SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

M.M. Ansari

2005-04-05T23:59:59.000Z

163

HVAC system analysis: energy audit review  

SciTech Connect

Although most energy audits do not investigate HVAC systems in as much detail as would most design consultants, audit data can be most informative. For certain types of buildings, air-conditioning energy usage can be estimated by its absence from energy bills during winter months, and heating energy usage can be estimated by its absence from energy bills during the summer months. Cooling and heating energy usage can be even more accurately broken down when a fossil fuel is used for heating while electrical energy is used for cooling. It is easy to establish fairly accurate energy consumption estimates for lighting, fan motors, and pumps; this can be done by verifying their loads and multiplying them by known operating hours. The numerous notes contained in some energy audits may also provide ideas for retrofitting energy-consuming areas.

Harmon, K.S.

1983-01-01T23:59:59.000Z

164

Fouling of HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and Van P. Carey  

E-Print Network (OSTI)

LBNL-47668 Fouling of HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and Van P. Carey CIEE ENDORSEMENT OF OR AGREEMENT WITH THESE FINDINGS, NOR THAT OF ANY CIEE SPONSOR. #12;FOULING OF HVAC in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul

165

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network (OSTI)

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation hours) by utilizing a large amount of the thermal capacity of building structures such as beams, columns and floors composed of concrete. These BSTS systems have recently been considered as one method for leveling hourly electricity demands for HVAC on a day-to-day basis. Through a simulation using a model developed with experimental data, this paper describes how various factors for the design and operation of a BSTS quantitatively affect the charge/discharge performances of a HVAC system. As a result, the following was revealed: the thermal performance of the system is strongly influenced by the daily heat storage operation hours, supply air volume and supply air temperature during the nighttime operation hours, stored heat caused the total daytime cooling extraction to decrease by 11% to 58% and the daily total cooling extraction through nighttime to daytime to increase by 4% to 17% compared with the values of non- thermal storage HVAC system.

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

166

BFRL: HVAC&R - Publications  

Science Conference Proceedings (OSTI)

HVAC&R Equipment Performance Group. Publications. Repeatability of Energy Consumption Test Results for Compact Refrigerators ...

167

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

168

Alternative non-CFC mobile air conditioning  

DOE Green Energy (OSTI)

Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

Mei, V.C.; Chen, F.C.; Kyle, D.M.

1992-09-01T23:59:59.000Z

169

HVAC Maintenance and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Maintenance and Technologies HVAC Maintenance and Technologies Presentation covers the HVAC maintenance and technologies, and is given at the Spring 2010 Federal Utility...

170

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

171

MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS  

E-Print Network (OSTI)

LBNL-XXXXX MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUSof California. MAPPING HVAC SYSTEMS FOR SIMULATION INpresent a conventional view of HVAC systems to the user, and

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

172

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

173

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

174

Keeping Cool Without Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keeping Cool Without Air Conditioning Keeping Cool Without Air Conditioning August 2, 2013 - 9:50am Addthis Trees can save you energy by blocking sunlight in the summer and letting...

175

Dehumidification Performance of Unitary Rooftop Air Conditioning Systems: K-Mart Demonstration  

Science Conference Proceedings (OSTI)

Applying various HVAC options--including heat pipe heat exchangers, reduced airflow, low temperature air, and modified fan operation--reduced the average relative humidity of a K-Mart store on the Mississippi coast during the hot humid summer season to below 50 percent. This demonstration will help utilities recommend the best practices for their retail customers.

1996-07-26T23:59:59.000Z

176

Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong  

E-Print Network (OSTI)

Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half of the electricity in Hong Kong is consumed by commercial buildings, and heating, ventilation and air-conditioning (HVAC) is the largest end-user in such buildings, improving the efficiency of HVAC systems in commercial buildings, is the key measure to take in Hong Kong for sustainable development. In this study, the major factors influencing the electricity use of HVAC systems are studied with the building energy simulation program EnergyPlus, which include chiller efficiency, space cooling temperature, variable vs. constant air flow, fan efficiency, lighting intensity and building envelope. From the analysis of the simulation results, it can be found that substantial energy-saving potential exists through improving the efficiency of HVAC systems in commercial buildings, and a combination of desirable system parameters for energy efficiency of commercial building is proposed.

Yang, J.; Chan, K.; Wu, X.

2006-01-01T23:59:59.000Z

177

Air-Conditioning, Heating, and Refrigeration Institute (AHRI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments...

178

The effects of fixture type and HVAC integration on fluorescent lamp/ballast performance  

SciTech Connect

This paper describes the effects of fixture type and lamp compartment air extract characteristics on lamp/ballast performance. A luminaire/plenum/HVAC simulator was used to measure minimum lamp wall temperature inside four fixture types while varying lamp-compartment extract conditions. Experimental data show that the lumen output of the lamp/ballast system varies by 20% and system efficacy by 10%, depending on the type of fixture and lamp-compartment extract technique employed.

Siminovitch, M.J.; Rubinstein, F.M.; Verderber, R.R.; Clark, T.A.

1986-06-01T23:59:59.000Z

179

Department of Energy and Mineral Engineering Spring 2013 Solar Innovations -HVAC and Waste Stream Analysis  

E-Print Network (OSTI)

PENNSTATE Department of Energy and Mineral Engineering Spring 2013 Solar Innovations - HVAC and Waste Stream Analysis Overview There are two problems that were voiced by Solar Innovations, HVAC system design and recycling stream improvement. The HVAC system was not providing even conditioning of office

Demirel, Melik C.

180

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access  

E-Print Network (OSTI)

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access Ariton E. Xhafa-conditioning (HVAC) ducts based on multi-carrier transmission that uses M-QAM mod- ulation and measured channel- flections in HVAC ducts). Our work also shows that data rates in excess of 300 Mbps are possible over

Stancil, Daniel D.

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Residential Forced Air System Cabinet Leakage and Blower Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

182

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

183

Distributed Control of HVAC&R Networks  

E-Print Network (OSTI)

Heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems are a major component of worldwide energy consumption, and frequently consist of complex networks of interconnected components. The ubiquitous nature of these systems suggests that improvements in their energy efficiency characteristics can have significant impact on global energy consumption. The complexity of the systems, however, means that decentralized control schemes will not always suffice to balance competing goals of energy efficiency and occupant comfort and safety. This dissertation proposes control solutions for three facets of this problem. The first is a cascaded control architecture for actuators, such as electronic expansion valves, that provides excellent disturbance rejection and setpoint tracking characteristics, as well as partial nonlinearity compensation without a compensation model. The second solution is a hierarchical control architecture for multiple-evaporator vapor compression systems that uses model predictive control (MPC) at both the supervisory and component levels. The controllers leverage the characteristics of MPC to balance energy efficiency with occupant comfort. Since the local controllers are decentralized, the architecture retains a degree of modularitychanging one component does not require changing all controllers. The final contribution is a new distributed optimization algorithm that is rooted in distributed MPC and is especially motivated by HVAC&R systems. This algorithm allows local level optimizers to iterate to a centralized solution. The optimizers have no knowledge of any plant other than the plant they are associated with, and only need to communicate with their immediate neighbors. The efficacy of the algorithm is displayed with two sets of examples. One example is simulation based, wherein a building is modeled in the EnergyPlus software suite. The other is an experimental example. In this example, the algorithm is applied to a multiple evaporator vapor compression system. In both cases the design method is discussed, and the ability of the algorithm to reduce energy consumption when properly applied is demonstrated.

Elliott, Matthew Stuart

2013-08-01T23:59:59.000Z

184

Alternative Air Conditioning Technologies: Underfloor Air Distribution (UFAD)  

E-Print Network (OSTI)

is defined as any space conditioning system that allowsor by a separate space conditioning system, but in eitherenergy use - As with any space conditioning system, a poorly

Webster, Tom

2004-01-01T23:59:59.000Z

185

Innovative Systems for Solar Air Conditioning of Buildings  

E-Print Network (OSTI)

Solar air conditioning is an attractive technology to achieve comfortable room conditions, especially in hot and sunny climates. In particular air conditioning systems based on sorption technologies offer several advantages as they can be designed for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance of each air conditioning system is evaluated under Abu Dhabi design conditions.

Kessling, W.; Peltzer, M.

2004-01-01T23:59:59.000Z

186

Investigation of Residential Central Air Conditioning Load Shapes in  

E-Print Network (OSTI)

LBNL-52235 Investigation of Residential Central Air Conditioning Load Shapes in NEMS Kristina Laboratory is an equal opportunity employer. #12;#12;LBNL-52235 Investigation of Residential Central Air;#12;Investigation of Residential Central Air Conditioning Load Shapes in NEMS i Table of Contents Acronyms

187

BFRL: HVAC&R - Publications  

Science Conference Proceedings (OSTI)

HVAC&R Equipment Performance Group. Publications. Fundamental Aspects of the Application of Carbon Dioxide in Comfort Cooling. ...

188

HVAC | OpenEI  

Open Energy Info (EERE)

HVAC HVAC Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

189

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

190

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 2, FEBRUARY 2005 335 On the Capacity Limits of HVAC Duct Channel for  

E-Print Network (OSTI)

of HVAC Duct Channel for High-Speed Internet Access Ariton E. Xhafa, Member, IEEE, Ozan K. Tonguz, Member and experimental channel-capacity estimates of heating, ventilation, and air condi- tioning (HVAC) ducts based suppressed. Our experimental results also show that even in the case of more complex HVAC duct networks (i

Stancil, Daniel D.

191

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

DOE Green Energy (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

192

Using Modelica for Physical Modeling of Air-Conditioning Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Modelica for Physical Modeling of Air-Conditioning Systems Using Modelica for Physical Modeling of Air-Conditioning Systems Speaker(s): Jonas Eborn Date: August 23, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Michael Wetter The Air Conditioning library is a commercial Modelica library for the steady-state and transient simulation of air conditioning systems using both compact micro-channel heat exchangers as well as fin-and-tube type heat exchangers. Currently it is mostly used by automotive OEMs and suppliers that need high-accuracy system level models to evaluate energy efficiency of systems developed under the pressure of reduced design cycle times. The library also has applications in other areas, including aircraft cooling systems and residential air-conditioning. The Air Conditioning library contains published correlations for heat and mass transfer and

193

Connexus Energy - Residential Efficient HVAC Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connexus Energy - Residential Efficient HVAC Rebate Program Connexus Energy - Residential Efficient HVAC Rebate Program Connexus Energy - Residential Efficient HVAC Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Air Source Heat Pumps: $480 - $630 Ductless Heat Pump: $150 Geothermal Heat Pump: $200/ton Provider Connexus Energy Connexus Energy offers rebates for residential customers to improve the energy efficiency of homes. Rebates are available for air source heat pumps, ductless heat pumps and ground-source heat pumps. Equipment must meet all efficiency standards listed on the web site, and must be installed by a certified HVAC contractor. Contact Connexus Energy for other program

194

Seawater Air Conditioning for Downtown Engineering Project Manager  

E-Print Network (OSTI)

of energy use in typical office and hotel buildings in Hawaii. Hawaii relies on imported fossil fuels electricity usage by 75 percent compared to conventional air conditioning systems. This renewable energy conditioning. Conventional air conditioning systems are energy intensive and represent close to 50 percent

Frandsen, Jannette B.

195

An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry  

E-Print Network (OSTI)

of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

2004-01-01T23:59:59.000Z

196

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

Load for Radiant and Air Conditioning Systems. ProceedingsRefrigerating and Air Conditioning Engineers Inc. Babiak,of European Heating ahd Air-Conditioning Associations. CEN (

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

197

Occupancy based demand response HVAC control strategy  

Science Conference Proceedings (OSTI)

Heating, cooling and ventilation accounts for 30% energy usage and for 50% of the electricity usage in the United States. Currently, most modern buildings still condition rooms assuming maximum occupancy rather than actual usage. As a result, rooms are ... Keywords: HVAC, demand response, energy savings, occupancy, ventilation

Varick L. Erickson; Alberto E. Cerpa

2010-11-01T23:59:59.000Z

198

Modeling and construction of a computer controlled air conditioning system.  

E-Print Network (OSTI)

??As energy efficient devices become more necessary, it is desired to increase the efficiency of air conditioning systems. Current systems use on/off control, where the (more)

Frink, Brandon S.

2007-01-01T23:59:59.000Z

199

2001 Consumption and Expenditures -- Electric Air-Conditioning ...  

U.S. Energy Information Administration (EIA)

CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 : 2: CE3-2c. ...

200

Using Modelica for Physical Modeling of Air-Conditioning Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

and ready-to-use models for all relevant components of automotive air conditioning systems like condenser, evaporator, compressor, expansion devices and accumulatorreceiver...

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Date | 1Refrigeration and Air Conditioning EMA Education and Training Date | 2Refrigeration and Air Conditioning EMA Education and Training  

E-Print Network (OSTI)

Date | 1Refrigeration and Air Conditioning EMA Education and Training #12;Date | 2Refrigeration Flow Coil Design etc. Finger Print Relationship Every evaporator is unique Unstable Region * = examples

Oak Ridge National Laboratory

202

Air Temperature in the Undulator Hall  

SciTech Connect

Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

Not Available

2010-12-07T23:59:59.000Z

203

Design of Air-cooled Microchannel Condensers for Mal-distributed Air Flow Conditions .  

E-Print Network (OSTI)

??Air-cooled condensers are routinely designed for a variety of applications, including residential air-conditioning systems. Recent attempts at improving the performance of these heat exchangers have (more)

Subramaniam, Vishwanath

2004-01-01T23:59:59.000Z

204

The Feasibility Analysis of a New Air-Conditioning System  

Science Conference Proceedings (OSTI)

This paper presents a new modular solar refrigeration and liquid desiccant air conditioning system composed by adsorption refrigeration system, liquid desiccant system and roof cold radiation. The feasibility and beneficial of this new system are analyzed ... Keywords: liquid desiccant, modular solar refrigeration, new air conditioning system, roof cold radiation, technical and economic feasibility analysis

Jinggang Wang; Meixia Du; Xiaoxia Gao; Jin Zhao; Zhenjiang Yin; Yi Man

2009-12-01T23:59:59.000Z

205

Air Conditioning Load Prediction Based on DE-SVM Algorithm  

Science Conference Proceedings (OSTI)

Based on SVM (Support Vector Machine) theory, and the model to predict air conditioning load was established. In order to optimize the behavior of SVM, the DE (Differential Evolution) algorithm was introduced into classic SVM. The DE-SVM model is applied ... Keywords: Air Conditioning load, DE-SVM, Prediction

Zhonghai Chen; Yong Sun; Guoli Yang; Tengfei Wu; Guizhu Li; Longbiao Xin

2010-04-01T23:59:59.000Z

206

BEETIT: Building Cooling and Air Conditioning  

Science Conference Proceedings (OSTI)

BEETIT Project: The 14 projects that comprise ARPA-Es BEETIT Project, short for Building Energy Efficiency Through Innovative Thermodevices, are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

None

2010-09-01T23:59:59.000Z

207

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

208

Air conditioning system with supplemental ice storing and cooling capacity  

DOE Patents (OSTI)

The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

1998-01-01T23:59:59.000Z

209

NREL: Vehicle Ancillary Loads Reduction - Air Conditioning and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning and Emissions Conditioning and Emissions Air conditioning and indirect emissions go together in the sense that when a vehicle's air conditioning system is in use, fuel economy declines. When more petroleum fuel is burned, more pollution and greenhouse gases are emitted. An additional, "direct" source of greenhouse gas emissions is the refrigerant used in air conditioning. Called HFC-134a, this pressurized gas tends to seep through tiny openings and escapes into the atmosphere. It can also escape during routine service procedures such as system recharging. NREL's Vehicle Ancillary Loads Reduction team applied its vehicle systems modeling expertise in a study to predict fuel consumption and indirect emissions resulting from the use of vehicle air conditioning. The analysis

210

Direct Digital Control in Air Conditioning Systems for Energy Efficiency  

E-Print Network (OSTI)

With the rapid development of Intelligent Buildings (IB), the Building Automation System (BAS) has come to control and manage the equipment in the building more and more scientifically, economically and rationally, which can not only raise the function and the level of the building, but also save energy. At present, air-conditioning design in internal commercial buildings is becoming more complex and enormous. The proportion of air conditioning systems in the whole building is getting larger. In order to control and manage the air-conditioning systems effectively and take full use of energy-saving technology, we apply computer control to the system of air automation control. This paper discusses direct digital control (DDC) in the air conditioning system in buildings.

Liu, W.; Ye, A.; Li, D.

2006-01-01T23:59:59.000Z

211

Neural network control for an intelligent air handler in an air-conditioning system.  

E-Print Network (OSTI)

??Many commercial air-conditioning systems in hot and humid areas like Singapore are operated throughout the year. There are two main classifications for these systems: the (more)

Zhang, Qi.

2008-01-01T23:59:59.000Z

212

CALIFORNIA ENERGY Large HVAC Energy Impact Report  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Energy Impact Report Statewide Energy Impact Report are part of the Integrated Design of Large Commercial HVAC Systems research project. The reports: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

213

HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment  

SciTech Connect

Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment' provides the deliverable leading into the Gate 3 'Scoping Assessment Screen'. This report is an example of a Stage 2 deliverable written to document the screening of options against the Gate 3 criteria and to support DOE decision making and option prioritization. The objective of this scoping assessment was to perform a transparent evaluation of the HVAC system options for NZEH based on the applying the Gate 3 criteria uniformly to all options.

Baxter, Van D [ORNL

2005-11-01T23:59:59.000Z

214

Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint  

SciTech Connect

This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

Woods, J.; Kozubal, E.

2012-10-01T23:59:59.000Z

215

HVAC Sensors, Controls, and Human Feedback Interfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Sensors, HVAC Sensors, Controls, and Human Controls, and Human Feedback Interfaces Feedback Interfaces April 26, 2010 Dr. Amr Gado Emerson Climate Technologies Heating And...

216

Building Technologies Office: Transitioning Traditional HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Traditional HVAC Contractors to Whole House Performance Expert Meeting Building America hosted the "Transitioning Traditional HVAC Contractors to Whole House Performance...

217

Building Technologies Office: Transitioning Traditional HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transitioning Traditional HVAC Contractors to Whole House Performance Expert Meeting to someone by E-mail Share Building Technologies Office: Transitioning Traditional HVAC...

218

Measuring Outdoor Airflow into HVAC Systems  

E-Print Network (OSTI)

MEASURING OUTDOOR AIRFLOW INTO HVAC SYSTEMS W i l l i a m J.minimum OA flow rate if HVAC system has an economizer

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2005-01-01T23:59:59.000Z

219

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.

2010-11-17T23:59:59.000Z

220

Residential Air-Conditioning System with Smart-Grid Functionality.  

E-Print Network (OSTI)

??This thesis sets forth a novel intelligent residential air-conditioning (A/C) system controller that provides optimal thermal comfort and electricity cost trade-offs for a household resident (more)

Thomas, Auswin George

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Approaches to Selecting Design Temperatures for Air-Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Approaches to Selecting Design Temperatures for Air-Conditioning Speaker(s): Eric Peterson Date: July 7, 2005 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Philip...

222

Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct so

Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

223

Reducing Air-Conditioning System Energy Using a PMV Index  

E-Print Network (OSTI)

The control system of central air-conditioning, based on PMV, not only improves thermal comfort but also reduces system energy consumption. A new thermal comfort degree softsensor model is built via use of the CMAC neural network nonlinear calibration function. It can realize on-line detection of thermal comfort. At the same time it can also realize real-time control of central air-conditioning system based on PMV. Simulation results demonstrate the simplicity and effectiveness of the presented method.

Li, H.; Zhang, Q.

2006-01-01T23:59:59.000Z

224

Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems  

SciTech Connect

In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow the use of this tool to perform detailed residential HVAC system simulations. The simulations have been verified by comparison to measured results in several houses over a wide range of weather conditions and HVAC system performance. After the verification was completed, more than 350 cooling and 450 heating simulations were performed. These simulations covered a range of HVAC system performance parameters and California climate conditions (that range from hot dry deserts to cold mountain regions). The results of the simulations were used to show the large increases in HVAC system performance that can be attained by improving the HVAC duct distribution systems and by better sizing of residential HVAC equipment. The simulations demonstrated that improved systems can deliver improved heating or cooling to the conditioned space, maintain equal or better comfort while reducing peak demand and the installed equipment capacity (and therefore capital costs).

Walker, I.S.; Degenetais, G.; Siegel, J.A.

2002-05-01T23:59:59.000Z

225

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network (OSTI)

We investigated 40 typical air conditioned buildings in Changsha in 2005, including 15 hotel buildings, 6 commercial buildings, 5 office buildings, 6 hospital buildings and 8 synthesis buildings. On this basis we analyze the relation between types of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source based on the electric refrigeration. Among the heat sources, the prospect of gas boilers is better. In addition, the air source heat pump depends heavily on whether some crucial issues such as frost can be solved during its application. The water-source heat pump will likely be applied. Based on the analysis of energy consumption and energy bills, we determine the feasible measures for energy conservation including the aspects of design, operation and management. Among them, special attention should be paid to energy metering and running time of air conditioning systems in civil buildings in Changsha.

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

226

Occupancy sensors for HVAC gaining in hotel industry  

SciTech Connect

The hotel industry is overcoming its skepticism as occupancy sensors with built-in thermistors to control heating, ventilating, and air conditioning (HVAC) units demonstrate their ability to cut energy costs as much as 30%. Despite the successful demonstrations and acceptance by Holiday Inn, some hotel managers of other chains continue to resist. Occupancy sensors have either ultrasonic or infrared signals, but differ from lighting control devices by also having internal thermistors and remote door switches. This allows the rooms to reach comfort levels only when the guest is present since occupants are only minimally affected if temperatures are modified during unoccupied periods. The system works best for roadside-type motels rather than convention hotels, where occupants are in and out of their rooms.

Ladd, C.

1985-12-02T23:59:59.000Z

227

CVEN 6960 master's project, investigation of a cooling coil in high humidity conditions. Master's thesis  

SciTech Connect

The primary purpose of this project is to validate the HVAC*2 Toolkit calculations for a cooling coil in high humidity conditions. A total of 19 experimental runs at different entering air temperature and humidity conditions were performed at the Joint Center for Energy Management HVAC Laboratory that exposed a cooling coil to temperature and humidity conditions that are typically found in the southern United States. The inlet conditions and manufacturer's coil rating data was used as input to the HVAC*2 Toolkit simple cooling coil subroutine (CCSIM). The predicted results from the toolkit were then compared to the experimental results.

Sloop, R.E.

1993-12-10T23:59:59.000Z

228

BFRL: HVAC&R - Publications  

Science Conference Proceedings (OSTI)

... Air conditioning; Refrigerating system; Evaporator; Finned tube; Modeling; Optimization; R600a; R410A; Propane; R32; R134a; R22; Comparison. ...

229

Development of HVAC System Performance Criteria Using Factorial Design and DOE-2 Simulation  

E-Print Network (OSTI)

A new approach is described for the development of Heating, Ventilating, and Air-conditioning (HVAC) System Performance Criteria for the Texas Building Energy Design Standard. This approach integrates a design of experimental methodology and DOE-2 simulation to identify the effects of control parameters on HVAC system energy performance. Three new criteria - transport, plant, and system performance factors-are used as measures of system performance. The procedure has been applied to the development of criteria for a variable-air-volume (VAV) and a constant-air-volume (CAV) system in three Texas climates. The results show that the air distribution system pressure loss, cooling coil exit temperature set-pint, operation of an economizer, and use of dead band controls have significant effects on air transport energy use and total system performance. The selection of control strategies and set-points have a clear impact on energy use. There is also a great energy-saving potential of converting from a CAV to a VAV system.

Hou, D.; Jones, J. W.; Hunn, B. D.; Banks, J. A.

1996-01-01T23:59:59.000Z

230

Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings  

Science Conference Proceedings (OSTI)

It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

2002-06-01T23:59:59.000Z

231

Approaches to Selecting Design Temperatures for Air-Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Approaches to Selecting Design Temperatures for Air-Conditioning Approaches to Selecting Design Temperatures for Air-Conditioning Speaker(s): Eric Peterson Date: July 7, 2005 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves Edward A. Arens The presentation will describe and compare the methods of determining cooling design conditions used by ASHRAE and the Australian Institute of Refrigeration, Air-Conditioning and Heating. A case study based on weather data for Brisbane will be used to illustrate the issues that arise. One issue is the usefulness of the 3-hourly temperature observations archived in International Weather Office records compared to the hourly observations required by the ASHRAE method. Another issue is the use of daily maxima, which have been archived for over 100 years at many Australian locations. Daily data can easily be used to find trends

232

Room Air Conditioning Energy Efficiency and Demand Response Potential  

Science Conference Proceedings (OSTI)

Room or window air conditioners are a common appliance in parts of the United States residential sector for providing summertime cooling. The technology is based on the same vapor compression cycle common in central air conditioning and refrigeration applications, but with all system components in one enclosure, which is generally small and comparatively inexpensive. The systems are simple and modular enough to be installed by the homeowner, and can be installed in windows without major modification, or ...

2011-06-30T23:59:59.000Z

233

HVAC Equipment Design Options for Near-Zero-Energy Homes - Scoping Assessment of Radiant Panel Distribution System Options  

Science Conference Proceedings (OSTI)

Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05, ORNL conducted a scoping-level assessment of HVAC system options for NZEH homes (Baxter 2005). That report examined some twenty HVAC and water heating (HVAC/WH) systems in two 1800 ft2 houses--one constructed to Building America Research Benchmark standards and one a prototype NZEH. Both centrally ducted and two-zone systems were examined in that study. The highest scoring options using the ranking criteria described in that report were air-source and ground-source integrated heat pumps (IHP), and these were selected by DOE for further development. Among the feedback received to the FY05 report was a comment that systems using radiant panel (floor or ceiling) distribution options were not included among the system examined. This present report describes an assessment of a few such radiant panel systems under the same analysis and ranking criteria used in Baxter (2005). The rankings of the radiant system options reported herein are based on scoring by the team of building equipment researchers at ORNL. It is DOE's prerogative to revisit the criteria and obtain scoring from additional perspectives as part of its decision making process. If the criteria change, the ORNL team will be happy to re-score.

Baxter, Van David [ORNL

2007-06-01T23:59:59.000Z

234

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

the contribution of air-conditioning. Figure 2: WirelessIntroduction Commercial air-conditioning is one of thethe Cal ISO is commercial air-conditioning. One of the most

Federspiel, Clifford

2010-01-01T23:59:59.000Z

235

Dual Path HVAC System Demonstration in School: Leveraging Thermal Energy Storage and Cold Air Distribution to Enhance System Perform ance in a Florida Elementary School  

Science Conference Proceedings (OSTI)

This document reports on a novel dual-path, low-temperature air distribution system demonstrated in a Florida elementary school. This system addresses high humidity levels and indoor air quality problems normally found in schools due to their large ventilation requirements, especially in humid climates. The dual-path system is also integrated with synergistic use of thermal energy storage and low-temperature air distribution, reduced energy use, and initial cost. The field data confirmed that the system ...

2002-10-21T23:59:59.000Z

236

Evaluation of Indoor Air Quality Parameters and Airborne Fungal Spore Concentrations by Season and Type of HVAC System in a School Building.  

E-Print Network (OSTI)

??An indoor air quality survey has been conducted in a school building. Samples were collected inone room in each wing and each level on a (more)

McLeod, Jeffrey D.

2008-01-01T23:59:59.000Z

237

Energy Conservation of Air Conditioning Systems in Large Public Buildings  

E-Print Network (OSTI)

Analyzing the actuality of the large-scale public buildings' energy consumption, we know that most of them run not only in low efficiency, but also in high energy consumption. According to the characteristics of the building, we should proceed with the heating characteristics of the exterior -protected construction, the set value of the temperature of the air-conditioning, the lectotype of the Central air-conditioning system, the regulation and the modification of the transmission and distribution system, the use of the new energy and the daily management or the method of adjustment and control, and so on , so we can make the air-conditioning system run efficiently. Analyzing and comparing the large-scale public buildings' energy consumption with each other, some pointed improvement measures are proposed further. According to the study and analysis, even though large-scale public buildings consume a great of energy, there exists a huge potential for energy conservation.

Liu, P.; Li, D.

2006-01-01T23:59:59.000Z

238

Non-CFC air conditioning for transit buses  

SciTech Connect

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

239

Non-CFC air conditioning for transit buses  

Science Conference Proceedings (OSTI)

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

240

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inverted Attic Bulkhead for HVAC Ductwork | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inverted Attic Bulkhead for HVAC Ductwork Inverted Attic Bulkhead for HVAC Ductwork Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America...

242

HVAC component data modeling using industry foundation classes  

E-Print Network (OSTI)

HVAC Component Data Modeling Using Industry Foundationof a major extension of the HVAC part of the IFC data model.generic approach for handling HVAC components. This includes

Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

2002-01-01T23:59:59.000Z

243

MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS  

E-Print Network (OSTI)

Methodology for Secondary HVAC Systems, Doctoral Thesis,2002, Particulate Fouling of HVAC Heat Exchangers, Doctoraland diagnosis strategy for HVAC systems involving sensor

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

244

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems  

E-Print Network (OSTI)

in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

Najafi, Massieh

2010-01-01T23:59:59.000Z

245

Commentary: Air-conditioning as a risk for increased use of health services  

E-Print Network (OSTI)

55476 Commentary: Air-conditioning as a risk for increased5-14-04 Commentary: Air-conditioning as a risk for increasedof office buildings with air-conditioning systems (e.g. ,

Mendell, Mark J.

2004-01-01T23:59:59.000Z

246

Lighting/HVAC interactions and their effects on annual and peak HVAC requirements in commercial buildings  

SciTech Connect

Lighting measures is one effective strategy for reducing energy use in commercial buildings. Reductions in lighting energy have secondary effects on cooling/heating energy consumption and peak HVAC requirements; in general, they increase the heating and decrease cooling requirements of a building. Net change in a building`s annual and peak energy requirements, however, is difficult to quantify and depends on building characteristics, operating conditions, climate. This paper characterizes impacts of lighting/HVAC interactions on annual and peak heating/cooling requirements of prototypical US commercial buildings through computer simulations using DOE-2.1E building energy analysis program. Ten building types of two vintages and nine climates are chosen to represent the US commercial building stock. For each combination, a prototypical building is simulated with two lighting power densities, and resultant changes in heating and cooling loads are recorded. Simple concepts of Lighting Coincidence Factors are used to describe the observed interactions between lighting and HVAC requirements. (Coincidence Factor (CF) is ratio of changes in HVAC loads to those in lighting loads, where load is either annual or peak load). The paper presents tables of lighting CF for major building types and climates. These parameters can be used for regional or national cost/benefit analyses of lighting- related policies and utility DSM programs. Using Annual CFs and typical efficiencies for heating and cooling systems, net changes in space conditioning energy use from a lighting measure can be calculated. Similarly, Demand CFs can be used to estimate the changes in HVAC sizing, which can then be converted to changes in capital outlay using standard-design curves; or they can be used to estimate coincident peak reductions for the analysis of the utility`s avoided costs. Results from use of these tables are meaningful only when they involve a significantly large number of buildings.

Sezgen, A.O.; Huang, Y.J.

1994-08-01T23:59:59.000Z

247

Indoor Air Quality Group  

Science Conference Proceedings (OSTI)

... CONTAM has been used at NIST to study the indoor air quality impacts of HVAC systems in single-family residential buildings, ventilation in large ...

2011-10-31T23:59:59.000Z

248

ASHRAE sound and vibration technical committee position statement on the use of fiberglass in HVAC systems  

Science Conference Proceedings (OSTI)

Fiberglass duct liner continues to be the most cost?effective solutions to noise control in most HVAC air duct systems. There has been a recent increase in the number of institutional

Russell A. Cooper

1995-01-01T23:59:59.000Z

249

Table HC4-12a. Air Conditioning by West Census Region, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC4-12a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S.

250

Table HC4-9a. Air Conditioning by Northeast Census Region, Million ...  

U.S. Energy Information Administration (EIA)

Table HC4-9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total

251

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 Million U.S. Households Type of Air-Conditioning Equipment (millions) Central System

252

Table AC7. Average Expenditures for Air-Conditioning by Equipment ...  

U.S. Energy Information Administration (EIA)

Central System 5 Table AC7. Average Expenditures for Air-Conditioning by Equipment Type, 2005 Dollars per Household Type of Air-Conditioning Equipment

253

Ventilation and air-conditioning concept for CNGS underground areas  

E-Print Network (OSTI)

The aim of the CNGS project is to prove the existence of neutrino oscillation by generating an intense neutrino beam from CERN in the direction of the Gran Sasso laboratory in Italy, where two large neutrino detectors are built to detect the neutrinos. All the components for producing the neutrino beam will be situated in the underground tunnels, service galleries and chambers. The ventilation and air-conditioning systems installed in these underground areas have multiple tasks. Depending on the operating mode and structure to be air-conditioned, the systems are required to provide fresh air, cool the machine, dehumidify areas housing sensible equipment or assure the smoke removal in a case of a fire. This paper presents the technical solutions foreseen to meet these requirements.

Lindroos, J

2002-01-01T23:59:59.000Z

254

Study of long term options for electric vehicle air conditioning  

SciTech Connect

There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

Dieckmann, J.; Mallory, D. [Little (Arthur D.), Inc., Cambridge, MA (United States)

1991-07-01T23:59:59.000Z

255

Study of long term options for electric vehicle air conditioning  

DOE Green Energy (OSTI)

There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

Dieckmann, J.; Mallory, D. (Little (Arthur D.), Inc., Cambridge, MA (United States))

1991-07-01T23:59:59.000Z

256

Solar powered desiccant air conditioning system. Final report  

DOE Green Energy (OSTI)

A solar-powered desiccant air conditioning system using silica gel has been developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed. (LEW)

Not Available

1981-07-24T23:59:59.000Z

257

Solar air conditioning system using desiccant wheel technology  

Science Conference Proceedings (OSTI)

The electrical energy consumption in Malaysia has increased sharply in the past few years. Modern energy efficient technologies are desperately needed for the national energy policy. In this paper, a new design of desiccant cooling is being developed ... Keywords: air-conditioning, desiccant cooling, solar thermal energy, solid desiccant

Arfidian Rachman; Sohif Mat; Taib Iskandar; M. Yahya; Azami Zaharim; Kamaruzzaman Sopian

2010-10-01T23:59:59.000Z

258

Active noise control: A tutorial for HVAC designers  

Science Conference Proceedings (OSTI)

This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

Gelin, L.J.

1997-08-01T23:59:59.000Z

259

Building Energy Software Tools Directory : HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Back to Tool HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD...

260

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network (OSTI)

LBNL-63806 Refrigeration, Air Conditioning, & Electric Powerand its Applications in Air Conditioning and Refrigeratingand its applications in Air Conditioning and refrigerating

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ameren Illinois (Electric) - Custom, HVAC, and Motor Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom, HVAC, and Motor Business Efficiency Incentives Ameren Illinois (Electric) - Custom, HVAC, and Motor Business Efficiency Incentives Eligibility Commercial Industrial...

262

Research on Fuzzy Regulation Strategies in the Constant Air Volume Air Conditioning System  

E-Print Network (OSTI)

The energy consumption of the constant air volume (CAV) system largely depends on the regulation strategies. Although some air conditioning systems are equipped with automatic regulation devices, others lack effective regulation strategies. To avoid wasting energy and presenting simple regulation methods, fuzzy regulation strategies for CAV systems are studied in this research. A CAV system of an office building is modeled and simulated with the Designer's Simulation Toolkit (DeST). The operating parameters are calculated based on the instantaneous load obtained from simulation. The operation of the system is divided into five stages according to different conception of cold or hot in different seasons. The relationship between the outdoor air temperature and the fresh air volume, and the supply air temperature is presented in the form of fuzzy rules. Then the building is simulated under different load conditions and the operating parameters are obtained from fuzzy reasoning. Finally, the effect of fuzzy strategies on energy consumption is analyzed and compared with the effects of the operating parameters obtained from simulation. The results show that energy consumption using a fuzzy regulation strategy is close to the energy consumption of knowing the exact load of the building, while the fuzzy regulation strategy can largely simplify the regulation of the air conditioning system.

Bai, T.; Zhang, J.; Ning, N.; Tong, K.; Wu, Y.; Wang, H.

2006-01-01T23:59:59.000Z

263

High-Speed Internet Access via HVAC Ducts: A New Approach Daniel D. Stancil, Ozan K. Tonguz, Ariton Xhafa, Ahmet Cepni, and Pavel Nikitin  

E-Print Network (OSTI)

High-Speed Internet Access via HVAC Ducts: A New Approach Daniel D. Stancil, Ozan K. Tonguz, Ariton conditioning (HVAC) ducts for indoor wireless transmission systems and networks. Mea- surements and system to 100 Mbps should be possible, when HVAC system is used in con- junction with OFDM technology. Keywords

Stancil, Daniel D.

264

Performance assessment on continuous air monitors under real operating conditions  

Science Conference Proceedings (OSTI)

In the nuclear industry, workers may be exposed to artificial radioactive aerosols. These aerosols are generally composed of particles with a diameter measuring between 0.1 {mu}m and 10 {mu}m. To protect workers in nuclear facilities, monitors that continuously measure radioactivity in the air are used. The main function of the monitor is to provide real-time measurement of activity concentration. Measurement of aerosol activity concentration can be affected by a number of factors specific to the aerosols and the instrument. The first part of the article will present the general operating principles of continuous air monitors (CAMs) and inherent measurement difficulties, as well as the main standard tests. The second section describes the experimental ICARE facility The ICARE facility generates standard artificial and natural radioactive aerosols for calibrating continuous air monitors under real operating conditions. (authors)

Monsanglant-Louvet, C.; Liatimi, N.; Gensdarmes, F. [Inst. of Radioprotection and Nuclear Safety- IRSN, Saclay (France)

2011-07-01T23:59:59.000Z

265

High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying  

SciTech Connect

Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create maintenance problems nor will it significantly increase operating expenses. An energy balance on the boiler showed that heat loss through the insulated jacket was 10%. This value is much higher than the 2% to 5% that is typical of most boilers and indicates a need to better insulate the unit. With insulation that brings jacket losses down to 5%, a 1?-effect regenerator that uses this boiler as its high-temperature stage will have a gas-based COP of 1.05. The estimated cost to manufacture a 300-lb/h, 1?-effect regenerator at 500 units per year is $17,140. Unfortunately, the very high cost for natural gas that now prevails in the U.S. makes it very difficult for a gas-fired LDAC to compete against an electric vapor-compression air conditioner in HVAC applications. However, there are important industrial markets that need very dry air where the high price of natural gas will encourage the sale of a LDAC with the 1?-effect regenerator since in these markets it competes against less efficient gas-fired desiccant technologies. A manufacturer of industrial dehumidification equipment is now negotiating a sales agreement with us that would include the 1?-effect regenerator.

Andrew Lowenstein

2005-12-19T23:59:59.000Z

266

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

267

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network (OSTI)

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal resistance in air conditioned buildings. Effect of glass wall radiation temperature on the indoor temperature distribution of building rooms is also investigated. Heat gain through various types of glass is discussed. Optimization and testing of these types are carried out theoretically and experimentally as well. A series of experiments on different types of glass with special strips is performed.

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

268

Solar air-conditioning-active, hybrid and passive  

DOE Green Energy (OSTI)

After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

Yellott, J. I.

1981-04-01T23:59:59.000Z

269

Service center to test solar air-conditioning system  

Science Conference Proceedings (OSTI)

Field testing of an advanced solar-powered air-conditioning system developed under the joint Saudi Arabia-US Agreement for Cooperation in the Field of solar Energy (SOLERAS) will be conducted in Arizona over a three-phase 34-month perod. Participants in the program and their contribution are cited. The solar-Rankine alternative to conventional systems using electricity or fossil fuels. (DCK)

Not Available

1980-02-14T23:59:59.000Z

270

Fetz Plumbing, Heating & Air Conditioning | Open Energy Information  

Open Energy Info (EERE)

Fetz Plumbing, Heating & Air Conditioning Fetz Plumbing, Heating & Air Conditioning Jump to: navigation, search Name Fetz Plumbing, Heating & Air Conditioning Address 115 Washington Street - P.O. Box 516 Place Urbana, Ohio Zip 43078 Sector Efficiency, Geothermal energy, Services, Solar Product Installation; Maintenance and repair Phone number 937-652-1136 Website http://fetzphc.com Coordinates 40.108862°, -83.757291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.108862,"lon":-83.757291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Development Practice in HVAC Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Practice in HVAC Controls Development Practice in HVAC Controls Speaker(s): John Zhou Date: April 11, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation will introduce development tools and design considerations used in HVAC controls development. Controls development use simulation, lab testing and field trial at different phases of the project cycle to improve control performance and to achieve rapid development. Development starts with simulation to originate and define algorithm concept. The concept is then implemented in a prototype controller, and tested in lab environment. The concept is refined and verified by analyzing lab results. In the final phase of development, controllers with refined and verified algorithms are installed in field trial sites to ensure system integration and to confirm

272

Analysis of Innovative HVAC System Technologies and Their Application for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

ABSTRACT Analysis of Innovative HVAC System Technologies and Their Application for Office Buildings in Hot and Humid Climates. (December 2010) Oleksandr Tanskyi, B.S., National Technical University of Ukraine; M.S., National Technical University of Ukraine Co-Chairs of Advisory Committee: Dr. David E. Claridge Dr. Michael B. Pate The commercial buildings sector in the United States used 18% (17.93 Quads) of the U.S. primary energy in 2006. Office buildings are the largest single energy consumption category in the commercial buildings sector of the United States with annual energy consumption around 1.1 Quads. Traditional approaches used in commercial building designs are not adequate to save energy in both depth and scale. One of the most effective ways to reduce energy consumption is to improve energy performance of HVAC systems. High-performance HVAC systems and components, as well as application of renewable energy sources, were surveyed for buildings in hot and humid climates. An analysis of performance and energy saving potential estimation for selected HVAC systems in hot and humid climates was developed based on energy consumption simulation models in DOE-2.1E. A calibrated energy consumption model of an existing office building located in the hot and humid climate conditions of Texas was developed. Based on this model, the energy saving potential of the building was estimated. In addition, energy consumption simulation models were developed for a new office building, including simulation of energy saving measures that could be achieved with further improvements of HVAC system above the energy conservation codes requirements. The theoretical minimum energy consumption level for the same office building was estimated for the purpose of evaluating the whole building energy efficiency level. The theoretical minimum energy consumption model of the office building was designed to provide the same level of comfort and services to the building occupants as provided in the actual building simulation model. Finally, the energy efficiency of the building that satisfies valid energy conservation codes and the building with an improved HVAC system was estimated based on theoretically minimum energy consumption level. The analysis provided herein can be used for new building practitioners and existing building owners to evaluate energy reduction potential and the performance of innovative technologies such as dedicated outdoor air system, displacement ventilation, improved cooling system efficiency, air source heat pumps and natural gas heat pumps.

Tanskyi, Oleksandr

2010-12-01T23:59:59.000Z

273

High Technology Centrifugal Compressor for Commercial Air Conditioning Systems  

Science Conference Proceedings (OSTI)

R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

Ruckes, John

2006-04-15T23:59:59.000Z

274

Grundfos HVAC OEM Efficient water hydraulics  

E-Print Network (OSTI)

Grundfos HVAC OEM Efficient water hydraulics for Heat Pumps Anders Mønsted GRUNDFOS Holding A/S Group Technical Key Account Manager HVAC OEM Project Management http://net.grundfos.com/doc/webnet/hv acoem/index.htmlOEM online #12;Introduction Grundfos Company Grundfos HVAC OEM Current Circulator Range

Oak Ridge National Laboratory

275

Energirigtige pumpekoblinger i HVAC-systemer  

E-Print Network (OSTI)

Energirigtige pumpekoblinger i HVAC-systemer PSO 2003 - FORSKNING & UDVIKLING I EFFEKTIV energieffektive HVAC-aggregater #12;InformationomProjektnr.:335-021 PROCESSEN: Projektet er gennemført af en reguleringsprincipper, mens Exhausto har leveret HVAC-aggregat og knowhow inden for klimasystemer. Grundfos

276

MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS  

E-Print Network (OSTI)

LBNL-49339 MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS J.A. Siegel1,3 * and W.W. Nazaroff2 Department of Energy under contract DE-AC03-76SF00098. #12;MODELING PARTICLE DEPOSITION ON HVAC HEAT, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy. INDEX TERMS HVAC, Fouling

277

CALIFORNIA ENERGY Small HVAC Database Of Monitored  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC Database Of Monitored Information Database of Compiled of the Integrated Design of Small Commercial HVAC Systems research project. The reports are a result of funding: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

278

CALIFORNIA ENERGY Small HVAC System Design Guide  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

279

SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE  

E-Print Network (OSTI)

1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

280

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CALIFORNIA ENERGY Small HVAC Problems and Potential  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC Problems and Potential Savings Reports Summary of Problems of the Integrated Design of Small Commercial HVAC Systems research project. The reports are a result of funding: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

282

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

provide building space conditioning. In an all-air system,process that provides space conditioning to the buildingIt indicates building space conditioning requirements. In

Franconi, E.

2011-01-01T23:59:59.000Z

283

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

ASHRAE: American Society of Heating, Refrigerating, and Air-Conditioning Engineers Btu: British thermal unit CAV: constant air volume CCZ: California climate zone

Federspiel, Clifford

2010-01-01T23:59:59.000Z

284

Effect of Intake Air Filter Condition on Vehicle Fuel Economy  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2009-02-01T23:59:59.000Z

285

Application of Multizone HVAC Control Using Wireless Sensor Networks and Actuating Vent Registers  

E-Print Network (OSTI)

Most residential heating, ventilating, and air conditioning (HVAC) systems are designed to treat the home as a single zone. Single zone control consists of one thermostat, in a central area of the house that controls the HVAC operation. In a single zone system all of the vent registers are open, distributing air into all areas of the house at once. Single zone control leads to wasted energy for two reasons - all rooms being conditioned when they are not occupied, and conditioning occupied rooms, without maintaining them at the comfortable temperature for the occupants. Improved control of residential cooling and heating can be attained with a variable HVAC fan, duct, and vent system. Existing single zone systems are expensive to retrofit with the above mentioned features. Current techniques require replacing major components in the HVAC system which are both costly and time consuming, invading the user's home. An alternative to the extensive retrofit is detailed in this work. The experiments in this paper implement an automated vent louver system to solve two problems in heating homes: the problem of temperature stratification between floors and zonification between rooms, and the energy wasted to heat in unoccupied areas of the home. This paper considers the application of replacing the standard vents in each room with wireless controlled louvered vents. These vents allow for simpler, more cost effective retrofits which are also less invasive tithe end user's home. The experiments in this paper implement an automated vent louver system to reduce the energy wasted to heat unoccupied areas of the home. This test house in these experiments was a two story home. Wireless sensor-actuator networks were used to automate the test of closing off vent registers while maintaining the appropriate temperature set point in a control zone. A control zone consists of the house area where the vents are fully open. Controlling the vent registers allowed for reduced zonification between rooms on the same floor, and reduced stratification between the upstairs and downstairs. Energy savings were shown when vents were closed to heat the control zones containing the bedroom, of the office.

Watts, W.; Koplow, M.; Redfern, A.; Wright, P.

2007-01-01T23:59:59.000Z

286

Interdisciplinary Innovation and Vision in the HVAC  

E-Print Network (OSTI)

High energy costs in buildings are forcing the building owners, developers, fund and facility managers to find alternate energy efficiency methods while improving the indoor air quality and thus the comfort level of the room occupants. High potentials for optimizing costs can be found in the HVAC systems when calculated over the total Life-Cycle-Cost (LCC) of a building incorporating planning through to facility management. This requires an accurate plan specifying an efficient technical operating method with optimized energy cost efficiency and comfort for the room occupants. In turn, the plan should be considered in any bidding process. Multisensory equipment is an integral part of the LCC concept and should not be underestimated in its impact on energy efficiency. The possibility of customizing the requirements of the room occupants should be included in each specification of a building/room automation system. The following case study will explain how modern sensory systems can be used for investment and energy savings in various HVAC system.

Hecker, T.

2008-01-01T23:59:59.000Z

287

Vehicle Transient Air Conditioning Analysis: Model Development& System Optimization Investigations  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date. The work focuses on R-134a A/C systems, but future efforts will modify the model to investigate the transient performance of alternative refrigerant systems such as carbon dioxide systems. NREL is integrating its transient air conditioning model into NRELs ADVISOR vehicle system analysis software, with the objective of simultaneously optimizing A/C system designs within the overall vehicle design optimization.

Hendricks, T. J.

2001-06-01T23:59:59.000Z

288

Fight Fall Allergies and Save Energy by Checking Your HVAC System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fight Fall Allergies and Save Energy by Checking Your HVAC System Fight Fall Allergies and Save Energy by Checking Your HVAC System Fight Fall Allergies and Save Energy by Checking Your HVAC System October 15, 2012 - 3:19pm Addthis Change your furnace filter to help keep allergies at bay and keep your furnace and air conditioner running efficiently. | Photo courtesy of ©iStockphoto.com/JaniceRichard. Change your furnace filter to help keep allergies at bay and keep your furnace and air conditioner running efficiently. | Photo courtesy of ©iStockphoto.com/JaniceRichard. Elizabeth Spencer Communicator, National Renewable Energy Laboratory What does this mean for me? Change your furnace filters every month or two to keep your HVAC equipment operating efficiently. I have unbelievably horrible fall allergies. I've never figured out what

289

Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

Baxter, Van D [ORNL

2006-11-01T23:59:59.000Z

290

Benefits and technological challenges in the implementation of TiO2-based ultraviolet photocatalytic oxidation (UVPCO) air cleaners  

Science Conference Proceedings (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects student health and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air-conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent to which filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Hodgson, Al; Destaillats, Hugo; Hotchi, Toshifumi; Fisk, William J.

2008-10-01T23:59:59.000Z

291

REFRIGERATIONREFRIGERATION ((svsv: Kylteknik): Kylteknik) 424503 E424503 E 20102010 #7#7 --rzrz 7. Air conditioning, cooling towers7. Air conditioning, cooling towersg, gg, g  

E-Print Network (OSTI)

the top of the tower An (earlier) alternative is to use a spray pond to cool water; disadvantages. Air conditioning, cooling towers7. Air conditioning, cooling towersg, gg, g Ron Zevenhoven ??bo, is the hi htemperature at which condensation begins when air is cooled at constant pressurecooled

Zevenhoven, Ron

292

Commissioning and Diagnosis of VAV Air-Conditioning Systems  

E-Print Network (OSTI)

This paper presents a fault detection and diagnosis (FDD) strategy based on system knowledge, qualitative states and object-oriented statistical process control (SPC) models for typical pressure-independent variable air volume (VAV) air-conditioning systems. Eight FDD schemes are built to detect the eleven pre-defined VAV faults using the qualitative and quantitative FDD approaches within the strategy at two steps. The ten hard faults, which would affect the system operation, are analyzed at Step 1. The soft fault, which would not affect the basic system operation but would impact the supervisory controls, is analyzed at Step 2. The strategy is tested and validated on typical VAV systems involving multiple faults, both in simulation and in-situ tests. A software package is developed as a BMS-assisted automatic commissioning tool based on the FDD strategy. Off-line tests were conducted in both the simulated building and the real building.

Qin, J.; Wang, S.; Chan, C.; Xiao, F.

2006-01-01T23:59:59.000Z

293

Reducing air conditioning waste by signalling it is cool outside  

SciTech Connect

This experiment looked at the effects on residential energy consumption of providing homeowners with (1) a signalling device that indicated a conservation opportunity and (2) information feedback about their rate of energy use. The signalling device operated when the outside temperature was below 68F and the air conditioner was on. Homeowners were told that the signalling device indicated when they could cool their house effectively by opening the windows and turning off their air conditioner. Forty households were randomly assigned to one of four conditions: signalling device only, feedback only, both, neither. The results showed a significant 15.7% decrease in energy use for those households with the signalling devices. Neither the feedback nor interaction effect was significant. The advantages and disadvantages of having people in the control cycle were discussed. 4 references, 1 table.

Becker, L.J.; Seligman, C.

1978-07-01T23:59:59.000Z

294

A new modelling methodology to control HVAC systems  

Science Conference Proceedings (OSTI)

Thermal comfort plays an important role in any working environment, but it is a very vague term and it is also very difficult to represent it on modern computers. Its proper definition could be a condition of the mind which expresses satisfaction with ... Keywords: Control, Energy, HVAC, Model, Thermal comfort

Jos A. Orosa

2011-04-01T23:59:59.000Z

295

Liquid over-feeding air conditioning system and method  

DOE Patents (OSTI)

A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

Mei, V.C.; Chen, F.C.

1993-09-21T23:59:59.000Z

296

Liquid over-feeding air conditioning system and method  

DOE Patents (OSTI)

A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

1993-01-01T23:59:59.000Z

297

Simulation model air-to-air plate heat exchanger  

Science Conference Proceedings (OSTI)

A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

Wetter, Michael

1999-01-01T23:59:59.000Z

298

An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 3, Humidity, Temperature, and Pressure Sensitivity Test Results  

Science Conference Proceedings (OSTI)

This is the third paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the humidity, temperature, and pressure sensitivity of the sensors. This paper reports the performance of the sensors at various relative humidity, temperature, and pressure levels common to building HVAC applications and provides a comparison with manufacturer specifications. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration. The sensors were tested in a chamber specifically fabricated for this research. A description of the apparatus and the method of test are described in Part 1 (Shrestha and Maxwell 2009). The test result showed a wide variation in humidity, temperature, and pressure sensitivity of CO2 sensors among manufacturers. In some cases, significant variations in sensor performance exist between sensors of the same model. Even the natural variation in relative humidity could significantly vary readings of some CO2 sensor readings. The effects of temperature and pressure variation on NDIR CO2 sensors are unavoidable without an algorithm to compensate for the changes. For the range of temperature and pressure variation in an air-conditioned space, the effect of pressure variation is more significant compared to the effect of temperature variation.

Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

2010-01-01T23:59:59.000Z

299

Weatherking Heating & Air conditioning | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Weatherking Heating & Air conditioning Jump to: navigation, search Name Weatherking Heating & Air conditioning Address 51 Meadow Lane Place Northfield, Ohio Zip 44067 Sector Buildings, Efficiency, Geothermal energy, Renewable Energy, Services Product Business and legal services; Energy audits/weatherization; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair; Retail product sales and distribution Phone number 330-908-0281 Website http://www.weatherking1.com Coordinates 41.3340869°, -81.530299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3340869,"lon":-81.530299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network (OSTI)

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered in as many projects as are Absorption. units. Where once the only studies being analyzed were absorption vs. electric chiller operation costs. Now, the choice is: Why, Where, and How to choose between gas fired Absorption and GED chillers. WHY Absorption or Engine ? . Absorption uses the most environmentally friendly refrigerant - water. . Absorption chillers are chiller/heaters Absorption chillers are manufactured by the four US major manufacturers Absorption chillers have few moving parts . Engine chillers provide "free" hot water Engine chillers retrofit with DX systems . Engine chillers use less gas per ton WHERE Do Absorption And Engine Chillers Belong? . Absorption: Office buildings, restaurants, industries, churches, universities . Engine: Hospitals, universities, hotels, apartments, industries HOW To Choose Between Absorption And Engine Chillers? Energy cost Operation and maintenance costs Equipment cost Environmental concerns Thermal requirements . Space requirements Staff experience

Phillips, J. N.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Strategy Guideline: Compact Air Distribution Systems  

SciTech Connect

This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

Burdick, A.

2013-06-01T23:59:59.000Z

302

Regression Forecasting of the Onset of the Indian Summer Monsoon with Antecedent Upper Air Conditions  

Science Conference Proceedings (OSTI)

It is shown that the recorded onset dates of the summer monsoon in southwestern India can be closely related functionally to the antecedent upper air conditions. The antecedent upper air conditions are represented by April mean values of the ...

Ernest C. Kung; Taher A. Sharif

1980-04-01T23:59:59.000Z

303

Table HC2.6 Air Conditioning Characteristics by Type of Housing ...  

U.S. Energy Information Administration (EIA)

Table HC2.6 Air Conditioning Characteristics by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Characteristics Attached 2 to 4 Units 5 or More

304

Evaluation of air-conditioning compressor performance for assessment of load management potential  

Science Conference Proceedings (OSTI)

Residential air-conditioning contributes heavily to the electrical utilities' summer peak demand. Cycling programs in which utilities turn off air-conditioning compressors a certain percentage of each hour through remotely-controlled switches can help ...

Jerry R. Harber; Aileen Henson

1982-04-01T23:59:59.000Z

305

STATE OF CALIFORNIA CERTIFICATE OF COMPLIANCE, PRESCRIPTIVE HVAC ALTERATIONS  

E-Print Network (OSTI)

STATE OF CALIFORNIA CERTIFICATE OF COMPLIANCE, PRESCRIPTIVE HVAC ALTERATIONS CEC-MECH-1C-ALT-HVAC (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE MECH-1C-ALT-HVAC Prescriptive HVAC Steps" column below. Note: After installation of HVAC units and/or ducts, the Installation

306

Preliminary guidelines for condition assessment of buildings being considered for solar retrofit  

DOE Green Energy (OSTI)

The report contains a general description of methods currently available for condition assessment of the structural; heating, ventilating, and air conditioning (HVAC); electrical; and plumbing systems of an existing building, in order to determine the feasibility of rehabilitation for solar retrofit.

Lerchen, F.H.; Pielert, J.H.; Chen, P.T.

1981-07-01T23:59:59.000Z

307

An overview of solar assisted air-conditioning system application in small office buildings in Malaysia  

Science Conference Proceedings (OSTI)

In many regions of the world especially tropical weather in Malaysia, the demand for cooling of indoor air is growing due to increasing comfort expectations and increasing cooling loads. Air-conditioning, the most common cooling mechanism for providing ... Keywords: Malaysian climatic conditions, absorption chiller, evacuated tube solar collector, high energy consumption, peak load demand, solar assisted air conditioning system, solar energy

Lim Chin Haw; Kamaruzzaman Sopian; Yusof Sulaiman

2009-02-01T23:59:59.000Z

308

Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report  

Science Conference Proceedings (OSTI)

This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL

2009-02-01T23:59:59.000Z

309

Assessment of Commercial Space Conditioning Technologies: Variable Capacity Rooftop Units  

Science Conference Proceedings (OSTI)

Space conditioning in U.S. commercial buildings is commonly performed by a packaged air-source rooftop unit (RTU). In recent years, heating, ventilation, and air-conditioning (HVAC) manufacturers have begun to develop RTUs with higher efficiency through the implementation of variable capacity technology. Variable capacity RTUs potentially offer electric utilities a new resource for achieving energy and peak power reduction. This document aims to serve as a resource for electric utilities in ...

2013-12-16T23:59:59.000Z

310

HVAC Technician | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Technician HVAC Technician Department: Facilities Supervisor(s): Tom Ward Staff: L&S 07 Requisition Number: 1300884 Under the supervision of the General Lead Technician and Lead HVAC Technician, the incumbent will be responsible for the installation, preventative maintenance, troubleshooting and repair of various HVAC and refrigeration equipment; local HVAC control systems and ancillary support equipment; and will work with other groups within the Division and throughout the Laboratory to ensure long-term, safe and efficient operation of HVAC and refrigeration systems. All tasks must be completed in a timely, cost efficient manner, support on-going sustainability initiatives and energy efficiency programs at the Laboratory. The incumbent is expected to utilize thorough theoretical knowledge and techniques to accomplish

311

Solar liquid-desiccant air-conditioning system. Final report  

DOE Green Energy (OSTI)

A design for a closed, diurnal, intermittent absorption chiller for passive solar air-conditioning using liquid sorbents has been constructed and tested. LiBr-H/sub 2/O will not work with this design because of its low vapor pressure at the temperature available. The approach has possibilities using the 2 LiBr-ZrBr-CH/sub 3/OH or H/sub 2/O-NH/sub 3/ sorbent refrigerant pairs. The use of H/sub 2/O-NH/sub 3/ appears to be the better candidate because of the lower solution viscosity and less cycle weight, through tank volumes and collector requirements are similar. Further study of other refrigerant pairs such as S-Thiocyanate-ammonia is indicated, however, the difficulties encountered in construction and low potential coefficient of performance, and thus large collection area needed, makes commercialization of such a system doubtful in the foreseeable future.

Not Available

312

Electrical applications for air conditioning and refrigeration systems  

Science Conference Proceedings (OSTI)

Electrical troubleshooting is possibly the most neglected area of maintaining air conditioning and refrigeration equipment. This text explains and illustrates methods for troubleshooting the full spectrum of electrical or electronic circuits of these systems. Comprehensive sections offer coverage of electrical fundamentals, single-phase electric motors, three-phase motors, control devices, electrical control circuits, use of schematic diagrams in troubleshooting, ice makers, solid state electronics, and basic electronic controls. The author`s clear, concise coverage of controls enables one to quickly understand both how a specific type of control works, and how it is used in the system. The reader will find a wealth of useful instructions for making operational checks and troubleshooting for proper operation. The book is conveniently divided into application-specific units, making it easy to quickly find information specific to a particular job at hand.

Langley, B.C.

1999-09-01T23:59:59.000Z

313

DEMONSTRATION OF A HYBRID INTELLIGENT CONTROL STRATEGY FOR CRITICAL BUILDING HVAC SYSTEMS  

SciTech Connect

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control. Within these facilities, PID control is often inadequate to maintain desired performance due to changing operating conditions. As the goal of the Heating, Ventilation and Air-Conditioning (HVAC) control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore a hybrid design using the integration of soft control methods with hard control methods is developed and demonstrated to account for these errors and nonlinearities.

Craig Rieger; D. Subbaram Naidu

2010-06-01T23:59:59.000Z

314

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

315

Advanced Strategy Guideline: Air Distribution Basics and Duct Design  

SciTech Connect

This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

Burdick, A.

2011-12-01T23:59:59.000Z

316

State-of-the-art sports facility's HVAC  

SciTech Connect

This article describes the HVAC systems design to keep Cleveland's new Gateway sports and entertainment complex comfortable. This magnificent new facility embraces the 42,000-seat Jacobs Field, with its natural grass playing surface, and the 21,000-seat Arena at Gateway (the official name will be announced at its August 1 opening). The Arena is the new home of the Cleveland Cavaliers NBA basketball team and the Lumberjacks IHL ice hockey team. Other events that will be held here include arena football, circuses, ice shows, and concerts. It is anticipated that the Arena will be in use in excess of 200 days a year for these and other functions. The ballpark and the arena are separated by Gateway Plaza, a large illuminated public space that also will be the site of various entertainment events. An air conditioned pedestrian bridge, approximately 0.7 miles in length, connects the Arena with the Regional Transit Authority's downtown rapid transit station. Other enclosed walkways connect the Arena with two parking garages (3,158 vehicles total) and the larger garage with Jacobs Field.

Horton, M.K. (Gateway Sports Complex, Cleveland, OH (United States))

1994-08-01T23:59:59.000Z

317

A Quasi-Dynamic HVAC and Building Simulation Methodology  

E-Print Network (OSTI)

This thesis introduces a quasi-dynamic building simulation methodology which complements existing building simulators by allowing transient models of HVAC (heating, ventilating and air-conditioning) systems to be created in an analogous way to their design and simulated in a computationally efficient manner. The methodology represents a system as interconnected, object-oriented sub-models known as components. Fluids and their local properties are modeled using discrete, incompressible objects known as packets. System wide pressure and flow rates are modeled similar to electrical circuit models. Transferring packets between components emulates fluid flow, while the system wide fluid circuit formed by the components' interconnections determines system wide pressures and flow rates. A tool named PAQS, after the PAacketized Quasi-dynamic Simulation methodology, was built to demonstrate the described methodology. Validation tests of PAQS found that its steady state energy use predictions differed less than 3% from a comparable steady state model. PAQS was also able to correctly model the transient behavior of a dynamic linear analytical system.

Davis, Clinton Paul

2012-05-01T23:59:59.000Z

318

Particulate Fouling of HVAC Heat Exchangers Jeffrey Alexander Siegel  

E-Print Network (OSTI)

Particulate Fouling of HVAC Heat Exchangers by Jeffrey Alexander Siegel B.S. (Swarthmore College.......................................................................................xv CHAPTER 1: PARTICULATE FOULING OF HVAC HEAT EXCHANGERS ....1 1.1 Introduction.......................................................................11 CHAPTER 2: MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS

Siegel, Jeffrey

319

Building Energy Software Tools Directory: HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Carmel Software logo HVAC Residential Load Calcs HD is a comprehensive HVAC heating and cooling load calculation application for the...

320

Wireless Temperature Sensors for Improved HVAC Control  

NLE Websites -- All DOE Office Websites (Extended Search)

reliable, and affordable and affordable Wireless Temperature Sensors for Improved HVAC Control An assessment of wireless sensor technology Executive Summary This Technology...

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Columbia Water & Light- Residential HVAC Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

322

Effectiveness of Shading Air-Cooled Condensers of Air-Conditioning Systems  

E-Print Network (OSTI)

In air-conditioning (A/C) systems with air-cooled condensers, the condensing unit has to be kept in the open for easy access to outdoor air in order to efficiently dissipate heat. During daytime, the solar radiation falling on the surfaces of the condenser and the high ambient temperatures can be detrimental for the energy performance. The effectiveness of shading the condensing unit to mitigate this adverse impact is investigated in this paper. A limiting analysis compares the performance of several A/C systems with ideal shade to those with ideal solar heat gain. The comparison is based on a theoretical model and data from equipment catalogs. The theoretical increase in the coefficient of performance (COP) due to shading is found to be within 2.5%. Furthermore, this small improvement in ideal efficiency decreases at higher ambient temperatures, when enhancements to efficiency are more needed. The actual efficiency improvement due to shading is not expected to exceed 1%, and the daily energy savings will be lower.

ElSherbini, A.; Maheshwari, G. P.

2010-01-01T23:59:59.000Z

323

COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS  

SciTech Connect

Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

2004-10-31T23:59:59.000Z

324

A Qualitive Modeling Approach for Fault Detection and Diagnosis on HVAC Systems  

E-Print Network (OSTI)

This paper describes the basics and first test results of a model based approach using qualitative modeling to perform Fault Detection and Diagnostics (FDD) on HVAC and R systems. A quantized system describing the qualitative behavior of a dynamical system is established by transforming numerical inputs into qualitative values or states. Then, the qualitative model is used to determine system-states or outputs that may occur in the future. The qualitative model determines the probability that a subsequent condition might occur. The model can then be used for FDD purposes by comparing the expected states of the faultless system with the occurring states of the real process. The paper presents the first results of the model, trained with measurement data of an air handling unit (AHU) heating coil. The authors plan to extend the model to further AHU components and to test them against real data to assess their performance for FDD and their economic viability in terms of engineering efforts and costs by comparing them with a rule-based FDD system. It is then planned to implement and test the models on several large HVAC and R systems operating at two major European airports in the framework of the FP7 European project CASCADE ICT for Energy Efficient Airports.

Muller, T.; Rehault, N.; Rist, T.

2013-01-01T23:59:59.000Z

325

Measuring rates of outdoor airflow into HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring rates of outdoor airflow into HVAC systems Title Measuring rates of outdoor airflow into HVAC systems Publication Type Journal Article LBNL Report Number LBNL-51583 Year...

326

Report on HVAC Option Selections for a Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report on HVAC Option Selections for a Relocatable Classroom Energy and Indoor Environmental Quality Field Study Title Report on HVAC Option Selections for a Relocatable Classroom...

327

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

328

Modeling and Simulation of HVAC Faulty Operations and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues Title Modeling and Simulation of HVAC Faulty Operations and Performance...

329

Improving Relocatable Classroom HVAC For Improved IEQ And Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Relocatable Classroom HVAC For Improved IEQ And Energy Efficiency Title Improving Relocatable Classroom HVAC For Improved IEQ And Energy Efficiency Publication Type...

330

DOE Convening Report on Certification of Commercial HVAC and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Convening Report on Certification of Commercial HVAC and CRE Products DOE Convening Report on Certification of Commercial HVAC and CRE Products This document is the convening...

331

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

332

Ameren Illinois (Electric) - Custom, HVAC, and Motor Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Custom, HVAC, and Motor Business Efficiency Incentives Ameren Illinois (Electric) - Custom, HVAC, and Motor Business Efficiency Incentives < Back...

333

Monitoring-based HVAC Commissioning of an Existing Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiency Title Monitoring-based HVAC Commissioning of an Existing Office Building for Energy...

334

Chapter 5: Lighting, HVAC, and Plumbing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Lighting, HVAC, and Plumbing Chapter 5: Lighting, HVAC, and Plumbing Chapter 5 of the LANL Sustainable Design Guide with guidelines for developing sustainable, healthy,...

335

Comparison of Building Energy Modeling Programs: HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Programs: HVAC Systems Title Comparison of Building Energy Modeling Programs: HVAC Systems Publication Type Report LBNL Report Number LBNL-6432E Year of Publication 2013...

336

Modeling and simulation of HVAC faults in EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation of HVAC faults in EnergyPlus Title Modeling and simulation of HVAC faults in EnergyPlus Publication Type Conference Paper Refereed Designation Refereed Year of...

337

New and Underutilized Technology: HVAC Occupancy Sensors | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Occupancy Sensors New and Underutilized Technology: HVAC Occupancy Sensors October 4, 2013 - 4:20pm Addthis The following information outlines key deployment considerations...

338

Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness  

SciTech Connect

Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

Jalalzadeh-Azar, A. A.

2007-01-01T23:59:59.000Z

339

Experimental Investigation on the Operation Performance of a Liquid Desiccant Air-conditioning System  

E-Print Network (OSTI)

A large share of energy consumption is taken by an air-conditioning system. It worsens the electricity load of the power network. Therefore, more and more scholars are paying attention to research on new types of air-conditioning systems that are energy- saving and environment-friendly. A liquid desiccant air conditioning system is among them, as it has a tremendous ability for power storage and low requirements for heat resources. Heat with low temperatures, such as excess heat, waste heat, and solar power, is suitable for the liquid desiccant air-conditioning system. The feasibility and economical efficiency of the system are studied in this experimental research. The result shows that when the temperature of the regeneration is about 80?, the thermodynamic coefficient of the system is about 0.6, and the supply air temperature of the air-conditioning system remains stable at 21?, the air-conditioning system can meet human comfort levels.

Liu, J.; Wang, J.; Wu, Z.; Gu, W.; Zhang, G.

2006-01-01T23:59:59.000Z

340

Physical Sciences Facility Air Emission Control Equivalency Evaluation  

SciTech Connect

This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

Brown, David M.; Belew, Shan T.

2008-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Application of State-Of-The-Art HVAC and Building Systems  

E-Print Network (OSTI)

This case study describes the successful application of state-of-the-art HVAC and building systems at a large commercial office and industrial facility. The facility's exterior envelope systems, HVAC systems, lighting systems, energy conservation systems, exhaust/heat recovery/make-up air systems, water cooling systems, compressed air systems, electrical distribution systems, water heating systems, and other systems and measures taken are each discussed in detail. The important role that energy engineering played in the overall planning, design, and management of the project is given particular emphasis. Also, the engineering strategies used to integrate energy efficiency, performance optimization, current technology, and cost effectiveness are underscored throughout.

Fiorino, D. P.

1988-09-01T23:59:59.000Z

342

Measuring advances in HVAC distribution system designs  

Science Conference Proceedings (OSTI)

Substantial commercial building energy savings have been achieved by improving the performance of the HVAC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, Ellen

1998-07-01T23:59:59.000Z

343

Measuring Outdoor Air Intake Rates into Existing Building  

SciTech Connect

Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

2009-04-16T23:59:59.000Z

344

Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions  

SciTech Connect

Demand-side control is playing an increasingly important role in smart grid control strategies. Modeling the dynamical behavior of a large population of appliances is especially important to evaluate the effectiveness of various load control strategies. In this paper, a high accuracy aggregated model is first developed for a population of HVAC units. The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. Furthermore, the model takes into account the lockout effect of the compressor in order to represent the dynamics of the system under control more accurately. Then, a novel closed loop load control strategy is designed to track a desired demand curve and to ensure a stable and smooth response.

Chang, Chin-Yao; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

2013-02-24T23:59:59.000Z

345

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Energy.gov (U.S. Department of Energy (DOE))

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

346

Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System  

E-Print Network (OSTI)

This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system is offered based on the demands of saving energy. The two systems are very similar, which is analyzed in this paper. Using actual engineering, we compute the air flow rate, cold load and energy consumption in detail, and provide some good conclusions.

Guang, L.; Li, R.

2006-01-01T23:59:59.000Z

347

Intelligent Residential Air-Conditioning System with Smart-Grid Functionality  

E-Print Network (OSTI)

1 Intelligent Residential Air-Conditioning System with Smart-Grid Functionality Auswin George residential air-conditioning (A/C) system controller that has smart grid functionality. The qualifier, conditional on anticipated retail energy prices. The term "smart- grid functionality" means that retail energy

Tesfatsion, Leigh

348

Analysis of Air Conditioning Effectiveness vs. Outdoor Conditions: Traditional Bins or Joint Frequency Bins?  

E-Print Network (OSTI)

There are a number of methods used to estimate the effectiveness of air conditioning equipment in handling loads. Full hourly computer simulations are probably the most accurate, but lack flexibility and are more cumbersome to use than more compact approaches. Alternately, some form of binned weather data has been used with load and performance estimation carried out for each of the bin weather conditions. The most common binning method puts weather into bins of dry bulb temperature with mean coincident wet bulb temperatures. Mean coincident humidity terms lose the extreme humidity levels that commonly exist. This can lead one to assume that conditions will be held at all times, while in fact the humidity loads will not be met and discomfort, among other consequences, will result. Three-dimensional plots of the joint frequency results clearly illustrate problem areas. A better procedure, it will be shown, is to use a joint frequency bin data set, which puts hours of occurrence into a matrix with dry bulb ranges on one axis and humidity ratio ranges on the second axis. This form of binning is easily accomplished if a utility like BinMaker is used to generate the binned data set.

Cohen, B. M.

1998-01-01T23:59:59.000Z

349

Outdoor airflow into HVAC systems: An evaluation of measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

Outdoor airflow into HVAC systems: An evaluation of measurement Outdoor airflow into HVAC systems: An evaluation of measurement technologies Title Outdoor airflow into HVAC systems: An evaluation of measurement technologies Publication Type Report LBNL Report Number LBNL-53834 Year of Publication 2003 Authors Fisk, William J., David Faulkner, Douglas P. Sullivan, and William W. Delp Abstract During the last few years, new technologies have been introduced for measuring the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for controlled evaluation of these measurement technologies. The results of tests of three measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The test results indicate that one measurement technology can measure OA flow rates with errors of 20% or less without a field-based calibration, as long as the OA velocities are sufficient to provide an accurately measurable pressure signal. The test results for a second measurement technology are similar; however, a difficult field-based calibration relating the OA flow rate with the pressure signal would be required to reduce errors below approximately 30%. The errors in OA flow rates measured with the third measurement technology, that uses six electronic airspeed sensors downstream of the OA inlet louver, exceeded 100%; however, these errors could be substantially reduced through a difficult field based calibration. The effects of wind on the accuracy of these measurement technologies still needs to be evaluated

350

2013 Energy Code Changes That Effect the HVAC  

E-Print Network (OSTI)

2013 Energy Code Changes That Effect the HVAC Industry Tav Commins Mechanical Engineer California Energy Commission #12;HVAC Mandatory Measures For All Newly Installed Residential HVAC Systems (New Watt Draw at .58 W/CFM, or (return duct and filter sizing) MERV 6 Filter #12;Residential HVAC Measures

California at Davis, University of

351

CALIFORNIA ENERGY Large HVAC Field and Baseline Data  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Field and Baseline Data Field Data Collection: Site Survey of the Integrated Design of Large Commercial HVAC Systems research project. The reports are a result of funding Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

352

Active improvement of air-conditioning system energy consumption with adaptive thermal comfort approach.  

E-Print Network (OSTI)

??The MSc research project aims to suggest improvements to building air-conditioning control systems, to reduce energy consumption while maintaining the comfort level of the occupants. (more)

Muhammad Saleh, Muhammad Fadzli

2013-01-01T23:59:59.000Z

353

Theoretical analysis of the steam pressure exchange ejector for an automotive air conditioning application.  

E-Print Network (OSTI)

?? The project conducted at The George Washington University is a computer simulation and theoretical analysis of the steam pressure exchange ejector air conditioning system (more)

Gould, David

2009-01-01T23:59:59.000Z

354

Effects of ambient humidity on the energy use of air conditioning equipment.  

E-Print Network (OSTI)

??This paper addresses the real-time use of ambient wet bulb temperature measurements in the optimization of building air conditioning system control as a means to (more)

White, Justin George

2010-01-01T23:59:59.000Z

355

The Stakeholders Using Strategy of Diversification for Taiwan's Business Transformation: Case on Air Conditioning Industry.  

E-Print Network (OSTI)

??As environmental protection issue become the most hot global issues recently, Air Conditioning Industry has to face not only its own management and marketing problems, (more)

Hung, Li-Yun

2012-01-01T23:59:59.000Z

356

Study of a solar-assisted air conditioning system for South Africa.  

E-Print Network (OSTI)

??In South Africa, a significant amount of electrical energy is used for air conditioning in commercial buildings, on account of the high humidity experienced. Due (more)

Joseph, Jerusha Sarah.

2012-01-01T23:59:59.000Z

357

Superheat control for air conditioning and refrigeration systems: Simulation and experiments.  

E-Print Network (OSTI)

??Ever since the invention of air conditioning and refrigeration in the late nineteenth century, there has been tremendous interest in increasing system efficiency to reduce (more)

Otten, Richard J.

2010-01-01T23:59:59.000Z

358

Table CE3-3e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Electric Air-Conditioning Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli-

359

Energy studies on central and variable refrigerant flow air-conditioning systems  

Science Conference Proceedings (OSTI)

Air-conditioning is a major contributor to energy end-use in commercial buildings. Different types of airconditioning systems are installed in commercial buildings including packaged systems

2012-01-01T23:59:59.000Z

360

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table CE3-1e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Dollars per Household4,a Electric Air-Conditioning Expenditures per Household ... per Household4 2001 Cooling Degree-Days per Household Total U.S. Households ...

362

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

363

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

364

Table AC6. Average Consumption for Air-Conditioning by Equipment ...  

U.S. Energy Information Administration (EIA)

Central System 5 Table AC6. Average Consumption for Air-Conditioning by Equipment Type, 2005 Million British Thermal Units (Btu) per Household

365

Table CE3-6.2u. Electric Air-Conditioning Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

Table CE3-6.2u. Electric Air-Conditioning Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

366

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the demonstration and testing of ClimaStat for improved rooftop air-conditioning efficiency at the March 15, 2012, Federal Technology Deployment Working Group meeting.

367

Avoiding low frequency noise in packaged HVAC equipment  

Science Conference Proceedings (OSTI)

The purpose of this article is to help those involved in the design and commissioning of packaged HVAC systems to understand the root causes of low frequency noise problems and how to avoid many of them at the design stage. In the 1980's, two things happened to dramatically change the types of noise problems encountered in typical new construction. The first was the introduction of new energy regulations that favored variable air volume (VAV) distribution systems over constant volume air distribution systems. A by-product of VAV design is that mid- and high frequency sound pressure levels produced by current air terminal devices and diffusers in many applications are significantly lower than in the past. The second factor was a trend away from the use of built-up central station fan equipment in favor of packaged, floor-by-floor air handlers or rooftop units. As a result, today's HVAC system noise problems are not confined to just the roar and hiss of the past, but now include intense low frequency rumble and time modulation. Indeed, most current noise problems in modern buildings occur in the frequency range well below 250 Hz. A large fraction of these are a result of the dominant sound pressure levels in the 12 to 40 Hz region. These factors, combined with a substantial increase in the level of low frequency sound from the rest of the system, can produce a non-neutral, time modulated, rumbly sounding background noise that many people find objectionable.

Ebbing, C.E. (Carrier Corp., Syracuse, NY (United States). Commercial Unitary Division); Blazier, W.E.Jr. (Warren Blazier Associates, San Francisco, CA (United States))

1993-06-01T23:59:59.000Z

368

Influence of air conditioning management on heat island in Paris air street temperatures  

E-Print Network (OSTI)

spatial cartography of air- cooled chillers and cooling towers in the city of Paris and surroundings have); secondly the actual situation including individual air dry coolers, wet cooling towers and an urban cooling the air cooling demand. Results of a meso-scale meteorological model (MESO-NH), coupled to an urban energy

369

Salsbury and Diamond: Automated Testing of HVAC Systems for Commissioning -1 -Automated Testing of HVAC Systems for Commissioning  

E-Print Network (OSTI)

and Diamond: Automated Testing of HVAC Systems for Commissioning - 1 - Automated Testing of HVAC Systems This paper describes an approach to the automation of the commissioning of HVAC systems. The approach of many HVAC systems is limited more by poor installation, commissioning, and maintenance than by poor

370

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network (OSTI)

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control setting was detected, and the system performance improved significantly as a result of correcting the fault. Recently, however, problematic issues, such as the malfunction of chillers and deteriorated performance of the heat exchangers, have emerged, resulting in the degradation of overall system performance. This paper describes (a) changes in the energy consumption of the building over a period of eight years during which the HVAC&R system was operated, and (b) problematic issues that arose during system operation in order to identify the energy-saving effects of the system found when energy management of the building is continuously practiced. In this HVAC&R system, about 25% of electric power consumption for wintertime could be saved by checking the system operation during the first two years. After that, the electric power consumption gradually increased due to the system deterioration until 2004, but it decreased again by properly dealing with the problems.

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

371

Ice storage rooftop retrofit for rooftop air conditioning  

SciTech Connect

A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

Tomlinson, J.J. [Oak Ridge National Lab., TN (United States); Jennings, L.W. [Univ. of Tennessee, Knoxville (United States)

1997-09-01T23:59:59.000Z

372

Best Practices for Energy Efficient Cleanrooms Efficient HVAC Systems: Variable-Speed-Drive Chillers  

E-Print Network (OSTI)

resource/24/ ASHRAE handbook HVAC systems and equipments.Efficient Cleanrooms Efficient HVAC Systems: Variable-Speed-Efficient Cleanrooms Efficient HVAC Water Systems: Variable-

Xu, Tengfang

2005-01-01T23:59:59.000Z

373

Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.  

E-Print Network (OSTI)

from Ozone Reaction with HVAC Filters Hugo Destaillats,from Ozone Reaction with HVAC Filters Hugo Destaillatsfrom Ozone Reaction with HVAC Filters Hugo Destaillats

Destaillats, Hugo

2012-01-01T23:59:59.000Z

374

Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems  

E-Print Network (OSTI)

to Retrofitting a Residential HVAC System, Lawrence Berkeleyducts. New downsized ducts and HVAC equipment. The ducts areto Retrofitting Residential HVAC Systems J.A. McWilliams and

McWilliams, Jennifer A.; Walker, Iain S.

2005-01-01T23:59:59.000Z

375

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

and Judkoff, R. 2002. IEA HVAC BESTEST volume 1, Technicaland Judkoff, R. 2004. IEA HVAC BESTEST volume 2, TechnicalOF INNOVATIVE INTEGRATED HVAC SYSTEMS IN BUILDINGS Marija

Trcka, Marija

2010-01-01T23:59:59.000Z

376

Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers  

E-Print Network (OSTI)

ABORATORY Comparisons of HVAC Simulations between EnergyPlusemployer. Comparisons of HVAC Simulations between EnergyPlusThis paper compares HVAC simulations between EnergyPlus and

Hong, Tianzhen

2009-01-01T23:59:59.000Z

377

Improving Indoor Environmental Quality And Energy Performance Of Modular Classroom HVAC Systems  

E-Print Network (OSTI)

Schools (CHPS). 2002. "HVAC Best Practices Manual." CHPSOF MODULAR CLASSROOM HVAC SYSTEMS Michael G. APTE Ph.D. MPHRelocatable Classroom HVAC for Improved IEQ and Energy

Apte, Michael G.; Spears, Michael; Lai, Chi-Ming; Shendell, Derek G.

2005-01-01T23:59:59.000Z

378

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

E-Print Network (OSTI)

VOCs emitted by reactions of HVAC filters with ozone usingChemistry and Emissions on HVAC Filter Materials HugoChemistry and Emissions on HVAC Filter Materials Authors:

Destaillats, Hugo

2010-01-01T23:59:59.000Z

379

HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing  

E-Print Network (OSTI)

2000 Broomes, Peter. , HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , HVAC Results Comparison, April,HVAC Modeling for Cost of Ownership Assessment in

Broomes, Peter; Dornfeld, David A

2003-01-01T23:59:59.000Z

380

Fault Diagnosis of an Air-Conditioning System Using LS-SVM  

Science Conference Proceedings (OSTI)

This paper describes fault diagnosis of an air-conditioning system for improving reliability and guaranteeing the thermal comfort and energy saving. To achieve this goal, we proposed a technique which is model based fault diagnosis technique. Here, a ... Keywords: Air-Conditioning System, FDD, LS-SVM, Residuals generator

Mahendra Kumar; I. N. Kar

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency  

E-Print Network (OSTI)

The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics of the variable refrigerant volume multi-zone air conditioning system, and discusses the advantages of its application.

Zhu, H.

2006-01-01T23:59:59.000Z

382

Performance simulation of R410A air conditioning system with variable speeds  

Science Conference Proceedings (OSTI)

With the implementation of "Montreal protocol on substances that deplete the ozone layer", HCFCs especially R22 will be phased out. R410A (R32/R125,50/50wt%), as one alternative of R22, is a promising refrigerant for air conditioning ... Keywords: R410A, air conditioning, electronic expansion valve, performance, refrigerants, system simulation, variable speeds

Zaoxiao Zhang; Yongzhang Yu; Leping Zhang

2004-12-01T23:59:59.000Z

383

Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates  

SciTech Connect

This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

Shapiro, C.; Aldrich, R.; Arena, L.

2012-07-01T23:59:59.000Z

384

BS-8: HVAC Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

BS-8: HVAC Modeling and Simulation BS-8: HVAC Modeling and Simulation Speaker(s): Darko Sucic Date: December 5, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Industry Foundation Classes (IFC), an object data model of buildings, are being developed by the International Alliance for Interoperability (IAI) to support data sharing and exchange in the building and construction industry. The IAI, founded in 1995, has published four releases of IFC so far. Several prototype implementations by leading software companies show that commercial IFC software is beginning to meet end user expectations of interoperability in the industry. BS-8 is an LBNL project that started last summer. It is developing the IFC HVAC extension schemata that will extend the IFC object data model and support the exchange of HVAC information

385

HVAC Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Equipment Rebate Program HVAC Equipment Rebate Program HVAC Equipment Rebate Program < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Institutional Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Maximum Rebate Rebates of greater than $5,000 require pre-approval Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies depending on technology and efficiency Provider Efficiency Vermont NOTE: Rebate reservations are required for all boiler and furnace projects. Efficiency Vermont offers rebates for commercial installations of high-efficiency HVAC equipment and controls. For businesses and purchases

386

Wireless Demand Response Controls for HVAC  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Demand Response Controls for HVAC Speaker(s): Clifford Federspiel Date: June 22, 2006 - 12:00pm Location: 90-3148 Seminar HostPoint of Contact: Richard Diamond Peng Xu We...

387

Modeling particle deposition on HVAC heat exchangers  

E-Print Network (OSTI)

DEPOSITION ON HVAC HEAT EXCHANGERS JA Siegel 1,3 * and WWof fin-and-tube heat exchangers by particle deposition leadsparticle deposition on heat exchanger surfaces. We present a

Siegel, J.A.; Nazaroff, W.W.

2002-01-01T23:59:59.000Z

388

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network (OSTI)

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery.

Kinnier, R. J.

1979-01-01T23:59:59.000Z

389

Modeling and optimization of building HVAC systems.  

E-Print Network (OSTI)

??This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based (more)

Jin, Guang Yu.

2012-01-01T23:59:59.000Z

390

Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures  

DOE Green Energy (OSTI)

Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

1999-07-12T23:59:59.000Z

391

Active vibration reduction applied to the compressor of an air?conditioning unit for trams  

Science Conference Proceedings (OSTI)

Within the framework of the European Integrated Project InMAR (intelligent materials for active noise reduction)active vibration control and active structural acoustic control approaches are applied to an HVAC (heating

Joachim Bs; Enrico Janssen; Michael Kauba; Dirk Mayer

2008-01-01T23:59:59.000Z

392

Air entrainment by a plunging jet under intermittent vortex conditions  

E-Print Network (OSTI)

This fluid dynamic video entry to the 2011 APS-DFD Gallery of Fluid Motion details the transient evolution of the free surface surrounding the impact region of a low-viscosity laminar liquid jet as it enters a quiescent pool. The close-up images depict the destabilization and breakup of the annular air gap and the subsequent entrainment of bubbles into the bulk liquid.

Kim, Kevin Jin; Li, Kevin; Kiger, Ken T

2011-01-01T23:59:59.000Z

393

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

394

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

395

Improving the Performance of Air-Conditioning Systems in an ASEAN Climate  

E-Print Network (OSTI)

This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings.

Busch, J. F.; Warren, M. L.

1988-01-01T23:59:59.000Z

396

Building Technologies Office: HVAC Optimized Heat Exchangers Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Heat Optimized Heat Exchangers Research Project to someone by E-mail Share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Facebook Tweet about Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Twitter Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Google Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Delicious Rank Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Digg Find More places to share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

397

September 10, 2013 What is Seawater Air Conditioning (SWAC)?  

E-Print Network (OSTI)

and sewage savings through the elimination of cooling towers SWAC Solutions Waikiki SWAC (25,000 tons) Fossil conditioning systems · Cold seawater is pumped to cooling plant · The cold temperature of the seawater

398

Simulation of energy performance of underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

energy consumption and the peak demand were calculated usingand also in the reduction of peak demand HVAC annual energymeasure to reduce peak demand. Key words Underfloor air

2009-01-01T23:59:59.000Z

399

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network (OSTI)

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used. Temperature sensors are located at different locations inside the conditioned space in order to sense dry bulb temperatures, relative humidity to compare it with standard ASHRAE comfort values. The present investigation indicates that the radiant cooling system not only improves the indoor air quality but also reduces the building energy consumption in the conditioned space.

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

400

Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation  

Science Conference Proceedings (OSTI)

Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

Irminger, Philip [ORNL; Rizy, D Tom [ORNL; Li, Huijuan [ORNL; Smith, Travis [ORNL; Rice, C Keith [ORNL; Li, Fangxing [ORNL; Adhikari, Sarina [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning  

SciTech Connect

NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

2011-01-01T23:59:59.000Z

402

Design of compartmental silencer for HVAC system  

Science Conference Proceedings (OSTI)

Air conditioning and ventilation system is the major noise sources in the commercial building. Noise will be propagated from fan and through the associated ductwork into working area. In order to reduce the noise transmitted

Y. H. Chan; Y. S. Choy; R. C. K. Leung

2012-01-01T23:59:59.000Z

403

Coordinated Control of HVAC Systems  

E-Print Network (OSTI)

This paper describes the development of new control logic for starting and stopping energy-intensive equipment in buildings such as staged air-conditioning units. The concept is to use pulse-width modulation (PWM) instead of level-crossing logic. A finite state machine is used to handle the case where a single unit has multiple stages of operation. An optimized coordinator determines the phase of the PWM signals of each unit so that peak demand for power is minimized over each PWM period. Control logic for the PWM function was developed so that the phase could be manipulated by the coordinator. Computer simulations were used to assess the performance of the new strategy and to compare it to levelcrossing logic. The following five metrics were used to assess the performance: 1) magnitude of the control error, 2) start/stop frequency, 3) average power consumption, 4) standard deviation of the power consumption, 5) peak power consumption. The computer simulations showed that the new strategy could reduce peak power consumption by 20% relative to level-crossing logic. The computer simulations also showed that the new strategy increased the magnitude of the space temperature control error by 11% and increased the number of start/stop operations by 27% relative to level-crossing logic.

Federspiel, C.; Lanning, S. D.; Li, H.; Auslander, D. M.

2001-01-01T23:59:59.000Z

404

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

405

"Table HC11.6 Air Conditioning Characteristics by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Northeast Census Region, 2005" 6 Air Conditioning Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Coolling Equipment",93.3,16.5,12.8,3.8 "Use Cooling Equipment",91.4,16.3,12.6,3.7 "Have Equipment But Do Not Use it",1.9,0.3,"Q","Q" "Air-Conditioning Equipment1, 2 " "Central System",65.9,6,5.2,0.8 "Without a Heat Pump",53.5,5.5,4.8,0.7

406

"Table HC13.6 Air Conditioning Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by South Census Region, 2005" 6 Air Conditioning Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have Cooling Equipment",93.3,39.3,20.9,6.7,11.8 "Use Cooling Equipment",91.4,38.9,20.7,6.6,11.7 "Have Equipment But Do Not Use it",1.9,0.5,"Q","Q","Q" "Air-Conditioning Equipment1, 2 "

407

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI  

Energy.gov (U.S. Department of Energy (DOE))

These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energys (DOE) notice in the August 8, 2012 Federal Register...

408

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint  

DOE Green Energy (OSTI)

A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

Rugh, J.

2010-02-01T23:59:59.000Z

409

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U ...  

U.S. Energy Information Administration (EIA)

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region

410

Analysis of a Retrofitted Thermal Energy Storage Air-conditioning System of a Marine Museum.  

E-Print Network (OSTI)

??Thermal energy storage(TES) air-conditioning system is a electrical load management technology with great potential to shift load from peak to off-peak utility periods. TES is (more)

Yu, Po-wen

2005-01-01T23:59:59.000Z

411

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total Type of Housing Unit

412

A Historical Look at the Invention of Air-conditioned Comfort...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Satkartar K. Kinney Comfort air conditioning is largely an American development which grew out of the need for the...

413

Heavy Precipitation Events in New Jersey: Attendant Upper-Air Conditions  

Science Conference Proceedings (OSTI)

The first of an anticipated multipart study of atmospheric conditions occurring before and during heavy precipitation events in New Jersey, representative of the mid-Atlantic region, is presented. Upper-air data parameters were analyzed for 81 ...

Robert P. Harnack; Kirk Apffel; Joseph R. Cermak III

1999-12-01T23:59:59.000Z

414

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row

415

An Analysis of Price Determination and Markups in the Air-Conditioning...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are...

416

Building Technologies Office: Recovery Act-Funded HVAC Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Research Projects to someone by E-mail HVAC Research Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

417

Building Technologies Office: HVAC and Water Heater Field Tests Research  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

418

Fouling of HVAC fin and tube heat exchangers  

E-Print Network (OSTI)

Methods to Maintain Heat Exchanger Coil Cleanliness, ASHRAEof HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and VanOF HVAC FIN AND TUBE HEAT EXCHANGERS Jeffrey Siegel 1,2 and

Siegel, Jeffrey; Carey, Van P.

2001-01-01T23:59:59.000Z

419

Mapping Hvac Systems for Simulation In EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Hvac Systems for Simulation In EnergyPlus Title Mapping Hvac Systems for Simulation In EnergyPlus Publication Type Conference Paper LBNL Report Number LBNL-5565E Year of...

420

Recovery Act-Funded HVAC projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC projects Recovery Act-Funded HVAC projects The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into...

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Issue #3: HVAC Proper Installation Energy Savings: Over-Promising...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy...

422

Modeling and simulation of HVAC Results in EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and simulation of HVAC Results in EnergyPlus Title Modeling and simulation of HVAC Results in EnergyPlus Publication Type Journal Article LBNL Report Number LBNL-5564E...

423

Demand response-enabled autonomous control for interior space conditioning in residential buildings.  

E-Print Network (OSTI)

house and its HVAC systems, tested the optimization controlOptimization Control in Interior Space Conditioning Problem Description Interior space conditioning is a type of temperature regulation by HVAC

Chen, Xue

2008-01-01T23:59:59.000Z

424

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air-conditioning system including investment, operating fee and pay-back time. The results show that waste water resource heat pump air-conditioning system has a low investment, low operating fee and short payback time.

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

425

The Effect of Pressure Difference Control on Hydraulic Stability in a Variable Flow Air Conditioning System  

E-Print Network (OSTI)

This paper analyzes the effects of different pressure difference control methods on hydraulic stability in a variable flow air conditioning system when it is applied to different air conditioning water systems. According to control method and water system, it can be divided into direct return system pass-by control, direct return system terminal control, reversed return system pass-by control and reversed return system terminal control. The results indicate that reversed return system terminal control has the best hydraulic stability.

Zhang, Z.; Fu, Y.; Chen, Y.

2006-01-01T23:59:59.000Z

426

BFRL: HVAC&R - Publications  

Science Conference Proceedings (OSTI)

... and commercialization in 1936, R-22 has been applied in systems ranging from the smallest window air conditioners to the largest chillers and heat ...

427

Analysis of Energy Saving in a Clean Room Air-conditioning System  

E-Print Network (OSTI)

To address the issue of the substantial energy cost and operating cost of an all-return air system for a clean room, we changed the former system to a 2nd return air system. With the newest building energy simulation program, Energy Plus, we simulated and compared the summer energy consuming conditions of the two systems. Results prove the superiority of the 2nd return air system, and the validity of the simulation. Also, the air system energy performance in summer was illustrated with typical meteorological hour-to-hour data.

Liu, S.; Liu, J.; Pei, J.; Wang, M.

2006-01-01T23:59:59.000Z

428

Test and Reconstruction of Air Conditioning System in a Hotel Lobby  

E-Print Network (OSTI)

Two air conditioning systems are equipped in a hotel lobby. It is found from the field test that the actual air rate is 40% and 16% of the nominal value, respectively, of the two systems, which is far lower than the design requirement. The air rate of the outlets varies greatly, and the coefficient of uniformity is 129.1% and 111.6% respectively of the two systems. Air distribution in the lobby is bad and thermal comfort is poor. Moreover, sharp reduction of return air makes portions of fresh air increase, which will lead to high energy consumption. Reconstruction is carried out to improve the thermal environment with the assistance of the CFD method. First, the original system is simulated by CFD method to verify the CFD method and propose modification suggestions. Then air conditioning load and air rate of the lobby is recalculated and duct redesigned. Simulation results show that the air distribution and thermal comfort of the improved scheme can meet the design requirement. The reconstructed system has been running for about two years and has shown good performance.

Wang, G.; Hu, Y.; Hu, S.; Chen, Q.

2006-01-01T23:59:59.000Z

429

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

430

Atmospheric Environment 41 (2007) 31513160 Ozone removal by HVAC filters  

E-Print Network (OSTI)

Atmospheric Environment 41 (2007) 3151­3160 Ozone removal by HVAC filters P. Zhao, J.A. Siegel?, R May 2006; accepted 14 June 2006 Abstract Residential and commercial HVAC filters that have been loaded of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial

Siegel, Jeffrey

431

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network (OSTI)

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

432

SMUD's HVAC Programs Ravi Patel-Program Planning  

E-Print Network (OSTI)

1 SMUD's HVAC Programs 5-7-13 Ravi Patel- Program Planning Bruce Baccei- R&D #12;SMUD's Residential contractors trained and BPI certified ­ Majority were pushing only HVAC; now driving the HPP · Program encourages more HVAC replacements to occur through HPP ­ Move away from stand alone programs ­ Start

California at Davis, University of

433

Continued on next page A letter explaining the 2005 HVAC  

E-Print Network (OSTI)

Continued on next page A letter explaining the 2005 HVAC Change-out to consumers is available this bulletin, or downloaded from the 2005 HVAC Change out Information website at: www.energy.ca.gov/title24 duct sealing requirements for HVAC change-outs in existing homes become effective October 1, 2005

434

Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson  

E-Print Network (OSTI)

proposes an HVAC control strategy based on occupancy prediction and real time occupancy monitoring via simulation model. We dis- cuss the building parameters and the HVAC control strate- gies used for the energyOccupancy Based Demand Response HVAC Control Strategy Varick L. Erickson University of California

Cerpa, Alberto E.

435

Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions  

E-Print Network (OSTI)

Charged particles of extensive air showers (EAS), mainly electrons and positrons, initiate the emission of fluorescence light in the Earth's atmosphere. This light provides a calorimetric measurement of the energy of cosmic rays. For reconstructing the primary energy from an observed light track of an EAS, the fluorescence yield in air has to be known in dependence on atmospheric conditions, like air temperature, pressure, and humidity. Several experiments on fluorescence emission have published various sets of data covering different parts of the dependence of the fluorescence yield on atmospheric conditions. Using a compilation of published measurements, a calculation of the fluorescence yield in dependence on altitude is presented. The fluorescence calculation is applied to simulated air showers and different atmospheric profiles to estimate the influence of the atmospheric conditions on the reconstructed shower parameters.

Keilhauer, Bianca

2009-01-01T23:59:59.000Z

436

Energy Efficiency Upgrades for Little Rock Air Force Base  

DOE Green Energy (OSTI)

Little Rock Air Force Base (LRAFB), in partnership with the local utility, Entergy Services, Inc., has reduced energy costs and used savings from investments in high-efficiency equipment to maintain and improve the condition of base housing and other facilities. Three projects were completed, with over $10 million invested. Major accomplishments include replacing air-to-air heat pumps with high-efficiency ground-source heat pumps (GSHPs) in more than 1,500 base housing units, lighting modifications to 10 buildings, upgrade of HVAC equipment in the base's enlisted club, and energy-efficient lighting retrofits for LRAFB's flight simulator.

Goldman, C.; Dunlap, M.A.

2000-11-13T23:59:59.000Z

437

Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners  

SciTech Connect

Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

2008-10-01T23:59:59.000Z

438

Model Based Sensor System for Temperature Measurement in R744 Air Conditioning Systems  

E-Print Network (OSTI)

The goal is the development of a novel principle for the temperature acquisition of refrigerants in CO2 air conditioning systems. The new approach is based on measuring the temperature inside a pressure sensor, which is also needed in the system. On the basis of simulative investigations of different mounting conditions functional relations between measured and medium temperature will be derived.

Reitz, Sven; Schneider, Peter

2008-01-01T23:59:59.000Z

439

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network (OSTI)

This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning. It establishes functions of the fin structure parameters such as height,spacing and thickness of the fin when the volume of fin is the smallest under unit temperature difference and unit quantity of heat. It uses a genetic algorithm to optimize the model of the uniform annular fin heat pipe. The calculation result shows that the method of genetic algorithm is effective.

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

440

Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices  

E-Print Network (OSTI)

A simple prototype air conditioning unit driven entirely by solar energy is proposed aiming at replacing the conventional vapor compression air conditioning systems which are reasonable for the global warming. The proposed model is supposed to be used in conditioning the governmental offices during the working hours in the weekdays when both the sunshine and the need for air-conditioning reach their maximum levels at the same instance. Solar adsorption refrigeration devices have no moving parts consequently they are noiseless, non-corrosive, cheap to maintain, long lasting in addition to being environmentally friendly with zero ozone depletion as well as zero global warming potentials. For these reasons, the research activities are of increasing interest in this aspect in order to provide optimum solutions for the crucial points that impede making these systems capable to meet the criteria for commercialization.

Elsamni, O. A.; Sahmarani, K.J.; Obied, F. K.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network (OSTI)

control conditioning strategies. Using strategies based on sensor network occupancy model predictions, weOBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Varick L. Erickson, Miguel Á Descriptors I.6.5 [Simulation and Modeling]: Model Development; J.7 [Computers In Other Systems]: Command

Cerpa, Alberto E.

442

Issues and Factors of Train Air-conditioning System Design and Operation  

E-Print Network (OSTI)

Like a moving building, a train's outer meteorologic parameter will change a lot with the local meteorologic parameter on the way. In this paper, we put forward the design method of the typical design period and some dynamic energy-saving ways to solve the problem. These methods consider the dynamic changes of the outer environment when the train is moving, which will supply the theoretical basis for the calculation of the dynamic load and real-time running and regulation of the train's air-conditioning. Modifications to the air-conditioning system and some advanced air conditioning systems are introduced, which are helpful for system optimization. In this paper, based on analysis of the characteristics of the air - conditioning system in foreign high speed passenger cars and demands for its acceleration, developing trends for air - conditioning systems for high speed passenger cars are pointed out and some advice is put forward. Above all, we should not only satisfy the comfort need of the passengers, but also succeed in saving energy.

Liu, P.; Li, D.

2006-01-01T23:59:59.000Z

443

Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration  

SciTech Connect

BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics design uses a novel property of certain materials, called magnetocaloric materials, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

None

2010-09-01T23:59:59.000Z

444

The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing  

E-Print Network (OSTI)

In this paper, we show that the air-conditioning usage in residential buildings in Beijing grows rapidly in relation to the development of civil construction. More and more people are not satisfied with the current style of only using split air-conditioning units in residential buildings, and are using the central air-conditioning system in residential buildings. To determine the best air conditioning mode, a residential tower building with 22 layers was chosen for analysis. The advantages and disadvantages of the central air-conditioning system and the residential multi-unit air-conditioning equipment system and the LiBr absorption chiller were compared based on calculating the first-cost and the annual cost (according to providing cooling 90 days annually). The predicted results show the economical feasibility of using the refrigerating units in air-conditioning systems in Beijing region, and point out the developing directions for the future.

Sheng, G.; Xie, G.

2006-01-01T23:59:59.000Z

445

Analysis of historical residential air-conditioning equipment sizing using monitored data  

SciTech Connect

Monitored data were analyzed to determine whether residential air conditioners in the Pacific Northwest historically have been sized properly to meet or slightly exceed actual cooling requirements. Oversizing air-conditioning equipment results in a loss of efficiency because of increased cycling and also lowers humidity control. On the other hand, the penalty of undersizing air-conditioning equipment may be some loss of comfort during extremely hot weather. The monitored data consist of hourly space-conditioning electrical energy use and internal air temperature data collected during the past 7 years from 75 residences in the Pacific Northwest. These residences are equipped with central air conditioners or heat pumps. The periods with the highest cooling energy use were analyzed for each site. A standard industry sizing methodology was used for each site to determine a sizing estimate. Both the sizing recommendation based on Manual J and peak monitored loads are compared to the capacity of the installed equipment for each site to study how the actual capacity differed from both the estimate of proper sizing and from actual demands. Characteristics of the maximum cooling loads are analyzed here to determine which conditions put the highest demand on the air conditioner. Specifically, internal air temperature data are used to determine when the highest cooling loads occur, at constant thermostat settings or when the thermostat was set down. This analysis of monitored data also provides insight into the extent that occupant comfort may be affected by undersizing air conditioners. The findings of this research indicate that cooling equipment historically has often but not always been oversized beyond industry-recommended levels. However, some occupants in homes with undersized, properly sized, and, in rare occasions, even oversized cooling equipment appear to suffer because the cooling equipment cannot always provide adequate cooling. Key findings are summarized.

Lucas, R.G.

1993-02-01T23:59:59.000Z

446

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90 levels instead of 150 and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84 -86 when outside ambient temperatures range from 98 -100. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

447

Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions  

E-Print Network (OSTI)

As new equipment, the channel wheel fresh air ventilator has become increasingly popular in recent years. However, when such equipment is operated under low ambient temperature in the freezing area in winter, the formation of frost on the outdoor waste air surface becomes problematic, leading to the degradation of the channel wheel fresh air ventilator's performance or even the shutdown of equipment. Therefore, it is necessary to have a detailed investigation on the operational characteristics of the channel wheel fresh air ventilator under frosting in order to guide its application. This paper first reports on the development of a detailed model for the channel wheel heat exchanger, which is the core part of the channel wheel fresh air ventilator under frosting conditions. The model developed, first seen in open literature, consists of a frosting sub-model and a channel wheel heat exchanger sub-model. This is followed by reporting an evaluation of the operational characteristics of a frosted channel wheel heat exchanger under different ambient conditions using the model developed. These include frost formation on the surface of the channel wheel heat exchanger, and impacts on the operational performance of the channel wheel fresh air ventilator. Furthermore, the interval of defrosting is obtained, which provides the basis for the adoption of effective defrosting measures, and thus increasing the channel wheel fresh air ventilator's energy efficiency and operating reliability.

Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

2006-01-01T23:59:59.000Z

448

NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)  

DOE Green Energy (OSTI)

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

Not Available

2012-02-01T23:59:59.000Z

449

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

450

Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 Total.................................................................................. 111.1 7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment.................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................. 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment.................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it................................ 1.9 Q N Q 0.6 Type of Air-Conditioning Equipment 1, 2 Central System............................................................. 65.9 1.1 6.4 6.4 5.4 Without a Heat Pump................................................. 53.5 1.1 3.5 5.7 4.9 With a Heat Pump......................................................

451

Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants  

SciTech Connect

BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alonemaking CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems enabling new use of CO2 as a refrigerant in cooling systems.

2010-10-01T23:59:59.000Z

452

Use of seawater for air conditioning at Waikiki Convention Center. Master's thesis  

SciTech Connect

A large part of operating costs of a hotel in Hawaii is the cost of energy for air conditioning. Buildings can be constructed to use energy more efficiently by using many methods, however, some of these methods conflict with other concerns, aesthetics for example. Thus the process of designing and building an energy efficient hotel often involves trade-offs between energy efficiency and other objectives. The method proposed herein to reduce energy costs is to introduce seawater, pumped from the deep ocean at a temperature of approximately six degrees celsius, directly to heat exchangers which cool the chilled water circulating in the building air conditioning system. The energy required to run the system would be reduced to only the cost of the seawater pumps, the fans and controls. The savings would be in the operating costs of the seawater pumps versus the cost to the compressors of a conventional air conditioning system.

Williams, M.

1994-01-01T23:59:59.000Z

453

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

454

Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers  

SciTech Connect

This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

2008-08-13T23:59:59.000Z

455

Commercial Building HVAC Energy Usage in Semi-Tropical Climates  

E-Print Network (OSTI)

The design of heating and cooling equipment in semi-tropical climates presents some design considerations and limitations not so prevalent in temperate climates. In some cases, the heating season may be non-existent for all practical purposes. Another consideration is the high ventilation loads due to cooling the moist air prevalent in semi-tropical climates. This paper describes a computer program which assesses all the pertinent variables which comprise the annual heating and cooling energy requirements for commercial buildings. It is then suggested that this computer program would be valuable in determining the changes one could expect in annual energy usage by varying certain building design parameters. Secondly, a small office building actually constructed in Central Florida in which the author designed the Heating and Cooling HVAC system is described. Tradeoffs are presented showing the effects of changes in these building design parameters.

Worbs, H. E.

1987-01-01T23:59:59.000Z

456

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network (OSTI)

Henderson (2005) Home air conditioning in Europe how muchA.A. Pavlova ( 2003). Air conditioning market saturation and+ paper 6,306 Future Air Conditioning Energy Consumption in

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

457

Real-Time Measurement of Rates of Outdoor Airflow into HVAC Systems: A Field Study of Three Technologies  

E-Print Network (OSTI)

to determine flow resistance of HVAC ducts and fittings.W. 2003. Outdoor airflow into HVAC systems: an evaluation ofof outdoor airflow into HVAC systems. Lawrence Berkeley

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2005-01-01T23:59:59.000Z

458

A Field Study on Residential Air Conditioning Peak Loads During Summer in College Station, Texas  

E-Print Network (OSTI)

Severe capacity problems are experienced by electric utilities during hot summer afternoons. Several studies have found that, in large part, electric peak loads can be attributed to residential airconditioning use. This air-conditioning peak depends primarily on two factors: (i) the manner in which the homeowner operates his air-conditioner during the hot summer afternoons, and (ii) the amount by which the air-conditioner has been over-designed. Whole-house and air-conditioner electricity use data at 15 minute time intervals have been gathered and analyzed for 8 residences during the summer of 1991, six of which had passed the College Station Good Cents tests. Indoor air temperatures were measured by a mechanical chart recorder, while a weather station located on the main campus of Texas A&M university provided the necessary climatic data, especially ambient temperature, relative humidity and solar radiation. The data were analysed to determine the extent to which air-conditioning over-sizing and homeowner intervention contributes to peak electricity use for newer houses in College Station, Texas.

Reddy, T. A.; Vaidya, S.; Griffith, L.; Bhattacharyya, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

459

Theoretical Study of a Novel Control Method of VAV Air-conditioning System Based on MATLAB  

E-Print Network (OSTI)

The main purpose of this study is to put forward a novel nonlinear feedback control strategy on controlling indoor air temperature by variable air volume. A dynamic model of a typical room for a VAV air-conditioning system is established. The performance of the novel control strategy is investigated. Simulation of the controlling air temperature, on which the novel strategy is adopted, was carried out based on MATLAB in the VAV system. In order to show that the novel control strategy outperforms conventional PID control, a comparison is made between the performance of conventional PID and the novel nonlinear feedback control strategy. The results show that nonlinear feedback control strategy outperforms a conventional PID control system in terms of celerity, stability and other aspects.

Shi, Z.; Hu, S.; Wang, G.; Li, A.

2006-01-01T23:59:59.000Z

460

Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench  

E-Print Network (OSTI)

This report presents the measured degradation in performance of a residential air conditioning system operating under degraded conditions. Experiments were conducted using a R-22 threeton split-type cooling system with a short-tube orifice expansion device. Results are presented here for a series of tests in which the various commonly occurring degraded conditions were simulated on a test bench. At present, very little information is available which quantifies the performance of a residential cooling system operating under degraded conditions. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of systemwide maintenance programs. This report also discuss the development of a diagnostic procedure based on measurement of refrigerant and air side temperatures.

Palani, M.; O'Neal, D. L.; Haberl, J. S.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage  

E-Print Network (OSTI)

Energy consumption of HVAC systems in commercial buildings takes a great part of the total building energy consumption. Energy performance evaluation plays an important role in building energy efficiency improvement for existing buildings and new buildings. It is also the basis for the retrofitting measure evaluation for existing buildings and the control improvement evaluation of new buildings for building energy performance contracts. In this study, the energy performance evaluation of a super high-rising commercial office building in construction is presented. Alternative control strategies are proposed to improve the energy efficiency based on the current measurements of the original design as well as additional metering instruments as requested. These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess the economic feasibility, the benchmark electricity consumption and the optimal electricity consumption using alternative controls strategies are estimated using dynamic simulations. The results show that the electricity savings using the alternative control strategies can cover the costs of an additional metering system and related software and hardware in about one year.

Wang, S.; Xu, X.; Ma, Z.

2006-01-01T23:59:59.000Z

462

Corrosion Behavior of Interconnect Candidate Alloys under Air//Simulated Reformate Dual Exposure Conditions  

SciTech Connect

Metallic interconnects in solid oxide fuel cell (SOFC) stacks, perform in a very challenging dual environment, as they are simultaneously exposed to a reducing fuel (either hydrogen or a hydrocarbon fuel) on one side and air on the other side at elevated temperatures. Thus candidate metals or alloys for the interconnect applications must demonstrate excellent surface stability under the SOFC operating conditions. Following previous studies which led to an improved understanding of the oxidation/corrosion behavior of metals and alloys under air/hydrogen dual exposure conditions, PNNL recently investigated the behavior of Fe-Cr and Ni-Cr base interconnect candidate alloys in an air/simulated reformate dual environment. This paper reports and discusses the findings of this work.

Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

2008-11-28T23:59:59.000Z

463

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

464

Long-Range Transport of Air Pollution under Light Gradient Wind Conditions  

Science Conference Proceedings (OSTI)

The long-range transport of air pollution on clew days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. ...

Hidemi Kurita; Kazutoshi Sasaki; Hisao Muroga; Hiromasa Ueda; Shinji Wakamatsu

1985-05-01T23:59:59.000Z

465

Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop  

SciTech Connect

Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1994-09-01T23:59:59.000Z

466

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption  

E-Print Network (OSTI)

: Engineering-industry, secondary: Econometrics. 1 Introduction The electric power mid-term loads forecasting: Estimated annual temperature sensitive electricity load components 3 Mid-term load forecasting StatisticalAir-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

Paris-Sud XI, Université de

467

Investigation of air supply conditions in the room of a B11type gas appliance  

Science Conference Proceedings (OSTI)

In Hungary, the prevalently used "B11" type gas appliances equipped with atmospheric burner and they have a draught hood beyond the outlet of the appliance. For the appropriate adjustment of the gas boiler to the conditions of the building, ... Keywords: CFD method, air supply, chimney, design requirements, gas appliances, numerical modelling

Lajos Barna; Rbert Goda

2007-05-01T23:59:59.000Z

468

A heuristic predictive logic controller applied to hybrid solar air conditioning plant  

Science Conference Proceedings (OSTI)

This paper shows the development of a heuristic predictive logic controller (HPLoC) applied to a solar air conditioning plant. The plant uses two energy sources, solar and gas, in order to warm up the water. The hot water feeds a single-effect absorption ...

Darine Zambrano; Winston Garca-Gabn; Eduardo F. Camacho

2007-04-01T23:59:59.000Z

469

SOLERAS - Saudi University Solar Cooling Laboratories Project: University of Riyadh. Solar air conditioning. Final report  

Science Conference Proceedings (OSTI)

Research on solar air conditioning at the University of Riyadh in Riyhadh, Saudi Arabia is presented. Topics relevant to the university's proposed solar cooling laboratory are discussed: absorption systems and various contingencies, photovoltaic solar collectors and thermoelectric elements, measuring instruments, solar radiation measurement and analysis, laboratory specifications, and decision theories. Dual cycle computations and equipment specifications are included among the appendices.

Not Available

1986-01-01T23:59:59.000Z

470

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

471

Air Distribution and Microenvironment Evaluation of a Desktop Task Conditioning System  

E-Print Network (OSTI)

Task conditioning aims to provide each occupant with personalized clean air direct to the breathing zone. The microenvironment of a typical office workplace, consisting of two desktop task conditioning systems (a Horizontal Desk Grill (HDG) and Vertical Desk Grill (VDG)) were studied by numerical simulation. Numerical simulation by k- 3-D turbulent flow was separately conducted to study the influence of supply velocity on the microenvironment of these two desktop task conditioning systems. Three task conditioning velocities were studied. Temperature and velocity distribution, Draught Rating (DR) and Predicted Percentage of Dissatisfied (PPD) of the room and workstation were applied to study the performance of task air conditioning. Results show that the performances of HDG and VDG are almost the same. Results also show that task conditioning can provide excellent working environment when supply velocity is well designed. The supply velocity of task conditioning can be set between 0.8-1.0 m/s. However, task conditioning may cause draught, and engineers should seriously consider this problem. The results can provide important references for design and optimization of the task conditioning system.

Zheng, G.

2006-01-01T23:59:59.000Z

472

HVAC Efficiency Controls Could Mean Significant Savings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Efficiency Controls Could Mean Significant Savings HVAC Efficiency Controls Could Mean Significant Savings HVAC Efficiency Controls Could Mean Significant Savings April 27, 2012 - 11:58am Addthis HVAC Efficiency Controls Could Mean Significant Savings April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? Commercial building owners could save an average 38% on their heating & cooling bills just by installing a few new controls onto their HVAC systems. According to a new report from Pacific Northwest National Lab, commercial building owners could save an average 38 percent on their heating and cooling bills just by installing a few new controls onto their HVAC systems. These findings mean significant potential savings for building owners who use commercial rooftop systems - but there's just one problem: the

473

Applications of HVAC System Utilizing Building Thermal Mass in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Buildings have a large thermal capacity and it affects much on building thermal load for the HVAC system. The thermal mass can be utilized also to control the thermal load by storing thermal energy before HVAC operation. There are two ways to store thermal energy. One is by operating the HVAC system and the other is by natural ventilation, mainly at night. The latter could be combined with daily HVAC operation as a hybrid ventilation. Thermal mass storage is useful to decrease the hourly peak load and the daily thermal load and can be used for both cooling and heating purpose.

474

Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems  

SciTech Connect

The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

Sand, J.R.; Fischer, S.K.

1997-01-01T23:59:59.000Z

475

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

476

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

NLE Websites -- All DOE Office Websites (Extended Search)

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

477

Discussion of Air-Conditioning Energy-Savings in Hot-Summer and Cold-Winter Regions  

E-Print Network (OSTI)

Introducing several kinds of air-conditioning systems energy conservation measures, and according to the climate of the hot-summer and cold-winter region in China, this paper puts forward an overall conception for air-conditioning energy-savings at this area. Namely, we may use the combination of evaporative cooling, dehumidifier and mechanical cooling to save energy for air-conditioning.

Zheng, W.; Gong, F.; Lou, X.; Cheng, J.

2006-01-01T23:59:59.000Z

478

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL; Norman, Kevin M [ORNL

2012-01-01T23:59:59.000Z

479

Start-Up of Air Conditioning Systems After Periods of Shutdown (Humidity Considerations)  

E-Print Network (OSTI)

In many cases the single most important energy conservation measure that can be taken is to turn equipment off when it is not needed. In the case of air conditioning, this generally means turning it off when occupants leave and turning it back on in time to have the space comfortable when they return. In humid climates special problems are often encountered when a system is restarted after a period of shutdown. The temperature and humidity in the space rises during the period of shutdown. Unfortunately the latent load required to bring the space back to comfort conditions is usually much higher than the sensible load. Most methods of control are ill suited for this duty. This paper examines the response of various types of air conditioning systems during this recovery period and makes recommendations for system designers.

Todd, T. R.

1986-01-01T23:59:59.000Z

480

IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation  

E-Print Network (OSTI)

D. Sucic and P. Xu. 2002. HVAC Component Data Modeling Using2001. BS-8 project: IFC HVAC extension schemata. http://IFC HVAC INTERFACE TO ENERGYPLUS A CASE OF EXPANDED

Bazjanac, Vladimir; Maile, Tobias

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioning hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field  

E-Print Network (OSTI)

Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field Kristin Group, Davis, CA, USA 4 Southern California Edison, Irwindale, CA, USA ABSTRACT HVAC maintenance utilities across the nation to include HVAC maintenance measures in energy efficiency programs

California at Davis, University of

482

Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study  

E-Print Network (OSTI)

LBNL- 49026 Report on HVAC Option Selections for aTable 3. High performance HVAC system filter selectionDrop ("H 2 O) Appendix A RC HVAC working drawings. Figure

2001-01-01T23:59:59.000Z

483

Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems  

E-Print Network (OSTI)

Air Conditioning, & Electric Power Machinery 29(1): 1-4 Solutions for Summer Electric Power Shortages: DemandUSA Solutions for summer electric power shortages: Demand

Han, Junqiao; Piette, Mary Ann

2008-01-01T23:59:59.000Z

484

Application of the VRV Air-Conditioning System Heat Recovery Series in Interior Zone and Analysis of its Energy Saving  

E-Print Network (OSTI)

To reduce the energy consumption of air conditioning systems, we can use the VRV air conditioning system to supply cold loads in the winter for rooms in the construction inner zone where cold loads need to be supplied. The VRV air-conditioning system of variable frequency technology can achieve the effect of energy conservation. In this article, we analyze the application of the VRV air conditioning system heat recovery series in the construction inner zone and its energy saving characteristics via a project example.

Zhang, Q.; Li, D.; Zhang, J.

2006-01-01T23:59:59.000Z

485

IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation  

SciTech Connect

Tedious manual input of data that define a building, its systems and its expected pattern of use and operating schedules for building energy performance simulation has in the past diverted time and resources from productive simulation runs. In addition to its previously released IFCtoIDF utility that semiautomates the import of building geometry, the new IFC HVAC interface to EnergyPlus (released at the end of 2003) makes it possible to import and export most of the data that define HVAC equipment and systems in a building directly from and to other IFC compatible software tools. This reduces the manual input of other data needed for successful simulation with EnergyPlus to a minimum. The main purpose of this new interface is to enable import of HVAC equipment and systems definitions, generated by other IFC compatible software tools (such as HVAC systems design tools) and data bases, into EnergyPlus, and to write such definitions contained in EnergyPlus input files to the original IFC files from which building geometry was extracted for the particular EnergyPlus input. In addition, this interface sets an example for developers of other software tools how to import and/or export data other than building geometry from and/or into EnergyPlus. This paper describes the necessary simplifications and shortcuts incorporated in this interface, its operating environment, interface architecture, and the basic conditions and methodology for its use with EnergyPlus.

Bazjanac, Vladimir; Maile, Tobias

2004-03-29T23:59:59.000Z

486

Pedernales Electric Cooperative - HVAC Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pedernales Electric Cooperative - HVAC Rebate Program Pedernales Electric Cooperative - HVAC Rebate Program Pedernales Electric Cooperative - HVAC Rebate Program < Back Eligibility Commercial Residential Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Utility Rebate Program Rebate Amount Central AC with Gas Furnace: $300 - $400/unit Heat Pump: $400 - $500/unit Dual-Fuel Heat Pump: $400 - $500/unit Geothermal Heat Pump: $1,000/unit Water-Source Heat Pump: $1,000/unit Provider Pedernales Electric Cooperative Pedernales Electric Cooperative offers equipment rebates to members who install energy efficient HVAC equipment. Eligible equipment includes: