National Library of Energy BETA

Sample records for air conditioners furnaces

  1. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  2. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  3. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and...

    Energy Savers [EERE]

    ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings ISSUANCE 2015-05-01: Commercial Package Air...

  4. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  5. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National...

  6. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners July 1, 2012 - 5:35pm Addthis A room air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphoto...

  7. Maintaining Your Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a clean one can lower your air conditioner's energy consumption by 5% to 15%. For central air conditioners, filters are generally located somewhere along the return duct's...

  8. 2015-03-24 Issuance: ASRAC; Notice of Intent to Establish the Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces Working Group to Negotiate Potential Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Notice of Intent regarding potential Energy Conservation Standards for Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 24, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Cromer Cycle Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  10. High-Efficiency Window Air Conditioners - Building America Top...

    Energy Savers [EERE]

    Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air...

  11. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    acquisition guidance for residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that...

  12. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    poor service procedures, and inadequate maintenance. Improper installation of a central air conditioner can result in leaky ducts and low airflow. Many times, the...

  13. Four Central Air Conditioners Determined Noncompliant With Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard October...

  14. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  15. Ductless Mini-Split Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mean for me? A ductless mini-split air conditioner is easier to install than a central air conditioning system. A ductless mini-split air conditioner provides zoned air...

  16. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  17. The effects of galvanic corrosion on air conditioner performance 

    E-Print Network [OSTI]

    Grisham, Phillip Ryan

    2001-01-01

    Corrosion of air conditioner outdoor heat exchangers (condensers) poses a significant problem for consumers living in coastal regions. This research sought to experimentally determine effects of galvanic corrosion on air conditioner condenser coils...

  18. Ductless Mini-Split Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    Mini-Split Air Conditioners A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphotoLUke1138. A ductless...

  19. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 * January 2006 Industrial Technologies Program Reduce Air Infiltration in Furnaces Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace...

  20. Covered Product Category: Residential Central Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Ex Parte Communication on Central Air-Conditioner Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    with a representative from the Department of Energy (DOE) to discuss proposed amended test procedures for central air conditioners and how they would impact ICM manufacturers....

  2. Air Conditioner Compressor Performance Model

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  3. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    integrated with an air conditioner unit and air/water heatan air conditioner unit and air/water heat exchanger Source:system and a standard air/water heat exchanger. Figure A-

  4. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore »R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  5. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  6. YMGI Through-the-Wall Air Conditioner Determined Noncompliant...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model...

  7. Electrolux Gibson Air Conditioner and Equator Clothes Washer...

    Broader source: Energy.gov (indexed) [DOE]

    DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both...

  8. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  9. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a...

  10. The Natural gas Heat Pump and Air Conditioner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Natural Gas Heat Pump and Air Conditioner 2015 Building Technologies Office Peer Review Heat from Burner Combined Heat Delivered (25 kW) Ambient (10 kW) Paul Schwartz, CEO...

  11. Improving Air-Conditioner and Heat Pump Modeling

    SciTech Connect (OSTI)

    Winkler, Jon

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  12. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  13. Influence of Air Conditioner Operation on Electricity Use and Peak Demand 

    E-Print Network [OSTI]

    McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

    1987-01-01

    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

  14. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models...

  15. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  16. ISSUANCE 2015-06-09: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

  17. ISSUANCE 2015-08-21: Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

  18. ISSUANCE 2015-11-19: Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

  19. Effect of Return Air Leakage on Air Conditioner Performance in Hot/Humid Climates 

    E-Print Network [OSTI]

    O'Neal, D. L.; Rodriguez, A.; Davis, M.; Kondepudi, S.

    1996-01-01

    An experimental study was conducted to quantify the effect of return air leakage from hot/humid attic spaces on the performance of a residential air conditioner. Tests were conducted in psychrometric facilities where temperatures and humidities...

  20. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  1. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL; Shen, Bo [ORNL

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  2. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  3. The Impact of Energy Recovery on Window Air-conditioner Efficiency 

    E-Print Network [OSTI]

    Luo, Q.; Tang, C.; Liao, K.

    2006-01-01

    An experimental energy recovering air-conditioner can produce fresh air exchange heat with exhaust air in the heat exchanger, which has no additional moving parts. The EER of the experimental air-conditioner (EAC) is increased by 17.4~37.3 percent...

  4. Maintaining Your Air Conditioner | Department of Energy

    Office of Environmental Management (EM)

    its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases. Check out our Energy...

  5. Tips: Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    before proper dehumidification occurs, making the area feel "clammy" and uncomfortable. Central air-conditioning systems need to be sized by professionals. Explore our Energy...

  6. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    recent advances in thermoelectric device fabrication and the design of novel coolingheating engines exploiting thermal storage for efficient air-conditioners in automobiles...

  7. Measured Impacts of Air Conditioner Condenser Shading 

    E-Print Network [OSTI]

    Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

    1996-01-01

    A study has been conducted by the Florida Solar Energy Center (FSEC) to examine if space cooling energy savings can be achieved from shading of residential air conditioning (AC) condenser units. The investigation consisted of before...

  8. Rating of Mixed Split Residential Air Conditioners 

    E-Print Network [OSTI]

    Domanski, P. A.

    1988-01-01

    require that manufac- turers derive cooling ratings for unitary systems by testing a sample of sufficient size to meet certain specified statistical confidence levels. For split unitary systems comprising an outdoor unit and an indoor coil assembly...(95), SEER, and recommended indoor volumetric flow rate of air, are publicly available. The procedure also assumee that the matched indoor section is available for inspection and evaluation of the indoor coil capacity and the indoor fan power...

  9. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject DevelopsforReportingResourcesDepartmentDepartment ofRoom Air

  10. DOE Investigates Possible Air Conditioner Efficiency Violations |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional|Certify AirDepartment of

  11. List of Room Air Conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoom Air Conditioners

  12. The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand 

    E-Print Network [OSTI]

    Neal, L.; O'Neal, D. L.

    1992-01-01

    of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand Leon Neal North Carolina Alternate Energy Corporation Research Triangle Park, N.C. ABSTRACT Electric utilities have had a number of air conditioner rebate and maintenance... of the equipment), system sizing, and efficiency on the steady-state, coincident peak utility demand of a residential central air conditioning system. The study is based on the results of laboratory tests of a three-ton, capillary tube expansion, split...

  13. A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner 

    E-Print Network [OSTI]

    Studak, J. W.; Peterson, J. L.

    1988-01-01

    and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

  14. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  15. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  16. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  17. An Evaluation of Steady-State Dehumidification Characteristics of Residential Central Air Conditioners, Final Report 

    E-Print Network [OSTI]

    O'Neal, D. L.; Chan, N.; Somasundaram, S.; Katipamula, S.

    1987-01-01

    This report is the first of two reports on the project "Determination of the Transient Response Characteristics of High Efficiency Commercial Air Conditioners" funded by Houston Lighting and Power Company. The purpose ...

  18. Determination of the Transient Dehumidification Characteristics of High Efficiency Central Air Conditioners 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.; Somasundaram, S.

    1987-01-01

    A series of tests were performed to assesses the dehumidifying performance of residential central air conditioners (CACs). The performance studies were based on factors such as: (i) dynamic performance (ii) the ASHRAE comfort zone, (iii) control...

  19. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal...

  20. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners 

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01

    This report summarizes: (1) the performance improvements possible for central air conditioners and heat pumps using conventional design improvements, (2) the development of a methodology for estimating the seasonal performance of variable speed heat...

  1. Effect of Combustion Air Preheat on a Forged Furnace Productivity 

    E-Print Network [OSTI]

    Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

    1984-01-01

    is four burners and furnace exhaust flue positi~ns and the combustion air manifold. The system ~as the capability of completely bypassing the recup~r? ator during operation for maintanence purposes. RECUPERATOR DESIGN The recuperator configuration... of the system took place during November 1982. The installation included a newly fabricated furnace, furnace-ducting-recuperator in tegration controls integration, and burner place ment. The furnace is approximately 12 foot cubed in outside dimensions...

  2. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

  3. Furnace Controls Using High Temperature Preheated Combustion Air 

    E-Print Network [OSTI]

    Gonzales, J. M.; Rebello, W. J.

    1981-01-01

    FURNACE CONTROLS USING HIGH TEMPERATURE PREHEATED COMBUSTION AIR Jeffrey M. Gonzalez Wilfred J. Rebello GTE Products Corporation PAR Enterprises, Inc. Towanda, Pennsylvania Fairfax, Virginia ABSTRACT GTE Products Corporation (Towanda... available ratio control apparatus. Various control sys (I) was the development of a different way of looking at combustion. As preheated combustion air temperatures increase, excess air Industrial furnaces generally utilize air as the basic source...

  4. ISSUANCE 2015-07-17: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

  5. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    Maintenance costs are assumed to apply to all product types (split or package systems, air conditioners or heat pumps) and

  6. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  7. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  8. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  9. An Evaluation of the Effects of Refrigerant Charge on a Residential Central Air Conditioner with Orifice Expansion 

    E-Print Network [OSTI]

    O'Neal, D. L.; Ramsey, C. J.; Farzad, M.

    1989-01-01

    Recent studies have been conducted at Texas A & M University to quantify the effect of over/undercharging on the performance of a residential central air conditioner with two different expansion devices: capillary tubes ...

  10. An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with Capillary Tube Expansion 

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1988-01-01

    The effect of the improper charging on the performance (capacity, EER, power consumption, SEER, and coefficient of degradation) of a residential air conditioner during the steady state (wet and dry coils) and cycling ...

  11. Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D.; Somasundram, S.

    1988-01-01

    This study assesses the dehumidifying performance of the high efficiency residential central air conditioners (CAC) in hot/humid climates typified by that of Houston and Galveston. The performance study is based on such factors as: (i) weather (ii...

  12. 13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

  13. Energy Impacts of Oversized Residential Air Conditioners— Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home, which can result in significant energy penalties. However, the reason for this was due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters.

  14. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other...

  15. Desiccant Moisture Exchange for Dehumidification Enhancement of Air Conditioners 

    E-Print Network [OSTI]

    Cromer, C. J.

    1988-01-01

    amling mil. Bqe surfam is needed to accomplish the heat ex&ange, so lamberenthian anl wrnpted surfaces have been used. Ihe of heat is ~Wlled by duct* & bypaseirq varying armnrts of air 8ud-1 that all air does not casrtact all the heat exdmqe...

  16. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy 

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01

    The Cromer cycle uses a desiccant to move moisture from the saturated air leaving an air conditioning (AC) cooling coil to the air returning to the AC unit from the conditioned space. This has the thermodynamic effect of reducing the overall energy...

  17. Development of an Automated Fault Detection System Tool for Unitary Air Conditioners at Undustrial Energy Audits 

    E-Print Network [OSTI]

    Parikh, P.; Pasmussen, B. P.

    2015-01-01

    Faulty air conditioners are prevalent; as is the related energy inefficiency 57% Of 13,000 systems incorrectly charged 13% Average efficiency loss 10% Efficiency loss due to 30% overcharge 9% Efficiency loss due to 30% undercharge ESL-IE-15... • Refrigerant Type Brochure • Rated Subcooling• Rated Superheat Other • Type of Valve • Avoided Cost of Electricity • Operating Hours • Presence of Accumulator Co In Co Pr Co Out Ev Out Ev In Co In Co Out Ev Pr Ev Out Air side Temperatures Refrigerant side...

  18. Combustion Air Preheat on Steam Cracker Furnaces 

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01

    aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient...

  19. Cromer Cycle Air Conditioner: A Study to Confirm Target Performance 

    E-Print Network [OSTI]

    Cromer, C. J.

    2001-01-01

    The Cromer cycle uses a desiccant wheel operating in conjunction with a typical air conditioning system. Simulations and laboratory prototypes demonstrate that the cycle has the potential for enhanced humidity control with sensible heat ratios...

  20. Model-Based Commissioning for Filters in Room Air Conditioners 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Kitagawa, H.; Matsumoto, K.; Goto, K.

    2004-01-01

    This paper proposes a model that can estimate filter resistance. Two sorts of value are used as inputs to estimate filter resistance. One is the power consumed by the fan in the indoor unit and the other is the thermal performance. For the room air...

  1. Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners

    E-Print Network [OSTI]

    . Figure 1 illustrates a typical rooftop (NREL Pix 06451) installation. Building Industry Trends - 10 performance of this equipment has remained relatively constant, close to the minimum standard over this period. An evaluation of data on currently available models from theAirConditioning andRefrigerationInstitute (ARI2000

  2. The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl 

    E-Print Network [OSTI]

    Zhao,L.; Zhao,X.; Hu,A.

    2014-01-01

    and Municipal Engineering Xi’an University of Architecture and Technology The Exploration on the Energy Saving Potential of an Innovative Dual- temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycle ESL-IC-14-09-35a... conditioner. However, energy losses caused by secondary heat transfer leave more room for the whole system performance to be improved if they can be avoided. 1 Introduction ?An innovative dual-temperature air-conditioner and the corresponding theoretical...

  3. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  4. Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air 

    E-Print Network [OSTI]

    Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

    1980-01-01

    The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

  5. NREL: Continuum Magazine - Air Conditioner Ready to Change Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmaster Please enter your name andEnergyAir

  6. Covered Product Category: Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas Tankless Water HeatersRoom Air

  7. Commercial Air Conditioners and Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of EnergyofDepartmentProcess DocumentPartner: A.O.Air

  8. Covered Product Category: Room Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving, we hearfreezers, aroom air

  9. Product Standards for Air Conditioners (Japan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsenBioSolutions JumpProblems withAir

  10. 2014-05-05 Issuance: Test Procedure for Portable Air Conditioners; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of data availabilty regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  11. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  12. Furnace

    SciTech Connect (OSTI)

    Cooke, J.C.; Tilley, F.H.

    1983-06-14

    Pieces of shredded tires are fed into the top of a vertical pyrolyzing furnace in a measured amount using a weighing hopper feed mechanism. Heated gas is introduced through inlet and pyrolyzing the tire pieces on a countercurrent flow principle to produce useful hydrocarbon volatiles and residues. The pyrolyzed residue including tire reinforcing wires are efficiently removed from the furnace by a plurality of downwardly inclined screw conveyors disposed in troughs. Each screw conveyor extends into an inclined conduit and discharges into a vertical branch conduit disposed at least partially within the cross-section of the furnace so that even discharge of the pyrolyzed residue is ensured by the combined action of gravity and the screw conveyors.

  13. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  14. Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

  15. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  16. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  17. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  18. Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners 

    E-Print Network [OSTI]

    Dooley, Jeffrey Brandon

    2005-02-17

    -1 EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies of Texas... A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Mechanical Engineering EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER...

  19. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  20. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    against Air-Con, International, requiring the company to stop selling certain air conditioning systems in the U.S. that have been shown to violate minimum energy efficiency...

  1. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  2. The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D.; Haberl, J.

    1992-01-01

    the performance of a residential cooling system operating under degraded conditions such as reduced evaporator air flow. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of system...

  3. Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace 

    E-Print Network [OSTI]

    Ferri, J. L.

    1983-01-01

    When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

  4. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    the energy efficiency of air conditioning products isbetween the energy efficiency of air conditioning productsthe air conditioning testing facilities of energy efficiency

  5. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  6. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    shows that most foreign energy efficien- cy standards arethe measurement of the energy efficien- cies of air/air airshare consists of energy- efficient electric motor products.

  7. Self-powered automatic secondary air controllers for woodstoves and small furnaces

    DOE Patents [OSTI]

    Siemer, Darryl D. (Idaho Falls, ID)

    1991-01-01

    A controller for automatically regulating the supply of secondary combustion air to woodstoves and small furnaces. The controller includes a movable air valve for controlling the amount of secondary air admitted into the chamber. A self powered means monitors the concentration of combustible gases and vapors and actuates the movable air valve to increase the supply of secondary air in response to increasing concentrations of the combustible gases and vapors. The self-powered means can be two fluid filled sensor bulbs, one of which has a coating of a combustion catalyst. Alternatively, the self powered means can be two metallic stripes laminated together, one of which is coated with a combustion catalyst, and when heated, causes the air valve to actuate.

  8. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  9. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    use, the water-side economizer and the air-side economizer.The air-side economizer takes advantage of the cool outdoorair is cool enough to provide total cooling. The water-side economizer

  10. Dirty Air Conditioners: Energy Implications of Coil Fouling Jeffrey Siegel, Lawrence Berkeley National Laboratory/ UC Berkeley

    E-Print Network [OSTI]

    Berkeley National Laboratory ABSTRACT Residential air conditioning is responsible for a substantial amount conditioning commissioning and maintenance practices. Introduction Residential air conditioning is responsible. For typical residential heat pump and air conditioning #12;systems, they predict a 10 ­ 25 % average energy

  11. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  12. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  13. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    86 Figure A-4: (a) Physical DEVap concept; (b)Illustration of DEVap air conditioningcontrolled ventilation DEVap Desiccant-enhanced evaporative

  14. Modeling the effects of Refrigerant Charging on Air Conditioner Performance Characteristics For Three Expansion Devices 

    E-Print Network [OSTI]

    Farzad, Mohsen

    1990-01-01

    a small refrigerant charge. A new heat exchanger model based on tube-by-tube simulation was developed and integrated into the ORNL heat pump model. The model was capable of simulating the steady state response of a vapor compression air-to-air heat...

  15. Testing and Economic Evaluation of a High Efficiency 10-ton Rooftop Air Conditioner 

    E-Print Network [OSTI]

    O'Neal, D. L.; Davis, M. A.

    2006-11-09

    In 1993, the U.S. Environmental Protection Agency initiated a project to design, build and demonstrate a high efficiency commercial rooftop air conditioning unit. The unit was designed by Hibberd Consulting of Westminster, Colorado, and was built...

  16. Fault detection methods for vapor-compression air conditioners using electrical measurements

    E-Print Network [OSTI]

    Laughman, Christopher Reed.

    2008-01-01

    (cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

  17. Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D. L.; Haberl, J. S.

    1992-01-01

    This report presents the measured degradation in performance of a residential air conditioning system operating under degraded conditions. Experiments were conducted using a R-22 threeton split-type cooling system with a short-tube orifice expansion...

  18. Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator 

    E-Print Network [OSTI]

    Maiya, M. P.; Ravi, J.; Tiwari, S.

    2010-01-01

    (low humidity). Operation of such a novel system is explained, elucidating the operational feasibility. The results presented consider the characteristics of such a system with respect to changes in the evaporator inlet air temperature and humidity...

  19. Monitoring the Performance of a Residential Central Air Conditioner under Reduced Evaporator Air Flow on a Test Bench 

    E-Print Network [OSTI]

    Palani, Manivannan

    1992-01-01

    This report presents results from degraded performance measurements of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short...

  20. Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

    2014-03-10

    This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

  1. Using National Survey Data to Estimate Lifetimes of Residential Appliances

    E-Print Network [OSTI]

    Lutz, James D.

    2013-01-01

    central air-conditioners, heat pumps, furnaces, boilers,central air-conditioners, heat pumps, furnaces, boilers,air-conditioners and heat pumps, units are added to the

  2. 2015-02-13 Issuance: Energy Conservation Standards for Portable Air Conditioners; Notice of Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC)- Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Registe notice of open meetings regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group, as issued by the Deputy Assistant Secretary for Energy Efficiency on August 19, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  4. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect (OSTI)

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  5. Incorporating Experience Curves in Appliance Standards Analysis

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2012-01-01

    Air Conditioners and Heat Pumps (Advanced Notice of ProposedCentral Air Conditioners, Heat Pumps, and Furnaces (Directair conditioners and heat pumps, furnaces, refrigerators and

  6. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  7. Blast furnace injection of massive quantities of coal with enriched air or pure oxygen

    SciTech Connect (OSTI)

    Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

    1993-01-01

    An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

  8. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  9. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01

    from flat-plate solar collectors and use air cooling forwith flat-plate solar collectors and air cooling; namely,from flat-plate solar collectors. Absorption refrigeration

  10. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01

    from flat-plate solar collectors and use air cooling foroperation with flat-plate solar collectors and air cooling;from flat-plate solar collectors. Absorption refrigeration

  11. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  12. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    LBNL 61467 Residential Furnace Blower Performance I.S. Walker Environmental Energy Technologies combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test and peak demand reductions in this study are based on replacing a Permanent Split Capacitor (PSC) blower

  13. Technology Solutions Case Study: A Homeowner’s Guide to Window Air Conditioner Installation for Efficiency and Comfort

    SciTech Connect (OSTI)

    C. Booten

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve energy efficiency, cost savings, and comfort for homeowners.

  14. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01

    time can be known so that its energy consumption can be estimated accurately. In order to verify the simulation accuracy, an actual room equipped with a gas-engine heat pump (GHP) air-conditioning system is studied by both simulation and measurement...

  15. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces...

  16. An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with a Thermal Expansion Valve 

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1989-01-01

    and was exhausted by the unit fan back into the room through the outdoor coil. PSYCHROMETRIC ROOMS The psychrometric rooms could simulate all testing conditions required for air conditioning and heat pump performance testing. Dew point and room temperatures could..., Including Heat Pumps (1979)[7]. The entering dry bulb temperature for the outdoor coil for steady state and cyclic tests was 82? +/-0.3 F DB and 20% relative humidity. The steady state tests were repeated for outdoor temperatures of 90?, 95?, and 100?F...

  17. Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps 

    E-Print Network [OSTI]

    Rodriguez, Angel Gerardo

    1995-01-01

    evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging...

  18. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01

    Fig. 6. Fig. 7. Fig. 8. and furnace temperature versus timein air-based atmospheres and furnace temperature versus time2 -based atmospheres and furnace temperature versus time for

  19. New Appliance Tax Credits, Rebates, and Incentives for Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air conditioners Clothes washers Dishwashers Freezers Furnaces (oil and gas) Heat pumps (air source and geothermal) Refrigerators Room air conditioners Water heaters State...

  20. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  1. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  2. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  3. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  4. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment....

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Heat Pumps, Air conditioners, Compressed air, Programmable Thermostats, Energy Mgmt....

  6. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  7. EVALUATION OF A NEW SOLAR AIR CONDITIONER

    E-Print Network [OSTI]

    · Benefits to California · Overall Technology Assessment · Appendices o Appendix A: Final Report (under-16 Grant Funding: $74,547 Term: February 2001 ­ June 2003 PIER Subject Area: Renewable Energy Technologies/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Environmentally-Preferred Advanced

  8. Measure Guideline. Air Conditioner Diagnostics, Maintenance,...

    Office of Scientific and Technical Information (OSTI)

    Building Innovation (ARBI), Davis, CA (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) (Building...

  9. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01 Audit|3:Analysis:

  10. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETUCivilConsortium Commercialization andProcessCommon

  11. Maintaining Your Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites | DepartmentLowering65-OCT.Department of

  12. Room Air Conditioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohm and HaasRomoland,Rooks

  13. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOA Applicantof YearsRevolving Loan Fundsand

  14. Tips: Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:February 25, 2015 |7Design » Types of

  15. Tips: Air Conditioners | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram Manager Directoryof Energy Think Outside the Box10 Timeline of

  16. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E.

  17. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - "U N

  18. Central Air conditioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio: Energy Resources

  19. Room Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015 TheTechnologies-2015 UpdateremovetoC.RodneyA

  20. Maintaining Your Air Conditioner | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasmaMaintaining Your

  1. Common Air Conditioner Problems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctoberCharles DOE Launches DataA refrigerant leak

  2. Tips: Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events: 1938-1950 August 2,10Design

  3. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 2, Fluorescent lamp ballasts, television sets, room air conditioners, and kitchen ranges and ovens

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document is divided into ``volumes`` B through E, dealing with individual classes of consumer products. Chapters in each present engineering analysis, base case forecasts, projected national impacts of standards, life-cycle costs and payback periods, impacts on manufacturers, impacts of standards on electric utilities, and environmental effects. Supporting appendices are included.

  4. Furnaces and Boilers

    Broader source: Energy.gov [DOE]

    Most Americans heat their homes with a furnace or boiler, and high-efficiency models of all types of furnaces and boilers are available. Is it time for an upgrade?

  5. Furnaces Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces Data Furnaces Data Email Questions on 2014 LCC spreadsheet 2014-10-28 DOE Furnace Rule111414 Email 111414 Letter to DOE-c DOE Furnace Rule011415 Reponse Email...

  6. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    G. Henderson (2005) Home air conditioning in Europe – howhigher growth in Indian air conditioner saturation duringand A.A. Pavlova ( 2003). Air conditioning market saturation

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State Government, Tribal Government, Agricultural, Institutional Savings Category: Solar Water Heat, Water Heaters, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  8. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    Efficiency & Renewable Energy, Central Air ConditionerEnergy Efficiency & Renewable Energy, Furnaces and BoilersEnergy Efficiency & Renewable Energy, Refrigerators,

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Government Savings Category: Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Caulking...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential, InstallersContractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    regarding future funding. Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Eligibility: Commercial, Industrial, Agricultural Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, Heat recovery,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Comprehensive Measures...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, CaulkingWeather-stripping, Building...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential, InstallersContractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ceiling Fan, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Caulking...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, Caulking...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential, Low Income Residential Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Water Heaters, Furnaces, Boilers, Air conditioners,...

  3. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

  4. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  5. Air-Con International: Noncompliance Determination and Proposed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con private label do not comport with the...

  6. Burner Designs and Controls for Variable Air Preheat Systems 

    E-Print Network [OSTI]

    Lied, C. R.

    1981-01-01

    This paper will deal with various ways of reducing fuel costs for direct fired furnaces. Burner design relating to existing furnaces, new furnaces designed to operate initially on cold air with the ability to add preheated air in the future...

  7. Blast furnace supervision and control system

    SciTech Connect (OSTI)

    Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  8. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  9. Retrofit Air Preheat Economics 

    E-Print Network [OSTI]

    Goolsbee, J. A.

    1981-01-01

    Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can...

  10. Trends in furnace control

    SciTech Connect (OSTI)

    McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

    1993-07-01

    This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

  11. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Office of Environmental Management (EM)

    by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Compressed air, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Siding, Roofs,...

  14. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with...

  15. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases...

  16. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  17. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  18. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heaters, Lighting, Furnaces, Air conditioners, Heat recovery, Steam-system upgrades, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ranges from 6... Eligibility: Residential Savings Category: Solar Photovoltaics, Water Heaters, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Clothes Washers, Dehumidifiers, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir sealing, Windows, Custom...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Furnaces, Boilers, Air conditioners, Compressed air, Motors, Motor VFDs, Other EE, Food Service Equipment, Vending Machine Controls, Commercial Cooking...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agency at (405) 232-0199. Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing,...

  6. 2015-03-24 Issuance: ASRAC; Notice of Intent to Establish the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASRAC; Notice of Intent to Establish the Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces Working Group to Negotiate Potential Energy...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efficient equipment including furnaces, boilers, air conditioners, geothermal and air-source heat pumps, water heaters, refrigerators, dishwashers, clothes washers, dehumidifiers,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing,...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sensors, Chillers, Furnaces, Boilers, Air conditioners, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting ControlsSensors, Chillers, Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs, Processing and...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Motors, Motor VFDs,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include efficient central air conditioners, central air-source heat pumps, electric heat pump water heaters, furnace blower fans, programmable thermostats, refrigerator...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs, Processing and Manufacturing Equipment, Custom...

  16. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps

  17. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps

  18. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01

    INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    built prior to May 1, 1989. There is no... Eligibility: Residential Savings Category: Water Heaters, Lighting, Furnaces, Boilers, Air conditioners, DuctAir sealing, Building...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, CaulkingWeather-stripping, DuctAir sealing, Building...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, CaulkingWeather-stripping, DuctAir sealing, Building...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Programmable Thermostats, Energy Mgmt....

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, DuctAir sealing, Building Insulation, Windows, Doors, Insulation CaliforniaFIRST...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Compressed air, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting, Commercial Refrigeration...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heaters, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Motors, Custom...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE, LED Lighting...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Contractors Savings Category: Furnaces, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Roofs,...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Siding, Roofs,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, CaulkingWeather-stripping, DuctAir sealing,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, CaulkingWeather-stripping, DuctAir sealing,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Programmable Thermostats, Energy...

  13. History of Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE)

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  14. Three-Dimensional Flow and Thermal Structures in Glass Melting Furnaces. Part I. Effects of the Heat Flux Distribution.

    E-Print Network [OSTI]

    Pilon, Laurent

    Three-Dimensional Flow and Thermal Structures in Glass Melting Furnaces. Part I. Effects in the molten glass bath of a typical glass melting furnace with a throat but without air bubblers or electric constant. The main purpose of the work is to evaluate the capability of the furnace operators to control

  15. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    Consumption 2005-2030 Consumption (TWh) IND INDO SAS-PAS BRASAS-PAS BRA MEA Figure 4 Air Conditioner Saturation by Region 2005-

  16. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  17. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  18. Steam Cracker Furnace Energy Improvements 

    E-Print Network [OSTI]

    Gandler, T.

    2010-01-01

    ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship Channel, ~ 25 mi. east... Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time furnace is online (more...

  19. Furnaces | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd Jump to: navigation,NorteFurnaces

  20. Cupola Furnace Computer Process Model

    SciTech Connect (OSTI)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  1. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D. (Evergreen, CO)

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  2. Laboratory Evaluation of Residential Furnace Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.; Lutz, Jim D.

    2005-01-01

    Electricity Use by New Furnaces: A Wisconsin Field Study,of Airflow in Residential Furnaces. , LBNL-53947 CMHC. 1993.B. 2002. The Impact of ECM furnace motors on natural gas use

  3. A PLASMA CHANNEL BEAM CONDITIONER FOR A FREE ELECTRON LASER

    E-Print Network [OSTI]

    Wurtele, Jonathan

    . In this paper, we give examples of conditioners that might be employed at the Linac Coherent Light Source (LCLS is the output wavelength, and is the average beta function in the FEL. For LCLS parameters, the corresponding

  4. Paired Straight Hearth Furnace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Optimizing Blast Furnace Operation to Increase...

  5. List of Furnaces Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed air IncentivesEquipmentFuelFurnaces

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Motor VFDs, Processing and Manufacturing Equipment,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Motor VFDs, Yes; specific technologies not...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fan, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Energy Mgmt. SystemsBuilding...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Institutional Savings Category: Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential Savings Category: Biomass, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Building Insulation, Windows, Roofs, Other EE ConserFund...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Savings Category: Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Lighting, Furnaces, Boilers, Air conditioners, Energy Mgmt. SystemsBuilding...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Lighting, Furnaces, Boilers, Air conditioners, Energy Mgmt. SystemsBuilding...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    listed on the program web site. Rebates are also available for air conditioner and furnace tune-ups. The rebate... Eligibility: Residential Savings Category: Clothes Washers,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Combined Heat & Power, Daylighting, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heat, Solar Space Heat, Solar Photovoltaics, Wind (All), Biomass, Combined Heat & Power, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Other EE Austin Utilities (Gas and Electric)- Commercial and Industrial Energy...

  18. Sample Contract Language for Construction Using Energy-Efficient...

    Energy Savers [EERE]

    Energy Management Program: Air conditioners Ballasts Boilers Chillers Doors Electric motors Furnaces Heat pumps Lamps Lighting controls Luminaries Plumbing (faucets, showerheads)...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Processing and Manufacturing Equipment, CustomOthers pending approval Fort Collins...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Motor VFDs, Other EE, LED Lighting New Ulm Public Utilities- Energy Efficiency Rebate...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, LED Lighting School Energy Efficiency Grant Program The Illinois State Board of Education...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Water Heat, Biomass, Geothermal Heat Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Air conditioners, Heat recovery, Steam-system upgrades, Energy Mgmt....

  4. Enforcement Policy Statement: Compliance Period for Regional...

    Office of Environmental Management (EM)

    conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States. 76 FR...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Wind (All), Biomass, Combined Heat & Power, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government Savings Category: Solar Water Heat, Biomass, Geothermal Heat Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Air conditioners, Heat recovery,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Other EE Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program The...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar Water Heat, Biomass, Geothermal Heat Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Air conditioners, Heat recovery, Steam-system...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Building Insulation, Motors, CustomOthers pending approval,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Steam-system upgrades, Building Insulation, Windows, Motor...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RefrigeratorsFreezers, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, Building Insulation, Windows,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Roofs, Motor VFDs,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE Small...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Energy Mgmt. SystemsBuilding...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    & Power, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Windows, Doors, Siding,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Building...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment Insulation, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, Building...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Air conditioners, Heat recovery, Steam-system upgrades, Energy Mgmt. SystemsBuilding Controls, Caulking...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, Heat recovery, Building Insulation, Motors, Motor VFDs, CustomOthers pending approval, Other...

  1. Comments on reducing regulatory burden | Department of Energy

    Office of Environmental Management (EM)

    Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces, and accessories Comments on reducing regulatory burden More...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Lighting, Furnaces, Boilers, Air conditioners, Energy Mgmt. SystemsBuilding...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Lighting, Furnaces, Boilers, Air conditioners, Energy Mgmt. SystemsBuilding...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE PSEG Long Island- Residential Energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, Building Insulation, Windows, Doors, Custom...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Furnaces, Air conditioners, Comprehensive MeasuresWhole Building, Wind (Small), Hydroelectric (Small), Geothermal Direct-Use, Other Distributed Generation...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, Building Insulation, Windows, Doors, CustomOthers pending approval, Other...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment Insulation, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping,...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Building...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Air conditioners, Heat recovery, Steam-system upgrades, Energy Mgmt. SystemsBuilding Controls, Caulking...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, Heat recovery, Building Insulation, Motors, Motor VFDs, CustomOthers pending approval,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power, Daylighting, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, Duct...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Caulking...

  14. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  15. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  16. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  17. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  18. Combustion in a multiburner furnace with selective flow of oxygen

    DOE Patents [OSTI]

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  19. Residential Humidity Control: Exciting New Opportunities with Air Flow Modulation 

    E-Print Network [OSTI]

    Crawford, J. G.

    1987-01-01

    This paper reviews psychrometric principles and shows how to formulate a psychrometric chart from a single equation. The chart is used to demonstrate the manner in which a conventional single-speed air conditioner adjusts its operating point...

  20. History of the Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    at Rivoli Theater in New York, Carrier publicly debuted a new type of system that used a centrifugal chiller, which had fewer moving parts and compressor stages than existing...

  1. Residential Air Conditioner Direct Load Control "Energy Partners Program" 

    E-Print Network [OSTI]

    Cook, J. D.

    1994-01-01

    ) approach in which both demand- side and supply side resources are evaluated. HL&P also recognizes the contribution demand-side programs make to the company's long-term ability to provide reliable and reasonably priced electric service for its... effected, according to EPRI. Numerous large investor-owned electric utilities are presently offering residential load control programs with great success. Arkansas Power & Light, Duke Power Company, Florida Power Corporation, Florida Power t Light...

  2. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    calculation include the installed consumer cost (purchase price plus installation cost), operating expenses (energy and

  3. Development of a room air conditioner design model 

    E-Print Network [OSTI]

    Penson, Steven Brad

    1988-01-01

    AND RECOMMENDATIONS. Page . 12 . 12 . 20 . 33 . 38 . 48 . 50 . 56 Conclusions. Recommendations. REFERENCES APPENDIX A . 57 . 57 . 59 . 61 VITA . 66 LZST OP TABLES Table Page 2. 1 Major output parameters from the ORNL model 3. 1 Effect of tube.... Efficiency improvements are evaluated with the aid of a computer model. The model chosen for this analysis was the Oak Ridge National Laboratory (ORNL) heat pump model [5] . The ORNL Heat Pump Design Model is a FORTRAN computer program developed...

  4. Variable Speed Fan Retrofits for Computer Room Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSIDC Data Center: Energy Reduction Strategies Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Wireless Sensors Improve Data Center Efficiency...

  5. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    driver, driven by high pressure vapor. DW: main circulationpump driven by high pressure vapor. ~ restrictors ~ checkof the amount of high pressure vapor used to run the pump

  6. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    shell characteristics and occupant behavior) and geographicto forecast (e.g. , occupant behavior and climate). Lee

  7. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency.

  8. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    of Energy, DRAFT Marginal Energy Prices Report, July, 1999.energy use by the energy price paid by the household.energy consumption, energy price, discount rate, and central

  9. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    analyze, the energy price projection, and the start year (uncertainty of projections offuture energy prices, the LCC

  10. An Analysis of Efficiency Improvements in Room Air Conditioner 

    E-Print Network [OSTI]

    O'Neal, D. L.; Penson, S. B.

    1988-01-01

    for an Energy-Efficient Economy Washington, DC ABSTRACT Reliable monitoring and measurement of the energy savings resulting from the installation of combined heat and power (CHP) systems and power recovered from waste energy (recycled energy) projects... is becoming increasingly important. As a growing number of states and now the federal government look to mandatory energy efficiency portfolio programs such as an Energy Efficiency Resource Standard (EERS), CHP and waste heat recovery stands to play a...

  11. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    Administration, Annual Energy Outlook 2000, December, 1999.trends from EIA's Annual Energy Outlook 2000 (AE02000) were

  12. Enforcement Policy: Split-System Central Air Conditioners Without HSVC |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof-SA-02:Innovative Energy AppsA123Enforcement| Department of

  13. Ex Parte Communication on Central Air-Conditioner Test Procedure |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22, 2014 TheMonday March 3, 2014, a

  14. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(Million Cubicthrough 1996) inNatural Gas Heat Pump and

  15. Covered Product Category: Residential Central Air Conditioners | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLakeDepartmentEnergyEnterprise ServersHotDepartmentof

  16. Novel Solid State Magnetocaloric Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew JerseyEnergybenefits of61075 LisaLaboratory, Oak

  17. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - "U NMeasure

  18. List of Central Air conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchemRemodelersList ofList

  19. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTech Connect HighHighin a Bent

  20. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t S eOF 1121DaveOF THE DEPARTMENT

  1. Air Conditioner Regional Standards Brochure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartment of Energy with7:00AM EST9

  2. Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20,1LLC |Compliance Period

  3. Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOEof EnergyEnergy

  4. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartmentHigh-Efficiency Parking

  5. Four Central Air Conditioners Determined Noncompliant With Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFort Collins, ColoradoEfficiency Standard |

  6. Variable Speed Fan Retrofits for Computer Room Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode |DepartmentVampire

  7. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICES of Experience955

  8. Ductless Mini-Split Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14 Per GallonDataEnergyDuctDuctless

  9. Central Air Conditioner Enforcement Policy Statement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiencyCOP 21:Department of Energy Bill ValdezApril

  10. Radio-Frequency Beam Conditioner for Fast-Wave Free-Electron Generators of Coherent Radiation

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01

    to Physical Review Letters Radio-Frequency Beam ConditionerDE-AC03-76SF00098 LBL-31006 RADIO-FREQUENCY BEAM CONDITIONERIbaraki, 305, Japan. RADIO-FREQUENCY BEAM CONDITIONER FOR

  11. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect (OSTI)

    Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  12. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  13. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  14. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  15. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  16. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Star Program). 2006. Furnace Specification Rulemaking.spec. 2006. EPA Furnace Specification http://2007. Comparing Residential Furnace Blowers for Rating and

  17. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01

    2004. Infinity 80 Gas Furnace Consumer Brochure. FebruaryConservation Standards for Residential Furnaces and Boilers;Proposed Rule Furnace and Boiler Advanced Notice of Proposed

  18. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Evaluation of Residential Furnace Blower Performance.Infinity 80 Variable Speed Furnace. August. Farmington,Standards for Residential Furnaces and Boilers; Proposed

  19. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

  20. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  1. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    E-Print Network [OSTI]

    Taylor, Margaret

    2014-01-01

    Commercial Air?Source Heat Pumps Air?Cooled Chillers Water?Heaters Gas Furnaces Air-Source Heat Pumps Boilers CentralAir Conditioners Electric Heat Pump Water Heaters Electric

  2. Technology Solutions Case Study: Improving the Field Performance of Natural Gas Furnaces

    SciTech Connect (OSTI)

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  3. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Rothgeb, S.; Brand, L.

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  4. Usage Policies Notebook for NanoFurnace Furnace (EasyTube 3000 System)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Usage Policies Notebook for NanoFurnace Furnace (EasyTube 3000 System) Revision date October 2014 #12;2 Emergency Plan for Nano Furnace Standard Operating Procedures for Emergencies ContactTube3000 Furnace to grow carbon nanotubes, graphene, and annealing. To avoid any potential fire

  5. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  6. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  7. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  8. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  9. Save Money and Stay Cool with an Efficient, Well-Maintained Air...

    Energy Savers [EERE]

    buy a qualified energy-efficient model. In some states, you may still be able to get a rebate on an ENERGY STAR air conditioner purchase through a Recovery Act-funded program....

  10. A Study to Determine the Energy Impact of Adding Polarshield to Air Conditioning Systems 

    E-Print Network [OSTI]

    Cromer, C. J.

    2001-01-01

    PolarShield is a polarized refrigerant compressor oil additive containing the a-olefin molecule which is a commonly used oil additive to reduce high pressure viscosity breakdown. The manufacturers of this air conditioner compressor oil additive (COA...

  11. Single taphole blast furnace casthouse performance optimizing cost and availability

    SciTech Connect (OSTI)

    Fowles, R.D.; Searls, J.B.; Peay, W.R. [Geneva Steel, Provo, UT (United States); Brenneman, R.G.

    1995-12-01

    The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

  12. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  13. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance 

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  14. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  15. Crystal growth furnace with trap doors

    DOE Patents [OSTI]

    Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  16. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, Vishu D. (Midland, MI); May, James B. (Midland, MI)

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  17. AIR LEAKAGE, SURFACE PRESSURES AND INFILTRATION RATES IN HOUSES

    E-Print Network [OSTI]

    Grimsrud, D.T.

    2011-01-01

    frame construction. floor furnace heating. m floor windows,Gas forced air heating system. 100 m floor area, 230 msolar heating Sealed combustion wood stove. 174 m floor

  18. Furnaces Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | Department ofMotors |Furnaces Data

  19. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  20. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  1. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D. (Evergreen, CO)

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  2. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces 

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    1999-01-01

    Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

  3. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  4. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01

    This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling...

  5. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  6. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  7. Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace

    E-Print Network [OSTI]

    Reif, Rafael

    Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the boat into the center of the furnace and replace the quartz and ceramic end caps, carefully aligning

  8. DOE Publishes Notice of Proposed Rulemaking for Residential Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnace Fans Energy Conservation Standards DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards October 25, 2013 - 12:00am Addthis...

  9. Probabilistic Data Management for Pervasive Computing: The Data Furnace Project

    E-Print Network [OSTI]

    Garofalakis, Minos

    Probabilistic Data Management for Pervasive Computing: The Data Furnace Project Minos Garofalakis management challenges. The Data Furnace project at Intel Research and UC-Berkeley aims to build

  10. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs State-of-the-Art Computational Fluid Dynamics Model Optimizes Fuel Rate in Blast Furnaces The blast...

  11. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  12. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  13. Investigation of a family of power conditioners integrated into the utility grid: Category 1. Residential power conditioner. Final report

    SciTech Connect (OSTI)

    Steigerwald, R.L.; Ferraro, A.; Tompkins, R.E.

    1981-07-01

    The development of power conditioners for residential photovoltaic applications of approximately 5 to 30 kW is reported. The interface of the inverter and the solar array, as well as the ac utility is investigated including the effects of array input current, utility impedance, and injected harmonic currents. The trade-off study of alternate power conversion schemes are covered which results in a recommended approach. A conceptual design of the recommended approach, including performance results obtained from an inverter simulated is presented. (LEW)

  14. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

    1995-12-01

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  15. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | Department ofPotawatomi Community |

  16. Usage Policies Notebook for 2 inch Nano Furnace Revision date

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Usage Policies Notebook for 2 inch Nano Furnace Revision date September 2014 #12;2 Emergency Plan for 2 inch Nano Furnace Standard Operating Procedures for Emergencies Contact information Person Phone;4 Usage Policies for 2 inch Nano Furnace Standard policies for usage The nano furnace can accept up to 2

  17. Furnace Blower Performance Improvements - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who install high-performance furnace blowers with well-designed and installed ducts can achieve annual savings of 45% of fan energy or about 300 kWh per home. Read about...

  18. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  19. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  20. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect (OSTI)

    Chaubal, P.C.; Ranade, M.G. [Inland Steel Co., East Chicago, IN (United States)

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  1. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  2. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  4. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01

    for residential gas furnaces in the U.S. In the proceedingsconsumption of residential furnaces and boilers in U.S.consumer products: Residential furnaces and boilers. Energy

  5. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01

    of Residential Central Furnaces and Boilers, October, 2003.Conservation Standards for Residential Furnaces and Boilers;Proposed Rule Furnace and Boiler Advanced Notice of Proposed

  6. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01

    vol. ) in IVlethano'J Furnace II 1-2. III-3. III-4. III-5.vol. ) in Methanol Furnace , 2 , . . . . . . . . , . , .Velocity Profiles in Methanol Furnace Temperature Profiles:

  7. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  8. Identifying Efficiency Degrading Faults in Split Air Conditioning Systems 

    E-Print Network [OSTI]

    Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

    2013-01-01

    and fault diagnosis of vapor-compression equipment." HVAC&R Research 15.3 (2009): 597-616. (12) N, Lu et al., ?Air Conditioner Compressor Performance Model,? Pac. NW Nat. Lib., Richland, WA, Rep. PNNL-17796, 2008. (13) A. Maier, ?Troubleshooting Thermal...

  9. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  10. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

  11. Blast furnace control after the year 2000

    SciTech Connect (OSTI)

    Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

    1996-12-31

    Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

  12. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  13. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  14. Energy Assessment Protocol for Glass Furnaces 

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01

    of the protocol are implemented, resulting in cost savings of greater than $200,000 per year. PROJECT OVERVIEW The glass industry is a major energy consumer. Depending on the market sector, a glass furnace heated by oxy-fuel burners may use from 3..., the manufacturer of the burners used in the PPG furnace, brought extensive field experience to the team, as well as in-depth knowledge of burner performance. ENERGY ASSESSMENT PROTOCOL The project team developed the protocol based on DIAL, Eclipse and PPG...

  15. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  16. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, Andrew H. (Knoxville, TN); Holcombe, Cressie E. (Knoxville, TN)

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  17. Oxidation Tube Furnace (Lindberg/Blue 1100C)

    E-Print Network [OSTI]

    Subramanian, Venkat

    Oxidation Tube Furnace (Lindberg/Blue 1100C) Basic User Manual 1st Edition Jan 2013 NR #12;Logon Oxidation Tube Furnace on FOM System Sign Log Book #12;Example Program: Room temperature to 1100C

  18. Design and fabrication of a tin-sulfide annealing furnace

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2011-01-01

    A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

  19. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Power curves show blower motor input power as a function ofOverall, it appears the BPM motors used in furnaces offerThe impact of ECM furnace motors on natural gas use and

  20. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  1. Energy Recovery for Medium- and High-Temperature Industrial Furnaces 

    E-Print Network [OSTI]

    Krumm, E. D.

    1981-01-01

    The application of metallic heat exchangers on medium- and high-temperature industrial furnaces is examined. A thorough technical understanding of all furnace operating conditions and the duties imposed upon heat exchangers is identified as a key...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Super Saver Loans, which allow C&I rate customers to replace a furnace along with a new central air conditioner or heat pump with an... Eligibility: Commercial, Fed. Government,...

  3. CWS-Fired Residential Warm-Air Heating System

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  4. Waste Heat Recovery – Submerged Arc Furnaces (SAF) 

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01

    designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

  5. Energy Savings in Electric Arc Furnace Melting 

    E-Print Network [OSTI]

    Lubbeck, W.

    1982-01-01

    Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

  6. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01

    vol. ) in Methanol Furnace , 2 , . . . . . . . . , . , .Velocity Profiles in Methanol Furnace Temperature Profiles:to Pure Methanol . . . . . . . . . . . . , . . . . C02

  8. OBJECT-ORIENTED FERROMANGANESE FURNACE MODEL Stein O. Wasb*

    E-Print Network [OSTI]

    Foss, Bjarne A.

    OBJECT-ORIENTED FERROMANGANESE FURNACE MODEL Stein O. Wasbø* , Bjarne A. FossÀÀ and Ragnar Tronstad-7034 Trondheim, Norway, e-mail:Bjarne.Foss@itk.ntnu.no Abstract: The high-carbon ferromanganese furnace inside it. The furnace operation has been characterized by fluctuations in vital process variables. Many

  9. Usage Policies Notebook for Thermco Atmospheric Diffusion Furnace system

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Usage Policies Notebook for Thermco Atmospheric Diffusion Furnace system Revision date September 2014 #12;2 Emergency Plan for Diffusion Furnaces Standard Operating Procedures for Emergencies Contact;4 Usage Policies for Thermco Atmospheric Diffusion Furnace Standard policies for usage The Atmospheric

  10. Reduce Air Infiltration in Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSaSuperior Graphite Inc.,

  11. Fig. 1 Photograph (a) and Schematic (b) of our NEC SCI-MDH-20020-S image floating zone furnace system.

    E-Print Network [OSTI]

    Johnson, Peter D.

    furnace system. (a) Advantages of an IR furnace: * Uniform illumination and temperature profile. * Non

  12. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  13. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  14. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    heater replacement, air conditioner replacement, solar thermal waterheater replacement, air conditioner replacement, solar thermal water

  15. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  16. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOE Patents [OSTI]

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  17. Process control techniques for the Sidmar blast furnaces

    SciTech Connect (OSTI)

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  18. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

    1995-12-01

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  19. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  20. Optimized Utility Systems and Furnace Integration 

    E-Print Network [OSTI]

    McMullan, A. S.; Spriggs, H. D.

    1987-01-01

    SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design defines the Process.../Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design of process and utility...

  1. In Proc. 1996 ACEEE Summer Study, August 1996, Asilomar, CA Field Measurements of Efficiency and Duct Retrofit Effectiveness in Residential Forced air

    E-Print Network [OSTI]

    of Efficiency and Duct Retrofit Effectiveness in Residential Forced air Distribution Systems David A. Jump, Iain. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy

  2. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  3. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  4. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOE Patents [OSTI]

    O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  5. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOE Patents [OSTI]

    O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  6. Sealed rotary hearth furnace with central bearing support

    DOE Patents [OSTI]

    Docherty, James P. (Carnegie, PA); Johnson, Beverly E. (Pittsburgh, PA); Beri, Joseph (Morgan, PA)

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  7. Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

  8. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  9. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones,...

  10. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief (November 2004) More...

  11. Advanced Diagnostics and Control for Furnaces, Fired Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enables spatially resolved hot zone measurements, optimizing and tuning of furnace burners, improving heat transfer, and minimizing undesirable combustion by-products....

  12. DOE Increases Energy Efficiency Standards for Residential Furnaces...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the...

  13. Aluminum Bronze Alloys to Improve Furnace Component Life | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the furnace can result in metal failure from erosion, corrosion, and thermal stress cracking. With AMO support, the Energy Industries of Ohio, Oak Ridge National...

  14. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  15. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities 

    E-Print Network [OSTI]

    Lee, W.; Chen, H.

    2006-01-01

    fluid. The indoor unit includes a capillary tube and a DX evaporator with copper tubes and aluminium fins. The outdoor unit includes a high performance tube-in-tube water-cooled condenser connected to a hermetic rotary compressor. The cooling tower...

  16. Enforcement Policy Statement: Split-System Central Air Conditioners Without HSVC

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSof 2005 at Iowa WindEnergy1-03 - October 24,2-05 -2, Split-System

  17. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    degree-day cooling degree-hour coefficient of alienationas measured by cooling degree hours (CDH), and total heatas measured by cooling degree hours (CDH), and total heat

  18. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    leakage than when the hose is removed with refrigerant in gas phase or if a quick con- nect/disconnect sealing valve

  19. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    of California Statewide Aggregator Demand Response Programs.Analysis of AMP Aggregator Demand Response Program. Preparedof California Statewide Aggregator Demand Response Programs.

  20. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps 

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12

    , with the two smallest units additionally being tested in Scenario 1 with an over-sized duct. The scenario tests were required to be within 5% power and 2.5% airflow of a baseline test following ASHRAE Standard 37. he results for Scenario 1 have shown...

  1. User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners

    Broader source: Energy.gov [DOE]

    Lead Performer: University of California, Davis – Davis, CADOE Total Funding: $200,000Cost Share: $339,515Project Term: 2015 – 2017Funding Opportunity: Building University Innovators and Leaders...

  2. Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners

    E-Print Network [OSTI]

    McNeil, Michael A.; Iyer, Maithili

    2008-01-01

    because of the higher electricity rates, higher hours ofin use patterns and electricity rates between commercial andUEC), marginal electricity rates, and discount rates.

  3. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    accessed on 11th February 2011. IEA 4E M&B, 2010 “4E Mappingusing CO2 as working fluid, IEA Heat Pump Center Newsletter,Source: Catalog searches, IEA 4E M&B 2010, Baillargeon, 2011

  4. Air Conditioner Efficiency Under Hot Dry and Hot Humid Conditions - The Utility Perspective 

    E-Print Network [OSTI]

    Amarnath, A.

    2008-01-01

    Despite the recent growth of social media, rhetorical theory which addresses authorship in this realm has been slow to develop. Static terms such as "reader," "writer," and "author" are often used to refer to the roles ...

  5. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    regions. In addition, the SCADA was not available for allData Real Time Visibility SCADA 5 minutes or less Limited

  6. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consumingfor Implementing the China Energy Efficiency Label System (

  7. Analysis of Efficiency Standards for Air Conditioners, Heat Pumps, and Other Products

    Reports and Publications (EIA)

    2002-01-01

    A series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  8. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners...

    Broader source: Energy.gov (indexed) [DOE]

    Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. PAC TP NOPR.pdf...

  9. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    93 Figure I-1: Electricty Use for a Specific Feeder in Santerritory. Figure I-1: Electricty Use for a Specific Feeder

  10. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    utility company issues a demand response message in the formsystem receives the demand response message through aas an effective demand response program that achieves

  11. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    Values of the Energy Efficiency and Energy Efficiency Gradesavin g standards and energy efficiency rat- ings. Energymanufacturers, and energy efficiency testing laboratories

  12. Ex Parte Communication on Central Air-Conditioner Test Procedure - ICM

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22, 2014 TheMonday March 3, 2014, a group

  13. Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment ofJune 28, 2011 "Just doDepartment

  14. Stirling Air Conditioner for Compact Cooling (Program Document) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmallTechnicalSheldon Glashow and-DConnect Program

  15. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners; Notice

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of EnergyEnableNotice ofof

  16. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergyDepartment of

  17. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartment ofHeat Pump Models | Department of

  18. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartmentEP9425Violating Minimum Appliance

  19. Five ENERGY STAR Room Air Conditioners Fail Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPP |DepartmentOpening

  20. YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy WindWorkplaceEnvironmentalY-12

  1. Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015reports issuedExperienceEnergy|

  2. Tips for Running an Air Conditioner Without Breaking the Bank | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuildingTheEasements30, 2008: US portion ofof

  3. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartmentAssThis orderHighDOEOrderHeat Pump

  4. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergy U.S.Safety,of Energy|

  5. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01

    for residential gas furnaces in the U.S. In the proceedingsEconomics of residential gas furnaces and water heaters inconsumption of residential furnaces and boilers in U.S.

  6. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01

    for residential gas furnaces in the U.S. In the proceedingsconsumption of residential furnaces and boilers in U.S.fuel consumption. The gas furnace fuel consumption (FuelUse)

  7. Spatio-temporal modelling of corrosion in an industrial furnace

    E-Print Network [OSTI]

    Little, John

    Spatio-temporal modelling of corrosion in an industrial furnace John Little, Michael Goldstein) 191 334 3051 Abstract Optimal inspection and maintenance of complex systems in modern industry-scale industrial furnace subject to corrosion will be considered. A suitable Bayesian spatio-temporal dynamic

  8. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  9. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  10. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  11. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  12. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  13. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01

    1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

  14. Use of sinter in Taranto blast furnaces

    SciTech Connect (OSTI)

    Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

    1995-12-01

    Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

  15. Thermochemical Recuperation for High Temperature Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods, in preheat combus- tion air temperatures. Applications in Our Nation's Industry Because both steam and CO 2 can be utilized in the TCR process, it is advantageous...

  16. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect (OSTI)

    Kakascik, T.F. Jr.

    1996-12-31

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  17. Application of AI techniques to blast furnace operations

    SciTech Connect (OSTI)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  18. (ENFORCEMENT AGENCY CAN CUSTOMIZE WITH LETTERHEAD/SEAL)

    E-Print Network [OSTI]

    INCLUDE: 1. Heating equipment must have a minimum 78% AFUE (Exception: Wall & floor furnaces; room heaters). 2. Central air conditioners & heat pumps less than 65,000 Btu/hr must have a minimum 13 SEER. 3 Conditioned Floor Area Duct insulation requirement Thermostat Packaged Unit Furnace Indoor Coil Condensing

  19. 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products: Test Procedures for Consumer Furnaces and Boilers

  20. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  1. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    target residential water heaters and air conditioners usingStrategies for Water Heaters and Air Conditioners Voluntaryor snapback of load. Water heaters and air conditioners have

  2. Operating experience with 100% pellet burden on Amanda blast furnace

    SciTech Connect (OSTI)

    Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

    1993-01-01

    A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

  3. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the...

  4. Sandjet- A New Alternative for Cleaning Furnace Tubes 

    E-Print Network [OSTI]

    Pollock, C. B.

    1981-01-01

    Energy management in modern refineries is becoming more difficult as the real cost of in-house and purchased fuel escalates and the quality of feed stocks decreases. Furnace tube maintenance has been made more complex by ...

  5. Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

  6. Automatic Control System of Car-Bottom Reheating Furnace 

    E-Print Network [OSTI]

    Xueqiao, M.; Weilian, X.; Hongchen, Z.

    1985-01-01

    At present China has large quantities of two-regenerator gas reheating furnaces which are old in fashion and low in calorific efficiency. Therefore, the question how to increase the calorific efficiency is very much concerned on condition...

  7. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas heat losses can be calculated by the equation: Furnace exhaust heat losses W * Cp * (T exhaust - T ambient) Where: * W Mass of the exhaust gases * Cp Specific heat of...

  8. Gas-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

  9. Effect of furnace operating conditions on alkali vaporization...

    Office of Scientific and Technical Information (OSTI)

    on alkali vaporization, batch carryover, and the formation of SO2 and NO in an oxy-fuel fired container glass furnace. Citation Details In-Document Search Title: Effect of...

  10. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect (OSTI)

    Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  11. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  12. CWS-Fired Residential Warm-Air Heating System. Quarterly report, February 1, 1989--April 30, 1989

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  13. Variable firing rate power burner for high efficiency gas furnaces. Final report

    SciTech Connect (OSTI)

    Fuller, H.H.; Demler, R.L.; Poulin, E.

    1980-02-01

    One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

  14. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  15. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  16. Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification

    SciTech Connect (OSTI)

    Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-08-15

    A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

  17. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect (OSTI)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  18. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  19. The 1994 intermediate reline of H-3 furnace

    SciTech Connect (OSTI)

    James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

    1995-12-01

    LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

  20. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

    1995-12-01

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.