Powered by Deep Web Technologies
Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged  

U.S. Energy Information Administration (EIA) Indexed Site

5. Cooling Equipment, Floorspace, 1999" 5. Cooling Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All Buildings ................",67338,58474,8329,9147,14276,2750,12909,36527,2219,1312 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4879,890,700,962,"Q","Q",2613,253,"Q" "5,001 to 10,000 ..............",8238,6212,1606,707,1396,"Q","Q",3197,181,"Q"

2

Covered Product Category: Room Air Conditioners | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Specifications website. Buying Energy-Efficient Room Air Conditioners When buying room air conditioners directly from commercial sources, choose models that are ENERGY...

3

air conditioner | OpenEI  

Open Energy Info (EERE)

air conditioner air conditioner Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

4

Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Room Air Conditioners July 1, 2012 - 5:35pm Addthis A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. What does this mean for me? Room air conditioners are less expensive and disruptive to install than central air conditioning systems. Room air conditioners can be a cost-effective alternative to central air conditioning systems. How does it work? Room air conditioners work by cooling one part of your home. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though

5

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

6

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

7

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

8

Common Air Conditioner Problems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Air Conditioner Problems Common Air Conditioner Problems Common Air Conditioner Problems May 30, 2012 - 6:41pm Addthis A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. What does this mean for me? You can eliminate the most common air conditioner problems before hiring an air conditioning technician. You can do some air conditioner maintenance and repair tasks yourself. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of connected rooms as much as possible from the rest of your home.

9

Tips: Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Air Conditioners Tips: Air Conditioners Tips: Air Conditioners June 24, 2013 - 6:31pm Addthis Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer months. In fact, a room air conditioner that's too big for the area it is supposed to cool will perform less efficiently and less effectively than a smaller, properly sized unit. The reason: an oversized unit will cool the room(s) to the thermostat set-point before proper dehumidification occurs, making the area feel "clammy"

10

Tips: Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Air Conditioners Tips: Air Conditioners Tips: Air Conditioners June 24, 2013 - 6:31pm Addthis Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer months. In fact, a room air conditioner that's too big for the area it is supposed to cool will perform less efficiently and less effectively than a smaller, properly sized unit. The reason: an oversized unit will cool the room(s) to the thermostat set-point before proper dehumidification occurs, making the area feel "clammy"

11

High-Efficiency Window Air Conditioners - Building America Top...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

12

Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Results roomairconditioner v1.6.xlsx More Documents & Publications Commercial Air Conditioners and Heat Pumps Fluorescent Lamp Ballasts Residential Condensing Gas Furnaces...

13

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

14

13-Energy Efficiency Ratio Window Air Conditioner | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT...

15

Commercial Air Conditioners and Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Conditioners and Heat Pumps Commercial Air Conditioners and Heat Pumps commercialcacandhpv1.0.xlsx More Documents & Publications Residential Clothes Washers (Appendix J2)...

16

central air conditioner | OpenEI  

Open Energy Info (EERE)

central air conditioner central air conditioner Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

17

Ductless Mini-Split Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless Mini-Split Air Conditioners Ductless Mini-Split Air Conditioners Ductless Mini-Split Air Conditioners August 9, 2012 - 4:05pm Addthis A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. What does this mean for me? A ductless mini-split air conditioner is easier to install than a central air conditioning system. A ductless mini-split air conditioner provides zoned air conditioning without ducting. A ductless mini-split air conditioner is relatively easy to install and does not provide an entry point for intruders as some room air conditioners do. Ductless, mini split-system air-conditioners (mini splits) have numerous

18

Ductless Mini-Split Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless Mini-Split Air Conditioners Ductless Mini-Split Air Conditioners Ductless Mini-Split Air Conditioners August 9, 2012 - 4:05pm Addthis A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. What does this mean for me? A ductless mini-split air conditioner is easier to install than a central air conditioning system. A ductless mini-split air conditioner provides zoned air conditioning without ducting. A ductless mini-split air conditioner is relatively easy to install and does not provide an entry point for intruders as some room air conditioners do. Ductless, mini split-system air-conditioners (mini splits) have numerous

19

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

20

DOE Investigates Possible Air Conditioner Efficiency Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investigates Possible Air Conditioner Efficiency Violations Investigates Possible Air Conditioner Efficiency Violations DOE Investigates Possible Air Conditioner Efficiency Violations February 15, 2012 - 5:13pm Addthis The Department of Energy's Office of Enforcement is committed to its compliance enforcement responsibilities with regard to federal energy conservation standards and ensuring that all those subject to the requirements are treated fairly and equally. Today, the Office of Enforcement issued a series of subpoenas as part of an investigation to determine whether manufacturers of split-system air conditioners are making and distributing in the U.S. condensing units that do not meet the current 13 SEER (Seasonal Energy Efficiency Ratio) federal energy conservation standard, which has been the standard since 2006.

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Covered Product Category: Residential Central Air Conditioners...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operate on single-phase current and have cooling capacities less than 65,000 Btuh. Room air conditioners (window and through-the-wall) are covered by a separate specification,...

22

YMGI Through-the-Wall Air Conditioner Determined Noncompliant...  

Energy Savers (EERE)

air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphotoLUke1138. Ductless Mini-Split Air Conditioners Ductless, Mini-Split Heat Pumps...

23

Five ENERGY STAR Room Air Conditioners Fail Testing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five ENERGY STAR Room Air Conditioners Fail Testing Five ENERGY STAR Room Air Conditioners Fail Testing August 22, 2011 - 2:00pm Addthis The U.S. Department of Energy's Office of...

24

The effects of galvanic corrosion on air conditioner performance  

E-Print Network (OSTI)

Corrosion of air conditioner outdoor heat exchangers (condensers) poses a significant problem for consumers living in coastal regions. This research sought to experimentally determine effects of galvanic corrosion on air conditioner condenser coils...

Grisham, Phillip Ryan

2012-06-07T23:59:59.000Z

25

Central Air Conditioner Enforcement Policy Statement  

Energy.gov (U.S. Department of Energy (DOE))

DOE will not seek civil penalties for violations of the regional standards applicable to central air conditioners that occur prior to July 1, 2016, provided that the violations are related to the distribution in commerce of units manufactured prior to January 1, 2015.

26

Covered Product Category: Room Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

27

Covered Product Category: Residential Central Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

28

Pilot light in the air conditioner  

SciTech Connect

The California Energy Commission (CEC) recently modified its Residential Energy Standards Point Program to include the electricity consumed by crankcase heaters in air conditioners and heat pumps. Turning off the unit during the off season can save the homeowner a few bucks per month. 2 references, 1 figure.

Kovach, A.; Meier, A.

1987-09-01T23:59:59.000Z

29

Product Standards for Air Conditioners (Japan) | Open Energy Information  

Open Energy Info (EERE)

Air Conditioners (Japan) Air Conditioners (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Air Conditioners (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_air_conditioners_apr.2008.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-air-conditioners-ja Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a guide in response to its newly established set of standards and labelling

30

Improving Air Conditioner and Heat Pump Modeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Air-Conditioner Improving Air-Conditioner and Heat Pump Modeling Building America Stakeholders Meeting Jon Winkler March 2, 2012 2 * How do you recommend the most cost-effective A/C? Simple Question 3 Solution Whole-House Simulation Tool A/C Information * SEER 13 * SEER 14 * SEER 15 * SEER 16 * SEER 17 * SEER 18 * SEER 21 Annualized Cooling Cost (Energy + Equipment) 4 Background * Power, capacity and SHR vary with: o Outdoor temperature o Entering wetbulb o Air mass flow rate o Part load ratio Power Sensible Capacity Latent Capacity * How to accurately and easily model A/C performance? 5 Background: Model Development * A/C modeling utilizes two types of input o Rated values (capacity, efficiency, etc.) o Performance curves Capacity 1 / Efficiency 6 Background: Manufacturer's Data

31

New and Underutilized Technology: Liquid Desiccant Air Conditioner |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Desiccant Air Conditioner Liquid Desiccant Air Conditioner New and Underutilized Technology: Liquid Desiccant Air Conditioner October 4, 2013 - 4:40pm Addthis The following information outlines key deployment considerations for liquid desiccant air conditioners (LDACs) within the Federal sector. Benefits Liquid desiccant air conditioners deeply dry air using natural gas, solar energy, waste heat, bio-fuel, or other fossil fuels to drive the system. By providing mostly latent cooling, the LDAC controls indoor humidity without overcooling and reheating. This unit is supplemented by an electric chiller or DX air conditioner that sensibly cools the building's recirculation air. The liquid desiccant is a concentrated salt solution that directly absorbs moisture. Application LDACs are applicable in hospital, office, prison, school, and service

32

Covered Product Category: Residential Central Air Conditioners | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Air Conditioners Central Air Conditioners Covered Product Category: Residential Central Air Conditioners October 7, 2013 - 10:38am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

33

Tips for Running an Air Conditioner Without Breaking the Bank  

Energy.gov (U.S. Department of Energy (DOE))

With summer temperatures rising, air conditioners are working overtime, but it is possible to enjoy to cool comfort without breaking the bank.

34

List of Room Air Conditioners Incentives | Open Energy Information  

Open Energy Info (EERE)

Conditioners Incentives Conditioners Incentives Jump to: navigation, search The following contains the list of 112 Room Air Conditioners Incentives. CSV (rows 1 - 112) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Alexandria Light and Power - Residential Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Residential Central Air conditioners

35

Building Energy Software Tools Directory: Room Air Conditioner Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioner Cost Estimator Room Air Conditioner Cost Estimator Screen capture of Room Air Conditioner Cost Estimator The cost estimator compares high-efficiency room air conditioners to standard equipment in terms of life cycle cost. It provides an alternative to complicated building simulation models, while offering more precision than simplified estimating tools that are commonly available. The cost estimator assists decision-making regarding the purchase or replacement of room air conditioning equipment, by estimating a product�s lifetime energy cost savings at various efficiency levels. Screen Shots Keywords air conditioner, life-cycle cost, energy performance, residential buildings, energy savings Validation/Testing Internal reviews at Pacific Northwest National Laboratory.

36

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric...

37

ENERGY STAR Qualified Room Air Conditioners | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioners Room Air Conditioners Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Room Air Conditioners Dataset Summary Description Room Air Conditioners that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {"Room Air Conditioners","Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification}

38

Four Central Air Conditioners Determined Noncompliant With Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Four Central Air Conditioners Determined Noncompliant With Energy Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard October 3, 2011 - 9:21am Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on September 27, 2011, to AeroSys, Inc. (AeroSys) regarding four models of central (through-the-wall) air conditioners that fail to meet Federal energy efficiency requirements. DOE tests revealed that AeroSys through-the-wall air conditioner models THDC-18S, THDC-18T, THDC-24S, and THDC-24T do not meet the minimum energy efficiency requirements set forth in DOE regulations. The Notice provides that AeroSys must inform those to whom it has sold the models that they do

39

An automobile air conditioner design model  

SciTech Connect

A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at the Oak Ridge National Laboratory (ORNL). Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as input to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermostatic expansion valves (TXV), capillary tube, and short tube expansion devices; refrigerant mass; and evaporator pressure regulator and all interconnecting tubing. Pressure drop, heat transfer rates, and latent capacity ratio for the new plate-fin evaporator submodel are shown to agree well with laboratory data. The program can be used with a variety of refrigerants, including R-134a.

Kyle, D M; Mei, V C; Chen, F C

1992-12-01T23:59:59.000Z

40

E-Print Network 3.0 - adsorption air conditioner Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND NEXT GENERATION Summary: ... xvi Adsorption Heat Pumps and Air Conditioners ... xvi Absorption Chillers......

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Commercial Central Air Conditioners, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Energy efficiency purchasing specifications for federal procurements of commercial central air conditioners.

Not Available

2011-02-01T23:59:59.000Z

42

Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing October 6, 2010 - 10:08am Addthis DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed ENERGY STAR ratings, do not meet the ENERGY STAR requirements. Specifically, the test results for the Electrolux Gibson model show that, when tested in accordance with DOE's test procedures, it consumed 6.1 percent more energy than the Energy Star requirement. Test results for the Equator model show that it exceeds Energy Star's water factor requirements by 12.3 percent.

43

Covered Product Category: Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Covered Product Category: Room Air Conditioners October 7, 2013 - 10:40am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

44

Covered Product Category: Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Covered Product Category: Room Air Conditioners October 7, 2013 - 10:40am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

45

High-Efficiency Window Air Conditioners- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

46

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network (OSTI)

AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

Dao, K.

2013-01-01T23:59:59.000Z

47

Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing October 6, 2010 - 10:08am Addthis DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed ENERGY STAR ratings, do not meet the ENERGY STAR requirements. Specifically, the test results for the Electrolux Gibson model show that, when tested in accordance with DOE's test procedures, it consumed 6.1 percent more energy than the Energy Star requirement. Test results for the Equator model show that it exceeds Energy Star's water factor requirements by 12.3 percent.

48

List of Central Air conditioners Incentives | Open Energy Information  

Open Energy Info (EERE)

Central Air conditioners Incentives Central Air conditioners Incentives Jump to: navigation, search The following contains the list of 1032 Central Air conditioners Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1032) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor

49

An Analysis of Efficiency Improvements in Room Air Conditioner  

E-Print Network (OSTI)

NAECA NATIONAL APPLIANCE ENERGY CONSERVATION ACT NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT NTU NUMBER OF TRANSFER UNITS OEM ORIGINAL EQUIPMENT MANUFACTURER ORNL OAK RIDGE NATIONAL LABORATORY RAC ROOM AIR CONDITIONER.... There are two public domain models that we have considered using for this analysis: the Oak Ridge National Laboratory (ORNL) heat pump model [1] and the Arthur D. Little (ADL) room air conditioner model [2]. The ORNL model was completed in 1981. Although...

O'Neal, D. L.; Penson, S. B.

1988-01-01T23:59:59.000Z

50

Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Title Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Publication Type Conference Proceedings Year of Publication 2000 Authors Shugars, John, Philip Coleman, Christopher T. Payne, and Laura Van Wie McGrory Conference Name Proceedings from the 2000 ACEEE Summer Study on Energy Efficiency in Buildings Volume 10 Pagination 217-226 Date Published 01/2000 Abstract The energy efficiency ofmany products has increased markedly over the past decade. A conspicuous exception to this trend is commercialpackaged rooftop air conditioners, which have experiencedlittle to no efficiency improvement since 1992 when the Energy Policy Act of 1992 imposed federal minimum standards. Packaged rooftop units have been estimated to use on the order of76 billion kWh annually in the US, at a cost ofroughly $5.6 billion. Sales of these units are growing, and the majority of units sold have energy efficiency ratios (EERs) at orjust above the current national minimum efficiency standards. In this paper we document the static efficiencies ofcommercialpackaged air conditioners, explore the reasons behindthis efficiency gap, and assess opportunities for overcoming the barriers to efficiency improvements in these products.

51

DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...  

Energy Savers (EERE)

Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models...

52

Influence of Air Conditioner Operation on Electricity Use and Peak Demand  

E-Print Network (OSTI)

Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

1987-01-01T23:59:59.000Z

53

China Energy Efficiency Round Robin Testing Results for Room Air Conditioners  

E-Print Network (OSTI)

check in the air conditioning products category is indicatednumber of domestic air conditioning product manufacturers100 million worth of air conditioner products to 14 major

Zhou, Nan

2010-01-01T23:59:59.000Z

54

Laboratory Performance Testing of Residential Window Air Conditioners  

SciTech Connect

Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

2013-03-01T23:59:59.000Z

55

Development of vehicle magnetic air conditioner (VMAC) technology. Final report  

SciTech Connect

The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was performed at Iowa State University (ISU) together with Astronautics Corporation of America Technology Center (ACATC), Madison, WI, through a subcontract with ISU.

Gschneidner, Karl A., Jr.; Pecharsky, V.K.; Jiles, David; Zimm, Carl B.

2001-08-28T23:59:59.000Z

56

EER, COP, and the second law efficiency for air conditioners  

Science Journals Connector (OSTI)

It is pointed out that there is a close relationship between the energy efficiency ratio (EER) of an air conditioner unit and the coefficient of performance (COP) of its refrigeration cycle. This connection helps to bridge the gap between pure thermodynamics and practical energy?related problems. In this spirit two other efficiency parameters the total COP and total EER measured relative to the energy extracted by a primary energy source (e.g. a fossil fuel) are defined. A comparison of the actual total COP (or total EER) relative to its maximum allowed value consistent with the second law of thermodynamics leads to an estimate for air conditioners of the recently proposed s e c o n d l a w e f f i c i e n c y.

Harvey S. Leff; William D. Teeters

1978-01-01T23:59:59.000Z

57

Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

Bridging Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners John Shugars, Consultant Philip Coleman, Lawrence BerkeleyNational Laboratory ChristopherPayne, Lawrence Berkeley National Laboratory Laura Van Wie McGrory, Lawrence Berkeley National Laboratory ABSTRACT The energy efficiency ofmany products has increased markedly over the past decade. A conspicuous exception to this trend is commercial packaged rooftop air conditioners, which have experiencedlittle to no efficiency improvement since 1992 when the Energy Policy Act of 1992 imposed federal minimum standards. Packaged rooftop units have been estimated to use on the order of76 billion kWh annually in the US, at a cost ofroughly $5.6 billion. Sales of these units are growing, and the majority of units sold have energy efficiency ratios (EERs) at orjust above the current national minimum efficiency

58

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

by connecting it to a leaky duct system. By decreasing the leakage... condensing unit of a split system air conditioner or heat pump, cooling or heating coil, or the furnace...

59

DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Action to Stop the Sales of Air-Con Air Conditioner Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring the company to stop selling certain air conditioning systems in the U.S. that have been shown to violate minimum energy efficiency appliance standards. DOE is proposing a civil penalty of more than $230,000 for importing and distributing these inefficient cooling products. This action and the proposed penalties are part of the Department's continued commitment to act aggressively to remove

60

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard October 11, 2012 - 4:10pm Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system central air conditioners operate at a SEER of 12 or greater. Addthis Related Articles Four Central Air Conditioners Determined Noncompliant With Energy

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard October 11, 2012 - 4:10pm Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system central air conditioners operate at a SEER of 12 or greater. Addthis Related Articles Four Central Air Conditioners Determined Noncompliant With Energy

62

Measured Impacts of Air Conditioner Condenser Shading  

E-Print Network (OSTI)

reaching the expansion valve. In theory, the efficiency of vapor compression air conditioning can be improved through two primary mechanisms associated with condenser shading: Direct shading. Incident solar radiation can pose approximately a 1,000 w...]: IEYPERAlURL COUPARlSOn A/C SHADING DP. 1 (Some): SOUR RADlAllON COUPARISON I=AYEI[Nl KYP orq=82.1 , mu=87.(22 Z=CONDEHSIR ARU AIR lEYP orq=83.8 , mox=02.858 TIME OF DAY, (hr) 9 12 15 TIME OF DAY, (hr) Figure 3. Sample daily 15-minute data for June 21...

Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

1996-01-01T23:59:59.000Z

63

E-Print Network 3.0 - air conditioners water Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Water... EECBG Direct Equipment Purchase Air Conditioner Guide ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 2 June 30, 2011...

64

E-Print Network 3.0 - air conditioner utilizing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the air conditioner. To ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 2 Delivering Tons to the Register: Energy...

65

Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

Presents recent advances in thermoelectric device fabrication and the design of novel cooling/heating engines exploiting thermal storage for efficient air-conditioners in automobiles

66

Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint  

SciTech Connect

A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

Lowenstein, A.; Slayzak, S.; Kozubal, E.

2006-07-01T23:59:59.000Z

67

Variable Speed Fan Retrofits for Computer Room Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variable-Speed Fan Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By Lawrence Berkeley National Laboratory Steve Greenberg September 2013 2 Contacts Steve Greenberg Lawrence Berkeley National Laboratory One Cyclotron Road, 90R3111 Berkeley, California 94720 (510) 486-6971 segreenberg@lbl.gov For more information on FEMP, please contact: Will Lintner, P.E., CEM Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. S.W. Washington, D. C. 20585-0121 (202) 586-3120 william.lintner@ee.doe.gov 3 Acknowledgements EPRI: Dennis Symanski, Brian Fortenbery Synapsense: Garret Smith, Patricia Nealon Vigilent: Corinne Vita

68

Laboratory Performance Testing of Residential Window Mounted Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Performance Testing of Residential Window Mounted Air Conditioners Jon Winkler Chuck Booten Dane Christensen Jeff Tomerlin April 29, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Why should we care? * Window AC unit sales dominate US market o 7.5 million units sold in 2011 - 36% more than ducted systems - Approx. 30% of installed capacity o Inexpensive relative to central units o Easy installation o Attractive for retrofits * Need accurate models in whole-building tools o Costs/savings relative to other solutions can be quantified o Spot cooling can reduce energy use, but when, where and by

69

Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

70

The performance of an optimized thermoacoustic air conditioner  

Science Journals Connector (OSTI)

Up to 25 thermoacoustic cooler design parameters were optimized to provide high COP predictions in selected air conditioning applications. Capacities ranging between 300 and 1500 W were considered. Two different configurations were investigated: (1) a single stack with a Helmholtz resonator termination and (2) two drivers and two stacks. The optimization scheme utilized the Simplex algorithm and the analysis was performed by DELTAE coupled with an original heat exchanger modeling tool which incorporated conventional straight fin analysis and semiempirical flow correlations. Various requirements were imposed for the external cooling and heat rejection temperatures ranging between 270 and 287 K on the cold side and between 310 and 320 K on the hot side. Finned tube heat exchangers with water as the secondary fluid were considered. The predicted values of COP were greater than 3.8 (0.36 relative to the Carnot value) for an application analogous to a small window air conditioner. The performance and characteristics of the two different configurations were compared and the loss distribution in each case was calculated. Furthermore the impact of various constraints was examined. The performance predictions are encouraging and suggest that thermoacoustic air conditioning may be a viable proposition.

Brian L. Minner; James E. Braun; Luc Mongeau

1996-01-01T23:59:59.000Z

71

Effect of Return Air Leakage on Air Conditioner Performance in Hot/Humid Climates  

E-Print Network (OSTI)

provided rebates to residential customers for purchasing high efficiency air conditioners and heat pumps. The rebates have helped increase the demand for higher efficiency air conditioning units. However, even the most efficient system will not perform... of supply ducts (Table 1). The predominance of return duct leakage over supply duct leakage confirmed the investigators' theory that installers were more careful to seal seams on supply ducts (Robison and Lambert, 1989). Table 1 - Measured Leakage...

O'Neal, D. L.; Rodriguez, A.; Davis, M.; Kondepudi, S.

1996-01-01T23:59:59.000Z

72

Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations  

SciTech Connect

This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

2013-01-01T23:59:59.000Z

73

DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards DOE Orders AeroSys to Halt Distribution of...

74

Modeling the effects of Refrigerant Charging on Air Conditioner Performance Characteristics For Three Expansion Devices  

E-Print Network (OSTI)

pump and air conditioner commonly used in residential applications. The simulated results were compared with laboratory tests at two outdoor temperatures. It was found that the ORNL model estimates were within an average of 3% of the experimental...

Farzad, Mohsen

75

An Evaluation of Steady-State Dehumidification Characteristics of Residential Central Air Conditioners, Final Report  

E-Print Network (OSTI)

of 1973, and the passsage oflegislation requiring development of mandatory minimum efficiency standards for new central air conditioners (and other appliances),manufacturers have been improving the efficiency of central air conditioners dramatically... is for the standard ARI rating conditions (95 F outdoor, 80 F indoor dry bulb, and 67 F indoorwet bulb temperatures). There is not a strong correlation between efficiency (as measured in SEER) and SHR. Both linear and quadraticcorrelations were attempted for the data...

O'Neal, D. L.; Chan, N.; Somasundaram, S.; Katipamula, S.

1987-01-01T23:59:59.000Z

76

Truman STaTe univerSiTyWELCOME HOME! Air Conditioner  

E-Print Network (OSTI)

air conditioner requests.If you need air conditioning and are assigned to Centennial,Grim,or Fair,Missouri Hall,Ryle Hall and West Campus Suites have air conditioning included).The documentation must that requires the need for air conditioning. Please fill out the form on the reverse side of this sheet, attach

Gering, Jon C.

77

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inexpensive, portable, and can be installed by inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, a window air conditioner is required to meet only modest minimum efficiency standards, and its typical installation in a window causes air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of

78

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

79

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

80

DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders AeroSys to Halt Distribution of Inefficient Air Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models March 30, 2010 - 10:05am Addthis Today, the Department of Energy announced that it is requiring AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal efficiency standards. This is the latest step in the Department's investigation into whether AeroSys has been selling products in the U.S. that violate minimum appliance efficiency standards. This is the first time that the Department of Energy has told a company or manufacturer that it must halt the distribution of products that fail to

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and  

NLE Websites -- All DOE Office Websites (Extended Search)

Orders AeroSys to Halt Distribution of Inefficient Air Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models March 30, 2010 - 10:05am Addthis Today, the Department of Energy announced that it is requiring AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal efficiency standards. This is the latest step in the Department's investigation into whether AeroSys has been selling products in the U.S. that violate minimum appliance efficiency standards. This is the first time that the Department of Energy has told a company or manufacturer that it must halt the distribution of products that fail to

82

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers to Halt Sales of Heat Pumps and Air Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

83

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

84

DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders AeroSys to Halt Distribution of Inefficient Air Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards March 30, 2010 - 12:00am Addthis WASHINGTON, DC - Today, the Department of Energy announced that it is requiring AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal efficiency standards. This is the latest step in the Department's investigation into whether AeroSys has been selling products in the U.S. that violate minimum appliance efficiency standards. This is the first time that the Department of Energy has told a

85

The Impact of Energy Recovery on Window Air-conditioner Efficiency  

E-Print Network (OSTI)

over that of an ordinary window type air-conditioner (OAC), which is very significant for energy efficiency. On the other hand, the fresh air proportion of the EAC is increased by ~20 percent over that of the OAC, and the indoor noise of the EAC...

Luo, Q.; Tang, C.; Liao, K.

2006-01-01T23:59:59.000Z

86

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents (OSTI)

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

87

Swimming pools as heat sinks for air conditioners: California feasibility analysis  

Science Journals Connector (OSTI)

Earlier studies used field testing of swimming pool temperatures to validate a mathematical model for predicting the temperature of an unheated pool. Combining those results with manufacturers data on the performance of vapor-compression air conditioners as a function of heat rejection temperature, the analyses in the paper suggest that rejecting air conditioning heat to a swimming pool can save approximately 2530% of single-family residential cooling electricity use and reduce cooling electricity demand during peak conditions by 3035%, as compared to using the same compressor to reject the heat to ambient air. The savings is expected to vary depending on the severity of the climate, as well as the pool temperature experienced during the summer. The original model was refined so as to accommodate air-conditioner heat rejection to predict pool temperatures based on weather data, pool size, shading of the pool, and air-conditioner heat rejection to the pool. The results of an experimental validation of the augmented pool thermal model are presented here. In addition, the model of a pool-coupled air conditioning system was used to develop a design tool for determining the pool size needed to absorb realistic heat rejection from air conditioners in various California climate zones.

Curtis Harrington; Mark Modera

2013-01-01T23:59:59.000Z

88

2014-10-30 Issuance: Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information  

Energy.gov (U.S. Department of Energy (DOE))

Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information

89

NREL: Vehicle Ancillary Loads Reduction - Air Conditioner Reduction Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% United States map depicting number of millions of gallons of cooling and dehumidification by state: Alabama 167, Alaska 1, Arizona 43, Arkansas 86, California 730, Colorado 76, Connecticut 61, Delaware 19, Florida 753, Georgia 251, Hawaii 68, Idaho 26, Illinois 242, Indiana 142, Iowa 68, Kansas 75, Kentucky 95, Louisiana 176, Maine 21, Maryland 118, Massachusetts 86, Michigan 186, Minnesota 86, Mississippi 85, Missouri 144, Montana 12, Nebraska 40, Nevada 61, New Hampshire 90, New Jersey 167, New Mexico 52, New York 273, North Carolina 187, North Dakota 12, Ohio 229, Oklahoma 109, Oregon 66, Pennsylvania 238, Rhode Island 15, South Carolina 127, South Dakota 17, Tennessee 179, Texas 735, Utah 43, Vermont 9, Virginia 187, Washington 64, West Virginia 37, Wisconsin 167, and Wyoming 7

90

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps.  

E-Print Network (OSTI)

??An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation (more)

Rodriguez, Angel Gerardo

2012-01-01T23:59:59.000Z

91

Technical and economic analysis of energy efficiency of Chinese room air conditioners  

SciTech Connect

China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

2001-02-01T23:59:59.000Z

92

Measuring Short-term Air Conditioner Demand Reductions for Operations and  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Short-term Air Conditioner Demand Reductions for Operations and Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Title Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Publication Type Report LBNL Report Number LBNL-5330E Year of Publication 2012 Authors Bode, Josh, Michael J. Sullivan, and Joseph H. Eto Pagination 120 Date Published 01/2012 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), electricity markets and policy group, energy analysis and environmental impacts department Abstract Several recent demonstrations and pilots have shown that air conditioner (AC) electric loads can be controlled during the summer cooling season to provide ancillary services and improve the stability and reliability of the electricity grid. A key issue for integration of air conditioner load control into grid operations is how to accurately measure shorter-term (e.g., ten's of minutes to a couple of hours) demand reductions from AC load curtailments for operations and settlement. This report presents a framework for assessing the accuracy of shorter-term AC load control demand reduction measurements. It also compares the accuracy of various alternatives for measuring AC reductions - including methods that rely on regression analysis, load matching and control groups - using feeder data, household data and AC end-use data. A practical approach is recommended for settlement that relies on set of tables, updated annually, with pre-calculated load reduction estimates. The tables allow users to look up the demand reduction per device based on the daily maximum temperature, geographic region and hour of day and simplify the settlement process.

93

Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Save Money and Stay Cool with an Efficient, Well-Maintained Air Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner June 29, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy OK. It's officially summer here in Washington, D.C. I'm seeking the coolest, shadiest places possible as I get ready for the hottest few months of the year. It's already been a hot June in much of the country, and it may end up being one of the hottest Junes on record in DC. Naturally, I'm starting to think about how I'm going to stay cool this summer, while trying to minimize my energy use. Drew provided some excellent tips on summertime energy savings in his blog post two weeks ago,

94

Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Save Money and Stay Cool with an Efficient, Well-Maintained Air Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner June 29, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy OK. It's officially summer here in Washington, D.C. I'm seeking the coolest, shadiest places possible as I get ready for the hottest few months of the year. It's already been a hot June in much of the country, and it may end up being one of the hottest Junes on record in DC. Naturally, I'm starting to think about how I'm going to stay cool this summer, while trying to minimize my energy use. Drew provided some excellent tips on summertime energy savings in his blog post two weeks ago,

95

The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner  

E-Print Network (OSTI)

A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

2006-01-01T23:59:59.000Z

96

Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners  

E-Print Network (OSTI)

EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies... COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Dooley, Jeffrey Brandon

2005-02-17T23:59:59.000Z

97

LBNL-54244 Life-cycle Cost and Payback Period Analysis for Commercial Unitary Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

44 44 Life-cycle Cost and Payback Period Analysis for Commercial Unitary Air Conditioners Greg Rosenquist, Katie Coughlin, Larry Dale, James McMahon, Steve Meyers Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 March 2004 This work was supported by the Office of Building Technologies of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ii iii ABSTRACT This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results

98

13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)  

Reports and Publications (EIA)

In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

2005-01-01T23:59:59.000Z

99

Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench  

E-Print Network (OSTI)

valve increases. PREDICTION OF DEGRADED CONDITIONS There are several steady state simulation programs which are available to predict the design conditions of air conditioners and heat pumps [20, 21]. The ORNL and NIST models are popular and extensively... used in industry. Farzad modified ORNL model using NIST subroutines to simulate heat exchangers in a better fashion through tube-by-tube simulation [22]. Katipamula modified TRPUMP [TRansient PUMP, 23] to simulate transient conditions to elucidate about...

Palani, M.; O'Neal, D. L.; Haberl, J. S.

1992-01-01T23:59:59.000Z

100

Desiccant Moisture Exchange for Dehumidification Enhancement of Air Conditioners  

E-Print Network (OSTI)

* -led use of this inprarrPd air mtianer cycle with dssicrants will met likely occur in the cammrcial sector bbm desiccants are acmnonly IaKWn end the potential for savimy is greatar. Cne patential amnercial a~plication where the humidity pmblm...

Cromer, C. J.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Model-Based Commissioning for Filters in Room Air Conditioners  

E-Print Network (OSTI)

This paper proposes a model that can estimate filter resistance. Two sorts of value are used as inputs to estimate filter resistance. One is the power consumed by the fan in the indoor unit and the other is the thermal performance. For the room air...

Wang, F.; Yoshida, H.; Kitagawa, H.; Matsumoto, K.; Goto, K.

2004-01-01T23:59:59.000Z

102

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced...

Rodriguez, Angel Gerardo

2012-06-07T23:59:59.000Z

103

Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy  

E-Print Network (OSTI)

-Enhanced Cooling and Dehumidification System," ASBRAE Transactions 1994, V.100, Pt. 2, #3816, American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA, 1994 [7] Chant, E. E., Transient and Stearj, State Simulations of an Advanced..., the Electric Power Research Institute (EPRI) estimate from their surveys that 30% of their customers use dehumidifiers. [1] In supermarkets, where much of the sensible cooling is already done by the display cases, wasteful overcooling is done...

Cromer, C. J.

2000-01-01T23:59:59.000Z

104

2015-02-12 Issuance: Test Procedures for Portable Air Conditioners; Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 12, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

105

2014-05-05 Issuance: Test Procedure for Portable Air Conditioners; Notice of Data Availability  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of data availabilty regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

106

Effects of Air Conditioner Use on Real-World Fuel Economy  

SciTech Connect

Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

Huff, Shean P [ORNL; West, Brian H [ORNL; Thomas, John F [ORNL

2013-01-01T23:59:59.000Z

107

Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts  

SciTech Connect

This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

Booten, C.; Christensen, C.; Winkler, J.

2014-11-01T23:59:59.000Z

108

Greenhouse Gas Emissions for Refrigerant Choices in Room Air Conditioner Units  

Science Journals Connector (OSTI)

In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. ... De Kleine, R. D.; Keoleian, G. A.; Kelly, J. C.Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US Energy Policy 2011, 39, 3144 3153 ... Most of the inventory data have been collected from Thailand, except for the upstream of fuel oil and fuel transmission, which have been computed from Greenhouse gases, Regulated Emissions, and Energy use in Transportation version 1.7 and Global Emission Model for Integrated Systems version 4.3. ...

Michael D. Galka; James M. Lownsbury; Paul Blowers

2012-11-08T23:59:59.000Z

109

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

SciTech Connect

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

110

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

111

Development of minimum efficiency standards for large capacity air conditioners, and commercial water heaters, refrigerators, and freezers. Final report  

SciTech Connect

The California Energy Resources Conservation and Development Commission has promulgated appliance energy efficiency standards and energy conservation standards for new construction with the objective of reducing energy consumption in the State of California. The following appliance categories are specifically addressed: large capacity air conditioners; commercial water heaters; and commercial refrigerators and freezers. The tasks that have been performed include: an energy use pattern study for the subject equipment; an examination of the size distribution of commercial air conditioning equipment; an examination of the different types of commercial air conditioning systems; an evaluation of the effectiveness of economizers in reducing commercial air conditioning system energy consumption in California; an examination of the effects of oversizing commercial air conditioners; a detailed study of supermarket refrigeration and air conditioning equipment; an evaluation of the economic feasibility of utilizing air conditioner waste heat to heat water; an assessment of the applicability of existing test procedures for small water heaters to large water heaters; and a brief investigation of the marketing and distribution systems for air conditioning and refrigeration equipment. Results of the efforts are described.

Merrill, P.S.; Rettberg, R.J.; Erickson, R.C.; Toor, J.S.

1980-05-01T23:59:59.000Z

112

Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Zero Carryover A Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications Preprint A. Lowenstein AIL Research, Inc. S. Slayzak and E. Kozubal National Renewable Energy Laboratory To be presented at ASME International Solar Energy Conference (ISEC2006) Denver, Colorado July 8-13, 2006 Conference Paper NREL/CP-550-39798 July 2006 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

113

Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement  

NLE Websites -- All DOE Office Websites (Extended Search)

330E 330E Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Josh Bode, Michael Sullivan, Joseph H. Eto January 2012 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or

114

US South Coast Air Quality Management District SCAQMD | Open Energy  

Open Energy Info (EERE)

South Coast Air Quality Management District SCAQMD South Coast Air Quality Management District SCAQMD Jump to: navigation, search Name US South Coast Air Quality Management District (SCAQMD) Place Diamond Bar, California Zip CA 91765 Product String representation "The SCAQMD's Te ... nate emissions." is too long. References US South Coast Air Quality Management District (SCAQMD)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US South Coast Air Quality Management District (SCAQMD) is a company located in Diamond Bar, California . References ↑ "US South Coast Air Quality Management District (SCAQMD)" Retrieved from "http://en.openei.org/w/index.php?title=US_South_Coast_Air_Quality_Management_District_SCAQMD&oldid=352623

115

NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

13 Denver West Parkway 13 Denver West Parkway Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning into homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment

116

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

E-Print Network (OSTI)

Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. Heat Pump Life and Compressor LongevityC.C.. 1990. Predicting Future Heat Pump Production Volume

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-01-01T23:59:59.000Z

117

2014-10-06 DOE Certification, Compliance, and Enforcement Overview for Refrigerators, Refrigerator-Freezers, Freezers, Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and Dishwashers  

Energy.gov (U.S. Department of Energy (DOE))

This presentation provides an overview of DOE Certification, Compliance, and Enforcement for Refrigerators, Refrigerator-Freezers, Freezers, Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and Dishwashers. It was presented via webinar on October 6, 2014.

118

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network (OSTI)

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

119

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

120

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

Science Journals Connector (OSTI)

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is \\{HFC134a\\} and the maximum cooling capacity of experiment apparatus is 32.7kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio.

Soo-Yong Cho; Chong-Hyun Cho; Chaesil Kim

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner  

SciTech Connect

An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

Cho, Soo-Yong [Department of Mechanical and Aerospace Engineering (ReCAPT), Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Cho, Chong-Hyun [School of Mechanical and Aerospace Engineering, Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Kim, Chaesil [Department of Mechanical Engineering, Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea)

2008-09-15T23:59:59.000Z

122

The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner  

E-Print Network (OSTI)

This paper discusses the measured degradation in performance of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short-tube orifice...

Palani, M.; O'Neal, D.; Haberl, J.

123

Are You Planning to Bring an Air Conditioner? Welcome to Truman State University and the services available through the Disability Services Office. Part of  

E-Print Network (OSTI)

conditioner requests. If you need air conditioning and are assigned to Centennial, Grim, or Fair Apartments, Missouri Hall, Ryle Hall, and West Campus Suites have air conditioning included). The documentation must that requires the need for air conditioning. Please fill out the form on the reverse side of this sheet, attach

Gering, Jon C.

124

DOE Takes Action to Stop the Sales of Air-Con Air Conditioner...  

Energy Savers (EERE)

12CO09EV12EV. Today's notice proposes the maximum penalty for selling non-compliant products and requires Air-Con to immediately cease further U.S. sales and provide written...

125

Experimental analysis of a window air conditioner with a R-22 and R32/R125/R134a mixture  

SciTech Connect

Much experimental and theoretical analysis of potential R-22 replacements has been accomplished. However, published information about the experimental analysis of any off-the-shelf air conditioner with a potential R-22 replacement at realistic, operating conditions is still rare. This type of work could be useful because it provides baseline data for comparing the performance of R-22 and its potential replacement at drop-in conditions. In this study, an off-the-shelf window air conditioner was tested at Air Conditioning and Refrigeration Institute (ARI)-rated indoor conditions and at different ambient temperatures, including the ARI-rated outdoor condition, with R-22 and with its potential replacement, a ternary mixture of R-32(30%)/R-125(10%)/R-134a(60%) (the ternary mixture). A test rig was built that provided for baseline operation and for the option of operating the system with a flooded evaporator by means of liquid over-feeding (LOF). The test results indicated the cooling capacity of the ternary mixture was 7.7% less than that of R-22 at 95{degrees}F ambient for baseline operation. The cooling capacity for both refrigerants improved when a flooded evaporator, or LOF, was used. For LOF operation, the cooling capacity of the ternary mixture was only 1.1% less than that of R-22. The ternary mixture had slightly higher compressor discharge pressure, a lower compressor discharge temperature, slightly lower compressor power consumption, and a higher compressor high/low pressure ratio.

Mei, V.C.; Chen, F.C.; Chen, D.T. [Oak Ridge National Lab., TN (United States); HuangFu, E.P. [USDOE, Washington, DC (United States)

1995-07-01T23:59:59.000Z

126

The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl  

E-Print Network (OSTI)

expansion valves and an ejector. Mass and energy conservation equations are established for the air handling process and the theoretical mixed refrigeration cycle is analyzed. The state properties in the thermal processes and system performance... systems, Innovative technologies to reduce building energy consumption. In a room with a conventional air conditioner, the supplied air is not evenly distributed and there may be a draft sensation, which may cause air-conditioning symptoms...

Zhao,L.; Zhao,X.; Hu,A.

2014-01-01T23:59:59.000Z

127

DOE/EA-1352: Environmental Assessment for Proposed Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps (12/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52 52 ENVIRONMENTAL ASSESSMENT FOR PROPOSED ENERGY CONSERVATION STANDARDS FOR RESIDENTIAL CENTRAL AIR CONDITIONERS AND HEAT PUMPS December 2000 U.S. Department of Energy Assistant Secretary, Energy Efficiency & Renewable Energy Office of Building Research and Standards Washington, DC 20585 EA-i ENVIRONMENTAL ASSESSMENT FOR RESIDENTIAL CENTRAL AIR CONDITIONERS AND HEAT PUMPS TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-1 2.0 PURPOSE AND NEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-1 3.0 ALTERNATIVES INCLUDING THE PROPOSED ACTION . . . . . . . . . . . . . . . . . EA-2 3.1 No Action Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-2 3.2 Proposed Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-3 3.3 Alternative Standards

128

Empire District Electric - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Maximum Rebate Central Air Conditioner: $500 Weatherization Measures: Total cost of measures eligible for rebate cannot exceed $2,964 Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Energy Audits: Varies Weatherization Measures: 25% - 50% of cost Central Air Conditioner: $400 - $500 Programmable Thermostat: $25

129

Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities  

E-Print Network (OSTI)

Water-cooled air-conditioning systems (WACS) are in general more energy efficient than air-cooled air-conditioning systems (AACS), especially in subtropical climates where the outdoor air is hot and humid. Related studies focused on evaluating...

Lee, W.; Chen, H.

2006-01-01T23:59:59.000Z

130

Finding of No Significant Impact for Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps (01/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 Federal Register / Vol. 66, No. 14 / Monday, January 22, 2001 / Notices DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Finding of No Significant Impact Energy Conservation Program for Consumer Products AGENCY: Department of Energy. ACTION: Finding of No Significant Impact (FONSI) for Energy Conservation Standard for Residential Central Air Conditioners and Heat Pumps. SUMMARY: The Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Conservation Act, and the National Appliance Energy Conservation Amendments, prescribes energy conservation standards for certain major household appliances, and requires the Department of Energy (DOE) to administer an energy conservation program for these products. Based on an

131

Dirty Air Conditioners: Energy Implications of Coil Fouling Jeffrey Siegel, Lawrence Berkeley National Laboratory/ UC Berkeley  

E-Print Network (OSTI)

Berkeley National Laboratory ABSTRACT Residential air conditioning is responsible for a substantial amount greater for marginal systems or extreme conditions. These energy issues, as well as possible indoor air conditioning commissioning and maintenance practices. Introduction Residential air conditioning is responsible

132

Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool  

Science Journals Connector (OSTI)

Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967.

Jonathan Woolley; Curtis Harrington; Mark Modera

2011-01-01T23:59:59.000Z

133

Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler  

SciTech Connect

The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

Parker, Danny S; Sherwin, John R; Raustad, Richard

2014-04-10T23:59:59.000Z

134

E-Print Network 3.0 - ac line conditioners Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

AND NEXT GENERATION Summary: ... xvi Adsorption Heat Pumps and Air Conditioners ... xvi Absorption Chillers......

135

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

136

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network (OSTI)

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

137

Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator  

E-Print Network (OSTI)

Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature...

Maiya, M. P.; Ravi, J.; Tiwari, S.

2010-01-01T23:59:59.000Z

138

Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps  

SciTech Connect

This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

2014-03-10T23:59:59.000Z

139

Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling  

SciTech Connect

Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

Baone, Chaitanya A [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Kueck, John D [ORNL] [ORNL

2010-01-01T23:59:59.000Z

140

Analysis on the energy efficiency of variable-frequency air conditioners (Hitachi models as an example) Jim Jr-Min Lin 2014.09.26  

E-Print Network (OSTI)

Analysis on the energy efficiency of variable-frequency air conditioners (Hitachi models (Max) Energy Efficiency @min load Energy Efficiency @Max load kW kW kW kW W/W W/W RAS-22NB 1.00 3.20 0 Efficiency @min load Energy Efficiency @Max load kW kW kW kW W/W W/W RAM-5FNS(B) - 12.5 - 2.91 - 4.3 RAM-6FNS

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2014-08-28 Issuance: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking and Public Meeting  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding energy conservation standards for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on August 28, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

142

2015-02-13 Issuance: Energy Conservation Standards for Portable Air Conditioners; Notice of Public Meeting and Availability of the Preliminary Technical Support Document  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

143

2014-08-19 Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC)- Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open Meetings  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Registe notice of open meetings regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group, as issued by the Deputy Assistant Secretary for Energy Efficiency on August 19, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

144

Trials and tribulations implementing the Clean Air Act Title V in fourteen air districts  

SciTech Connect

Santa Fe pacific Pipeline Partners, L.P. (SFPP) is a refined petroleum pipeline operating in six states in the western United States. Sixteen terminals are subject to the Title V permit to operate requirements. There are many obstacles to overcome, not only when preparing applications for Title V operating permits, but in the implementation phase of the project as well. Each Air District has its own set of rules and regulations that must be adhered to in preparing the application. For example, some districts required the insignificant sources to be documented and included in compliance plans and some do not. The format required for the application varies from stringent forms that must be completed to no forms at all. In preparing the Title V application for SFPP, the author quickly realized if this confusion was transferred to the implementation phase, compliance would be a failure. Therefore, early on the environmental manager instituted a training program. Beginning with a pilot program in one district the author began training managers and supervisors. This program quickly was expanded to include senior vice presidents and technicians. This training session was a one hour of general overview to visually describe how the Title V process would affect the facilities. As a result of this training, virtually every employee became familiar with how the Title V program was affecting the facilities. Engineering and Customer Service is instructed to notify the manager of any and every new project so it could undergo a review to determine if it affected a Title V facility. The field acts as a check of the system. Any change or modification at any facility is immediately under scrutiny for Title V implications. Another obstacle to overcome is to help the facility deal with something that is new and basically a different way of operating.

Moore, C. [Environmental Affairs Santa Fe Pacific Pipeline Partners, Orange, CA (United States)

1998-12-31T23:59:59.000Z

145

Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report  

SciTech Connect

The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

2012-11-01T23:59:59.000Z

146

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air-Conditioner Energy Consumption in  

E-Print Network (OSTI)

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air efficiency filters (Points A, B, and C, respectively). #12;Proceedings of Healthy Buildings 2009 Paper 474

Siegel, Jeffrey

147

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

148

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

149

Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals  

E-Print Network (OSTI)

time can be known so that its energy consumption can be estimated accurately. In order to verify the simulation accuracy, an actual room equipped with a gas-engine heat pump (GHP) air-conditioning system is studied by both simulation and measurement...

Wang, F.; Yoshida, H.; Matsumoto, K.

2006-01-01T23:59:59.000Z

150

An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with a Thermal Expansion Valve  

E-Print Network (OSTI)

State Tests(wet coil). . . .26 2. Steady State & Cyclic (dry coil) TESTS 26 CAPACITY 32 1. Steady State Tests(wet coil)... .32 1.1 Subcooling and Superheat Temperatures 34 1.2 Refrigerant Flow Rate. . . .37 1.3 Sensible Heat Ratio 39 2. Steady State... Typical Refrigerant Temperature Probe . . . .14 2.6 The Fully Charged Subcooling Temperature as a Function of Outdoor Temperature 18 3.1 Refrigerant-Side/Air-Side Capacity Comparison 24 3.2 Total Capacity of the Fully Charged Unit. . . .27 3.3 Energy...

Farzad, M.; O'Neal, D. L.

1989-01-01T23:59:59.000Z

151

NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of DEVAP prototype validates modeled Testing of DEVAP prototype validates modeled predictions of 40% to 85% energy savings. Researchers in the NREL Buildings group are moving the award-winning desiccant enhanced evaporative (DEVAP) air conditioning technol- ogy further toward commercialization by demonstrating that its energy-saving perfor- mance matches closely with thermodynamic model predictions. Industry partners Synapse Product Development and AIL Research built two prototypes of DEVAP based on NREL's design and modeling, which were tested in NREL's Advanced HVAC Systems Laboratory. Experiments added confidence to the predicted energy savings of 40% in humid climates and 85% in dry climates, empowering the model as a tool for developing marketable designs, and illustrating the potential of DEVAP to transform

152

Experimental analysis of a window air conditioner with R-22 and zeotropic mixture of R-32/125/134a  

SciTech Connect

This study is the result of the cooperative research and development agreement (CRADA) between Oak Ridge National Laboratory and E.I. Du Pont De Nemours and Company, Inc., (CRADA No. 92-0161) for testing the use of heat exchangers as the evaporator and condenser in an air-conditioning rig. Heat exchangers at typical realistic operating conditions were tested with R-22 and with its potential replacement, a ternary mixture of R-32(30%)/R-125(10%)/R-134a(60%). A test rig was built that provided for operation of the low-temperature exchanger (evaporator) with flooded coils. The test results indicated that the performance of the evaporator heat exchanger using ternary mixture, in terms of cooling capacity, would be around 7.4% less than the performance using R-22. The cooling capacity for both refrigerants improved with flooded evaporator operation by 8.6% for R-22 and by 15% for ternary mixture. Compared with R-22 operation, operation with ternary mixture results in slightly higher compressor discharge pressure, lower compressor discharge temperature, slightly lower compressor power consumption, and a higher compressor high-low pressure ratio. Temperature glide for ternary mixture, for both evaporator and condenser, was clearly evident, but not as pronounced as expected because of the pressure drop (and thus the temperature drop) along the coils. Further improvement of the performance of ternary mixture is possible if the evaporator is arranged in a counter-cross-flow configuration to take advantage of the temperature glide. Current evaporator designs are mostly concurrent-cross-flow, which is more appropriate for single-component refrigerants or azeotropic refrigerant mixtures.

Mei, V.C.; Chen, F.C.; Carlstedt, J.; Hallden, D.

1995-08-01T23:59:59.000Z

153

Central Air Conditioners","Heat Pumps","Individual Air Conditioners...  

U.S. Energy Information Administration (EIA) Indexed Site

"Food Service ...",349,324,66,"Q",71,"Q","Q",218,"Q","Q" "Health Care ...",127,127,"Q",29,15,2,9,77,"Q","Q" " Inpatient...

154

Nebraska Public Power District - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Public Power District - Commercial Energy Efficiency Nebraska Public Power District - Commercial Energy Efficiency Rebate Programs Nebraska Public Power District - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Incentives exceeding $5000 require pre-approval Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Lighting: $0.75 - $60 per fixture, depending on type and wattage Custom Lighting: $0.07 per kWh saved Air Conditioners: Varies, see program brochure Air Source Heat Pump: up to $300; or $25 x (EER - 10.1) x tons Water Source Heat Pump: $25 x (EER - 10.5) x tons

155

A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners in the United States spend Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specific room and are easy for anyone to install. In contrast to these benefits, window A/Cs come at a cost-they operate less efficiently (using more energy to do the same cooling) than most other residential A/C systems. Researchers at the National Renewable Energy Laboratory (NREL) studied window A/Cs on behalf of the U.S.

156

Reduction in air emissions attainable through implementation of district heating and cooling  

SciTech Connect

District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

1996-12-31T23:59:59.000Z

157

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning Conditioning Air Conditioning July 1, 2012 - 6:28pm Addthis Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment. Two-thirds of all homes in the United States have air conditioners. Air conditioners use about 5% of all the electricity produced in the United States, at an annual cost of more than $11 billion to homeowners. As a

158

Attenuator And Conditioner  

DOE Patents (OSTI)

An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

Anderson, Gene R. (Albuquerque, NM); Armendariz, Marcelino G. (Albuquerque, NM); Carson, Richard F. (Albuquerque, NM); Bryan, Robert P. (Albuquerque, NM); Duckett, III, Edwin B. (Albuquerque, NM); Kemme, Shanalyn Adair (Albuquerque, NM); McCormick, Frederick B. (Albuquerque, NM); Peterson, David W. (Sandia Park, NM)

2006-04-04T23:59:59.000Z

159

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

160

Federal Energy Management Program: Covered Product Category: Room Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioners to someone by E-mail Room Air Conditioners to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Google Bookmark Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Delicious Rank Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Room Air Conditioners on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building America Technology Solutions for New and Existing Homes: A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This step-by-step guide developed by the National Renewable Energy Laboratory describes proper installation of window air conditioning units, in order to improve energy efficiency, save money, and improve comfort for homeowners

162

ROOM AIR CONDITIONER WALL MOUNTED type  

E-Print Network (OSTI)

/ 150 (76 / 68) 238 / 207 (108 / 94) REFRIGERANT CHARGING PIPE LENGTH 25 ft. (7.5 m) 33 ft. (10 m) 49 ftY3E-A C O N T E N T S SPECIFICATIONS OUTLINE AND DIMENSIONS REFRIGERANT SYSTEM DIAGRAM CIRCUIT, Induction motor, Recipro CODE H25B18QABCA H25B18QABCA H25B24QABCA H25B24QABCA H25B35QABCA REFRIGERANT R-22

Kleinfeld, David

163

Rating of Mixed Split Residential Air Conditioners  

E-Print Network (OSTI)

by the indoor fan, the indoor fan is characterized by its power needed to provide this CFM, and the expansion device is characterized by its restrictiveness to the refrigerant flow (explained later). A computer model of a heat pump was used in this study.... The structure of HPSIM is modular. The model consists of 41 subprograms for heat pump component simulation, heat transfer, fluid mechan- ics, and fluid property calculation. The program totals approximately 5000 Fortran statements. UncL -'< Fig. 2...

Domanski, P. A.

1988-01-01T23:59:59.000Z

164

California's 42nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Scheuten Solar USA Inc US South Coast Air Quality Management District SCAQMD Western Ethanol Company LLC Utility Companies in California's 42nd congressional district City of...

165

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Energy.gov (U.S. Department of Energy (DOE))

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

166

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

167

Central Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Air Conditioning Central Air Conditioning Central Air Conditioning May 30, 2012 - 8:01pm Addthis Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. What does this mean for me? Central air conditioning systems are thermostatically controlled and convenient to use. Central air conditioning systems must be installed properly to operate efficiently. Central air conditioning systems can share ductwork with your heating system. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls,

168

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis...

169

2014-03-06 Issuance: Test Procedures for Packaged Terminal Air...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking 2014-03-06 Issuance: Test Procedures for...

170

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

171

Techno-Economic Analysis of Indian Draft Standard Levels for Room Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners Title Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners Publication Type Report LBNL Report Number LBNL-63204 Year of Publication 2007 Authors McNeil, Michael A., and Maithili Iyer Date Published 03/2007 Keywords India Air Conditioner Efficiency Standards Abstract The Indian Bureau of Energy Efficiency (BEE) finalized its first set of efficiency standards and labels for room air conditioners in July of 2006. These regulations followed soon after the publication of levels for frost-free refrigerators in the same year. As in the case of refrigerators, the air conditioner program introduces Minimum Efficiency Performance Standards (MEPS) and comparative labels simultaneously, with levels for one to five stars. Also like the refrigerator program, BEE defined several successive program phases of increasing stringency.

172

Pennsylvania's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Energy Companies in Pennsylvania's 15th congressional district 3 Registered Financial Organizations in Pennsylvania's 15th congressional district 4 Utility Companies in Pennsylvania's 15th congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 15th congressional district PPL Electric Utilities Corp. Smart Grid Project Registered Energy Companies in Pennsylvania's 15th congressional district Air Products Chemicals Inc Akrion Inc Minerals Technologies PPL Energy Services Holdings LLC PPL EnergyPlus LLC PPT Research Inc Protium Energy Technologies Registered Financial Organizations in Pennsylvania's 15th congressional district Sustainable Energy Fund of Central Eastern Pennsylvania Utility Companies in Pennsylvania's 15th congressional district

173

NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet)  

SciTech Connect

Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency.

Not Available

2013-05-01T23:59:59.000Z

174

Development of a room air conditioner design model  

E-Print Network (OSTI)

AND RECOMMENDATIONS. Page . 12 . 12 . 20 . 33 . 38 . 48 . 50 . 56 Conclusions. Recommendations. REFERENCES APPENDIX A . 57 . 57 . 59 . 61 VITA . 66 LZST OP TABLES Table Page 2. 1 Major output parameters from the ORNL model 3. 1 Effect of tube.... Efficiency improvements are evaluated with the aid of a computer model. The model chosen for this analysis was the Oak Ridge National Laboratory (ORNL) heat pump model [5] . The ORNL Heat Pump Design Model is a FORTRAN computer program developed...

Penson, Steven Brad

1988-01-01T23:59:59.000Z

175

Texas's 22nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 22nd congressional district 2 Registered Research Institutions in Texas's 22nd congressional district 3 Registered Energy Companies in Texas's 22nd congressional district 4 Registered Financial Organizations in Texas's 22nd congressional district 5 Utility Companies in Texas's 22nd congressional district US Recovery Act Smart Grid Projects in Texas's 22nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 22nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 22nd congressional district Air and Liquid Advisors ALA American Electric Technologies Inc

176

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. DOE EX Parte Memo.pdf More Documents & Publications 3rd Semi-Annual Report to...

177

Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)  

SciTech Connect

This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

Kozubal, E.

2013-02-01T23:59:59.000Z

178

PAD District  

U.S. Energy Information Administration (EIA) Indexed Site

District District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) a 91,429 10,111 26,500 110,165 21,045 21,120 74 1,127 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 Georgia 0 0 24,000 0 0 0 0 0 New Jersey 37,200 0 63,500 4,000 12,000 7,500 31 290 Pennsylvania 42,500 4,920 22,065 16,500 2,945 0 0 240 West Virginia 0 0 600 0 6,100 0 3 1 268,106 95,300 159,000 260,414 9,100 158,868 584 7,104 PAD District II Illinois 83,900 19,900 38,100 16,000 0 70,495 202 2,397 Indiana 27,200 16,800 33,700 27,100 0 10,000 0 653

179

High Energy Efficiency Air Conditioning  

SciTech Connect

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

180

Regional Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Adjacent Water Control and Improvement Districts and Municipal Utility Districts can opt to form a Regional District to oversee water issues. Such districts may be created:(1) to purchase, own,...

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal district heating systems  

SciTech Connect

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

182

DOE Requires Air-Con International to Cease Sales of Inefficient Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Requires Air-Con International to Cease Sales of Inefficient Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties September 21, 2010 - 6:43pm Addthis The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in the United States and proposing a civil penalty of $231,090 for sales of these products in violation of the applicable energy efficiency standards. This action reflects the Department's continued commitment to act aggressively to remove unlawful products from the market. In March, 2010, the Department issued a subpoena requiring Air-Con to

183

Save Money and Stay Cool with an Efficient, Well-Maintained Air...  

Office of Environmental Management (EM)

can increase its efficiency by up to 10% How cool is that? For window units, inspect the seal between the air conditioner and the window frame to ensure it makes contact with the...

184

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

185

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

186

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

187

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

188

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

189

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

190

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

191

Major Source Permits (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) < Back Eligibility Utility Commercial Industrial Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment The District reviews designs for new pollution sources and design modifications for existing sources. Permits are issued to allow sources to emit limited and specified amounts of pollution as allowed by air quality laws and regulations. Major sources include power plants, heating plants, and large printing facilities. Three types of permits are issued: pre-construction review permits; new source review permits; and operating permits. These permits include conditions intended to minimize emissions of

192

The Need to Reduce Mobile Source Emissions in the South Coast Air Basin  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: South Coast Air Quality Management District

193

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

194

Missouri School District Charges Up | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri School District Charges Up Missouri School District Charges Up Missouri School District Charges Up September 8, 2010 - 11:30am Addthis Lindsay Gsell What are the key facts? Lee's Summit R-7 School District gets four electric vehicles (EV) District was spending $2.25 per gallon of diesel, EV charging equal 15 to 20 cents per gallon $330,000 Recovery Act award helps District improve schools' air quality Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts. However this August, with $330,000 in Recovery Act funding from the Clean Cities program, the district sold their old trucks and welcomed a new fleet of four all-electric medium-duty delivery trucks. The EV distribution fleet

195

Texas's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 7th congressional district 2 Registered Research Institutions in Texas's 7th congressional district 3 Registered Energy Companies in Texas's 7th congressional district 4 Registered Financial Organizations in Texas's 7th congressional district 5 Utility Companies in Texas's 7th congressional district US Recovery Act Smart Grid Projects in Texas's 7th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 7th congressional district Institute for Energy Research Registered Energy Companies in Texas's 7th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

196

Texas's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 8th congressional district 2 Registered Research Institutions in Texas's 8th congressional district 3 Registered Energy Companies in Texas's 8th congressional district 4 Registered Financial Organizations in Texas's 8th congressional district 5 Utility Companies in Texas's 8th congressional district US Recovery Act Smart Grid Projects in Texas's 8th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 8th congressional district Institute for Energy Research Registered Energy Companies in Texas's 8th congressional district Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics

197

Texas's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 2nd congressional district 2 Registered Research Institutions in Texas's 2nd congressional district 3 Registered Energy Companies in Texas's 2nd congressional district 4 Registered Financial Organizations in Texas's 2nd congressional district 5 Utility Companies in Texas's 2nd congressional district US Recovery Act Smart Grid Projects in Texas's 2nd congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 2nd congressional district Institute for Energy Research Registered Energy Companies in Texas's 2nd congressional district Agribiofuels LLC Air and Liquid Advisors ALA American Electric Technologies Inc

198

E-Print Network 3.0 - air quality information Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Management District (BAAQMD). For more detailed information, see Air Quality: Air Pollutants, SLAC Emissions... Air Quality: Reporting Requirements Department: Chemical and...

199

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

200

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action |  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action November 23, 2010 - 6:34pm Addthis The Department of Energy has settled the civil penalty action it initiated against Air-Con International for Air-Con's sale of air conditioners in the United States that used more energy than allowed by federal law. On September 20, 2010, based on Air-Con's responses to a DOE subpoena, DOE ordered Air-Con to stop selling noncompliant air conditioners in the United States and proposed civil penalties for the noncompliant units sold by the company. Air-Con promptly ceased U.S. sales of the noncompliant models. In the settlement announced today, DOE agreed to accept a civil penalty of $10,000, after considering factors set forth in DOE's penalty guidance,

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action November 23, 2010 - 6:34pm Addthis The Department of Energy has settled the civil penalty action it initiated against Air-Con International for Air-Con's sale of air conditioners in the United States that used more energy than allowed by federal law. On September 20, 2010, based on Air-Con's responses to a DOE subpoena, DOE ordered Air-Con to stop selling noncompliant air conditioners in the United States and proposed civil penalties for the noncompliant units sold by the company. Air-Con promptly ceased U.S. sales of the noncompliant models. In the settlement announced today, DOE agreed to accept a civil penalty of $10,000, after considering factors set forth in DOE's penalty guidance,

202

Category:Congressional Districts | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts Congressional Districts Jump to: navigation, search This category contains all congressional districts in the United States of America. Pages in category "Congressional Districts" The following 200 pages are in this category, out of 437 total. (previous 200) (next 200) A Alabama's 1st congressional district Alabama's 2nd congressional district Alabama's 3rd congressional district Alabama's 4th congressional district Alabama's 5th congressional district Alabama's 6th congressional district Alabama's 7th congressional district Alaska's At-large congressional district Arizona's 1st congressional district Arizona's 2nd congressional district Arizona's 3rd congressional district Arizona's 4th congressional district Arizona's 5th congressional district Arizona's 6th congressional district

203

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

204

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

205

Tips: Air Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Ducts Air Ducts Tips: Air Ducts June 24, 2013 - 7:23pm Addthis Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to higher energy bills. Your home's duct system is a branching network of tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other materials.

206

TEE-0062 - In the Matter of United CoolAir Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEE-0062 - In the Matter of United CoolAir Corp. TEE-0062 - In the Matter of United CoolAir Corp. TEE-0062 - In the Matter of United CoolAir Corp. This Decision and Order considers an Application for Exception filed by United CoolAir Corporation (United CoolAir) seeking exception relief from the provisions of 10 C.F.R. Part 431, Subpart F, Energy Conservation Program for Certain Commercial and Industrial Equipment: Commercial Air Conditioners and Heat Pumps Energy Conservation Standards (Commercial Air Conditioner Standards).1 In its Application, United CoolAir asserts that the firm would suffer serious hardship, inequity, or unfair distribution of burdens if required to comply with the 13 SEER energy efficiency standard effective January 1, 2010, 10 C.F.R. § 431.97(b). If United CoolAir's Application for Exception were granted, the firm would

207

TEE-0062 - In the Matter of United CoolAir Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - In the Matter of United CoolAir Corp. 2 - In the Matter of United CoolAir Corp. TEE-0062 - In the Matter of United CoolAir Corp. This Decision and Order considers an Application for Exception filed by United CoolAir Corporation (United CoolAir) seeking exception relief from the provisions of 10 C.F.R. Part 431, Subpart F, Energy Conservation Program for Certain Commercial and Industrial Equipment: Commercial Air Conditioners and Heat Pumps Energy Conservation Standards (Commercial Air Conditioner Standards).1 In its Application, United CoolAir asserts that the firm would suffer serious hardship, inequity, or unfair distribution of burdens if required to comply with the 13 SEER energy efficiency standard effective January 1, 2010, 10 C.F.R. § 431.97(b). If United CoolAir's Application for Exception were granted, the firm would

208

Southern Power District - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Power District - Residential Energy Efficiency Rebate Southern Power District - Residential Energy Efficiency Rebate Programs Southern Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100- $300 Geothermal Heat Pump: $400 Heat Pump (14 Seer minimum): $50 contractor rebate Attic Insulation: $0.15/sq. ft. HVAC Tune-Up: $30 Provider Southern Power District Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who install 14 Seer or

209

Recent developments in orifice meter and flow conditioner research  

SciTech Connect

In 1969 concerns were raised regarding the validity of the orifice meter`s coefficient of discharge uncertainty. An effort to resolve these concerns resulted in an internationally supported research project which produced a new sharp-edged concentric orifice meter empirical database and coefficient of discharge equation. However, the new empirical database and coefficient of discharge equation did not account for all of the differences being encountered in orifice metering. And in 1986, as a derivative of the coefficient of discharge equation research, questions were raised regarding the influences of installation effects on the orifice meter`s coefficient of discharge. The 1986 EC research data indicated that the flow conditioner and straight pipe installation requirements of the flow measurement standards were inadequate to prevent biasing of the orifice meter`s coefficient of discharge by flow disturbances generated from upstream piping elements. Data generated from 1990 through 1993 by GRI sponsored SWRI and NIST research confirmed the original EC biasing and further identified differential pressure tap radial position sensitivity and velocity profile and swirl angle theory deficiencies. Current research is continuing to define installation effects influences and identify possible solutions.

LaNasa, P.J. [CPL and Associates, Houston, TX (United States)

1995-12-31T23:59:59.000Z

210

Towards Intelligent District Heating.  

E-Print Network (OSTI)

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

211

District cooling gets hot  

SciTech Connect

Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

Seeley, R.S.

1996-07-01T23:59:59.000Z

212

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

213

Dynamic Performance and Control of a Multilevel Universal Power Conditioner Leon M. Tolbert, Fang Z. Peng Thomas G. Habetler  

E-Print Network (OSTI)

-to-back diode-clamped inverters that constitute the universal power conditioner. An experimental verification. To meet the objectives detailed in these new premium power agreements, the implementation of advanced- clamped inverter into a universal power conditioner is an enticing prospect. For a multilevel universal

Tolbert, Leon M.

214

Evaluation of a CFD-model for simulation of simplified flow conditioners  

SciTech Connect

Perforated plate flow conditioners are used to generate a fully developed turbulent flow profile upstream of an orifice meter. It is very time-consuming to measure the effect of a flow conditioner for different upstream flow profiles. Therefore a project is initiated to evaluate the performance of a computational fluid computer code for this purpose. If the code correctly predicts the flow characteristics downstream of more complex flow conditioners. In this study a k-{var_epsilon} CFD-model was used to predict the flow downstream of obstruction plates having one large or nine small holes. Both mean velocity, turbulent kinetic energy, k, and the dissipation rate of turbulent kinetic energy, {var_epsilon}, were calculated and compared against measured data. The results indicate that it is possible to predict the mean velocity well and that the accuracy of the predicted k and {var_epsilon} depends on the complexity of the flow.

Erdal, A. [Statoil/K-LAB, Haugesund (Norway); Torbergsen, L.E.; Rimestad, S.; Krogstad, P.A. [Norwegian Inst. of Technology, Trondheim (Norway)

1995-12-31T23:59:59.000Z

215

E-Print Network 3.0 - air quality simulation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: Commission on Environmental Quality, Saffett Tanrikulu Bay Area Air Quality Control District, Jon Pleim- EPA... for SIPs and air quality forecasting Problem to be...

216

E-Print Network 3.0 - air quality implementation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commission on Environmental Quality, Saffett Tanrikulu Bay Area Air Quality Control District, Jon Pleim- EPA... for SIPs and air ... Source: Jacob, Daniel J. - School of...

217

E-Print Network 3.0 - air toxic emissions Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Management District (BAAQMD). For more detailed information, see Air Quality: Air Pollutants, SLAC Emissions... report permit renewal July 31 National Emissions Standards for...

218

E-Print Network 3.0 - air quality strategy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Commission on Environmental Quality, Saffett Tanrikulu Bay Area Air Quality Control District, Jon Pleim- EPA... for SIPs and air ... Source: Jacob, Daniel J. - School of...

219

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

220

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Study of thermoelectric technology for automobile air conditioning  

SciTech Connect

An analytical study was conducted to determine the feasibility of employing thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper, a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,80 Btu/h) in a 38{degree}C (100{degree}F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper.

Mathiprakasam, B.; Heenan, P. (Midwest Research Inst., Kansas City, MO (United States)); Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

222

Economic Development Project Districts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Redevelopment commissions may petition legislative bodies to designate economic development project districts in cities with populations between 80,500 and 500,000. Such districts may be...

223

Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor  

DOE Patents (OSTI)

An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

2013-09-10T23:59:59.000Z

224

Nebraska Public Power District - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Public Power District - Residential Energy Efficiency Nebraska Public Power District - Residential Energy Efficiency Rebate Programs Nebraska Public Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Attic Insulation: $300 Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: 14 SEER - $200, 15 SEER - $400, 16+ SEER $600 Ground Source Heat Pumps: $1,200 Variable Capacity Ground Source Heat Pumps: $1,700 Heat Pump > 14 SEER (Contractor): $50 Cooling System Tune-Up: $30 Attic Insulation: $0.15/sq. ft. Provider Nebraska Public Power District The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have

225

A review of polymer-based water conditioners for reduction of handling-related injury  

SciTech Connect

Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging.

Harnish, Ryan A.; Colotelo, Alison HA; Brown, Richard S.

2011-01-01T23:59:59.000Z

226

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

227

Ortigas Greenways: Demonstrating Innovation in Walkable Districts | Open  

Open Energy Info (EERE)

Ortigas Greenways: Demonstrating Innovation in Walkable Districts Ortigas Greenways: Demonstrating Innovation in Walkable Districts Jump to: navigation, search Name Ortigas Greenways: Demonstrating Innovation in Walkable Districts Agency/Company /Organization Clean Air Asia, Asian Development Bank (ADB), Ortigas Greenways Project Team, Paulo G. Alcazaren & Associates (PGAA) Partner Asian Development Bank (ADB), Ministry of Planning Sector Land Focus Area People and Policy, Transportation Topics Co-benefits assessment, - Environmental and Biodiversity, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Website http://cleanairinitiative.org/ Program Start 2011 Program End 2012 Country Philippines South-Eastern Asia References Ortigas Greenways[1] Terms of Reference[2] Overview

228

The Forest Preserve District  

NLE Websites -- All DOE Office Websites (Extended Search)

Forest Preserve District Forest Preserve District Nature Bulletin No. 109 March 29, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation THE FOREST PRESERVE DISTRICT Forest Preserve Districts, in Illinois, are separate municipal bodies governed by a Board of Forest Preserve Commissioners consisting of the elected county commissioners, as in Cook County, or by a committee of the county board of supervisors, as in 7 other counties. The legislative act which provided for such a district, if authorized by referendum vote of the people, became a law on July 1, 1914. Under that act, the commissioners are empowered to levy taxes, issue bonds, and to acquire lands containing forests "for the purpose of protecting and preserving the flora, fauna and scenic beauties.... and to restore, restock, protect and preserve the natural forests and said lands with their flora and fauna, as nearly as may be in their natural state and condition for the purpose of the education, pleasure and recreation of the public". A limit of 35,000 acres was set; later increased to 39,000.

229

Groundbreaking High-Performance Building Districts  

E-Print Network (OSTI)

Groundbreaking High-Performance Building Districts ESL-KT-14-11-28 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 ? The Centre for Building Performance is a Registered Provider with The American Institute...-11-28 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 ? This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval...

Jordan, J.

2014-01-01T23:59:59.000Z

230

A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner  

E-Print Network (OSTI)

. The candidate desiccants have toxicity ratings from moderate (LiC1) to low (CaC12) to relatively nontoxic (TEG). One measure of toxicity is the ID50 dose, which is the lethal dose that will result in fatality 60% of the time. Lithium chloride has an LD50..., thereby maintaining the deaiccant in solution. Table 2 Figures of Merit for Safety ID50 Relative Desiccant (02) Weight LiCl 1.23 7 LiBr 4.03 8 The saline desiccants are described aa odorless, while trietheylene glycol is described as having a mild...

Studak, J. W.; Peterson, J. L.

1988-01-01T23:59:59.000Z

231

Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement  

E-Print Network (OSTI)

Ernest Orlando Lawrence Berkeley National Laboratory. LBNL-2008. Ernest Orlando Lawrence Berkeley National Laboratory.Ernest Orlando Lawrence Berkeley National Laboratory. LBNL-

Bode, Josh

2013-01-01T23:59:59.000Z

232

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network (OSTI)

1986.Priceeffectsofenergy-efficient technologiesa study ofSAITO et al] EDR, Technology Overview: Economizers, Energyresources/publications/technology-overviews/technology-

Shah, Nihar

2014-01-01T23:59:59.000Z

233

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network (OSTI)

using granular phase change material to augment buildingPhase Change Materials as evaporative cooling, phase change materials and night

Shah, Nihar

2014-01-01T23:59:59.000Z

234

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network (OSTI)

chapter we discuss market, energy consumption and technologyeffective Room AC energy efficiency market transformation42 Chapter 3 Room AC Market and Energy Consumption

Shah, Nihar

2014-01-01T23:59:59.000Z

235

China Energy Efficiency Round Robin Testing Results for Room Air Conditioners  

E-Print Network (OSTI)

L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consumingfor Implementing the China Energy Efficiency Label System (

Zhou, Nan

2010-01-01T23:59:59.000Z

236

China Energy Efficiency Round Robin Testing Results for Room Air Conditioners  

E-Print Network (OSTI)

was maybe tested with less refrigerant charge than in China.Differences in the refrigerant charges are not confirmed byvacuum treatment, charge 850g5g R22 refrigerant for sample

Zhou, Nan

2010-01-01T23:59:59.000Z

237

Testing and Economic Evaluation of a High Efficiency 10-ton Rooftop Air Conditioner  

E-Print Network (OSTI)

by LaSalle Manufacturing Corporation of Houston, Texas. The rooftop unit was then tested at Texas A&M University. The economics of manufacturing, purchasing and operating were also evaluated. This report summarizes the testing of the unit...

O'Neal, D. L.; Davis, M. A.

2006-11-09T23:59:59.000Z

238

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network (OSTI)

Display CO2 Emissions and Electricity Cost Savings, http://at different levels of electricity costs which vary acrossCO 2 emissions and electricity costs on an indoor panel as

Shah, Nihar

2014-01-01T23:59:59.000Z

239

Determination of the Transient Dehumidification Characteristics of High Efficiency Central Air Conditioners  

E-Print Network (OSTI)

Seasonal Energy Efficiency Ratio SHR Sensible Heat Ratio TOCZ Time Outside the Comfort Zone TMY Typical Meteorological Year TRNSYS TRaNsient SYstem Simulation ii SUMMARY A series of tests were performed to assesses the dehumidifying performance... DEVELOPMENT OF NEW ROUTINES 12 A. HVAC CONTROL MODULE 12 B. POST-PROCESSING OF THE TRNSYS OUTPUT 13 6 SELECTION OF TEST DAYS 14 7 BASE CASE 19 A. EVALUATION OF THE DESIGN LOAD 19 B. EVALUATION OF THE 14 CAC UNITS FOR BASE CASE ... 20 C. DISCUSSION OF BASE CASE...

Katipamula, S.; O'Neal, D. L.; Somasundaram, S.

1987-01-01T23:59:59.000Z

240

Analysis of Efficiency Standards for Air Conditioners, Heat Pumps, and Other Products  

Reports and Publications (EIA)

A series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Engineering computer models for refrigerators, freezers, furnaces, water heaters, room and central air conditioners  

SciTech Connect

This User's Guide provides the necessary information for understanding and using a computer model developed for the US Department of Energy which predicts the performance (energy consumption) of household refrigerators, refrigerator-freezers, and freezers. The model is capable of simulating various cabinet configurations (top-mount, bottom-mount, side-by-side, single-door) and refrigeration unit combinations (back-mounted static condenser with single forced convection evaporator, hot wall condenser with cooled wall panels, etc.). The program is comprised of two main subroutines: a cabinet heat-load submodel and a refrigeration unit submodel; they can be used separately for preliminary design analysis or together for performance evaluations. A technical description of the model and information on how to structure input parameters are provided. The user is provided with specific guidance for running the model on a computer. Specific instructions are given in the Appendices for changing and running the model using the operating language compatible with the DOE computer terminal system. Other users will have to modify the procedures in these sections as necessary for different computers.

Not Available

1982-11-01T23:59:59.000Z

242

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners  

E-Print Network (OSTI)

LABORATORY NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT OEM ORIGINAL EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO... of variable speed units is discussed. The methodology includes: (1) making multiple runs of the Oak Ridge National Laboratory (ORNL) steady-state heat pump model, (2) making reasonable assumptions on the degradation factors, and (3) using a draft version...

O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

1986-01-01T23:59:59.000Z

243

E-Print Network 3.0 - automobile air conditioners Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Majid - School of Engineering Science, Simon Fraser University Collection: Engineering ; Energy Storage, Conversion and Utilization 2 T H E U N I V E R S I T Y O F C H I C A G O C...

244

E-Print Network 3.0 - air conditioner units Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Majid - School of Engineering Science, Simon Fraser University Collection: Engineering ; Energy Storage, Conversion and Utilization 2 T H E U N I V E R S I T Y O F C H I C A G O C...

245

E-Print Network 3.0 - air conditioners electronic Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Majid - School of Engineering Science, Simon Fraser University Collection: Engineering ; Energy Storage, Conversion and Utilization 2 T H E U N I V E R S I T Y O F C H I C A G O C...

246

China Energy Efficiency Round Robin Testing Results for Room Air Conditioners  

E-Print Network (OSTI)

decrease in energy consumption per unit GDP in the "Eleventh40-50% reduction in energy consumption per unit GDP by 2020measured by energy consumption per unit GDP in the The 11th

Zhou, Nan

2010-01-01T23:59:59.000Z

247

China Energy Efficiency Round Robin Testing Results for Room Air Conditioners  

E-Print Network (OSTI)

corresponding to cooling input power and heating input powerCooling capacity Cooling consumption power Energy efficiency4000W Input power: 1266 W (cooling)/1190 W (heating)

Zhou, Nan

2010-01-01T23:59:59.000Z

248

Air Conditioner User Behavior in a Master-Metered Apartment Building  

E-Print Network (OSTI)

instrumented in eight apartments, and interviews were conducted with the residents about their operation of the units. The predominant mode of operation was to switch the unit on and off manually; only one resident consistently let it operate thermostatically...

Kempton, W.; Feuermann, D.; McGarity, A. E.

1987-01-01T23:59:59.000Z

249

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

250

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

251

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

252

Elko County School District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal Facility Facility Elko County School District Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

253

Inland Navigation Districts and Florida Inland Navigation District Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Navigation Districts and Florida Inland Navigation District Inland Navigation Districts and Florida Inland Navigation District Law (Florida) Inland Navigation Districts and Florida Inland Navigation District Law (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Inland Navigation District (FIND) The first part of this legislation establishes Inland Navigation Districts,

254

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

255

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

256

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

257

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

258

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

259

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

260

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

262

Forestry Policies (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Forest policy and guidelines in Washington D.C. are focused on urban forestry, and are managed by the District Department of Transportation's Urban Forestry Administration. In 2010 The District...

263

Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer  

DOE Patents (OSTI)

A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

Warburton, W.K.; Hubbard, B.

1999-02-09T23:59:59.000Z

264

Continuous Commissioning and Energy Management Control Strategies at Alamo Community College District  

E-Print Network (OSTI)

This paper presents an overview of energy savings through the optimization of facility Heating, Ventilation, and Air Conditioning (HVAC) systems for the college campuses of the Alamo Community College District. This Continuous Commissioning process...

Martinez, J.; Verdict, M.; Baltazar, J.C.

265

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

266

International District Energy Association  

Energy.gov (U.S. Department of Energy (DOE))

Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

267

Analysis of historical residential air-conditioning equipment sizing using monitored data  

SciTech Connect

Monitored data were analyzed to determine whether residential air conditioners in the Pacific Northwest historically have been sized properly to meet or slightly exceed actual cooling requirements. Oversizing air-conditioning equipment results in a loss of efficiency because of increased cycling and also lowers humidity control. On the other hand, the penalty of undersizing air-conditioning equipment may be some loss of comfort during extremely hot weather. The monitored data consist of hourly space-conditioning electrical energy use and internal air temperature data collected during the past 7 years from 75 residences in the Pacific Northwest. These residences are equipped with central air conditioners or heat pumps. The periods with the highest cooling energy use were analyzed for each site. A standard industry sizing methodology was used for each site to determine a sizing estimate. Both the sizing recommendation based on Manual J and peak monitored loads are compared to the capacity of the installed equipment for each site to study how the actual capacity differed from both the estimate of proper sizing and from actual demands. Characteristics of the maximum cooling loads are analyzed here to determine which conditions put the highest demand on the air conditioner. Specifically, internal air temperature data are used to determine when the highest cooling loads occur, at constant thermostat settings or when the thermostat was set down. This analysis of monitored data also provides insight into the extent that occupant comfort may be affected by undersizing air conditioners. The findings of this research indicate that cooling equipment historically has often but not always been oversized beyond industry-recommended levels. However, some occupants in homes with undersized, properly sized, and, in rare occasions, even oversized cooling equipment appear to suffer because the cooling equipment cannot always provide adequate cooling. Key findings are summarized.

Lucas, R.G.

1993-02-01T23:59:59.000Z

268

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

269

1District health services research: 2011 District health  

E-Print Network (OSTI)

meDicine anD Primary care, faculty of meDicine anD HealtH sciences, stellenboscH university #12RoDUctIon...................................................................................................................................... clInIcal famIly meDIcIne anD DIstRIct health caRe systems1District health services research: 2011 District health services research: 2011Division of family

Geldenhuys, Jaco

270

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

271

Research District Seeing Growth  

SciTech Connect

Monthly economic diversity column for the Tri-City Herald (May 2012) - excerpt follows: Its been a while since Ive updated you on the Tri-Cities Research District, most certainly not for lack of new activity over the past several months. In fact, much has happened, and theres more to come. I think many of us see new land development and construction as indicative of current or impending economic growth. So those of you who have ventured into North Richland either via Stevens Drive or George Washington Way lately have probably begun sensing and anticipating that such growth is afoot.

Madison, Alison L.

2012-05-13T23:59:59.000Z

272

E-Print Network 3.0 - air quality research Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Commission on Environmental Quality, Saffett Tanrikulu Bay Area Air Quality Control District, Jon Pleim- EPA... for SIPs ... Source: Jacob, Daniel J. - School of...

273

Public Utility District #1 Of Jefferson County  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Of Jefferson County Board of Commissioners July 2,2008 Dana Roberts, District 1 M. Kelly Hays, District 2 Wayne G. King, District 3 Mark Gendron, Vice President Northwest...

274

Influence of Mobile Air-Conditioning on Vehicle Emissions and Fuel Consumption:? A Model Approach for Modern Gasoline Cars Used in Europe  

Science Journals Connector (OSTI)

However, apart from studies involving MOBILE6 in the United States (1) and other U. S. studies (2?5), air-conditioning activity in relation to meteorological conditions has not been thoroughly investigated. ... For manual air conditioners, a good setting was sought before the test and the knobs for cooling and ventilation were readjusted if the temperature drifted more than 1 C. ... The temperatures of the conditioned air range from 5 to 11 C. ...

Martin F. Weilenmann; Ana-Marija Vasic; Peter Stettler; Philippe Novak

2005-11-04T23:59:59.000Z

275

Air-Con International: Noncompliance Determination and Proposed Penalty  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Con International: Noncompliance Determination and Proposed Con International: Noncompliance Determination and Proposed Penalty (2010-SE-0301) Air-Con International: Noncompliance Determination and Proposed Penalty (2010-SE-0301) September 20, 2010 DOE issued a Notice of Noncompliance Determination to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con private label do not comport with the energy conservation standards. DOE also alleged in a Notice of Proposed Civil Penalty that Air-Con imported and distributed the noncompliant products in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation standards. This

276

List of Duct/Air sealing Incentives | Open Energy Information  

Open Energy Info (EERE)

Duct/Air sealing Incentives Duct/Air sealing Incentives Jump to: navigation, search The following contains the list of 580 Duct/Air sealing Incentives. CSV (rows 1-500) CSV (rows 501-580) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building Custom/Others pending approval Duct/Air sealing Unspecified technologies Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor Residential Central Air conditioners Custom/Others pending approval Duct/Air sealing

277

Creating and Implementing a Regularized Monitoring and Enforcement System for China's Mandatory Standards and Energy Information Label for Appliances  

E-Print Network (OSTI)

for 11 products including: refrigerators; air conditioners;on room air-conditioners, which covered products from 29for 11 products including: refrigerators; air conditioners;

Lin, Jiang

2008-01-01T23:59:59.000Z

278

Compliance and Verification of Standards and Labeling Programs in China: Lessons Learned  

E-Print Network (OSTI)

covering two products (refrigerators and air conditioners),and unitary air conditioners) and 15 other products areprogram by products and location room air conditioners Fix

Saheb, Yamina

2011-01-01T23:59:59.000Z

279

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

E-Print Network (OSTI)

is applied to four products including: air conditioners;to cover four products including: air conditioners; house-size - for three products (refrigerators, air-conditioners

Zhou, Nan

2010-01-01T23:59:59.000Z

280

Status of the Local Enforcement of Energy Efficiency Standards and Labeling Program in China  

E-Print Network (OSTI)

Check-Testing Sample Product Room air conditioners Self-in part, for five products: room air conditioners, electricCompliance Results Products Inspected Room air conditioners

Zhou, Nan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

282

Lassen Municipal Utility District - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - Residential Energy Efficiency Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Windows: $500 Duct Insulation/Sealing: $500 Radiant Barrier: $1,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Freezer: $50 Clothes Washer: $35 Dishwasher: $35 Room AC: $75 Air Source Heat Pumps: $100 - $400 per ton Ground Source Heat Pump: $1,000 per ton Central A/C: $25 - $150 per ton Evaporative Cooled A/C: $175 per ton Evaporative Coolers: $75 - $200 per 1,000 sq. ft.

283

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

284

Montana Association of Conservation Districts Webpage | Open...  

Open Energy Info (EERE)

Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

285

District Energy Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district...

286

Community Renewable Energy Success Stories Webinar: District...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

287

Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District  

SciTech Connect

Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

Price, Phillip

2014-12-22T23:59:59.000Z

288

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

289

The Sudbury Mining District  

E-Print Network (OSTI)

for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the School of Engineering of the University of Kansas in partial fulfillment of the requirements for a course in Mining Engineering ran THE SUDBURY MINING DISTRICT. A D i s s e r t a t i o... n P r e s e n t e d t o the F a c u l t y o f the SCHOOL OP ENGINEERING i n the UNIVERSITY OP KANSAS. F o r the Completion o f a Course i n MINING ENGINEERING. fey Prank G. B e d e l l . June 1906. PREFACE I n t h i s paper w i l l be g i...

Bedell, Frank G.

1906-06-01T23:59:59.000Z

290

Performance evaluation of CSI-based unified power quality conditioner using artificial neural network  

Science Journals Connector (OSTI)

In recent years unified power quality conditioner (UPQC) is being used as a universal active power conditioning device to mitigate both current as well as voltage harmonics at a distribution end of power system network. The performance of UPQC mainly depends upon how quickly and accurately compensation signals are derived. The artificial neural network (ANN) trained with conventional compensator data, can deliver compensation signals more accurately and quickly than conventional compensator at varied load condition. This paper presents performance verification of CSI-based UPQC using artificial neural network. The ANN-based compensation system eliminates voltage as well as current harmonics with good dynamic response. Extensive simulation results using Matlab/Simulink for RL load connected through an uncontrolled bridge rectifier validates the performance of ANN compensator.

K. Vadirajacharya; P. Agarwal; H.O. Gupta

2008-01-01T23:59:59.000Z

291

Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer  

DOE Patents (OSTI)

A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

1999-01-01T23:59:59.000Z

292

Groundwater Conservation Districts: Success Stories  

E-Print Network (OSTI)

Demand for water is increasing, so our aquifers must be conserved and protected. The Groundwater Conservation Districts in Texas are carrying out a number of successful programs in the areas of education and public awareness, technical assistance...

Porter, Dana; Persyn, Russell A.; Enciso, Juan

1999-09-06T23:59:59.000Z

293

District heating campaign in Sweden  

SciTech Connect

During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted during two weeks of November 1994 and comprised advertising on commercial TV and in the press.

Stalebrant, R.E. [Swedish District Heating Association, Stockholm (Sweden)

1995-09-01T23:59:59.000Z

294

Geothermal Direct-Use Meeting Clean Air Standards  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal direct-use applicationssuch as greenhouses, district and space heating, and aquaculturecan easily meet local and federal clean air standards, which help protect our environment.

295

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network (OSTI)

2009. Inverter TestProceduresSolarGenerationImpactConditionerTestingProcedures AppendixB:AirConditionerairconditionertestingproceduresandresultsfromstudies

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

296

International District Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

297

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

298

Air Conditioning  

Science Journals Connector (OSTI)

Air Conditioning ... CHEMISTS and engineers use air conditioning as a valuable tool in more than two hundred industries. ... Air conditioning is a tool with many facets. ...

MARGARET INGELS

1938-02-10T23:59:59.000Z

299

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network (OSTI)

Distribution Loss Peak demand contribution from room ACs (GW) Note that because of the daily variations in heat

Phadke, Amol

2014-01-01T23:59:59.000Z

300

Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges  

SciTech Connect

Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of Temperature and Humidity-Based Indicators for Diagnosing Problems in Low Tonnage, Split System Air Conditioners  

E-Print Network (OSTI)

of HVAC systems for building optimization, fault detection and diagnosis. October. Finland: Technical Research Center of Finland, Laboratory of Heating and Ventilation, B. 0. Box 206 (Lampomiehenkuja 3) 02150 ESPOO. Kaler. G. 1988. Expert system...

Watt, J. B.; O'Neal, D. L.; Haberl, J. S.

1998-01-01T23:59:59.000Z

302

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network (OSTI)

4: Cost of Conserved Electricity and Cost-effective energyrefer to [9]. 3.3.2 Electricity costs and consumer tariffs11 Electricity costs and consumer tariffs in

Phadke, Amol

2014-01-01T23:59:59.000Z

303

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

SciTech Connect

Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

2014-06-19T23:59:59.000Z

304

Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates  

E-Print Network (OSTI)

, the thermostat, and the residence are simulated on a minute-by-minute basis using a commercial software (TRNSYS) after making certain modifications to it....

Katipamula, S.; O'Neal, D.; Somasundram, S.

1988-01-01T23:59:59.000Z

305

An Evaluation of the Effects of Refrigerant Charge on a Residential Central Air Conditioner with Orifice Expansion  

E-Print Network (OSTI)

Section 2.3 Outdoor Test Section 2.5 Refrigerant Side 2.6 Data Acquisition 2.9 Refrigerant Charging Procedures 2.11 References 2.13 3 NOMINAL SIZE ORIFICE RESULTS 3.1 System Performance Data 3.1 Detailed System Data 3.10 4 RESULTS FOR ALTERNATE ORIFICES 4... circuit to allow easy disassembly of the unit without any loss of refrigerant charge. Charging taps in each section of the circuitry allowed purging and charging of each section independently. 2.6 ro Figure 2.3 - Schematic of the refrigerant circuit...

O'Neal, D. L.; Ramsey, C. J.; Farzad, M.

1989-01-01T23:59:59.000Z

306

Assessing the Impact of Measurement Policy on the Accuracy of Certified Energy Efficiency Ratio for Split-System Air Conditioners  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologiesand Renewable Energy, Office of Building Technology, State,

Yu, Bingyi

2013-01-01T23:59:59.000Z

307

Development of empirical temperature and humidity-based degraded-condition indicators for low-tonnage air conditioners  

E-Print Network (OSTI)

was equipped with the ability to use either a short-tube orifice (STO) or a thermal expansion valve (TXV). The degraded conditions studied include low evaporator airflow, high and low-charge, and a blocked condenser coil. The work presented in this thesis...

Watt, James Bonner

2012-06-07T23:59:59.000Z

308

An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with Capillary Tube Expansion  

E-Print Network (OSTI)

National Bureau of Standards OD Outdoor room temperature ORNL Oak Ridge National Laboratory pt point TC Thermocouple Tsat Saturation temperature TXV Thermal expansion valve WB Wet bulb WG Water gauge LIST OF TABLES Table Page 3.1 Fan Specification 25 3... National Laboratory (ORNL). In a field operation of a heat pump, the charge may be reduced by leaks in the system. Attempts to compensate for lost refrigerant after the repair of leaks may result in excess charge. Tests were conducted with the heat pump...

Farzad, M.; O'Neal, D. L.

1988-01-01T23:59:59.000Z

309

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network (OSTI)

imported LNG. Imported coal prices have been increasing inabove the domestic coal prices in India [16]. The following

Phadke, Amol

2014-01-01T23:59:59.000Z

310

PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976  

E-Print Network (OSTI)

solar collectors almost certainly reqld res evaporat 1ve coo 1 i ng towers,tower for water- cooling the condenser was an overriding concern in development of a practical solar

Dao, K.

2010-01-01T23:59:59.000Z

311

DOE Institutes Enforcement Action Against AeroSys, Inc. for Failure to Certify Air Conditioners and Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Washington, DC - The Department of Energys Office of General Counsel has issued a Notice of Proposed Civil Penalty to AeroSys, Inc. for failing to file certification reports or filing data that...

312

Evaluating Water Transfers in Irrigation Districts  

E-Print Network (OSTI)

The participation of irrigation districts (IDs) in surface water transfers from agriculture-to-municipal uses is studied by examining IDs economic and political behavior, comparing their performance with non-districts (non-IDs), and analyzing...

Ghimire, Narishwar

2013-04-11T23:59:59.000Z

313

Vacant District Chair Positions (as of 1/28/2014)  

E-Print Network (OSTI)

) District 83 ­ Kings County (Visalia) District 84 ­ Tulare County (Porterville) REGION 12: INLAND EMPIRE: NORTHERN CALIFORNIA District 10/11 ­ Siskiyou County, Humboldt & Eureka Counties District 13 ­ Modoc, Lassen, Plumas Counties District 15 ­ Yuba & Sutter Counties District 16 ­ Tri-County Area (includes Red

Cohen, Ronald C.

314

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

315

Economic Improvement Districts (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Districts (Indiana) Improvement Districts (Indiana) Economic Improvement Districts (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Industry Recruitment/Support Provider Indiana Economic Development Corporation A legislative body may adopt an ordinance establishing an economic improvement district and an Economic Improvement Board to manage development in a respective district. The Board can choose to issue revenue

316

District of Columbia County, District of Columbia: Energy Resources | Open  

Open Energy Info (EERE)

Columbia County, District of Columbia: Energy Resources Columbia County, District of Columbia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9059849°, -77.0334179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9059849,"lon":-77.0334179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

BLM Winnemucca District Office | Open Energy Information  

Open Energy Info (EERE)

BLM Winnemucca District Office BLM Winnemucca District Office Jump to: navigation, search Name BLM Winnemucca District Office Short Name Winnemucca Parent Organization BLM Nevada State Office Address 5100 E. Winnemucca Blvd. Place Winnemucca, Nevada Zip 89445 Phone number 775-623-1500 Website http://www.blm.gov/nv/st/en/fo References Winnemucca District Office website[1] Divisions Place BLM Humboldt River Field Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Winnemucca District Office is an organization based in Winnemucca, Nevada. References ↑ "Winnemucca District Office website" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Winnemucca_District_Office&oldid=640908" Categories: Government Agencies Stubs

318

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and appliance recycling. Certain efficiency standards must be met in order to receive a rebate for water heaters or windows. Vera Irrigation District also provides a $450 rebate for the installation of energy-efficient heat pumps; ductless heat pumps are eligible incentives of up to $1,500. See the program web site or contact the utility for more information about this program. October 16, 2013 Underground Storage Tank Management (District of Columbia)

319

Central Oregon Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Oregon Irrigation District Oregon Irrigation District Jump to: navigation, search Name Central Oregon Irrigation District Place Redmond, Oregon Zip 97756 Sector Hydro Product Corporation of the State of Oregon that provides municipal, industrial, and agricultural water, as well as hydropower, for central Oregon. References Central Oregon Irrigation District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Oregon Irrigation District is a company located in Redmond, Oregon . References ↑ "Central Oregon Irrigation District" Retrieved from "http://en.openei.org/w/index.php?title=Central_Oregon_Irrigation_District&oldid=343383" Categories: Clean Energy Organizations

320

Kenston School District | Open Energy Information  

Open Energy Info (EERE)

Kenston School District Kenston School District Jump to: navigation, search Name Kenston School District Facility Kenston School District Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Kenston School District Developer Kenston School District Energy Purchaser Kenston School District Location Chagrin Falls OH Coordinates 41.39386574°, -81.30529761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39386574,"lon":-81.30529761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

North Carolina's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in North Carolina's 4th congressional district 3 Registered Policy Organizations in North Carolina's 4th congressional district 4 Registered Energy Companies in North Carolina's 4th congressional district 5 Registered Financial Organizations in North Carolina's 4th congressional district US Recovery Act Smart Grid Projects in North Carolina's 4th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 4th congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 4th congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 4th congressional district

322

Oregon's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 5th congressional district 2 Registered Research Institutions in Oregon's 5th congressional district 3 Registered Policy Organizations in Oregon's 5th congressional district 4 Registered Energy Companies in Oregon's 5th congressional district 5 Registered Financial Organizations in Oregon's 5th congressional district 6 Utility Companies in Oregon's 5th congressional district US Recovery Act Smart Grid Projects in Oregon's 5th congressional district Central Lincoln People's Utility District Smart Grid Project Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 5th congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 5th congressional district

323

California's 46th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 46th congressional district 3 Registered Policy Organizations in California's 46th congressional district 4 Registered Energy Companies in California's 46th congressional district 5 Registered Financial Organizations in California's 46th congressional district US Recovery Act Smart Grid Projects in California's 46th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 46th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 46th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 46th congressional district

324

California's 31st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Research Institutions in California's 31st congressional district 3 Registered Policy Organizations in California's 31st congressional district 4 Registered Energy Companies in California's 31st congressional district 5 Registered Financial Organizations in California's 31st congressional district US Recovery Act Smart Grid Projects in California's 31st congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 31st congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 31st congressional district Clean Tech Los Angeles Registered Energy Companies in California's 31st congressional district

325

California's 35th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 35th congressional district 3 Registered Policy Organizations in California's 35th congressional district 4 Registered Energy Companies in California's 35th congressional district 5 Registered Financial Organizations in California's 35th congressional district US Recovery Act Smart Grid Projects in California's 35th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 35th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 35th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 35th congressional district

326

California's 36th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 36th congressional district 3 Registered Policy Organizations in California's 36th congressional district 4 Registered Energy Companies in California's 36th congressional district 5 Registered Financial Organizations in California's 36th congressional district US Recovery Act Smart Grid Projects in California's 36th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 36th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 36th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 36th congressional district

327

California's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district 5th congressional district 2 Registered Networking Organizations in California's 15th congressional district 3 Registered Policy Organizations in California's 15th congressional district 4 Registered Energy Companies in California's 15th congressional district 5 Registered Financial Organizations in California's 15th congressional district Registered Research Institutions in California's 15th congressional district Environmental Business Cluster Registered Networking Organizations in California's 15th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 15th congressional district Silicon Valley Clean Tech Alliance Solar San Jose Registered Energy Companies in California's 15th congressional district AE Biofuels Inc formerly American Ethanol Inc

328

California's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 25th congressional district 3 Registered Policy Organizations in California's 25th congressional district 4 Registered Energy Companies in California's 25th congressional district 5 Registered Financial Organizations in California's 25th congressional district 6 Energy Generation Facilities in California's 25th congressional district US Recovery Act Smart Grid Projects in California's 25th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 25th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 25th congressional district

329

California's 39th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 39th congressional district 3 Registered Policy Organizations in California's 39th congressional district 4 Registered Energy Companies in California's 39th congressional district 5 Registered Financial Organizations in California's 39th congressional district US Recovery Act Smart Grid Projects in California's 39th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 39th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 39th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 39th congressional district

330

California's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Policy Organizations in California's 5th congressional district 3 Registered Energy Companies in California's 5th congressional district 4 Energy Generation Facilities in California's 5th congressional district 5 Utility Companies in California's 5th congressional district US Recovery Act Smart Grid Projects in California's 5th congressional district Sacramento Municipal Utility District Smart Grid Project Registered Policy Organizations in California's 5th congressional district California Energy Commission Registered Energy Companies in California's 5th congressional district Aerojet American Energy Power Systems Inc AEPS Anuvu Inc Ardent Energy Group Inc Atlantis Energy Systems Inc Aztec Solar California State Assembly Clean Energy Systems

331

California's 27th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 27th congressional district 3 Registered Policy Organizations in California's 27th congressional district 4 Registered Energy Companies in California's 27th congressional district 5 Registered Financial Organizations in California's 27th congressional district 6 Utility Companies in California's 27th congressional district US Recovery Act Smart Grid Projects in California's 27th congressional district Burbank Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 27th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 27th congressional district

332

California's 34th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in California's 34th congressional district 3 Registered Policy Organizations in California's 34th congressional district 4 Registered Energy Companies in California's 34th congressional district 5 Registered Financial Organizations in California's 34th congressional district US Recovery Act Smart Grid Projects in California's 34th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 34th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 34th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 34th congressional district

333

California's 33rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Research Institutions in California's 33rd congressional district 3 Registered Policy Organizations in California's 33rd congressional district 4 Registered Energy Companies in California's 33rd congressional district 5 Registered Financial Organizations in California's 33rd congressional district US Recovery Act Smart Grid Projects in California's 33rd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 33rd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 33rd congressional district Clean Tech Los Angeles Registered Energy Companies in California's 33rd congressional district

334

California's 37th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 37th congressional district 3 Registered Policy Organizations in California's 37th congressional district 4 Registered Energy Companies in California's 37th congressional district 5 Registered Financial Organizations in California's 37th congressional district US Recovery Act Smart Grid Projects in California's 37th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 37th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 37th congressional district Clean Tech Los Angeles Registered Energy Companies in California's 37th congressional district

335

Geothermal district piping - A primer  

SciTech Connect

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

336

LOS ANGELES, CA, DISTRICT IMPROVEMENTS  

E-Print Network (OSTI)

33-1 LOS ANGELES, CA, DISTRICT IMPROVEMENTS Navigation Page 1. Channel Islands Harbor, CA 33-2 2. Imperial Beach, Silver Strand Shoreline, CA 33-2 3. LA-LB Harbors (LA Harbor), CA 33-2 4. Los Angeles Harbor Main Channel Deepen, CA 33-2 5. Marina Del Rey, CA 33-3 6. Morro Bay Harbor, CA 33-3 7. Newport

US Army Corps of Engineers

337

Compressed Air  

NLE Websites -- All DOE Office Websites (Extended Search)

BPA Utility Reimbursement Programs for Compressed Air Projects Customer Proposal Template Measurement & Verification Plan for Compressed Air CA 2006-15 A template for utilities to...

338

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugn-Cruz; S. Snchez-Delgado; M.R. Rodrguez-Snchez; M. Venegas

2014-01-01T23:59:59.000Z

339

Study of solar-assisted thermoelectric technology for automobile air conditioning  

SciTech Connect

An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38 C (100 F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior which significantly reduces the peak cooling load when the car is parked in bright sunlight.

Mei, V.C.; Chen, F.C. [Oak Ridge National Lab., Oak Ridge, TN (United States); Mathiprakasam, B.; Heenan, P. [Midwest Research Inst., Kansas City, MO (United States)

1993-11-01T23:59:59.000Z

340

The CitiSense Air Quality Monitoring Mobile Sensor Node Piero Zappi, Elizabeth Bales, Jing Hong Park, William Griswold and Tajana Simuni Rosing  

E-Print Network (OSTI)

conditions than the national ambient air quality standard [1]. Current air pollutant measurement networks. For example, The San Diego Air Pollution Control District (SDAPCD) maintains only five air pollutant samplingThe CitiSense Air Quality Monitoring Mobile Sensor Node Piero Zappi, Elizabeth Bales, Jing Hong

Simunic, Tajana

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

boiler boiler stove district heating heat pump conditionerSmall cogen Stove District heating Heat pump Centralized AC

Lin, Jiang

2008-01-01T23:59:59.000Z

342

Massachusetts's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts's 8th congressional district: Energy Resources Massachusetts's 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 8th congressional district 2 Registered Networking Organizations in Massachusetts's 8th congressional district 3 Registered Policy Organizations in Massachusetts's 8th congressional district 4 Registered Energy Companies in Massachusetts's 8th congressional district 5 Registered Financial Organizations in Massachusetts's 8th congressional district Registered Research Institutions in Massachusetts's 8th congressional district Fraunhofer Center for Sustainable Energy Systems

343

California's 30th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

0th congressional district 0th congressional district 2 Registered Research Institutions in California's 30th congressional district 3 Registered Networking Organizations in California's 30th congressional district 4 Registered Policy Organizations in California's 30th congressional district 5 Registered Energy Companies in California's 30th congressional district 6 Registered Financial Organizations in California's 30th congressional district US Recovery Act Smart Grid Projects in California's 30th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 30th congressional district University of Southern California-Energy Institute Registered Networking Organizations in California's 30th congressional

344

California's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district 6th congressional district 2 Registered Networking Organizations in California's 16th congressional district 3 Registered Policy Organizations in California's 16th congressional district 4 Registered Energy Companies in California's 16th congressional district Registered Research Institutions in California's 16th congressional district Environmental Business Cluster Registered Networking Organizations in California's 16th congressional district MetaMatrix Groupe Registered Policy Organizations in California's 16th congressional district Solar San Jose Registered Energy Companies in California's 16th congressional district BioFuelBox Corporation Chromasun Clean Tech Institute Cupertino Electric Inc EIQ Energy Inc formerly Sympagis Echelon Corporation Electric Vehicle Infrastructure Network, Inc.

345

California's 50th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 50th congressional district 2 Registered Research Institutions in California's 50th congressional district 3 Registered Policy Organizations in California's 50th congressional district 4 Registered Energy Companies in California's 50th congressional district 5 Registered Financial Organizations in California's 50th congressional district 6 Utility Companies in California's 50th congressional district US Recovery Act Smart Grid Projects in California's 50th congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 50th congressional district EcoElectron Ventures Inc Global Energy Network Institute Registered Policy Organizations in California's 50th congressional district

346

California's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district th congressional district 2 Registered Research Institutions in California's 29th congressional district 3 Registered Networking Organizations in California's 29th congressional district 4 Registered Policy Organizations in California's 29th congressional district 5 Registered Energy Companies in California's 29th congressional district 6 Registered Financial Organizations in California's 29th congressional district 7 Utility Companies in California's 29th congressional district US Recovery Act Smart Grid Projects in California's 29th congressional district Burbank Water and Power Smart Grid Project City of Glendale Water and Power Smart Grid Project Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 29th congressional

347

Washington's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Washington's 5th congressional district 2 Registered Research Institutions in Washington's 5th congressional district 3 Registered Energy Companies in Washington's 5th congressional district 4 Energy Generation Facilities in Washington's 5th congressional district 5 Utility Companies in Washington's 5th congressional district US Recovery Act Smart Grid Projects in Washington's 5th congressional district Avista Utilities Smart Grid Project Registered Research Institutions in Washington's 5th congressional district Washington State University Registered Energy Companies in Washington's 5th congressional district Itron ReliOn Energy Generation Facilities in Washington's 5th congressional district Kettle Falls Biomass Facility

348

California's 53rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 53rd congressional district 2 Registered Research Institutions in California's 53rd congressional district 3 Registered Policy Organizations in California's 53rd congressional district 4 Registered Energy Companies in California's 53rd congressional district 5 Registered Financial Organizations in California's 53rd congressional district 6 Utility Companies in California's 53rd congressional district US Recovery Act Smart Grid Projects in California's 53rd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 53rd congressional district Global Energy Network Institute

349

California's 32nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in California's 32nd congressional district 3 Registered Policy Organizations in California's 32nd congressional district 4 Registered Energy Companies in California's 32nd congressional district 5 Registered Financial Organizations in California's 32nd congressional district US Recovery Act Smart Grid Projects in California's 32nd congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project Southern California Edison Company Smart Grid Demonstration Project (2) Registered Research Institutions in California's 32nd congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 32nd congressional district

350

North Carolina's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in North Carolina's 2nd congressional district 3 Registered Policy Organizations in North Carolina's 2nd congressional district 4 Registered Energy Companies in North Carolina's 2nd congressional district US Recovery Act Smart Grid Projects in North Carolina's 2nd congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 2nd congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 2nd congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 2nd congressional district Advanced Vehicle Research Center of North Carolina Agri Ethanol Products LLC AEPNC

351

California's 51st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 51st congressional district 2 Registered Research Institutions in California's 51st congressional district 3 Registered Policy Organizations in California's 51st congressional district 4 Registered Energy Companies in California's 51st congressional district 5 Registered Financial Organizations in California's 51st congressional district 6 Energy Generation Facilities in California's 51st congressional district 7 Utility Companies in California's 51st congressional district US Recovery Act Smart Grid Projects in California's 51st congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 51st congressional district

352

Washington's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 Registered Research Institutions in Washington's 7th congressional district 2 Registered Networking Organizations in Washington's 7th congressional district 3 Registered Policy Organizations in Washington's 7th congressional district 4 Registered Energy Companies in Washington's 7th congressional district 5 Registered Financial Organizations in Washington's 7th congressional district Registered Research Institutions in Washington's 7th congressional district ARCH Venture Partners (Washington) Northwest National Marine Renewable Energy Center

353

Alternative Fuels Data Center: School District Emissions Reduction Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Emissions Reduction Policies to someone by E-mail Share Alternative Fuels Data Center: School District Emissions Reduction Policies on Facebook Tweet about Alternative Fuels Data Center: School District Emissions Reduction Policies on Twitter Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Google Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Delicious Rank Alternative Fuels Data Center: School District Emissions Reduction Policies on Digg Find More places to share Alternative Fuels Data Center: School District Emissions Reduction Policies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School District Emissions Reduction Policies

354

Nebraska's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Nebraska. Nebraska. Contents 1 US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district 2 Registered Research Institutions in Nebraska's 1st congressional district 3 Registered Energy Companies in Nebraska's 1st congressional district 4 Utility Companies in Nebraska's 1st congressional district US Recovery Act Smart Grid Projects in Nebraska's 1st congressional district Cuming County Public Power District Smart Grid Project Stanton County Public Power District Smart Grid Project Registered Research Institutions in Nebraska's 1st congressional district University of Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Registered Energy Companies in Nebraska's 1st congressional district Axis Technologies Group Inc

355

California's 52nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 US Recovery Act Smart Grid Projects in California's 52nd congressional district 2 Registered Research Institutions in California's 52nd congressional district 3 Registered Policy Organizations in California's 52nd congressional district 4 Registered Energy Companies in California's 52nd congressional district 5 Registered Financial Organizations in California's 52nd congressional district 6 Utility Companies in California's 52nd congressional district US Recovery Act Smart Grid Projects in California's 52nd congressional district San Diego Gas and Electric Company Smart Grid Project Registered Research Institutions in California's 52nd congressional district Global Energy Network Institute Registered Policy Organizations in California's 52nd congressional district

356

Oregon's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon. Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district 2 Registered Research Institutions in Oregon's 3rd congressional district 3 Registered Policy Organizations in Oregon's 3rd congressional district 4 Registered Energy Companies in Oregon's 3rd congressional district 5 Registered Financial Organizations in Oregon's 3rd congressional district 6 Utility Companies in Oregon's 3rd congressional district US Recovery Act Smart Grid Projects in Oregon's 3rd congressional district Pacific Northwest Generating Cooperative Smart Grid Project Registered Research Institutions in Oregon's 3rd congressional district Clean Edge Inc Registered Policy Organizations in Oregon's 3rd congressional district Bonneville Environmental Foundation

357

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

358

Marr, Morrison, Nazaroff, and Harley Volume 48 October 1998 Journal of the Air & Waste Management Association 899  

E-Print Network (OSTI)

to control CO emissions from motor vehicles with the goal of reducing CO concentra- tions in outdoor air pollutant." States and local air districts monitor concen- trations of criteria pollutants in outdoor airMarr, Morrison, Nazaroff, and Harley Volume 48 October 1998 Journal of the Air & Waste Management

Harley, Robert

359

Groundwater Conservation Districts (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Texas) Conservation Districts (Texas) Groundwater Conservation Districts (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater, and of groundwater reservoirs or their subdivisions, and to

360

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility - Residential Energy Efficiency Program Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides incentives to residents who complete qualifying home energy upgrades. Qualifying items include refrigerators, clothes washers, LED lighting and CFL lighting upgrades. Appliances and lighting equipment must be Energy Star rated. More information on program requirements can be found on the program website. October 16, 2013 Sustainable Energy Utility - D.C. Home Performance (District of Columbia) The District of Columbia Sustainable Energy Utility currently offers the D.C. Home Performance program (DCHP). DCHP provides a $500 incentive to

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Regional Districts, Commissions, and Authorities (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) Regional Districts, Commissions, and Authorities (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider Regional Districts, Commissions, and Authorities

362

Conservation Districts (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation Districts (Montana) Conservation Districts (Montana) Conservation Districts (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation Local Conservation Districts in the state of Montana may be formed by

363

Natural Resources Districts (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Districts (Nebraska) Districts (Nebraska) Natural Resources Districts (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This statute establishes Natural Resources District, encompassing all of

364

District Heating with Renewable Energy Webinar  

Energy.gov (U.S. Department of Energy (DOE))

This no cost Community Renewable Energy Success Stories webinar on "District Heating with Renewable Energy" presented by the Energy Department will feature two presentations. The first will discuss...

365

California's 21st congressional district: Energy Resources |...  

Open Energy Info (EERE)

California's 21st congressional district Dinuba Biomass Facility Fresno Biomass Facility Sun Harvest Solar Project Retrieved from "http:en.openei.orgwindex.php?titleCalifornia...

366

California's 20th congressional district: Energy Resources |...  

Open Energy Info (EERE)

district Delano Biomass Facility Fresno Biomass Facility Mendota Biomass Facility Sun Harvest Solar Project Retrieved from "http:en.openei.orgwindex.php?titleCalifornia...

367

California's 19th congressional district: Energy Resources |...  

Open Energy Info (EERE)

Facility Fresno Biomass Facility Madera Biomass Facility SPI Sonora Biomass Facility Sun Harvest Solar Project Utility Companies in California's 19th congressional district...

368

Connecticut's 2nd congressional district: Energy Resources |...  

Open Energy Info (EERE)

Connecticut's 2nd congressional district Connecticut Municipal Electric Energy Cooperative Retrieved from "http:en.openei.orgwindex.php?titleConnecticut%27s2ndcongressional...

369

Electric District No. 3- Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Electric District No. 3 of Pinal County (ED3) provides incentives for their residential and business customers to invest in photovoltaics (PV). Residential and commercial customers installing PV...

370

Connecticut's 1st congressional district: Energy Resources |...  

Open Energy Info (EERE)

and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp Registered Financial Organizations in Connecticut's 1st congressional district The Hartford Retrieved...

371

California's 45th congressional district: Energy Resources |...  

Open Energy Info (EERE)

Energy Companies in California's 45th congressional district Chuckawalla Valley State Prison Energy Insurance Brokers HelioPower Inc Nationwide Solar Funding Real Goods...

372

An Integrated Pest Management survey of Texas school districts  

E-Print Network (OSTI)

control were contracted with licensed companies for almost 90% of Texas districts. The principle in-house pest control practices (77.3%) were for weed control. A majority of districts (56.3%) were considered small (district), and most...

Shodrock, Damon Leon

2012-06-07T23:59:59.000Z

373

Response of the District of Columbia Public Service Commission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the District of Columbia Public Service Commission Response of the District of Columbia Public Service Commission Docket No. EO-05-01: Response of the District of Columbia...

374

PESC'99, Charleston, South Carolina, June 27 July 1, pp. 393-399. A Multilevel Converter-Based Universal Power Conditioner  

E-Print Network (OSTI)

, and reactive power compensation. Level usage in the series inverter and parallel inverter is analyzed that the customer can impose on the utility. To meet the objectives detailed in these new premium power agreements- clamped inverter into a universal power conditioner is an enticing prospect. A multilevel universal power

Tolbert, Leon M.

375

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why » What We Monitor & Why » Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

376

Microsoft Word - district_of_columbia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

377

Microsoft Word - district_of_columbia.doc  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

378

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

379

Colorado's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district 7th congressional district 2 Registered Policy Organizations in Colorado's 7th congressional district 3 Registered Energy Companies in Colorado's 7th congressional district 4 Energy Generation Facilities in Colorado's 7th congressional district Registered Research Institutions in Colorado's 7th congressional district Colorado School of Mines - Colorado Energy Research Institute National Renewable Energy Laboratory Registered Policy Organizations in Colorado's 7th congressional district Colorado Renewable Energy Society Registered Energy Companies in Colorado's 7th congressional district Abengoa Solar Ampulse Ampulse Corporation Ascent Solar Blue Sun Biodiesel LLC CCBI, Inc. Colorado Fuel Cell Center CFCC Coors Ceramics Distributed Generation Systems Inc Distributed Generation Systems Inc DISGEN

380

Colorado's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado. Colorado. Contents 1 Registered Research Institutions in Colorado's 2nd congressional district 2 Registered Networking Organizations in Colorado's 2nd congressional district 3 Registered Policy Organizations in Colorado's 2nd congressional district 4 Registered Energy Companies in Colorado's 2nd congressional district 5 Registered Financial Organizations in Colorado's 2nd congressional district 6 Energy Incentives for Colorado's 2nd congressional district Registered Research Institutions in Colorado's 2nd congressional district National Wind Technology Center Rocky Mountain Institute University of Colorado at Boulder Renewable and Sustainable Energy Institute Registered Networking Organizations in Colorado's 2nd congressional district American Solar Energy Society

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Illinois' 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Illinois. Illinois. Contents 1 US Recovery Act Smart Grid Projects in Illinois' 6th congressional district 2 Registered Networking Organizations in Illinois' 6th congressional district 3 Registered Energy Companies in Illinois' 6th congressional district 4 Registered Financial Organizations in Illinois' 6th congressional district 5 Utility Companies in Illinois' 6th congressional district US Recovery Act Smart Grid Projects in Illinois' 6th congressional district City of Naperville, Illinois Smart Grid Project Registered Networking Organizations in Illinois' 6th congressional district Chicago Clean Energy Alliance Registered Energy Companies in Illinois' 6th congressional district Acciona Wind Energy USA LLC Aerotecture International Inc American Bar Association Section on Environment

382

Massachusetts's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district 2 Registered Networking Organizations in Massachusetts's 9th congressional district 3 Registered Energy Companies in Massachusetts's 9th congressional district 4 Registered Financial Organizations in Massachusetts's 9th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 9th congressional district NSTAR Electric & Gas Corporation Smart Grid Demonstration Project NSTAR Electric & Gas Corporation Smart Grid Demonstration Project

383

Arizona's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 Registered Research Institutions in Arizona's 1st congressional district 2 Registered Networking Organizations in Arizona's 1st congressional district 3 Registered Energy Companies in Arizona's 1st congressional district 4 Energy Generation Facilities in Arizona's 1st congressional district Registered Research Institutions in Arizona's 1st congressional district Northern Arizona University Registered Networking Organizations in Arizona's 1st congressional district Distributed Wind Energy Association Registered Energy Companies in Arizona's 1st congressional district Coolidge Petrosun Optimum Biodiesel Plant EV Solar Products Pacific Blue Energy Southwest Wind Power Southwest Windpower Inc Sunshine Arizona Wind Energy LLC Energy Generation Facilities in Arizona's 1st congressional district

384

California's 23rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Networking Organizations in California's 23rd congressional district Networking Organizations in California's 23rd congressional district 2 Registered Policy Organizations in California's 23rd congressional district 3 Registered Energy Companies in California's 23rd congressional district 4 Registered Financial Organizations in California's 23rd congressional district Registered Networking Organizations in California's 23rd congressional district California Coast Venture Forum Solar Action Network Registered Policy Organizations in California's 23rd congressional district Community Environmental Council Registered Energy Companies in California's 23rd congressional district Ashman Technologies Biodiesel Industries Inc Biodiesel of Las Vegas Inc Catalytic Solutions Inc CSI Clairvoyant Energy Clipper Windpower Clipper Windpower Inc

385

Virginia's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district 2 Registered Policy Organizations in Virginia's 8th congressional district 3 Registered Energy Companies in Virginia's 8th congressional district 4 Registered Financial Organizations in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district National Rural Electric Cooperative Association Smart Grid Demonstration Project Registered Policy Organizations in Virginia's 8th congressional district Bordeaux International Energy Consulting, LLC Conservation International Millennium Institute The Nature Conservancy Tropical Forest Foundation Registered Energy Companies in Virginia's 8th congressional district AES Corporation AES Solar

386

California's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Networking Organizations in California's 14th congressional district 3 Registered Policy Organizations in California's 14th congressional district 4 Registered Energy Companies in California's 14th congressional district 5 Registered Financial Organizations in California's 14th congressional district 6 Energy Incentives for California's 14th congressional district Registered Research Institutions in California's 14th congressional district Environmental Business Cluster Global Climate and Energy Project Google.org Stanford - Woods Institute for the Environment Stanford- Global Climate and Energy Project Stanford- Precourt Energy Efficiency Center Technology Ventures Corporation Registered Networking Organizations in California's 14th congressional

387

California's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Research Institutions in California's 9th congressional district 3 Registered Networking Organizations in California's 9th congressional district 4 Registered Policy Organizations in California's 9th congressional district 5 Registered Energy Companies in California's 9th congressional district US Recovery Act Smart Grid Projects in California's 9th congressional district Seeo, Inc Smart Grid Demonstration Project Registered Research Institutions in California's 9th congressional district Energy BioSciences Institute Lawrence Berkeley National Laboratory (LBNL) UC Berkeley- Energy Institute UC Berkeley-Renewable and Appropriate Energy Laboratory UC Berkeley-Transportation Sustainability Research Center UC Center for Information Technology Research in the Interest of

388

Colorado's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Colorado. Registered Research Institutions in Colorado's 6th congressional district ITN Energy Systems, Inc. Registered Energy Companies in Colorado's 6th congressional district...

389

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

390

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

391

BSU GHP District Heating and Cooling System (Phase I) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BSU GHP District Heating and Cooling System (Phase I) BSU GHP District Heating and Cooling System (Phase I) Project objectives: Create a campus geothermal heating and cooling...

392

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

393

New Mexico State University District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

394

School District Success Story-A Performance Contracting Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

School District Success Story-A Performance Contracting Program School District Success Story-A Performance Contracting Program Provides an overview case study of Douglas County,...

395

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

396

Emergency Petition and Complaint of District of Columbia Public...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petition and Complaint of District of Columbia Public Service Commission Emergency Petition and Complaint of District of Columbia Public Service Commission Docket No. EO-05-01:...

397

Iowa's 3rd congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

Iowa's 3rd congressional district Iowa Association of Municipal Utilities Smart Grid Project Registered Energy Companies in Iowa's 3rd congressional district AgraGate Carbon...

398

Ground Water Management District Rules | Open Energy Information  

Open Energy Info (EERE)

District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides information...

399

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

400

Alternative Fuels Data Center: School District Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School District School District Alternative Fuel Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: School District Alternative Fuel Vehicle Acquisition Requirements on

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Massachusetts's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts. Massachusetts. Contents 1 Registered Research Institutions in Massachusetts's 7th congressional district 2 Registered Networking Organizations in Massachusetts's 7th congressional district 3 Registered Energy Companies in Massachusetts's 7th congressional district 4 Registered Financial Organizations in Massachusetts's 7th congressional district 5 Utility Companies in Massachusetts's 7th congressional district Registered Research Institutions in Massachusetts's 7th congressional district IDC Energy Insights Registered Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th congressional district A123 Systems A123Systems Ameresco, Inc. Analytic Power LLC

402

California's 28th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in California's 28th congressional district 2 Registered Research Institutions in California's 28th congressional district 3 Registered Policy Organizations in California's 28th congressional district 4 Registered Energy Companies in California's 28th congressional district 5 Registered Financial Organizations in California's 28th congressional district US Recovery Act Smart Grid Projects in California's 28th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in California's 28th congressional district University of Southern California-Energy Institute Registered Policy Organizations in California's 28th congressional district Clean Tech Los Angeles

403

Washington's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Washington's 6th congressional district Clean Tech Trade Alliance Registered Energy Companies in Washington's 6th congressional district Inventure Chemical Technology Structural...

404

V E N T U R A B A S I N GEOTHERMAL DISTRICT 1  

E-Print Network (OSTI)

DISTRICT 3 DISTRICT 6 DISTRICT 5 DISTRICT 4 DISTRICT 2 DISTRICT 1 GEOTHERMAL DISTRICT 1 GEOTHERMAL DISTRICT . Redding . .San Jose .Monterey .Salinas . Department of Conservation Division of Oil, Gas, and Geothermal, AND GEOTHERMAL RESOURCES WILLIAM F. GUERARD, JR., State Oil and Gas Supervisor 4443 2120 22 23 24 25 46 2 11 13

405

Integrating district cooling with cogeneration  

SciTech Connect

Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

Spurr, M.

1996-11-01T23:59:59.000Z

406

Texas's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 10th congressional district 2 Registered Research Institutions in Texas's 10th congressional district 3 Registered Networking Organizations in Texas's 10th congressional district 4 Registered Policy Organizations in Texas's 10th congressional district 5 Registered Energy Companies in Texas's 10th congressional district 6 Registered Financial Organizations in Texas's 10th congressional district 7 Utility Companies in Texas's 10th congressional district US Recovery Act Smart Grid Projects in Texas's 10th congressional district

407

Colorado's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district 3rd congressional district 2 Registered Networking Organizations in Colorado's 3rd congressional district 3 Registered Policy Organizations in Colorado's 3rd congressional district 4 Registered Energy Companies in Colorado's 3rd congressional district 5 Energy Incentives for Colorado's 3rd congressional district 6 Utility Companies in Colorado's 3rd congressional district US Recovery Act Smart Grid Projects in Colorado's 3rd congressional district Black Hills/Colorado Electric Utility Co. Smart Grid Project Registered Networking Organizations in Colorado's 3rd congressional district Haiti Repowered Peak Oil Awareness Network Peak Oil Food Network Registered Policy Organizations in Colorado's 3rd congressional district Sustainability Center of the Rockies Registered Energy Companies in Colorado's 3rd congressional district

408

Colorado's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in Colorado's 4th congressional district 3 Registered Networking Organizations in Colorado's 4th congressional district 4 Registered Energy Companies in Colorado's 4th congressional district 5 Energy Incentives for Colorado's 4th congressional district 6 Utility Companies in Colorado's 4th congressional district US Recovery Act Smart Grid Projects in Colorado's 4th congressional district City of Fort Collins Utilities Smart Grid Project Registered Research Institutions in Colorado's 4th congressional district CSU - Institute for the Built Environment Renewable Energy Tech School Registered Networking Organizations in Colorado's 4th congressional district Northern Colorado Clean Cities Registered Energy Companies in Colorado's 4th congressional district

409

Local Option - Special Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Special Districts Local Option - Special Districts Local Option - Special Districts < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State Florida Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

410

Conservation Districts (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota) South Dakota) Conservation Districts (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Association of Conservation Districts A Conservation District can be established by petition of registered voters

411

Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

412

H:/fctshts/rad_fs.ppt U.S. Army Corps of Engineers Buffalo District April, 1998  

E-Print Network (OSTI)

exposure to ionizing radiation cannot be avoided. Exposures can be natural or man-made. Natural sources include cosmic rays and naturally-occurring radionuclides in the earth and air, and are consideredH:/fctshts/rad_fs.ppt Fact Sheet Radiation U.S. Army Corps of Engineers ·Buffalo District ·April

US Army Corps of Engineers

413

California's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California. California. Contents 1 Registered Research Institutions in California's 1st congressional district 2 Registered Policy Organizations in California's 1st congressional district 3 Registered Energy Companies in California's 1st congressional district 4 Energy Generation Facilities in California's 1st congressional district Registered Research Institutions in California's 1st congressional district California Lighting Technology Center (University of California, Davis) Western Cooling Efficiency Center Registered Policy Organizations in California's 1st congressional district California Fuel Cell Partnership Solar Living Institute Registered Energy Companies in California's 1st congressional district AMG Energy Advanced Energy Products Advanced Energy Products Corp AEP

414

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

415

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for Near East Policy March 17, 2010 March 15, 2010 District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to play an important role in the new energy economy of the future. March 1, 2010

416

Modesto Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Modesto Irrigation District Modesto Irrigation District (Redirected from MID) Jump to: navigation, search Name Modesto Irrigation District Place Modesto, California Utility Id 12745 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Modesto Irrigation District Smart Grid Project was awarded $1,493,149

417

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

418

Vera Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Vera Irrigation District Vera Irrigation District Jump to: navigation, search Name Vera Irrigation District #15 Place Washington Utility Id 19784 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE POWER Commercial LARGE POWER INDUSTRIAL Industrial NEW SMALL GENERAL Commercial RESIDENTIAL RATES Residential Average Rates Residential: $0.0556/kWh Commercial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vera_Irrigation_District&oldid=411927

419

Solidere : the battle for Beirut's Central District  

E-Print Network (OSTI)

The Beirut Central District was destroyed during the Lebanese Civil War which extended from 1975 to 1990. Unable to reconstruct the center itself, the Lebanese government turned to a private Real Estate Holding Company ...

Mango, Tamam, 1981-

2004-01-01T23:59:59.000Z

420

Argonne partners with Metropolitan Water Reclamation District...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists at Argonne and the Metropolitan Water Reclamation District hope to map the Chicago River microbe population and how it changes during daily events like storms as well as...

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PEP Classroom Observation Protocol Project # _______ District __________________________ School ________________________________________  

E-Print Network (OSTI)

PEP Classroom Observation Protocol Project # _______ District __________________________ School (mark all that apply) Demonstrate or confirm known concepts/procedures Demonstrate or confirm known concepts/procedures Explore ideas, test conjectures, look for patterns Explore ideas, test conjectures

Lee, Carl

422

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

423

Questions about Groundwater Conservation Districts in Texas  

E-Print Network (OSTI)

Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

Lesikar, Bruce J.; Silvy, Valeen

2008-09-22T23:59:59.000Z

424

Industrial Revenue Bond Program (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

425

Applied Solutions Webinar: Insights Into District Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

426

Buffalo district heating system design and construction  

SciTech Connect

This report addresses the introduction of district heating in Buffalo, NY from feasibility study to implementation. The reemergence of district heating in the US and associated advantages are reviewed. Advanced piping technology which has enabled district heating to compete economically with alternative technologies is summarized. Identification and analysis of the customer heat load considered in downtown Buffalo for the pilot system and future expansion is discussed. Various options for initiating construction of a district heating system were considered as exemplified by the configuration for the pilot system which was selected to serve five downtown buildings. A conceptual plan is presented which permits the system to expand in an economically viable manner. The report concludes with an economic analysis which simulates the operation and expansion of the system. 4 figs., 8 tabs.

Oliker, I.

1987-11-01T23:59:59.000Z

427

Aguila Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Aguila Irrigation District Aguila Irrigation District Jump to: navigation, search Name Aguila Irrigation District Place Arizona Utility Id 737 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 3 Commercial Average Rates Industrial: $0.0582/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Aguila_Irrigation_District&oldid=408941" Categories: EIA Utility Companies and Aliases

428

Ohio's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 7th congressional district 2 Registered Networking Organizations in Ohio's 7th congressional district 3 Registered Policy Organizations in Ohio's 7th congressional district 4 Registered Energy Companies in Ohio's 7th congressional district 5 Utility Companies in Ohio's 7th congressional district US Recovery Act Smart Grid Projects in Ohio's 7th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 7th congressional district

429

Oregon's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Oregon's 1st congressional district: Energy Resources Oregon's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Oregon. Contents 1 US Recovery Act Smart Grid Projects in Oregon's 1st congressional district 2 Registered Research Institutions in Oregon's 1st congressional district 3 Registered Policy Organizations in Oregon's 1st congressional district 4 Registered Energy Companies in Oregon's 1st congressional district 5 Registered Financial Organizations in Oregon's 1st congressional district 6 Utility Companies in Oregon's 1st congressional district US Recovery Act Smart Grid Projects in Oregon's 1st congressional district Pacific Northwest Generating Cooperative Smart Grid Project

430

California's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 8th congressional district 2 Registered Research Institutions in California's 8th congressional district 3 Registered Networking Organizations in California's 8th congressional district 4 Registered Policy Organizations in California's 8th congressional district 5 Registered Energy Companies in California's 8th congressional district 6 Registered Financial Organizations in California's 8th congressional district 7 Energy Generation Facilities in California's 8th congressional district

431

Property:ManagingDistrictOffice | Open Energy Information  

Open Energy Info (EERE)

ManagingDistrictOffice ManagingDistrictOffice Jump to: navigation, search Property Name ManagingDistrictOffice Property Type Page Pages using the property "ManagingDistrictOffice" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + BLM Winnemucca District Office + C CA-017-05-051 + BLM Bishop Field Office + CA-170-02-15 + BLM Central California District Office + CA-650-2005-086 + BLM California Desert District Office + CA-670-2010-107 + BLM California Desert District Office + CA-670-2010-CX + BLM California Desert District Office + D DOE-EA-1116 + DOE Golden Field Office + DOE-EA-1621 + DOE Golden Field Office + DOE-EA-1733 + DOE Golden Field Office + DOE-EA-1759 + DOE Golden Field Office + DOI-BLM-CA-C050-2009-0005-EA + BLM Central California District Office +

432

New York's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

7th congressional district: Energy Resources 7th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 7th congressional district 2 Registered Research Institutions in New York's 7th congressional district 3 Registered Policy Organizations in New York's 7th congressional district 4 Registered Energy Companies in New York's 7th congressional district 5 Registered Financial Organizations in New York's 7th congressional district 6 Utility Companies in New York's 7th congressional district US Recovery Act Smart Grid Projects in New York's 7th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

433

Idaho's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Idaho's 1st congressional district: Energy Resources Idaho's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Idaho. Contents 1 US Recovery Act Smart Grid Projects in Idaho's 1st congressional district 2 Registered Research Institutions in Idaho's 1st congressional district 3 Registered Energy Companies in Idaho's 1st congressional district 4 Energy Generation Facilities in Idaho's 1st congressional district 5 Utility Companies in Idaho's 1st congressional district US Recovery Act Smart Grid Projects in Idaho's 1st congressional district Idaho Power Company Smart Grid Project M2M Communications Smart Grid Project Registered Research Institutions in Idaho's 1st congressional district

434

California's 49th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 49th congressional district 2 Registered Research Institutions in California's 49th congressional district 3 Registered Policy Organizations in California's 49th congressional district 4 Registered Energy Companies in California's 49th congressional district 5 Registered Financial Organizations in California's 49th congressional district 6 Utility Companies in California's 49th congressional district US Recovery Act Smart Grid Projects in California's 49th congressional district

435

New York's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 21st congressional district 2 Registered Research Institutions in New York's 21st congressional district 3 Registered Networking Organizations in New York's 21st congressional district 4 Registered Policy Organizations in New York's 21st congressional district 5 Registered Energy Companies in New York's 21st congressional district 6 Registered Financial Organizations in New York's 21st congressional district US Recovery Act Smart Grid Projects in New York's 21st congressional district

436

Texas's 18th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

8th congressional district: Energy Resources 8th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 18th congressional district 2 Registered Research Institutions in Texas's 18th congressional district 3 Registered Energy Companies in Texas's 18th congressional district 4 Registered Financial Organizations in Texas's 18th congressional district 5 Utility Companies in Texas's 18th congressional district US Recovery Act Smart Grid Projects in Texas's 18th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 18th congressional district

437

Texas's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 9th congressional district 2 Registered Research Institutions in Texas's 9th congressional district 3 Registered Energy Companies in Texas's 9th congressional district 4 Registered Financial Organizations in Texas's 9th congressional district 5 Utility Companies in Texas's 9th congressional district US Recovery Act Smart Grid Projects in Texas's 9th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 9th congressional district

438

Arizona's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Arizona's 5th congressional district: Energy Resources Arizona's 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Arizona. Contents 1 US Recovery Act Smart Grid Projects in Arizona's 5th congressional district 2 Registered Research Institutions in Arizona's 5th congressional district 3 Registered Networking Organizations in Arizona's 5th congressional district 4 Registered Energy Companies in Arizona's 5th congressional district 5 Utility Companies in Arizona's 5th congressional district US Recovery Act Smart Grid Projects in Arizona's 5th congressional district Salt River Project Smart Grid Project Registered Research Institutions in Arizona's 5th congressional district

439

California's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

California's 12th congressional district: Energy Resources California's 12th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 12th congressional district 2 Registered Research Institutions in California's 12th congressional district 3 Registered Networking Organizations in California's 12th congressional district 4 Registered Policy Organizations in California's 12th congressional district 5 Registered Energy Companies in California's 12th congressional district 6 Registered Financial Organizations in California's 12th congressional district 7 Energy Generation Facilities in California's 12th congressional district

440

Washington's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Washington's 2nd congressional district: Energy Resources Washington's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 2nd congressional district 2 Registered Energy Companies in Washington's 2nd congressional district 3 Energy Generation Facilities in Washington's 2nd congressional district 4 Utility Companies in Washington's 2nd congressional district US Recovery Act Smart Grid Projects in Washington's 2nd congressional district Snohomish County Public Utilities District Smart Grid Project Registered Energy Companies in Washington's 2nd congressional district Mercurius Biofuels LLC

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Florida's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 3rd congressional district 2 Registered Networking Organizations in Florida's 3rd congressional district 3 Registered Energy Companies in Florida's 3rd congressional district 4 Energy Generation Facilities in Florida's 3rd congressional district 5 Utility Companies in Florida's 3rd congressional district US Recovery Act Smart Grid Projects in Florida's 3rd congressional district Intellon Corporation Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 3rd congressional district

442

Tennessee's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Tennessee's 2nd congressional district: Energy Resources Tennessee's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district 2 Registered Research Institutions in Tennessee's 2nd congressional district 3 Registered Policy Organizations in Tennessee's 2nd congressional district 4 Registered Energy Companies in Tennessee's 2nd congressional district 5 Utility Companies in Tennessee's 2nd congressional district US Recovery Act Smart Grid Projects in Tennessee's 2nd congressional district Knoxville Utilities Board Smart Grid Project Registered Research Institutions in Tennessee's 2nd congressional district

443

Washington's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Washington. Contents 1 US Recovery Act Smart Grid Projects in Washington's 1st congressional district 2 Registered Networking Organizations in Washington's 1st congressional district 3 Registered Energy Companies in Washington's 1st congressional district 4 Registered Financial Organizations in Washington's 1st congressional district 5 Utility Companies in Washington's 1st congressional district US Recovery Act Smart Grid Projects in Washington's 1st congressional district Snohomish County Public Utilities District Smart Grid Project Registered Networking Organizations in Washington's 1st congressional

444

Ohio's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district: Energy Resources 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 15th congressional district 2 Registered Networking Organizations in Ohio's 15th congressional district 3 Registered Policy Organizations in Ohio's 15th congressional district 4 Registered Energy Companies in Ohio's 15th congressional district 5 Utility Companies in Ohio's 15th congressional district US Recovery Act Smart Grid Projects in Ohio's 15th congressional district Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Registered Networking Organizations in Ohio's 15th congressional district

445

New York's 11th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 11th congressional district 2 Registered Research Institutions in New York's 11th congressional district 3 Registered Policy Organizations in New York's 11th congressional district 4 Registered Energy Companies in New York's 11th congressional district 5 Registered Financial Organizations in New York's 11th congressional district 6 Utility Companies in New York's 11th congressional district US Recovery Act Smart Grid Projects in New York's 11th congressional district Consolidated Edison Company of New York, Inc. Smart Grid

446

Colorado's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Colorado's 1st congressional district: Energy Resources Colorado's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Colorado. Contents 1 Registered Research Institutions in Colorado's 1st congressional district 2 Registered Networking Organizations in Colorado's 1st congressional district 3 Registered Policy Organizations in Colorado's 1st congressional district 4 Registered Energy Companies in Colorado's 1st congressional district 5 Registered Financial Organizations in Colorado's 1st congressional district 6 Energy Incentives for Colorado's 1st congressional district Registered Research Institutions in Colorado's 1st congressional district Colorado Renewable Energy Collaboratory

447

Texas's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas's 13th congressional district: Energy Resources Texas's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 13th congressional district 2 Registered Research Institutions in Texas's 13th congressional district 3 Registered Energy Companies in Texas's 13th congressional district 4 Utility Companies in Texas's 13th congressional district US Recovery Act Smart Grid Projects in Texas's 13th congressional district Golden Spread Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Texas's 13th congressional district Alternative Energy Institute Registered Energy Companies in Texas's 13th congressional district

448

Texas's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 14th congressional district 2 Registered Research Institutions in Texas's 14th congressional district 3 Registered Policy Organizations in Texas's 14th congressional district 4 Registered Energy Companies in Texas's 14th congressional district 5 Registered Financial Organizations in Texas's 14th congressional district 6 Utility Companies in Texas's 14th congressional district US Recovery Act Smart Grid Projects in Texas's 14th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project

449

Texas's 29th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 29th congressional district 2 Registered Research Institutions in Texas's 29th congressional district 3 Registered Energy Companies in Texas's 29th congressional district 4 Registered Financial Organizations in Texas's 29th congressional district 5 Utility Companies in Texas's 29th congressional district US Recovery Act Smart Grid Projects in Texas's 29th congressional district CenterPoint Energy Smart Grid Project Reliant Energy Retail Services, LLC Smart Grid Project Registered Research Institutions in Texas's 29th congressional district

450

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network (OSTI)

Standards for Consumer Products: Room Air Conditioners,Energy Savings -- Residential Products Room Air Conditionersfor Consumer Products: Residential Central Air Conditioners

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

451

Assessment of the Impacts of Standards and Labeling Programs in Mexico (four products).  

E-Print Network (OSTI)

Level Trends Air Conditioner Product Classes Product Class7 Efficiency of Air Conditioner Product Classes (Watts/for four major products: household refrigerators, room air

Sanchez, Itha; Pulido, Henry; McNeil, Michael A.; Turiel, Isaac; della Cava, Mirka

2007-01-01T23:59:59.000Z

452

Compliance and Verification of Standards and Labelling Programs in China: Lessons Learned  

E-Print Network (OSTI)

for household refrigerators/ freezers and room airZhou et al 2008] Refrigerators Freezers Air conditionersZhou et al 2008] Refrigerators Freezers Air conditioners

Saheb, Yamina

2010-01-01T23:59:59.000Z

453

Compliance and Verification of Standards and Labeling Programs in China: Lessons Learned  

E-Print Network (OSTI)

for household refrigerators/ freezers and room airZhou et al 2008] Refrigerators Freezers Air conditionersZhou et al 2008] Refrigerators Freezers Air conditioners

Saheb, Yamina

2011-01-01T23:59:59.000Z

454

Vermont's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Vermont's At-large congressional district: Energy Resources Vermont's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Vermont. Contents 1 US Recovery Act Smart Grid Projects in Vermont's At-large congressional district 2 Registered Policy Organizations in Vermont's At-large congressional district 3 Registered Energy Companies in Vermont's At-large congressional district 4 Energy Generation Facilities in Vermont's At-large congressional district US Recovery Act Smart Grid Projects in Vermont's At-large congressional district Vermont Transco, LLC Smart Grid Project Registered Policy Organizations in Vermont's At-large congressional district Clean Energy States Alliance

455

Wisconsin's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wisconsin's 2nd congressional district: Energy Resources Wisconsin's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wisconsin. Contents 1 US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district 2 Registered Research Institutions in Wisconsin's 2nd congressional district 3 Registered Energy Companies in Wisconsin's 2nd congressional district 4 Registered Financial Organizations in Wisconsin's 2nd congressional district 5 Utility Companies in Wisconsin's 2nd congressional district US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district Madison Gas and Electric Company Smart Grid Project Wisconsin Power and Light Company Smart Grid Project

456

New Mexico's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Mexico's 1st congressional district: Energy Resources Mexico's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New Mexico. Contents 1 US Recovery Act Smart Grid Projects in New Mexico's 1st congressional district 2 Registered Research Institutions in New Mexico's 1st congressional district 3 Registered Energy Companies in New Mexico's 1st congressional district 4 Energy Generation Facilities in New Mexico's 1st congressional district US Recovery Act Smart Grid Projects in New Mexico's 1st congressional district Ktech Corporation Smart Grid Demonstration Project Public Service Company of New Mexico Smart Grid Demonstration Project Registered Research Institutions in New Mexico's 1st congressional district

457

New Jersey's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

12th congressional district: Energy Resources 12th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in New Jersey. Contents 1 Registered Research Institutions in New Jersey's 12th congressional district 2 Registered Networking Organizations in New Jersey's 12th congressional district 3 Registered Energy Companies in New Jersey's 12th congressional district 4 Registered Financial Organizations in New Jersey's 12th congressional district Registered Research Institutions in New Jersey's 12th congressional district Stone & McCarthy Research Associates Registered Networking Organizations in New Jersey's 12th congressional district New Jersey's Clean Energy Program

458

New York's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3th congressional district 3th congressional district 2 Registered Research Institutions in New York's 13th congressional district 3 Registered Policy Organizations in New York's 13th congressional district 4 Registered Energy Companies in New York's 13th congressional district 5 Registered Financial Organizations in New York's 13th congressional district 6 Utility Companies in New York's 13th congressional district US Recovery Act Smart Grid Projects in New York's 13th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 13th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP) Vencon Management, Inc

459

Ohio's 12th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2th congressional district: Energy Resources 2th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. Contents 1 US Recovery Act Smart Grid Projects in Ohio's 12th congressional district 2 Registered Networking Organizations in Ohio's 12th congressional district 3 Registered Policy Organizations in Ohio's 12th congressional district 4 Registered Energy Companies in Ohio's 12th congressional district 5 Utility Companies in Ohio's 12th congressional district US Recovery Act Smart Grid Projects in Ohio's 12th congressional district City of Westerville, OH Smart Grid Project Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project

460

Massachusetts's 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

6th congressional district: Energy Resources 6th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 6th congressional district 2 Registered Networking Organizations in Massachusetts's 6th congressional district 3 Registered Energy Companies in Massachusetts's 6th congressional district 4 Registered Financial Organizations in Massachusetts's 6th congressional district 5 Utility Companies in Massachusetts's 6th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 6th congressional district Honeywell International, Inc Smart Grid Project Marblehead Municipal Light Department Smart Grid Project

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Texas's 21st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Texas. Texas. Contents 1 US Recovery Act Smart Grid Projects in Texas's 21st congressional district 2 Registered Research Institutions in Texas's 21st congressional district 3 Registered Networking Organizations in Texas's 21st congressional district 4 Registered Policy Organizations in Texas's 21st congressional district 5 Registered Energy Companies in Texas's 21st congressional district 6 Registered Financial Organizations in Texas's 21st congressional district 7 Utility Companies in Texas's 21st congressional district US Recovery Act Smart Grid Projects in Texas's 21st congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 21st congressional district

462

South Dakota's At-large congressional district: Energy Resources | Open  

Open Energy Info (EERE)

Dakota's At-large congressional district: Energy Resources Dakota's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in South Dakota. Contents 1 US Recovery Act Smart Grid Projects in South Dakota's At-large congressional district 2 Registered Research Institutions in South Dakota's At-large congressional district 3 Registered Policy Organizations in South Dakota's At-large congressional district 4 Registered Energy Companies in South Dakota's At-large congressional district 5 Utility Companies in South Dakota's At-large congressional district US Recovery Act Smart Grid Projects in South Dakota's At-large congressional district Black Hills Power, Inc. Smart Grid Project

463

Pennsylvania's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Pennsylvania's 13th congressional district: Energy Resources Pennsylvania's 13th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Pennsylvania. Contents 1 US Recovery Act Smart Grid Projects in Pennsylvania's 13th congressional district 2 Registered Energy Companies in Pennsylvania's 13th congressional district 3 Registered Financial Organizations in Pennsylvania's 13th congressional district 4 Utility Companies in Pennsylvania's 13th congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 13th congressional district PECO Energy Company Smart Grid Project Registered Energy Companies in Pennsylvania's 13th congressional district Advanced Renewables LLC

464

New York's 16th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York's 16th congressional district New York's 16th congressional district 2 Registered Research Institutions in New York's 16th congressional district 3 Registered Policy Organizations in New York's 16th congressional district 4 Registered Energy Companies in New York's 16th congressional district 5 Registered Financial Organizations in New York's 16th congressional district 6 Utility Companies in New York's 16th congressional district US Recovery Act Smart Grid Projects in New York's 16th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 16th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP)

465

California's 26th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

26th congressional district: Energy Resources 26th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Contents 1 US Recovery Act Smart Grid Projects in California's 26th congressional district 2 Registered Research Institutions in California's 26th congressional district 3 Registered Policy Organizations in California's 26th congressional district 4 Registered Energy Companies in California's 26th congressional district 5 Registered Financial Organizations in California's 26th congressional district US Recovery Act Smart Grid Projects in California's 26th congressional district Los Angeles Department of Water and Power Smart Grid Demonstration

466

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

467

Tennessee's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3rd congressional district: Energy Resources 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Tennessee. Contents 1 US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district 2 Registered Research Institutions in Tennessee's 3rd congressional district 3 Registered Energy Companies in Tennessee's 3rd congressional district 4 Utility Companies in Tennessee's 3rd congressional district US Recovery Act Smart Grid Projects in Tennessee's 3rd congressional district Electric Power Board of Chattanooga Smart Grid Project Registered Research Institutions in Tennessee's 3rd congressional district Energy Technology Data Exchange Oak Ridge National Laboratory

468

Massachusetts's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district: Energy Resources 4th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Contents 1 US Recovery Act Smart Grid Projects in Massachusetts's 4th congressional district 2 Registered Energy Companies in Massachusetts's 4th congressional district 3 Registered Financial Organizations in Massachusetts's 4th congressional district 4 Utility Companies in Massachusetts's 4th congressional district US Recovery Act Smart Grid Projects in Massachusetts's 4th congressional district NSTAR Electric Company Smart Grid Project Registered Energy Companies in Massachusetts's 4th congressional district Acela Energy Group Inc Aclara Software

469

Idaho's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district: Energy Resources 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Idaho. Contents 1 US Recovery Act Smart Grid Projects in Idaho's 2nd congressional district 2 Registered Research Institutions in Idaho's 2nd congressional district 3 Registered Energy Companies in Idaho's 2nd congressional district 4 Utility Companies in Idaho's 2nd congressional district US Recovery Act Smart Grid Projects in Idaho's 2nd congressional district Idaho Power Company Smart Grid Project M2M Communications Smart Grid Project Registered Research Institutions in Idaho's 2nd congressional district Boise State University, CAES Energy Efficiency Research Institute

470

Texas's 25th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Contents Contents 1 US Recovery Act Smart Grid Projects in Texas's 25th congressional district 2 Registered Research Institutions in Texas's 25th congressional district 3 Registered Networking Organizations in Texas's 25th congressional district 4 Registered Policy Organizations in Texas's 25th congressional district 5 Registered Energy Companies in Texas's 25th congressional district 6 Registered Financial Organizations in Texas's 25th congressional district 7 Utility Companies in Texas's 25th congressional district US Recovery Act Smart Grid Projects in Texas's 25th congressional district Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Pecan Street Project, Inc. Smart Grid Demonstration Project Registered Research Institutions in Texas's 25th congressional district

471

New York's 10th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

0th congressional district 0th congressional district 2 Registered Research Institutions in New York's 10th congressional district 3 Registered Policy Organizations in New York's 10th congressional district 4 Registered Energy Companies in New York's 10th congressional district 5 Registered Financial Organizations in New York's 10th congressional district 6 Utility Companies in New York's 10th congressional district US Recovery Act Smart Grid Projects in New York's 10th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 10th congressional district Endeavor Global GlobalData United Nations Development Programme (UNDP) Vencon Management, Inc

472

Virginia's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Registered Research Institutions in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district 2 Registered Networking Organizations in Virginia's 5th congressional district 3 Registered Energy Companies in Virginia's 5th congressional district 4 Energy Generation Facilities in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district The Global Innovation Commons Registered Networking Organizations in Virginia's 5th congressional district Virginia Energy Project Registered Energy Companies in Virginia's 5th congressional district Aker Wade Power Technologies LLC Apex Wind Energy Inc Fiberight LLC Greenlight Biofuels Greenlight Energy Resources Inc GER Multitrade Biomass Holdings LLC Sol Sage Energy Energy Generation Facilities in Virginia's 5th congressional district

473

District of Columbia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Columbia: Energy Resources Columbia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 4138106 This article is a stub. You can help OpenEI by expanding it. The District of Columbia is the capital of the United States of America. Contents 1 State Energy Program Funding 2 Related Information 2.1 US Recovery Act Smart Grid Projects in District of Columbia 2.2 Registered Research Institutions in District of Columbia 2.3 Registered Networking Organizations in District of Columbia 2.4 Registered Policy Organizations in District of Columbia 2.5 Registered Energy Companies in District of Columbia 2.6 Registered Financial Organizations in District of Columbia 2.7 Energy Incentives for District of Columbia 2.8 Utility Companies in District of Columbia 3 References

474

Accumulated CFC-11 in polyurethane foam insulation: an estimate of the total amount in district heating installations in Sweden  

Science Journals Connector (OSTI)

In rigid polyurethane foam used for thermal insulation, CFC-11 has been the main blowing agent for many years, but is now subject to phase-out regulations. During ageing of this foam, air diffuses into it and blowing agents leak into the atmosphere, resulting in a decreased insulating capacity. Determinations of the cell gas composition and the total content of CFC-11 in foam from district heating installations of different ages are reported in this paper. The total amount of CFC-11 in old district heating schemes in Sweden is estimated at 2000 tonnes. The amount in refrigeration equipment in Sweden is about twice as large.

M. Svanstrom

1996-01-01T23:59:59.000Z

475

Air Pollution  

Science Journals Connector (OSTI)

Both natural processes and human activities contribute to air pollution, with the combustion of fossil fuels being the largest anthropogenic source of air pollutants. Adverse health effects (above all respiratory and cardiovascular complications), damage to crops, natural vegetation and materials, reduced visibility and changed radiation balance of the atmosphere are the major consequences of high concentrations of air pollutants. Technical fixes can sharply reduce emissions from large stationary sources and lower the rates of automotive emissions, but the rising number of vehicles and longer time spent on the road will call for more radical solutions to traffic-generated photochemical smog now present in all major urban areas.

V. Smil

2001-01-01T23:59:59.000Z

476

Definitions for PADD: Petroleum Administration for Defense Districts  

Gasoline and Diesel Fuel Update (EIA)

PADD Definitions PADD Definitions PADD: Petroleum Administration for Defense Districts PAD District 1 (East Coast) is composed of the following three subdistricts: Subdistrict 1A (New England): Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. Subdistrict 1B (Central Atlantic): Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania. Subdistrict 1C (Lower Atlantic): Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia. PAD District 2 (Midwest): Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Ohio, Oklahoma, Tennessee, Wisconsin. PAD District 3 (Gulf Coast): Alabama, Arkansas, Louisiana, Mississippi, New Mexico, Texas. PAD District 4 (Rocky Mountain): Colorado, Idaho, Montana, Utah, Wyoming.

477

Property Assessed Clean Energy Financing (District of Columbia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Solar Program Info State District of Columbia Program Type PACE Financing Provider District Department of the Environment The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. In order to receive financing through the commercial PACE

478

Pennsylvania's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Pennsylvania. Pennsylvania. Contents 1 US Recovery Act Smart Grid Projects in Pennsylvania's 1st congressional district 2 Registered Energy Companies in Pennsylvania's 1st congressional district 3 Registered Financial Organizations in Pennsylvania's 1st congressional district 4 Utility Companies in Pennsylvania's 1st congressional district US Recovery Act Smart Grid Projects in Pennsylvania's 1st congressional district PECO Energy Company Smart Grid Project Registered Energy Companies in Pennsylvania's 1st congressional district Advanced Renewables LLC Aircuity Inc AlumiFuel Power Inc Biofuel Advanced Research and Development LLC BARD BlackGold Biofuels Blue Hill Investment Partners LLC CDI Corporation Chameleon Optics Inc Clean Markets Energy Cooperative Association of Pennsylvania

479

Clean Cities: Capital District Clean Communities (Albany) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capital District Clean Communities (Albany) Coalition Capital District Clean Communities (Albany) Coalition The Capital District Clean Communities (Albany) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Capital District Clean Communities (Albany) coalition Contact Information Jennifer Ceponis 518-458-2161 jceponis@cdtcmpo.org Coalition Website Clean Cities Coordinator Jennifer Ceponis Photo of Jennifer Ceponis Jennifer Ceponis has been the coordinator of Capital District Clean Communities Coalition since 2012. Ceponis is a Senior Transportation Planner at the Capital District Transportation Committee (CDTC), where she worked since 2008 on bicycle and pedestrian planning, transportation demand management programs and community planning. The Clean Communities Coalition

480

Bos > AIR  

E-Print Network (OSTI)

The advent of air travel has produced a building typology completely new to the 20th century. The outdated planning of regions for airports render most existing airports as isolated, autonomous instances in the urban ...

Lee, Kevin Young

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "air conditioners district" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

482

Merced Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Irrigation District Irrigation District Jump to: navigation, search Name Merced Irrigation District Place California Utility Id 12312 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE AG-2 AGRICULTURAL DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2 COMMERCIAL / INDUSTRIAL LARGE DEMAND GENERAL SERVICE Industrial SCHEDULE ED-2P COMMERCIAL / INDUSTRIAL LARGE DEMAND PRIMARY SERVICE

483

Pascoag Utility District | Open Energy Information  

Open Energy Info (EERE)

Pascoag Utility District Pascoag Utility District Jump to: navigation, search Name Pascoag Utility District Place Rhode Island Utility Id 14537 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial and Industrial (unbundled service) Large Commercial and Industrial - Standard Offer (bundled) Large Commercial and Industrial Seasonal (unbundled) Large Commercial and Industrial Seasonal Standard Offer (bundled) Public and Private Lighting - Mercury - 175 watt Lighting

484

Norwalk Third Taxing District | Open Energy Information  

Open Energy Info (EERE)

Norwalk Third Taxing District Norwalk Third Taxing District Jump to: navigation, search Name Norwalk Third Taxing District Place Connecticut Utility Id 13825 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GREEN ENERGY OPTION RESIDENCE Residential SECURITY LIGHTING, HPS 100 Lighting SECURITY LIGHTING, HPS 250 Lighting SECURITY LIGHTING, HPS 400 Lighting SECURITY LIGHTING, HPS 70 Lighting SECURITY LIGHTING, LPS 135 Lighting SECURITY LIGHTING, LPS 180 Lighting SECURITY LIGHTING, LPS 35 Lighting

485

Turlock Irrigation District | Open Energy Information  

Open Energy Info (EERE)

Turlock Irrigation District Turlock Irrigation District Jump to: navigation, search Name Turlock Irrigation District Place California Utility Id 19281 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule BP Bulk Power Industrial, Demand Metered 7,000 kW and Over,

486

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

487

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Pacific Power - FinAnswer Express Pacific Power's FinAnswer Express Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency and exceed code requirements in commercial and industrial facilities. Both retrofits of existing equipment and new construction projects are eligible for incentives. For retrofits, the utility may need to verify existing equipment. Prescriptive rebates and custom incentives calculated from energy savings are available. October 16, 2013 Pacific Power - Energy FinAnswer Pacific Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve their heating, cooling,

488

Dawson Power District | Open Energy Information  

Open Energy Info (EERE)

Power District Power District Jump to: navigation, search Name Dawson Power District Place Nebraska Utility Id 4911 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-Rate General Service (RATE CODE 01, 11) Commercial A-Rate General Service-Seasonal Commercial AREA LIGHTING SERVICE: 100 watt HPS 15 - Metered Rate Lighting AREA LIGHTING SERVICE: 100 watt HPS 15 - Unmetered Rate Lighting AREA LIGHTING SERVICE: 175 watt MV 5 - Metered Lighting

489

Definition: District chilled water | Open Energy Information  

Open Energy Info (EERE)

chilled water chilled water Jump to: navigation, search Dictionary.png District chilled water Water chilled outside of a building in a central plant and piped into the building as an energy source for cooling. Chilled water may be purchased from a utility or provided by a central physical plant in a separate building that is part of the same multibuilding facility (e.g. a hospital complex or university).[1][2] View on Wikipedia Wikipedia Definition Related Terms District heat References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=D ↑ http://buildingsdatabook.eren.doe.gov/Glossary.aspx#Tech Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:District_chilled_water&oldid=423381"

490

Butler Public Power District | Open Energy Information  

Open Energy Info (EERE)

Butler Public Power District Butler Public Power District Jump to: navigation, search Name Butler Public Power District Place Nebraska Utility Id 2643 Utility Location Yes Ownership P NERC Location MRO Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial/Industrial Rate 04 Three Phase Commercial Commercial/Industrial Single/Three Phase Rate 06 Industrial Commercial/Industrial with demand Rate 07 Three Phase Industrial Grain Bin Single Phase Rate 08 Commercial Grain Bin Three Phase Rate 09 Commercial Irrigation Services Rate 40 Wheels only Single Phase

491

Omaha Public Power District | Open Energy Information  

Open Energy Info (EERE)

Omaha Public Power District Omaha Public Power District Jump to: navigation, search Name Omaha Public Power District Place Nebraska Utility Id 14127 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile

492

Florida's 6th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida's 6th congressional district Florida's 6th congressional district 2 Registered Networking Organizations in Florida's 6th congressional district 3 Registered Energy Companies in Florida's 6th congressional district 4 Utility Companies in Florida's 6th congressional district US Recovery Act Smart Grid Projects in Florida's 6th congressional district City of Leesburg, Florida Smart Grid Project JEA Smart Grid Project Registered Networking Organizations in Florida's 6th congressional district North Florida Global Warming Study Group Registered Energy Companies in Florida's 6th congressional district American Solar Energy Barry Rutenberg and Associates Battery Park Industries Inc formerly Moltech Power Systems Inc Florida Home Energy and Resources Organization (Florida H.E.R.O.) G.W. Robinson Homes

493

North Carolina's 13th congressional district: Energy Resources | Open  

Open Energy Info (EERE)

th congressional district: Energy Resources th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Contents 1 US Recovery Act Smart Grid Projects in North Carolina's 13th congressional district 2 Registered Research Institutions in North Carolina's 13th congressional district 3 Registered Policy Organizations in North Carolina's 13th congressional district 4 Registered Energy Companies in North Carolina's 13th congressional district US Recovery Act Smart Grid Projects in North Carolina's 13th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 13th congressional

494

Louisiana's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Energy Companies in Louisiana's 1st congressional district 3 Energy Incentives for Louisiana's 1st congressional district 4 Utility Companies in Louisiana's 1st congressional district US Recovery Act Smart Grid Projects in Louisiana's 1st congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 1st congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 1st congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

495

New York's 15th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

York. York. Contents 1 US Recovery Act Smart Grid Projects in New York's 15th congressional district 2 Registered Research Institutions in New York's 15th congressional district 3 Registered Policy Organizations in New York's 15th congressional district 4 Registered Energy Companies in New York's 15th congressional district 5 Registered Financial Organizations in New York's 15th congressional district 6 Utility Companies in New York's 15th congressional district US Recovery Act Smart Grid Projects in New York's 15th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 15th congressional district Endeavor Global

496

North Carolina's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

st congressional district: Energy Resources st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Policy Organizations in North Carolina's 1st congressional district The Biofuels Center of North Carolina Registered Energy Companies in North Carolina's 1st congressional district Biofuels Center of North Carolina Field Controls Torpedo Speciality Wire Inc Energy Generation Facilities in North Carolina's 1st congressional district Craven County Biomass Facility Retrieved from "http://en.openei.org/w/index.php?title=North_Carolina%27s_1st_congressional_district&oldid=196349" Categories: Places Stubs Congressional Districts

497

Florida's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Florida. Florida. Contents 1 US Recovery Act Smart Grid Projects in Florida's 2nd congressional district 2 Registered Research Institutions in Florida's 2nd congressional district 3 Registered Energy Companies in Florida's 2nd congressional district 4 Energy Generation Facilities in Florida's 2nd congressional district 5 Utility Companies in Florida's 2nd congressional district US Recovery Act Smart Grid Projects in Florida's 2nd congressional district City of Quincy, FL Smart Grid Project City of Tallahassee Smart Grid Project Talquin Electric Cooperative, Inc. Smart Grid Project Registered Research Institutions in Florida's 2nd congressional district SunCity Registered Energy Companies in Florida's 2nd congressional district Center for Advanced Power Systems CAPS

498

New York's 14th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

New York. New York. Contents 1 US Recovery Act Smart Grid Projects in New York's 14th congressional district 2 Registered Research Institutions in New York's 14th congressional district 3 Registered Policy Organizations in New York's 14th congressional district 4 Registered Energy Companies in New York's 14th congressional district 5 Registered Financial Organizations in New York's 14th congressional district 6 Utility Companies in New York's 14th congressional district US Recovery Act Smart Grid Projects in New York's 14th congressional district Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Project Registered Research Institutions in New York's 14th congressional district Endeavor Global

499

Louisiana's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Energy Companies in Louisiana's 2nd congressional district 3 Energy Incentives for Louisiana's 2nd congressional district 4 Utility Companies in Louisiana's 2nd congressional district US Recovery Act Smart Grid Projects in Louisiana's 2nd congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 2nd congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 2nd congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

500

Managing Texas Groundwater Resources through Groundwater Conservation Districts  

E-Print Network (OSTI)

This publication gives an overview of Texas water law and the regulations governing groundwater conservation districts. The powers and responsibilities of districts are summarized. Color maps show the coverage of existing conservation and special...

Fipps, Guy

2002-03-01T23:59:59.000Z