National Library of Energy BETA

Sample records for air conditioner cycling

  1. Cromer Cycle Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cromer Cycle Air Conditioner Cromer Cycle Air Conditioner New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity When cooling a space to a comfortable temperature, two types of heat energy must be removed: temperature-associated sensible heat and moisture-associated latent heat. An air-conditioner coil usually operates by performing about 25% moisture removal and 75% cooling. In a typical system, over-cooling must occur to meet the moisture-removal

  2. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  3. Maintaining Your Air Conditioner | Department of Energy

    Office of Environmental Management (EM)

    Your Air Conditioner Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of iStockphotofiremanYU. Replacing or cleaning air...

  4. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ...,2354,2114,2054,"Q","Q" "District Chilled Water ......",2750,2750,"Q",336,359,2750,386,72...

  5. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ..."Q",21,43,16,43,"Q","Q" "District Chilled Water ......",50,50,"Q",4,"Q",50,1,"Q","Q","Q" ...

  6. Maintaining Your Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining Your Air Conditioner Maintaining Your Air Conditioner Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary

  7. Common Air Conditioner Problems | Department of Energy

    Energy Savers [EERE]

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  8. Room Air Conditioners | Department of Energy

    Energy Savers [EERE]

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though their

  9. Tips: Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Air Conditioners Tips: Air Conditioners Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ©iStockphoto/galinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer months. In fact, a room air conditioner

  10. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    frequently. Based on size alone, an air conditioner generally needs 20 Btu for each square foot of living space. Other important factors to consider when selecting an air...

  11. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    located behind the control panel, which measures the temperature of air coming into the evaporative coil. If the sensor is knocked out of position, the air conditioner could...

  12. Ex Parte Communication on Central Air-Conditioner Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    Energy (DOE) to discuss proposed amended test procedures for central air conditioners ... Ex Parte Communication on Central Air-Conditioner Test Procedure Ex Parte Memo on CACDry ...

  13. Product Standards for Air Conditioners (Japan) | Open Energy...

    Open Energy Info (EERE)

    Air Conditioners (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Air Conditioners (Japan) Focus Area: Appliances & Equipment Topics: Policy...

  14. Tips: Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of iStockphotogalinast. Bigger isn't always better...

  15. Central Air Conditioner Enforcement Policy Statement | Department...

    Broader source: Energy.gov (indexed) [DOE]

    April 24, 2014 DOE will not seek civil penalties for violations of the regional standards applicable to central air conditioners that occur prior to July 1, 2016, provided that the...

  16. Tips: Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cool while saving energy. | Photo courtesy of iStockphotogalinast. Buying a bigger room air conditioner won't necessarily make you feel more comfortable during the hot summer...

  17. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  18. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for spot cooling and for installing air conditioning into homes that lack ductwork. However, window air conditioners have low

  19. Ductless Mini-Split Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    Mini-Split Air Conditioners A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphotoLUke1138. A ductless...

  20. Air Conditioner Regional Standards Brochure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Conditioner Regional Standards Brochure Air Conditioner Regional Standards Brochure November 9, 2015 DOE has adopted energy conservation standards for split-system air conditioners that vary depending on when and where a unit is installed. This brochure provides information about the new standards to distributors, contractors (installers), and consumers. PDF icon Central Air Conditioner Standards Brochure More Documents & Publications 2015-11-12 Proposed Rulemaking Regarding Enforcement

  1. Covered Product Category: Residential Central Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. Ductless Mini-Split Air Conditioners | Department of Energy

    Energy Savers [EERE]

    Ductless Mini-Split Air Conditioners Ductless Mini-Split Air Conditioners A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/LUke1138. Ductless, mini split-system air-conditioners (mini splits) have numerous potential applications in residential, commercial, and institutional buildings. The most common

  3. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and Air-Conditioning (HVAC) Systems Laboratory. The testing provided unique...

  4. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gains in the HXs, single speed compressor, and fan motors with minimal cost barrier ... R410A rotary compressor - minimal air leakage from the evaporator to the ...

  5. Development of vehicle magnetic air conditioner (VMAC) technology. Final

    Office of Scientific and Technical Information (OSTI)

    report (Technical Report) | SciTech Connect Development of vehicle magnetic air conditioner (VMAC) technology. Final report Citation Details In-Document Search Title: Development of vehicle magnetic air conditioner (VMAC) technology. Final report The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was

  6. Commercial Air Conditioners and Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Conditioners and Heat Pumps Commercial Air Conditioners and Heat Pumps The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Commercial Air Conditioners and Heat Pumps

  7. Covered Product Category: Residential Central Air Conditioners | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label

  8. Covered Product Category: Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Covered Product Category: Room Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for room air conditioners, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law. MEETING EFFICIENCY REQUIREMENTS FOR FEDERAL PURCHASES The

  9. Covered Product Category: Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    Room Air Conditioners Covered Product Category: Room Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for room air conditioners, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law. MEETING EFFICIENCY REQUIREMENTS FOR FEDERAL PURCHASES The

  10. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: 10/1/2011 - 9/30/2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air conditioner. The

  11. Understanding Energy Impacts of Oversized Air Conditioners (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnitudes of the various effects. In this study, researchers from the National Renewable Energy Laboratory (NREL) evaluated the replacement of an air conditioner in a...

  12. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners...

    Office of Environmental Management (EM)

    2 Issuance: Test Procedures for Portable Air Conditioners; Notice of Proposed Rulemaking 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners; Notice of Proposed ...

  13. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  14. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  15. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore »R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  16. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  17. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect (OSTI)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.

  18. Electrolux Gibson Air Conditioner and Equator Clothes Washer...

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed ENERGY STAR...

  19. Four Central Air Conditioners Determined Noncompliant With Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Notice) on September 27, 2011, to AeroSys, Inc. (AeroSys) regarding four models of central (through-the-wall) air conditioners that fail to meet Federal energy...

  20. Improving Air-Conditioner and Heat Pump Modeling

    SciTech Connect (OSTI)

    Winkler, Jon

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted behind-the-scenes without negatively impacting the reliability of energy simulations.

  1. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  2. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology (Journal Article) | SciTech Connect Journal Article: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of

  3. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Variable Speed Fan Retrofits for Computer Room Air Conditioners Variable Speed Fan Retrofits for Computer Room Air Conditioners Case study describes various concepts for more cost-effective cooling solutions in data centers, while keeping in mind that the reliability of computing systems and their respective cooling systems is always a key criterion. PDF icon dc_fancasestudy.pdf More Documents & Publications Wireless Sensors Improve Data Center Efficiency NSIDC Data

  4. Novel Solid State Magnetocaloric Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Magnetocaloric Air Conditioner Novel Solid State Magnetocaloric Air Conditioner Lead Performer: Oak Ridge National Laboratory, Oak Ridge, TN Partners: Vaccumschmelze GmbH & Co. KG., Hanau, Germany DOE Total Funding: $1,360,000 Cost Share: $340,000 Project Term: 09/01/2015 - 08/31/2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 PROJECT OBJECTIVE Current magnetocaloric cooling/heating prototypes employ a heat transfer

  5. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Energy Savers [EERE]

    Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research & Development Authority - Albany, NY -- Stony Brook University - Stony Brook, NY -- Oak Ridge National Laboratory - Oak Ridge, TN -- National Grid - Washington, DC -- Applied Thermodynamic Apparatus (ATA) - Ann Arbor, MI -- Fala Technologies - Kingston, NY -- LoDolce - Saugerties, NY DOE Funding: $750,000 Cost Share:

  6. Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners

    Office of Environmental Management (EM)

    Policy Statement: Off Mode Standards for Central Air Conditioners and Central Air Conditioning Heat Pumps July 8, 2014 On June 27, 2011, the Department of Energy (DOE) published in the Federal Register a direct final rule (DFR) under the Energy Policy and Conservation Act (EPCA), 42 U.S.C. §§ 6291-6309, which set forth amended energy conservation standards for central air conditioners and central air conditioning heat pumps (CAC/HP), including a new standard for off mode electrical power

  7. Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners

    Energy Savers [EERE]

    Comprehensive performance tests lead to affordable methods for increasing the energy efficiency of window air conditioners. Window air conditioners are an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners

  8. DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer |

    Energy Savers [EERE]

    Department of Energy $1.5M Settlement with Room Air Conditioner Manufacturer DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer October 27, 2015 - 5:48pm Addthis The General Counsel's enforcement office settled an enforcement action against Friedrich Air Conditioning Company for $1,494,626.25, for the distribution of room air conditioners that failed to meet federal minimum standards for energy efficiency. Room air conditioners must meet minimum efficiency standards to be

  9. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models ...

  10. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  11. Purchasing Energy-Efficient Residential Central Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance for residential central air conditioners, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  12. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Energy Savers [EERE]

    to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring

  13. Energy Impacts of Oversized Residential Air Conditioners Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home, which can result in significant energy penalties. However, the reason for this was due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters.

  14. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    SciTech Connect (OSTI)

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  15. ISSUANCE 2015-11-19: Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

  16. ISSUANCE 2015-08-21: Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

  17. ISSUANCE 2015-06-09: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

  18. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  19. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  20. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  1. Enforcement Policy: Split-System Central Air Conditioners Without HSVC

    Broader source: Energy.gov [DOE]

    DOE issued an enforcement policy that it would begin investigating the methods manufacturers are using to rate split-system central air conditioners that do not have a highest sales volume combination (HSVC) to test as required by the applicable regulations and that it would assess penalties for units manufactured after February 1, 2016, that have not been tested and properly certified as compliant with the applicable standards.

  2. Variable Speed Fan Retrofits for Computer Room Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By Lawrence Berkeley National Laboratory Steve Greenberg September 2013 2 Contacts Steve Greenberg Lawrence Berkeley National Laboratory One Cyclotron Road, 90R3111 Berkeley, California 94720 (510) 486-6971 segreenberg@lbl.gov For more information on FEMP, please contact: Will Lintner, P.E., CEM Federal Energy Management

  3. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  4. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thin Film Thermoelectric Systems forEfficient Air-Conditioners Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners Presents recent advances in thermoelectric device fabrication and the design of novel cooling/heating engines exploiting thermal storage for efficient air-conditioners in automobiles PDF icon ghoshal.pdf More Documents & Publications Sheetak will work on developing a full scale prototype of its low cost heat pump water heater. These

  5. Enforcement Policy Statement: Split-System Central Air Conditioners Without HSVC

    Office of Environmental Management (EM)

    Split-System Central Air Conditioners Without HSVC December 16, 2015 In the November 9, 2015 central air conditioner test procedure supplemental notice of proposed rulemaking (80 FR 69278), DOE explained that it had been using its enforcement discretion not to seek civil penalties for split-system central air conditioners that were in distribution in commerce but had not been tested in accordance with the DOE test procedure. Although the issue can arise in other contexts, the majority of these

  6. Five ENERGY STAR Room Air Conditioners Fail Testing | Department of Energy

    Office of Environmental Management (EM)

    Five ENERGY STAR Room Air Conditioners Fail Testing Five ENERGY STAR Room Air Conditioners Fail Testing August 22, 2011 - 2:00pm Addthis The U.S. Department of Energy's Office of Enforcement announced today that DOE testing has identified five Friedrich room air conditioners that do not meet the ENERGY STAR Program's energy efficiency requirements. DOE selected these models for testing as part of its ENERGY STAR Verification Testing Pilot Program. DOE tests revealed that ENERGY STAR-rated

  7. EERE Success Story—DOE Industry Partnerships Lead to Widespread Adoption of Efficient Commercial Air Conditioners

    Broader source: Energy.gov [DOE]

    Commercial air conditioners, often referred to as rooftop units (RTUs), are commonly used across commercial building sectors such as schools, restaurants, big box retailers, and small office...

  8. DOE Industry Partnerships Lead to Widespread Adoption of Efficient Commercial Air Conditioners

    Broader source: Energy.gov [DOE]

    Commercial air conditioners, often referred to as rooftop units (RTUs), are commonly used across commercial building sectors such as schools, restaurants, big box retailers, and small office...

  9. FINAL REPORT DEVELOPMENT OF VEHICLE MAGNETIC AIR CONDITIONER (VMAC) TECHNOLOGY

    Office of Scientific and Technical Information (OSTI)

    FINAL REPORT ' DEVELOPMENT OF VEHICLE MAGNETIC AIR CONDITIONER (VMAC) TECHNOLOGY Karl A. Gschneidner, Jr., V. K. Pecharsky and David Jiles Institute for Physical Research and Technology Iowa State University Ames, Iowa 500 1 1-3020 . and Carl B. Zimm Astronautics Corporation of America Astronautics Technology Center 5802 Cottage Grove Rd Madison Wi 53718-1387 \ DOE Contract No.: DE-FC02-98 EE 50549 DOE Patent Clearance Granted ~ 9 m u u l c Mark P Dvorscak E-mail rnark.dvorscak@ch.doe Office ot

  10. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype Eric Kozubal, Jason Woods, and Ron Judkoff Technical Report NREL/TP-5500-54755 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  11. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  12. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Office of Environmental Management (EM)

    Heat Pump Models | Department of Energy Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models March 30, 2010 - 10:05am Addthis Today, the Department of Energy announced that it is requiring AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal efficiency

  13. Stirling Air Conditioner for Compact Cooling (Program Document...

    Office of Scientific and Technical Information (OSTI)

    The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To...

  14. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  15. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  16. Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing

    Broader source: Energy.gov [DOE]

    DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed...

  17. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards DOE Orders AeroSys to Halt Distribution of ...

  18. Building America Top Innovations 2013 Profile High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  19. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Energy Savers [EERE]

    Heat Pump Models Shown to Violate Minimum Efficiency Standards | Department of Energy AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models Shown to Violate Minimum Efficiency Standards March 30, 2010 - 12:00am Addthis WASHINGTON, DC - Today, the Department of Energy announced that it is requiring AeroSys, Inc. to stop

  20. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Energy Savers [EERE]

    Violating Minimum Appliance Standards | Department of Energy Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must

  1. YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Standard | Department of Energy U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system central air conditioners

  2. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Office of Environmental Management (EM)

    Violating Minimum Appliance Standards | Department of Energy Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat

  3. YMGI Through-the-Wall Air Conditioner Determined Noncompliant...

    Energy Savers [EERE]

    Conditioner Determined Noncompliant With Energy Efficiency Standard October 11, 2012 - 4:10pm Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of...

  4. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  5. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  6. Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner

    Energy Savers [EERE]

    | Department of Energy Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner June 29, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy OK. It's officially summer here in Washington, D.C. I'm seeking the coolest, shadiest places possible as I get ready for the hottest few months of the year. It's already been a hot June in much

  7. Tips for Running an Air Conditioner Without Breaking the Bank | Department

    Energy Savers [EERE]

    of Energy for Running an Air Conditioner Without Breaking the Bank Tips for Running an Air Conditioner Without Breaking the Bank July 22, 2014 - 3:15pm Addthis Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Elizabeth Spencer

  8. ISSUANCE 2015-07-17: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

  9. 2014-10-30 Issuance: Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information

  10. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  11. ISSUANCE 2015-06-30: Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  12. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  13. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compared to vapor compression air condition- ers, DEVAP's novel design improves air quality by independently controlling temperature and humidity and increasing ventilation....

  14. Ex Parte Communication on Central Air-Conditioner Test Procedure

    Broader source: Energy.gov [DOE]

    On September 18, 2015, AHRI staff and Manufacturing Representatives met with representatives from the Department of Energy (DOE) to discuss proposed amended test procedures for central air...

  15. 13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

  16. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications Preprint A. Lowenstein AIL Research, Inc. S. Slayzak and E. Kozubal National Renewable Energy Laboratory To be presented at ASME International Solar Energy Conference (ISEC2006) Denver, Colorado July 8-13, 2006 Conference Paper NREL/CP-550-39798 July 2006 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No.

  17. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  18. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect (OSTI)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.

  19. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 12, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. 2014-05-05 Issuance: Test Procedure for Portable Air Conditioners; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of data availabilty regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  2. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  3. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  4. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  5. Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 1 [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket

  6. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  7. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  8. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  9. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  10. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  11. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  12. Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

    2014-03-10

    This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

  13. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect (OSTI)

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  14. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC)- Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Registe notice of open meetings regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group, as issued by the Deputy Assistant Secretary for Energy Efficiency on August 19, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  15. 2015-02-13 Issuance: Energy Conservation Standards for Portable Air Conditioners; Notice of Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  16. Room Air Conditioners

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  17. 2015-03-24 Issuance: ASRAC; Notice of Intent to Establish the Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces Working Group to Negotiate Potential Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Notice of Intent regarding potential Energy Conservation Standards for Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 24, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  19. Technology Solutions Case Study: A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort

    SciTech Connect (OSTI)

    C. Booten

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve energy efficiency, cost savings, and comfort for homeowners.

  20. A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specifc room and are easy for anyone to install. In contrast to these benefts, window A/Cs come at a cost-they operate less effciently (using more energy to do the same cooling) than

  1. A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specifc room and are easy for anyone to install. In contrast to these benefts, window A/Cs come at a cost-they operate less effciently (using more energy to do the same cooling) than

  2. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  3. Attenuator And Conditioner

    DOE Patents [OSTI]

    Anderson, Gene R. (Albuquerque, NM); Armendariz, Marcelino G. (Albuquerque, NM); Carson, Richard F. (Albuquerque, NM); Bryan, Robert P. (Albuquerque, NM); Duckett, III, Edwin B. (Albuquerque, NM); Kemme, Shanalyn Adair (Albuquerque, NM); McCormick, Frederick B. (Albuquerque, NM); Peterson, David W. (Sandia Park, NM)

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  4. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  5. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  6. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  7. DOE Requires Air-Con International to Cease Sales of Inefficient Air

    Office of Environmental Management (EM)

    Conditioners and Proposes Penalties | Department of Energy Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties September 21, 2010 - 6:43pm Addthis The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in the

  8. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  9. Measure Guideline: Air Conditioner Diagnostics, Maintenance,...

    Office of Scientific and Technical Information (OSTI)

    as well as California's Title 24 vintage assumptions, where appropriate. U-factor and solar heat gain coefficient (SHGC) values for the single metal pane windows were taken...

  10. DOE Investigates Possible Air Conditioner Efficiency Violations

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Enforcement is committed to its compliance enforcement responsibilities with regard to federal energy conservation standards and ensuring that all those subject...

  11. Measure Guideline. Air Conditioner Diagnostics, Maintenance,...

    Office of Scientific and Technical Information (OSTI)

    Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  12. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can meet the unit's power requirements. Room units operate on 115-volt or 230-volt circuits. The standard household receptacle is a connection for a 115-volt branch circuit....

  13. Room Air Conditioners | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  14. Central Air conditioners | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  15. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, David A. (Oak Ridge, TN)

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  16. Stronger Manufacturers' Energy Efficiency Standards for Residential Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditioners Go Into Effect Today | Department of Energy Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today,

  17. Laboratory Performance Testing of Residential Window Mounted Air

    Energy Savers [EERE]

    Conditioners | Department of Energy Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon testing_residential_ariconditioners_booten_winkler.pdf More Documents & Publications Key Issues High-Efficiency Window Air Conditioners -

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 2, Fluorescent lamp ballasts, television sets, room air conditioners, and kitchen ranges and ovens

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document is divided into ``volumes`` B through E, dealing with individual classes of consumer products. Chapters in each present engineering analysis, base case forecasts, projected national impacts of standards, life-cycle costs and payback periods, impacts on manufacturers, impacts of standards on electric utilities, and environmental effects. Supporting appendices are included.

  19. Save Money and Stay Cool with an Efficient, Well-Maintained Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner June 29, 2010 - 7:30am Addthis ...

  20. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objectives | Department of Energy Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_coogan.pdf More Documents & Publications CSP Tower Air Brayton Combustor - FY12 Q4 CSP Tower Air Brayton Combustor

  1. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  2. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  3. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air

    Energy Savers [EERE]

    Conditioning, Heating and Refrigeration | Department of Energy Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Lead Performer: Sandia National Laboratories, Livermore, CA Partners: Creative Thermal Solutions, Urbana, IL DOE Funding: $860,000 Cost Share: $86,000 Project Term: October 1, 2014 to September 30,

  4. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  5. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  6. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  7. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  8. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect (OSTI)

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800?nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400?nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1??m to 18??m. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  9. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  10. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  11. Saving Money During the Air Conditioning Season | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving Money During the Air Conditioning Season Saving Money During the Air Conditioning Season June 4, 2014 - 4:00pm Addthis Keeping your air conditioner maintained can help save ...

  12. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. ...

  13. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task Air-Cooled Condensers in Next- Generation Conversion Systems. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  14. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  15. Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action

    Broader source: Energy.gov [DOE]

    The Department of Energy has settled the civil penalty action it initiated against Air-Con International for Air-Con’s sale of air conditioners in the United States that used more energy than...

  16. List of Central Air conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    Lighting Processing and Manufacturing Equipment Biomass CHPCogeneration Landfill Gas Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar...

  17. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency.

  18. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC05-76RL01830 Resource Type: Journal Article Resource Relation: Journal Name: IEA Heat Pump Centre Newsletter; Journal Volume: 21; Journal Issue: 2 Research ...

  19. Purchasing Energy-Efficient Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... low-use applications or in locations with very low rates for electricity or natural gas. ... Incorporate Federal Acquisition Regulation Language in Contracts These mandatory ...

  20. NREL: Continuum Magazine - Air Conditioner Ready to Change Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into," Kozubal said. Judkoff added, "We'd investigated evaporative and desiccant cooling technologies for many years, but could not find a way to combine them in a cost-effective...

  1. List of Room Air Conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility...

  2. High-Efficiency Window Air Conditioners - Building America Top...

    Energy Savers [EERE]

    reduces the equipment's performance. Researchers at the National Renewable Energy Laboratory (NREL) earned a 2013 Top Innovation award for their evaluation of the...

  3. Development of vehicle magnetic air conditioner (VMAC) technology...

    Office of Scientific and Technical Information (OSTI)

    Corporation of America Technology Center (ACATC), Madison, WI, through a subcontract with ISU. Authors: Gschneidner, Karl A., Jr. ; Pecharsky, V.K. ; Jiles, David ; Zimm, Carl B. ...

  4. Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on September 27, 2011, to AeroSys, Inc. (AeroSys) regarding four models of central ...

  5. The Natural gas Heat Pump and Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Distinctive Characteristics: * Single natural gas-driven device * Minimal electricity ... HVAC * 30-50% reduction in energy used * Minimal electricity Grid Independent * No ...

  6. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by LED lighting). Long term markets include building-scale air conditioners and heat pumps (total potential energy savings estimated to be 0.5 quads). Impact of Project: 1. ...

  7. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  8. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  9. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were...

  10. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel...

  11. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    part of a series of prototype tests conducted in preparation for site characterization at Yucca Mountain, air-injection tests were conducted in the welded tuffs in G-Tunnel at the...

  12. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  13. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  14. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  15. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  16. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  17. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE is proposing a civil penalty of more than 230,000 for importing and distributing ... Read the full Notice of Noncompliance Determination and Proposed Civil Penalty (pdf - ...

  18. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  19. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  20. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-Es BEETIT Project, short for Building Energy Efficiency Through Innovative Thermodevices, are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  1. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  2. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  3. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOE Patents [OSTI]

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  4. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL

    Energy Savers [EERE]

    (HARDI) | Department of Energy HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. PDF icon DOE EX Parte Memo.pdf More Documents & Publications Ex Parte Memo on CAC/Dry Charged Units 3rd Semi-Annual Report to Congress on

  5. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Environmental Management (EM)

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects Credit: Oak Ridge National Lab 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Advanced Ground Source Heat Pump Technology for

  6. Air-Con International: Noncompliance Determination and Proposed Penalty (2010-SE-0301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con private label do not comport with the energy conservation standards. DOE also alleged in a Notice of Proposed Civil Penalty that Air-Con imported and distributed the noncompliant products in the U.S.

  7. ARM - The Hydrologic Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  8. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel waywith heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  9. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheetak will work on developing a full scale prototype of its low cost heat pump water heater. These solid state heat pumping elements can be implemented in low cost manner which ...

  10. Analysis of Efficiency Standards for Air Conditioners, Heat Pumps, and Other Products

    Reports and Publications (EIA)

    2002-01-01

    A series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  11. Ex Parte Communication on Central Air-Conditioner Test Procedure- ICM Issues

    Broader source: Energy.gov [DOE]

    On October 8, 2015, AHRI staff and Independent Coil Manufacturer (ICM) Representatives met with a representative from the Department of Energy (DOE) to discuss proposed amended test procedures for...

  12. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  13. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  14. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  15. Dehumidifying Heat Pipes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifying Heat Pipes Dehumidifying Heat Pipes In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates,

  16. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect (OSTI)

    Al-Alili, A.; Hwang, Y.; Radermacher, R.; Kubo, I.

    2010-12-15

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  17. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  18. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  19. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  20. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Office of Environmental Management (EM)

    GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat

  1. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  2. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  3. Field Testing and Demonstration of the Smart Monitoring and Diagnostic System (SMDS) for Packaged Air-Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Brambley, Michael R.; Huang, Yunzhi; Lutes, Robert G.; Gilbride, Spencer P.

    2015-05-29

    This documents results of a project focused on testing and demonstrating both the hardware and software versions of the smart monitoring and diagnostic system (SMDS) under field conditions.

  4. DOE Facilitates Market-Driven Solutions to Develop and Deploy New High-Efficiency Commercial Air Conditioners

    Broader source: Energy.gov [DOE]

    Jointly-developed performance criteria to help businesses save money, improve economic competitiveness

  5. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  6. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  7. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect (OSTI)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  8. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  9. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  10. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  11. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  12. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  13. Beowawe Binary Bottoming Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beowawe Binary Bottoming Cycle Beowawe Binary Bottoming Cycle Project objectives: Demonstrate the technical and economic feasibility of electricity generation from the nonconventional geothermal resources of 205°F by extracting waste heat from the brine to power a binary power plant. PDF icon low_mcdonald_beowawe_binary_bottoming_cycle.pdf More Documents & Publications Dixie Valley Bottoming Binary Cycle track 1: Low Temp | geothermal 2015 peer review Hybrid and Advanced Air Cooling

  14. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  15. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air

  16. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  17. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  18. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  19. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  20. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Lead Performer: Sandia ...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CaulkingWeather-stripping filter DuctAir sealing (10) Apply DuctAir sealing filter Windows (10) Apply Windows filter Air conditioners (9) Apply Air conditioners filter...

  2. hickam air force base

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hickam air force base - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  4. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  5. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  6. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  7. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  8. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect (OSTI)

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  9. Air separation with temperature and pressure swing

    DOE Patents [OSTI]

    Cassano, Anthony A. (Allentown, PA)

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  10. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The Univa Grid Engine Scheduler cycle performs a number of important tasks, including: Prioritizing Jobs Reserving Resources for jobs requesting more resources (slots / memory) Dispatching jobs or tasks to the compute nodes Evaluating job dependencies The "cycle time" is the length of time it takes the scheduler

  11. Time delay spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R. (Los Alamos, NM)

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  12. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  13. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  15. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  16. 2015-11-12 Proposed Rulemaking Regarding Enforcement of Regional Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Central Air Conditioners | Department of Energy 1-12 Proposed Rulemaking Regarding Enforcement of Regional Standards for Central Air Conditioners 2015-11-12 Proposed Rulemaking Regarding Enforcement of Regional Standards for Central Air Conditioners PDF icon Central Air Conditioners_Enforcement of Regional Standards_NOPR.pdf More Documents & Publications Enforcement Policy: Split-System Central Air Conditioners Without HSVC Air Conditioner Regional Standards Brochure ISSUANCE

  17. 2013 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  18. 2014 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  19. 2015 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  20. Anoka Municipal Utility - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Dehumidifiers Ceiling Fan Lighting Air conditioners Other EE LED Lighting Maximum Rebate Room Air Conditioner: limit of 2 units per account Lighting: limit of 15 per...

  1. Laboratory Performance Testing of Residential Window Mounted...

    Energy Savers [EERE]

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter by savings category: Building Insulation (105) Apply Building Insulation filter Windows (102) Apply Windows filter Air conditioners (85) Apply Air conditioners filter...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces (11) Apply Furnaces filter Roofs (11) Apply Roofs filter Windows (11) Apply Windows filter Air conditioners (10) Apply Air conditioners filter Caulking...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation filter Heat Pumps (10) Apply Heat Pumps filter Roofs (10) Apply Roofs filter Windows (10) Apply Windows filter Air conditioners (9) Apply Air conditioners filter Duct...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    filter Heat Pumps (10) Apply Heat Pumps filter Lighting (10) Apply Lighting filter Windows (10) Apply Windows filter Air conditioners (9) Apply Air conditioners filter...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pending approval (12) Apply CustomOthers pending approval filter Windows (11) Apply Windows filter Air conditioners (10) Apply Air conditioners filter Boilers (10) Apply...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (3) Apply Heat Pumps filter Lighting (3) Apply Lighting filter Water Heaters (3) Apply Water Heaters filter Air conditioners (2) Apply Air conditioners filter Boilers (2) Apply...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics (6) Apply Solar Photovoltaics filter Solar Water Heat (6) Apply Solar Water Heat filter Air conditioners (5) Apply Air conditioners filter Biomass (5) Apply...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE filter Solar Space Heat (5) Apply Solar Space Heat filter Water Heaters (5) Apply Water Heaters filter Air conditioners (4) Apply Air conditioners filter Biomass (4) Apply...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Waste (10) Apply Municipal Solid Waste filter Solar Water Heat (10) Apply Solar Water Heat filter Wave (10) Apply Wave filter Air conditioners (9) Apply Air conditioners...

  11. Alternative non-CFC mobile air conditioning

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  12. Water Cycle Pilot Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE national laboratories: Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, and Oak Ridge. The science team will conduct a three- year Water Cycle Pilot Study within the ARM SGP CART site, primarily in the Walnut River Watershed east of Wichita, Kansas. The host facility in the Walnut River Watershed is the Atmospheric

  13. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  14. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosecurity, and Health Environmental Microbiology Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding...

  15. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  16. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  17. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  18. Air-Source Heat Pump Basics | Department of Energy

    Energy Savers [EERE]

    Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another

  19. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  20. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  1. Duty Cycle Software Model

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    The Software consists of code which is capable of processing a large volume of data to create a “duty cycle” which is representative of how equipment will function under certain conditions.

  2. 10 MWe power cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWe power cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  3. ARM - Carbon Cycle Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Cycle Balance Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Carbon Cycle Balance The net result of this recycling is that our atmosphere now gains a total of 5 gigatonnes (1 gigatonne = 1x1012 kilograms) of carbon annually. Nearly all of this ends up in gases that are greenhouse

  4. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to

  5. Fuel Cycle Subcommittee

    Office of Environmental Management (EM)

    April 29, 2015 Washington, DC June 26, 2015 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin 2 I. Introduction The agenda for the April 29, 2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of various research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle Technologies (FCT) program and related research that is coordinated with the FCT program.

  6. Fuel Cycle Subcommittee

    Office of Environmental Management (EM)

    October 22, 2015 Washington, DC December 7, 2015 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin 2 I. Introduction The agenda for the October 22, 2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of several research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle Technologies (FCT) program and related research that is coordinated with the FCT

  7. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  8. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  9. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  10. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  11. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  12. Determining the Right Air Quality for Your Compressed Air System |

    Office of Environmental Management (EM)

    Department of Energy Determining the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance:

  13. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction (forcing and

  14. Cycles in fossil diversity

    SciTech Connect (OSTI)

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  15. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  16. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government, Agricultural, Institutional Savings Category: Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Compressed air, Energy Mgmt. Systems...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial, Residential, Multifamily Residential Savings Category: Lighting, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dishwasher, RefrigeratorsFreezers, Equipment Insulation, Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Compressed air, Programmable Thermostats, Energy...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Heat recovery, Compressed air, Programmable Thermostats, Windows, Motors, Motor VFDs,...

  1. Unitil (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Energy Star Appliance Program provides rebates for clothes washers, air purifiers, refrigerators, and room air conditioners.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Compressed air, Programmable Thermostats, Building Insulation, Windows, Roofs, Motor VFDs, Agricultural...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir sealing, Other EE Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  4. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect (OSTI)

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires intrusion into the system to measure the refrigerant high-side and low-side pressures. Once the pressures are known, based on the equipment's refrigerant charging chart? or in most cases, based on the technician's experience? the refrigerant charging status is determined. However, there is a catch: by the time a refrigeration technician is called, most of the refrigerant has already escaped into the atmosphere. The new technology provides a real-time warning so that when, say, 20% of the refrigerant has leaked, the equipment users will be warned, even though the equipment is still functioning properly at rated capacity. Temperature sensors are becoming very accurate and very low in cost, compared with pressure sensors. Using temperature sensors to detect refrigerant charge status is inherently nonintrusive, inexpensive, and accurate. With the addition of two temperature sensors for detecting dirty air filters, the capability of the diagnostic equipment is further enhanced with very little added cost. This report provides laboratory test data on the change of indoor coil refrigerant temperature and subcooling as a function of refrigerant charge for a 2-ton split heat pump system. The data can be used in designing the indicators for refrigerant loss and dirty air filter sensors.

  5. D-Cycle - 4-Differential -Stroke Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-Cycle - 4-Differential -Stroke Cycle D-Cycle - 4-Differential -Stroke Cycle The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines PDF icon deer09_conti.pdf More Documents & Publications Improving Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Two-Stroke Engines: New Frontier in Engine Efficiency Building America Technology

  6. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  7. Minimize Compressed Air Leaks

    Broader source: Energy.gov [DOE]

    This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

  8. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar (Lund, SE)

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  9. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  10. Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon storage and flux can

  12. Department of Energy Opens Appliance Standards Investigation for Certain

    Office of Environmental Management (EM)

    Air Con International Air Conditioners and Heat Pumps | Department of Energy Opens Appliance Standards Investigation for Certain Air Con International Air Conditioners and Heat Pumps Department of Energy Opens Appliance Standards Investigation for Certain Air Con International Air Conditioners and Heat Pumps March 26, 2010 - 6:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it has opened an investigation to determine whether certain air conditioners and heat

  13. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  14. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  16. Stirling cycle machine

    SciTech Connect (OSTI)

    Burnett, S.C.; Purcell, J.R.; Creedon, W.P.; Joshi, C.H.

    1990-06-05

    This patent describes an improvement in a Stirling cycle machine including first and second variable-volume, compression-expansion chambers containing a gas a regenerator interconnecting the chambers and for conducting the gas therebetween, and eccentric drive means for driving the first and second chambers. It comprises: the eccentric drive means comprising a pair of rotatably mounted shafts, at least one pair of eccentric disks fixed on the shafts in phase with each other, and means for causing the shafts and thereby the eccentric disks to rotate in opposite directions.

  17. Wetland (peat) Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are uncertain. This is in part because many climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems will partition future releases of carbon to the atmosphere. Ecosystem observations of CH4 emissions lack mechanistic links to the processes that govern CH4 efflux: microbial

  18. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience: Bioenergy, Biosecurity, and Health » Environmental Microbiology » Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon management. Get Expertise Principle Investigator Cheryl Kuske Bioscience Division 505 665 4800 Email Get Expertise John Dunbar Bioscience Division Email Get Expertise Chris Yeager Bioscience

  19. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  20. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  1. air_water.cdr

    Office of Legacy Management (LM)

    12/2011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring Site Remedial Action Project (WSSRAP) to measure levels of gamma radiation, radioactive dust particles, radon gas, and asbestos. With remediation of contaminated materials essentially complete and measurements indistinguishable from background, the U.S. Department of Energy (DOE) ceased perimeter and offsite air

  2. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  3. Determine the Cost of Compressed Air for Your Plant; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #1 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * August 2004 Industrial Technologies Program For additional information on industrial energy efficiency measures, contact the EERE Information Center at 1-877-337-3463 or visit the BestPractices Web site at www.eere.energy.gov/industry/bestpractices. Suggested Actions * Determine the cost of compressed air for your plant by periodically monitoring the compressor oper- ating hours and load duty cycle. * Use a systems approach while operating and maintaining a compressed air system. * Adopt a

  4. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  5. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  6. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  7. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  8. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  9. Fuel Cycle Technologies | Department of Energy

    Office of Environmental Management (EM)

    Initiatives Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    air source, and ductless heat pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    air source, and ductless heat pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners vary...

  12. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  13. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  14. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner (Pleasanton, CA)

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  15. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  16. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  17. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  18. Minimize Boiler Short Cycling Losses

    Broader source: Energy.gov [DOE]

    This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Watts Bar Operating Cycles Simulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coming in our next issue of Tech Notes: Fuel Performance Predictions with VERA Watts Bar Operating Cycles Simulated to Present Among the most important accomplishments during CASL...

  20. Organic rankine cycle fluid

    DOE Patents [OSTI]

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  1. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  2. The Photosynthetic Cycle

    DOE R&D Accomplishments [OSTI]

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  3. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  4. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  5. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  6. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  8. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John (Bethel Park, PA)

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  9. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  10. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  11. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  12. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, Marcus B. (Kingston, TN); Thompson, Cyril V. (Knoxville, TN)

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  13. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  14. Golden Opportunity: Proposed Penalty (2014-CE-20003)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Golden Opportunity, Inc. failed to certify room air conditioners, central air conditioners/heat pumps, and residential clothes washers as compliant with the applicable energy conservation standards.

  15. Energy Saver 101 Infographic: Home Cooling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to heat up and temperatures rise, many of us are cranking up the air conditioners to stay cool. It should come as no surprise then that air conditioners use about 5 percent of...

  16. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Customers are eligible for room air conditioners and water heaters through the Appliance Rebate Program. Room air conditioners qualify for a rebate of $25 and water heaters qualify for a rebate o...

  17. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  18. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 PDF icon Compressed Air Storage ...

  19. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    customers. Rebates are available for high efficiency lighting equipment, occupancy sensors, central air conditioners, geothermal heat pumps, windows, appliances, refrigeration...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential Savings Category: Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers, RefrigeratorsFreezers, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, Programmable Thermostats, Comprehensive MeasuresWhole Building Barron Electric Cooperative- ENERGY STAR Appliance and Energy Efficient Lighting Rebate...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Shrewsbury Electric offers rebates on ENERGY STAR appliances. Eligible products include washing machines, dishwashers, refrigerators, and room air conditioners. Customers......

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Construction, Industrial Savings Category: Dishwasher, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Air conditioners, Heat...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Heat Pumps, Air conditioners, Programmable Thermostats, CaulkingWeather-stripping,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air conditioners, geothermal heat pumps, windows, appliances, refrigeration equipment, food service equipment, newly constructed buildings and custom measures. Appliance rebates...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates are available for high efficiency lighting equipment, occupancy sensors, central air conditioners, geothermal heat pumps, windows, appliances, refrigeration...

  10. EA-1892: Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps (June 2011)

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Lighting, Air conditioners, Programmable Thermostats, Building Insulation, Windows,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Lighting, Heat Pumps, Air conditioners, Programmable Thermostats, Windows, Other EE,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Air conditioners, Building Insulation, Pool Pumps Puget Sound Energy- Commercial...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    installation of efficient lighting fixtures, air conditioners, heat pumps, water heaters, central electric thermal sto... Eligibility: Commercial, Industrial Savings Category:...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ceiling Fan, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chillers, Furnaces, Boilers, Air conditioners, Programmable Thermostats, Motor VFDs, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Xcel Energy-...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State Government, Tribal Government, Agricultural, Institutional Savings Category: Solar Water Heat, Water Heaters, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Combined Heat & Power, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, Caulking...

  3. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Caulking...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Government Savings Category: Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Multifamily Residential, Low Income Residential Savings Category: Geothermal Heat Pumps, Clothes Washers, RefrigeratorsFreezers, Heat Pumps, Air conditioners...

  8. List of Personal Computing Equipment Incentives | Open Energy...

    Open Energy Info (EERE)

    Alexandria Light and Power - Commercial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Commercial Industrial Central Air conditioners Chillers...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government, Institutional Savings Category: Solar Water Heat, Solar Thermal Electric, Solar Photovoltaics, Water Heaters, Furnaces, Heat Pumps, Air conditioners, Caulking...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Category: Biomass, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Building Insulation, Windows, Roofs, Other EE Community Energy Education Management...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, Windows, Other EE, Vending Machine Controls, Tankless Water Heater Marshall Municipal Utilities- Commercial Energy...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    web site... Eligibility: Commercial, Industrial Savings Category: Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Air conditioners,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Heat Pumps, Air conditioners Reading Municipal Light Department- Residential Energy Star Appliance Rebate Program...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RefrigeratorsFreezers, Dehumidifiers, Water Heaters, Heat Pumps, Air conditioners Reading Municipal Light Department- Residential Energy Star Appliance Rebate Program...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Caulking...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chillers, Furnaces, Boilers, Air conditioners, Programmable Thermostats, Motor VFDs, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment State Energy Loan...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chillers, Furnaces, Boilers, Air conditioners, Programmable Thermostats, Motor VFDs, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Alternative...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Building Insulation, Windows, Doors, Processing and Manufacturing Equipment, Other EE, Wind (Small), Hydroelectric (Small), LED Lighting...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal, Daylighting, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Water Heaters, Lighting, Heat Pumps, Air conditioners, Comprehensive MeasuresWhole...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Residential, Multifamily Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Heat Pumps, Air conditioners, Programmable Thermostats,...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial, Construction, Industrial, Institutional Savings Category: Geothermal Heat Pumps, Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, Caulking...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chillers, Furnaces, Boilers, Air conditioners, Programmable Thermostats, Motor VFDs, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Refine your...

  4. ISSUANCE 2015-08-21: Energy Conservation Program: Test Procedures for

    Office of Environmental Management (EM)

    Central Air Conditioners and Heat Pumps, Supplemental Notice of Proposed Rulemaking | Department of Energy Program: Test Procedures for Central Air Conditioners and Heat Pumps, Supplemental Notice of Proposed Rulemaking ISSUANCE 2015-08-21: Energy Conservation Program: Test Procedures for Central Air Conditioners and Heat Pumps, Supplemental Notice of Proposed Rulemaking This document is the Energy Conservation Program: Test Procedures for Central Air Conditioners and Heat Pumps,

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Water Heaters, Heat Pumps, Air conditioners, Motors, Other EE, LED Lighting Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Savings Category: Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Processing and Manufacturing Equipment, CustomOthers pending...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dehumidifiers, Lighting, Heat Pumps, Air conditioners, Building Insulation, Windows, Motors, Processing and Manufacturing Equipment, Comprehensive MeasuresWhole Building,...

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Program Evaluation: Program Life Cycle

    Broader source: Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  10. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  11. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  12. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pumps; central air conditioning; ECM motors; and heat pump water heaters. Rebates for air-source heat pumps and central air conditioners vary based upon system efficiency. All...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air conditioners Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Air-Quality Improvement Tax Incentives Qualifying air quality facilities, which can be financed...

  15. Burlington Electric Department - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Lighting Air conditioners Compressed air Tankless Water Heater Maximum Rebate 3200 max incentive for air compressors Program Info Sector Name Utility Administrator Burlington...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Savings Category: Lighting, Chillers, Heat Pumps, Air conditioners, Heat recovery, Compressed air, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Compressed air, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Siding, Roofs,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Air conditioners, Compressed air, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Siding, Roofs, Agricultural Equipment, Other EE, Wind...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air conditioners, Compressed air, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Motors,...

  20. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) (Conference...

    Office of Scientific and Technical Information (OSTI)

    Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Paul Alivisatos, LBNL Director...

  1. Carbon Cycle Engineering | Open Energy Information

    Open Energy Info (EERE)

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  2. New Cycle Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Cycle Capital LLC Jump to: navigation, search Name: New Cycle Capital, LLC. Place: San Francisco, California Zip: 94103 Product: San Francisco-based venture capitalist firm...

  3. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options ...

  4. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect (OSTI)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (air capture). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

  5. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  6. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  7. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  8. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to todays implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  9. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  10. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  11. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  12. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  13. Air Charter Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    42.2 (April 2012) 1 Documentation and Approval of Federally Funded International Travel (Fly America Act-Open Skies Agreement) Overview This section provides guidance to DOE Contracting Officers, Contracting Officer Representatives, and Program Officials on documentation and approval of federally funded international travel by Federal contractors and subcontractors in accordance with FAR 52.247-63 PREFERENCE FOR U.S.-FLAG AIR CARRIERS (JUNE 2003), 49 U.S.C. §40118 (Fly America Act) and the Open

  14. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  15. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  16. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  17. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  18. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from cradle to grave. It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  19. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  20. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  1. GAX absorption cycle design process

    SciTech Connect (OSTI)

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  2. Analyzing Your Compressed Air System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines the process to analyze industrial compressed air systems and ensure proper system configuration.

  3. Compressed Air System Control Strategies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance.

  4. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality Maintaining System Air Quality This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment. COMPRESSED AIR TIP SHEET #12 PDF icon Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System Pressure

  5. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle

  6. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect (OSTI)

    Arsalan Razani; Kwang J. Kim

    2001-12-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has increased due to the onset of Maranogni convection as well as the population of ''dropwise-like'' condensation increased. The results have been published in peer reviewed journals.

  7. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC

    Buildings Energy Data Book [EERE]

    1 Efficiency Standards for Residential Central Air Conditioners and Heat Pumps (1) Type SEER (3) HSPF (4) Split System Air Conditioners 13.0 -- Split System Heat Pumps 13.0 7.7 Single Package Air Conditioners 13.0 -- Single Package Heat Pumps 13.0 7.7 Through-the-Wall Air Conditioners and Heat Pumps: -Split System (2) 10.9 7.1 -Single Package (2) 10.6 7.0 Small Duct, High Velocity Systems 13.0 7.7 Space Constrained Products -Air Conditioners 12.0 -- -Heat Pumps 12.0 7.4 Note(s): Source(s): 1)

  8. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  9. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  10. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  11. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  12. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  13. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  14. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL ._~ AtFx=b.-zf .7.-i- M r. s. .II. Gown -~ Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l/2" biscuits will:be 107'poutids approximately; i.e. 100 pounds of thorium per biscuit. A four biscuit charge is not feasible because of crucible dimensions, availability, etc. A three biscuit charge will, when molten, fill the proposed crucible half full. This condition is un- desirable because, due to the low heat of fusion of thorium and the

  15. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Options Catalog - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  16. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  17. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  18. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  19. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installed CAES plant cost estimate of approximately $2,300/KW for the 210MW CAES 1A and 2 cycles. The capital cost for the 136 MW CAES 1 cycle was even higher due to the lower generating capacity of the cycle. Notably, the large equipment could have generated additional capacity (up to 270MW) which would have improved the cost per KW; however, the output was limited by the night time transmission system capability. The research herein, therefore, is particular to the site-specific factors that influenced the design and the current and forecasted generation mix and energy prices in Upstate New York and may not necessarily indicate that CAES plants cannot be economically constructed in other places in New York State or the world.

  20. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  1. Integrated Climate and Carbon-cycle Model

    Energy Science and Technology Software Center (OSTI)

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  2. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  3. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory...

  4. Kalex Advanced Low Temp Geothemal Power Cycle

    Broader source: Energy.gov [DOE]

    Kalex Advanced Low Temp Geothemal Power Cycle presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. Fuel Cycle Research and Development Presentation Title

    Office of Environmental Management (EM)

    Materials Recovery and Waste Form Development Campaign Overview Jim Bresee, DOE NE NEET Webinar September 17, 2014 Campaign Objectives  Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions  Campaign strategy is based on developing: - Technologies

  6. Air Force Renewable Energy Programs

    Broader source: Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  7. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  8. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  9. Rankine cycle system and method

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  10. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  11. Title: The Life-cycle

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author affiliation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also affiliated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, ejalm@lbl.gov, phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720

  12. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  13. Gasoline distribution cycle and vapor emissions in Mexico City metropolitan area

    SciTech Connect (OSTI)

    Molina, M.M.; Secora, I.S.; Gallegos, J.R.M.; Grapain, V.M.G.; Villegas, F.M.R.; Flores, L.A.M.

    1997-12-31

    Ozone in the main air pollutant in Mexico City Metropolitan Area (MCMA). This kind of pollution is induced by the emissions of nitrogen oxides and hydrocarbons. According to Official Statistics National Air Pollution Quality Standard is exceeded over 300 days a year. Volatile hydrocarbons are generated in the cycle of storage transport and distribution of fuel (Gasoline Distribution Cycle). Above 17 millions of liters are handled daily in MCMA. Evaporative emission control is a complex task involving: floating roof tanks and vapor recovery units installation at bulk terminals and implementation of Phase 1 and Phase 2 vapor recovery systems at service stations. Since 1990, IMP has been involved in researching vapor emissions associated to gasoline storage and distribution cycle. Besides, the authors evaluate several technologies for bulk terminals and service stations. In this job, the authors present the results of an evaluation according to Mexican Official Standard of 500 vehicles. The gasoline vapors are trapped during refueling of cars and they are conduced to an equipment that includes an activated charcoal canister in order to adsorb them. Another Activated charcoal canister adsorbs ambient air as a reference. Experimental results showed that refueling hydrocarbon emissions are between 0.4 and 1.2 grams per liter with averages of 0.79 and 0.88 grams per liter according with two different gasoline types. These results were applied to Mexico City Vehicular fleet for the gasoline distribution cycle in order to obtain a total volatile hydrocarbon emission in Mexico City Metropolitan Area.

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    third-party ow... Eligibility: Schools Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Biomass, Equipment Insulation, Air conditioners, DuctAir sealing,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, InstallersContractors Savings Category: Solar Photovoltaics, Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include efficient central air conditioners, central air-source heat pumps, electric heat pump water heaters, furnace blower fans, programmable thermostats, refrigerator...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Commercial, Industrial Savings Category: Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, DuctAir...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government, Agricultural, Institutional Savings Category: Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    measures, insulation... Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Air conditioners, Compressed air, Programmable Thermostats, Building Insulation, Windows, Roofs, Motor VFDs, Agricultural Equipment, CustomOthers pending approval, Other...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air purifiers, refrigerators and room air conditioners. The Home Performance with...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, DuctAir sealing, Roofs, CustomOthers pending approval, Other EE, Food Service Equipment Industrial and Agricultural Production Efficiency Program Energy...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    insulation... Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Lighting, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Clothes Washers, Dehumidifiers, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dishwasher, RefrigeratorsFreezers, Equipment Insulation, Water Heaters, Lighting, Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, Custom...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clothes Washers, Dishwasher, RefrigeratorsFreezers, Equipment Insulation, Water Heaters, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Contractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir sealing, Windows, Custom...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ranges from 6... Eligibility: Residential Savings Category: Solar Photovoltaics, Water Heaters, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  11. Department of Energy Announces First Entry for Market- Driven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Entry for Market- Driven High-Efficiency Commercial Air Conditioners Challenge Department of Energy Announces First Entry for Market- Driven High-Efficiency Commercial Air...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, Siding, Roofs OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial, Industrial Savings Category: Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Motors, Motor VFDs,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RefrigeratorsFreezers, Water Heaters, Lighting, Boilers, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE Gross Receipts...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Residential Savings Category: Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Equipment Insulation, Lighting, Lighting ControlsSensors, Air conditioners, DuctAir...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Geothermal Heat Pumps, Clothes Washers, RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Chillers, Heat Pumps, Air conditioners, DuctAir sealing,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Water Heaters, Lighting, Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, CustomOthers pending approval, Other EE Energy Conservation...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Doors, Other EE, Insulation Energy Conservation Tax Credits-...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Compressed air, Energy...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs, Processing and Manufacturing Equipment, Custom...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, Agricultural Equipment,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting, Heat Pumps, Air conditioners, DuctAir sealing, Other EE, LED Lighting Dubois REC- Residential Energy Efficiency Rebate Program Dubois REC offers a variety of...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    filter Fed. Government (1) Apply Fed. Government filter InstallerContractor (1) Apply InstallerContractor filter Filter by savings category: Air conditioners (441) Apply Air...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    filter Fed. Government (1) Apply Fed. Government filter InstallerContractor (1) Apply InstallerContractor filter Filter by savings category: Air conditioners (603) Apply Air...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps, Air conditioners, Compressed air, Motors, CustomOthers pending approval, Food Service Equipment, Vending Machine Controls, LED Lighting, Commercial Refrigeration...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be the vested owner of the property where... Eligibility: Residential Savings Category: Water Heaters, Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the energy efficiency of homes, appliances and equipment. Rebates are available for water heaters, geothermal heat pumps, air-source heat pumps, central air conditioners, ETS...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with... Eligibility: Residential Savings Category: Solar Water Heat, Solar Space Heat, Water Heaters, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Local Government, Residential, Agricultural Savings Category: Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air purifiers, refrigerators and room air conditioners. The Home Performance...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the energy efficiency of homes. Rebates are available for qualified dishwashers, clothes washers, air conditioners (central and room), lighting, heat pumps (air-source and...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, CustomOthers pending approval, Food Service Equipment, LED Lighting, Tankless...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, Agricultural Equipment, CustomOthers pending approval, Other EE, LED...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Air conditioners, Steam-system upgrades, Compressed air, Energy Mgmt. SystemsBuilding Controls, Building...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ControlsSensors, Chillers, Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs, Processing and...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Programmable Thermostats, Energy Mgmt. Systems...

  20. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...