National Library of Energy BETA

Sample records for air bags power

  1. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  2. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  3. Bag breakup of low viscosity drops in the presence of a continuous air jet

    SciTech Connect (OSTI)

    Kulkarni, V. Sojka, P. E.

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ?12 < We < ?16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  4. Bag pressure monitor

    DOE Patents [OSTI]

    Vaughn, Mark Roy; Miller, Alva Keith

    2000-01-01

    An inexpensive mechanical indicator for measuring low pressure in an inflating bag includes a pair of sides connected to each other at one edge and pivotally connected at spaced parallel locations on the bag. A spring biases the sides towards each other in opposition to tension in the inflating bag. The distance between the sides is indicative of the pressure in the bag. The device is accurate at pressures below 0.05 psi.

  5. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  6. Power Air H Plus Korean Back up Power System JV | Open Energy...

    Open Energy Info (EERE)

    Plus Korean Back up Power System JV Jump to: navigation, search Name: Power AirH-Plus Korean Back-up Power System JV Place: Korea (Republic) Product: Power Air signed a MOU with...

  7. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Info (EERE)

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  8. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  9. Geothermal Power Plants — Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  10. Material bagging device

    DOE Patents [OSTI]

    Wach, Charles G.; Nelson, Robert E.; Brak, Stephen B.

    1984-01-01

    A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.

  11. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  12. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  13. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect (OSTI)

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  14. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  15. Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen...

    Open Energy Info (EERE)

    Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name: Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place:...

  16. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  17. Air-Cooled Condensers for Next Generation Power Plants | Department...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Hybrid and Advanced Air Cooling Advanced HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in ...

  18. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAESℱ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  19. Power Air Corp formerly Fortune Partners | Open Energy Information

    Open Energy Info (EERE)

    Fortune Partners) Place: Livermore, California Zip: 94550 Product: Focused on Zinc-Air Fuel Cell (ZAFC) that generates reliable, environmentally sustainable, zero emission...

  20. Hanford Beryllium Awareness Group (BAG) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Wide Programs Beryllium Program Hanford Beryllium Awareness Group (BAG) About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Hanford

  1. Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

  2. State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  3. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  4. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  5. Hybrid Air-Cooled Condenser for Power Plants and other applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Geothermal Geothermal Electricity Transmission Electricity Transmission Find More Like This Return to Search Hybrid Air-Cooled Condenser for Power Plants and other applications National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal power plants use heat from the Earth's core to heat water or another working fluid to turn it into steam. Geothermal power plants achieve the conversion from geothermal energy to

  6. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  7. Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  8. Air quality implications associated with the selection of power plants in the Pacific Northwest

    SciTech Connect (OSTI)

    Baechler, M.C.; Glantz, C.S.; Edelmen, P.C.

    1993-11-01

    This assessment models emission inventories and pollutant emission rates for fossil fuel power plants. Ground-level air concentration of nitrogen oxides, sulfur dioxide and TSP are predicted. Pollutant deposition, non-acidic deposition, acidic deposition, ozone impacts, and visibility attenuation are considered. Human health effects, wildlife effects, effects on plants and crops, and residual environmental impacts are estimated from predicted emissions.

  9. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  10. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  11. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  12. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  13. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  14. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOE Patents [OSTI]

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  15. Peculiarities of the spatial focusing of a high-power femtosecond laser pulse in air

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A

    2008-12-31

    The propagation of focused high-power femtosecond laser pulses in air is numerically simulated. The dependences of the effective average size of a focal spot and the maximum achievable radiation intensity in the focal beam waist on the peak power of incident radiation are studied. It is shown that in the regime of nonstationary self-action of radiation, due to photoionisation of the medium and formation of plasma, it becomes impossible to focus radiation into a spot of diffraction-limited size predicted by a linear theory. (nonlinear optical phenomena)

  16. BAG (Continuous Round Robin Packet Capture)

    Energy Science and Technology Software Center (OSTI)

    2006-03-10

    Bag is a miniature pcap filter which takes pcap input (or input off the wire) using a bpf filter, if specified, and then writes the output to stdout or a file (in pcap format). It depends for some aspects of its functionality on a libpcap library which uses a shared memory packet capture ring bugger. There are two build in modules: chcksum and session. the build in chcksum modules is used to anonymize the ipmore » addresses and repair any checksums in the stream. % bag -r /tmp/*.pcap -Cchucksum, 128.1 65: 10.10 The session module generates sessions which are defined as a series of packets that have two things in common. the first is a unique five-tuple composed oi an IP protocol, IP source address, IP source port, IP destination address, and IP destination port. The second is that if the originating packet is associated with a bi-directional service such as ftpltcp, characteristics and data will be kept for both flows involved with the service. The only protocols evaluated beyond the IP header are ICMP, TCP and UDP. A session can last for as long as bag is running. However, under normal conditions, sessions are generated every time they appear to have closed down. There is a man page included with the distribution which goes into more detail.« less

  17. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    SciTech Connect (OSTI)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. )

    1991-01-01

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

  18. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  19. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown Bag: Air Northwest: The HVAC TAN When: Wednesday, July 29th, 2015 Time: 12:00 pm - 1:00 pm PDT Description: The Commercial Team has news to share about the launch of the...

  20. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  1. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  2. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  3. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  4. The use of filtered bags to increase waste payload capacity

    SciTech Connect (OSTI)

    Dustin, D.F.; Thorp, D.T.; Rivera, M.A.

    1998-03-03

    For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials.

  5. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  6. Economic analysis of operating alternatives for the South Vandenberg Power Plant at Vandenberg Air Force Base, California

    SciTech Connect (OSTI)

    Daellenbach, K.K.; Dagle, J.E.; Reilly, R.W.; Shankle, S.A.

    1993-02-01

    Vandenberg Air Force Base (VAFB), located approximately 50 miles northwest of Santa Barbara, California, commissioned the Pacific Northwest Laboratory to conduct an economic analysis of operating alternatives of the South Vandenberg Power Plant (SVPP). Recent concern over SVPP operating and environmental costs prompted VAFB personnel to consider other means to support the Missile Operation Support Requirement (MOSR). The natural gas-fired SVPP was originally designed to support the Space Transportation System launch activities. With cancellation of this mission, the SVPP has been used to provide primary and backup electric power to support MOSR activities for the Space Launch Complexes. This document provides economic analysis in support of VAFB decisions about future operation of the SVPP. This analysis complied with the life-cycle cost (LCC) analytical approach detailed in 10 CFR 436, which is used in support of all Federal energy decisions. Many of the SVPP operational and environmental cost estimates were provided by VAFB staff, with additional information from vendors and engineering contractors. The LCC analysis consisted of three primary operating strategies, each with a level of service equal to or better than the current status-quo operation. These scenarios are: Status-quo operation where the SVPP provides both primary and backup MOSR power; Purchased utility power providing primary MOSR support with backup power provided by an Uninterruptible Power Supply (UPS) system. The SVPP would be used to provide power for long-duration power outages; Purchased utility power provides primary MOSR support with backup power provided by a UPS system. A new set of dedicated generators would provide backup power for long-duration power outages.

  7. Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2012-04-30

    This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

  8. Plastic Bags Might Kickstart the Carbon Capture Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plastic Bags Might Kickstart the Carbon Capture Industry Plastic Bags Might Kickstart the Carbon Capture Industry May 6, 2016 - 5:46pm Addthis This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2

  9. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    SciTech Connect (OSTI)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: ‱ The expression level of BAG3 is induced by heat stress. ‱ BAG3 translocates to the nucleus upon heat stress. ‱ BAG3 interacts with HSF1 and co-localizes to the nucleus. ‱ BAG3 is a key regulator for HSF1 nuclear shuttling.

  10. Experimental study of filamentation of high-power ultrashort laser pulses with initial angular divergence in air

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Kabanov, Andrey M; Matvienko, Gennady G; Stepanov, A N

    2013-04-30

    Experimental study of the nonlinear propagation of near-IR gigawatt femtosecond laser pulses in air in the self-focusing and filamentation regimes have been performed in open air and in laboratory. The influence of the initial geometric divergence (both positive and negative) of the laser beam with an irregular intensity profile on the transverse light energy distribution at the end of the path is studied. It is shown experimentally that the displacement of the filamentation region due to geometric focusing or defocusing, makes it possible to control the number and spatial location of light energy density peaks in the receiving plane. The conditions under which a light filament can be reconstructed after the beam transmission through a linear focal waist are determined. A semi-empirical threshold relation is obtained for the beam focusing force and the beam power, when light beam undergoes filamentation behind the geometric focus of the optical system. (extreme light fields and their applications)

  11. Means of improving the operating efficiency of air condensers at the Verkhne-Mutnovskaya Geothermal Power Plant in Kamchatka

    SciTech Connect (OSTI)

    Parshin, B. E.; Muratov, P. V.; Pashkevich, R. I.

    2007-07-15

    Operation of the Verkhne-Mutnovskaya Geothermal Power Plant (VMGPP) has revealed ineffective summer-time performance of air condensers (AC), which is caused by an insufficient heat reserve. Four alternate schemes are examined for improvement of the operational efficiency of the AC: replacement of the four-by five-tier heat-exchange modules; installation of high-output fans; a combination of the first two schemes; and, installation of additional sections in each power-generating set. Based on thermodynamic analysis that we have adapted for conditions at the VMGPP, it is established that the last alternate scheme is optimal, andwill have a payback period of six years, and a heat reserve of more than 40%, a figure approaching requirements now in force.

  12. Aging and service wear of air-operated valves used in safety-related systems at nuclear power plants

    SciTech Connect (OSTI)

    Cox, D.F.; McElhaney, K.L.; Staunton, R.H.

    1995-05-01

    Air-operated valves (AOVs) are used in a variety of safety-related applications at nuclear power plants. They are often used where rapid stroke times are required or precise control of the valve obturator is required. They can be designed to operate automatically upon loss of power, which is often desirable when selecting components for response to design basis conditions. The purpose of this report is to examine the reported failures of AOVs and determine whether there are identifiable trends in the failures related to predictable causes. This report examines the specific components that comprise a typical AOV, how those components fail, when they fail, and how such failures are discovered. It also examines whether current testing frequencies and methods are effective in predicting such failures.

  13. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  14. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  15. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  16. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect (OSTI)

    Karman, D.; O`Leary, K.; O`Reilly, S.

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  17. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  18. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  19. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  20. 2016-3-17_Allocations_Brown_Bag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bagwell & Richard Gerber! ! NERSC Brown Bag! March 17, 2016 Allocations --- 1 --- Allocations Summary * How t he N ERSC p ie i s d istributed - A l i'le h istory * DOE O ffices & P rograms * NERSC r eserves * The E RCAP p rocess * How u ser a ccounts a nd a llocaBons w ork * What h appens w hen u ser/repo r un o ut o f B me * Q & A --- 2 --- Allocations History 0 500000000 1E+09 1.5E+09 2E+09 2.5E+09 3E+09 3.5E+09 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

  1. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  2. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  3. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  4. Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gut Microbiome | Department of Energy 0.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be used

  5. Analysis of S. 1844, the Clear Skies Act of 2003; S. 843, the Clean Air Planning Act of 2003; and S. 366, the Clean Power Act of 2003

    Reports and Publications (EIA)

    2004-01-01

    Senator James M. Inhofe requested that the Energy Information Administration (EIA) undertake analysis of S.843, the Clean Air Planning Act of 2003, introduced by Senator Thomas Carper; S.366, the Clean Power Act of 2003, introduced by Senator James Jeffords; and S.1844, the Clear Skies Act of 2003, introduced by Senator James M. Inhofe. The EIA received this request on March 19, 2004. This Service Report responds to his request.

  6. Summary of MgO Bag and Room Model Team | Department of Energy

    Office of Environmental Management (EM)

    This document corresponds to Appendix D: Modeling Integrated Summary Report of the Technical Assessment Team Report. PDF icon Summary of MgO Bag and Room Model Team More Documents ...

  7. Adsorption air conditioner

    DOE Patents [OSTI]

    Rousseau, Jean L. I.

    1979-01-01

    A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

  8. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  9. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700–900 °C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  10. Influence of the laser beam size on the length of a filament formed by high-power femtosecond laser radiation in air

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Kabanov, A M; Matvienko, G G; Golik, S S

    2014-05-30

    The single-filamentation regime of GW femtosecond laser beams of millimetre diameter, propagating in atmospheric air under collimated and tight focusing, has been theoretically and experimentally (at wavelengths of 800 and 400 nm) investigated. The influence of the initial size of the light beam on the spatial characteristics of the filamentation region is systematically analysed. The filamentation length for collimated beams with the same initial power is found to nonmonotonically depend on the initial beam radius. In this case, the filament start point is displaced, and the longitudinal continuity of the related plasma channel is lost. For tightly focused beams, the observed filament length barely depends of the initial beam radius, provided that the peak intensity remains constant. (interaction of radiation with matter)

  11. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  12. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  13. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  14. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring ...

  15. Reduction of air in-leakage and flue gas by-passing in the penthouse of Duke Power-Marshall Unit No. 4

    SciTech Connect (OSTI)

    Campbell, R.; Rush, T.

    1995-12-31

    After a year of operation, the penthouse was inspected and found to be {open_quotes}lightly dusted{close_quotes} with barely sufficient accumulation to show footprints. This is contrasted with previous five foot deep ash dunes. The savings in maintenance repairs are estimated at $65,000 for vacuuming that was not required, and $80,000 in maintenance personnel weld repairs. The history of repairs was such that vacuuming and weld repair costs were predictable, and before the IOSMEMBRANE{reg_sign} installation, always expected as recurring maintenance costs. The heat rate improvement of reducing air in-leakage is well known, and significant. The principal quantified savings are in reduced maintenance costs, more expedient repairs (reduced cool down time for repairs in the penthouse), and safety. The heat rate improvements, though not quantified yet, are expected to be significant. The success of the ISOMEMBRANE{reg_sign} on Unit No. 4 has resulted in similar plans for Unit No. 3 and other units in the Duke Power system.

  16. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOE Patents [OSTI]

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  17. Air breathing lithium power cells

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  19. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  20. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  1. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  2. A Comparison of Three Voting Methods for Bagging with the MLEM2 Algorithm

    SciTech Connect (OSTI)

    Clinton Cohagan; Jerzy W. Grzymala-Busse; Zdzislaw S. Hippe

    2010-03-17

    This paper presents results of experiments on some data sets using bagging on the MLEM2 rule induction algorithm. Three different methods of ensemble voting, based on support (a non-democratic voting in which ensembles vote with their strengths), strength only (an ensemble with the largest strength decides to which concept a case belongs) and democratic voting (each ensemble has at most one vote) were used. Our conclusions are that though in most cases democratic voting was the best, it is not significantly better than voting based on support. The strength voting was the worst voting method.

  3. Air Sealing

    SciTech Connect (OSTI)

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  4. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown Bag: Commercial Measure Review Part One When: Wednesday, October 21, 2015 Time: 12:00 pm - 1:00 pm PDT Description: Please join us for a Brown Bag on Commercial Measure...

  5. Bag of Lines (BoL) for Improved Aerial Scene Representation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less

  6. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  7. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  8. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  9. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  10. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  11. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  12. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ÂșC and achieve energy conversion efficiencies greater than 50%.

  13. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  14. Gelatin based on Power-gel.TM. as solders for Cr.sup.4+laser tissue welding and sealing of lung air leak and fistulas in organs

    DOE Patents [OSTI]

    Alfano, Robert R.; Tang, Jing; Evans, Jonathan M.; Ho, Peng Pei

    2006-04-25

    Laser tissue welding can be achieved using tunable Cr.sup.4+ lasers, semiconductor lasers and fiber lasers, where the weld strength follows the absorption spectrum of water. The use of gelatin and esterified gelatin as solders in conjunction with laser inducted tissue welding impart much stronger tensile and torque strengths than albumin solders. Selected NIR wavelength from the above lasers can improve welding and avoid thermal injury to tissue when used alone or with gelatin and esterified gelatin solders. These discoveries can be used to enhance laser tissue welding of tissues such as skin, mucous, bone, blood vessel, nerve, brain, liver, pancreas, spleen, kidney, lung, bronchus, respiratory track, urinary tract, gastrointestinal tract, or gynecologic tract and as a sealant for pulmonary air leaks and fistulas such as intestinal, rectal and urinary fistulas.

  15. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  16. Clean Coal Power Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other ...

  17. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  18. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  19. EPA The Clean Power Plan

    Office of Environmental Management (EM)

    This means carbon and air pollution are already decreasing, improving public health each and every year. The Clean Power Plan 7 Overview * Sets carbon dioxide emissions performance ...

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results Cohort 1, Year 1 Brown Bag April 8, 2013 Agenda * Energy Savings Validation Methodology - Monitoring, Targeting & Reporting (MT&R) - Cadmus Savings Estimation Approach -...

  1. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  2. Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums

    SciTech Connect (OSTI)

    D. T. Clark; A. S. Siahpush; G. L. Anderson

    2004-07-01

    This paper describes a materials and computational model based analysis utilized to design an engineered “overpack” container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based “Bag-Buster” process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the “Ultra-BagBuster” process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpack’s bottom plate and above the overpack’s lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

  3. MSC Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    company working on the Perpetual Pyramid Power Plant (P4), a system which uses sun-heated rising air to turn small turbines to generate power. References: MSC Power...

  4. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  5. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  6. Tips: Sealing Air Leaks | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can create an inexpensive, reusable fireplace flue plug by filling a plastic trash bag with fiberglass batt scraps and jamming it into the flue. Attach a durable cord...

  7. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  8. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  9. Clean Air Power | Open Energy Information

    Open Energy Info (EERE)

    Product: Technology that allows heavy duty diesel engines to operate primarily on natural gas Website: www.cleanairpower.com Coordinates: 32.941011, -117.036155 Show Map...

  10. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  11. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  12. Air-Cooled Traction Drive Inverter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon ape042chinthavali2012o.pdf More Documents & Publications High-Temperature, Air-Cooled Traction Drive Inverter Packaging Wide Bandgap Power Electronics Vehicle ...

  13. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  14. Feasibility Study of Economics and Performance of Biopower at the Chanute Air Force Base in Rantoul, Illinois. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Scarlata, C.; Mosey, G.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chanute Air Force Base site in Rantoul, Illinois, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this study was to assess the site for a possible biopower system installation and estimate the cost, performance, and impacts of different biopower options.

  15. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  16. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Business Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Full details are available on the...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SECTOR MEASURE UPDATES AND NEW DOCUMENTS Brown Bag Part 1 of 2 October 21, 2015 WHAT'S NEW FOR COMMERCIAL MEASURES? Refriger- ation measures now in the IM HVAC measures revised and...

  18. Hickam Air Force Base

    Broader source: Energy.gov [DOE]

    Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

  19. air_water.cdr

    Office of Legacy Management (LM)

    122011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring ...

  20. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  1. PowerPoint Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Addressing the Environmental Impacts of the Power Sector 2011 EIA Energy Conference April 26, 2011 Sam Napolitano U.S. EPA Context * EPA has recently proposed regulations governing air emissions, coal ash handling, and cooling water intakes for power plants. * The regulations address years of uncertainty (in some cases decades) and are designed to address harmful pollution and other impacts under existing law and mandates established by Congress. * Several rules respond to Court direction. * The

  2. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  3. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    SciTech Connect (OSTI)

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  4. Determining the Right Air Quality for Your Compressed Air System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance: A Sourcebook

  5. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  6. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  7. Isokinetic air sampler

    DOE Patents [OSTI]

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  8. Microsoft PowerPoint - 2009 HSC - Power & Cooling Issues rev6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooling losses: 52 MFlopsWatt How Does a Data Center Use ... PUE Power Usage Effectiveness PUE Total Facility Power ... Objective: Compare the TCO of an air-cooled facility to that ...

  9. Detecting Air Leaks

    Broader source: Energy.gov [DOE]

    You may already know where some air leakage occurs in your home, such as an under-the-door draft, but you'll need to find the less obvious gaps to properly air seal your home.

  10. Determining the Right Air Quality for Your Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    coating, climate control Process Air Food and pharmaceutical process air, ... Contaminants can enter a compressed air system at the compressor intake, or can be ...

  11. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  12. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  13. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  14. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  15. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space-based measurements can support Clean Air Act regulations LOS ALAMOS, N.M., May 19, 2014-Air pollution and greenhouse gas emissions from two coal-fired power plants in the ...

  16. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  17. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  18. Large panel design for containment air baffle

    DOE Patents [OSTI]

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  19. Large panel design for containment air baffle

    DOE Patents [OSTI]

    Orr, Richard S.

    1992-01-01

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.

  20. Development of vehicle magnetic air conditioner (VMAC) technology. Final

    Office of Scientific and Technical Information (OSTI)

    report (Technical Report) | SciTech Connect Development of vehicle magnetic air conditioner (VMAC) technology. Final report Citation Details In-Document Search Title: Development of vehicle magnetic air conditioner (VMAC) technology. Final report The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was

  1. EIS-0127: New Energy-Efficient Homes Programs, Assessing Indoor Air Quality Options

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore whether different building techniques will control indoor air quality and still maintain cost-effective energy savings.

  2. Researching power plant water recovery

    SciTech Connect (OSTI)

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  3. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  4. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Site Environmental Report Annual Environmental Management System Progress Report Competing Uses Brochure Environmental Policy Statement NEPA Categorical Exclusion Determinations Environment Southwestern's mission of marketing and delivering Federal hydroelectric power fully supports the U.S. Department of Energy's strategic goal of improving the quality of the environment by reducing greenhouse gas emissions and environmental impacts to land, water, and air from energy production. In an

  5. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  6. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  7. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWhsq meter power production potential As the ...

  8. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  10. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  11. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  12. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  13. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  14. Protective air lock

    DOE Patents [OSTI]

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  15. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  16. Air-Breathing Fuel Cell Stack - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air-Breathing Fuel Cell Stack Los Alamos National Laboratory Contact LANL About This Technology Air-breathing passive fuel cell stack Air-breathing passive fuel cell stack Technology Marketing SummaryLANL has developed a fuel cell for portable power applications in laptop computers, toys, and other appliances with low-power demand.DescriptionThe increasing number of portable electronic devices on the market today-from laptop computers to remote-controlled toys-is creating a demand for improved,

  17. Pre-Feasibility Analysis of Pellet Manufacturing on the Former Loring Air Force Base Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hunsberger, R.; Mosey, G.

    2014-04-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundant woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.

  18. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  19. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Energy Savers [EERE]

    They reduce power consumption, helping your electric utility meet peak power demands. And they improve overall power quality. Also, by converting more AC power into DC power, less ...

  20. Coal gasification power plant and process

    DOE Patents [OSTI]

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  1. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  2. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  3. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power Water PowerTara Camacho-Lopez2016-04-18T19:53:50+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  4. Interagency Advanced Power Group meeting minutes

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  5. Interagency Advanced Power Group meeting minutes

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  6. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  7. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  8. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  9. Recent Progress in Retrieving Air Temperature Profiles and Air...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila ...

  10. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Building America Case Study: Air Leakage and Air Transfer Between...

    Energy Savers [EERE]

    Air Leakage and Air Transfer Between Garage and Living Space Waldorf, Maryland PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Waldorf, MD Partners: Building ...

  12. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  13. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  14. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  15. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  16. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  17. Air Products & Chemicals, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air Products is partnering with Denbury Green Pipeline – Texas, LLC to capture and sequester one million tons of carbon dioxide per year from two existing steam-methane reformers at Air Products’ hydrogen-production facility in Port Arthur, Texas. The captured CO2 is transported by pipeline to oil fields in eastern Texas for enhanced oil recovery. The total award value of the project is $431 million, with $284 million comprising DOE’s 66 percent share.

  18. CWS-Fired Residential Warm-Air Heating System

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  19. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  20. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  1. ARM - Lesson Plans: Air Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Pressure Objective The objective of this ... Important Points to Understand Air has weight and exerts pressure on everything with which ...

  2. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  3. first power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  4. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  5. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, Richard A. (Pittsburgh, PA); Yang, Wen-Ching (Export, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  6. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  7. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  8. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  9. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  10. Minimize Compressed Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Leaks Minimize Compressed Air Leaks This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations. COMPRESSED AIR TIP SHEET #3 PDF icon Minimize Compressed Air Leaks (August 2004) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Determine the Cost of Compressed Air for Your Plant Analyzing Your Compressed Air System

  11. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  14. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  15. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  16. Air Proportional Counter

    DOE Patents [OSTI]

    Simpson, J.A. Jr.

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  17. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL . AtFxb.-zf .7.-i- M r. s. .II. Gown - Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l2" biscuits will:be 107'poutids ...

  18. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contents Design Goals & Context Envelope Durability Indoor Air Quality Space Conditioning ... Durability * Indoor Air Quality * Space Conditioning * Energy Analysis * Financial ...

  19. Final Report- Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives

    Broader source: Energy.gov [DOE]

    Awardee: Southwest Research InstituteLocation: San Antonio, TXSubprogram: Concentrating Solar PowerFunding Program: SunShot Concentrating Solar Power R&DProject: Optimizing the CSP Tower Air...

  20. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  1. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  2. Power Systems Development Facility

    SciTech Connect (OSTI)

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  3. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  4. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  5. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  6. Microsoft PowerPoint - Air Soil Water rev3 - Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SALT PILE SAMPLING RESULTS (dpmg) (Bqg) South Face of Salt Pile 3132014 Below MDC Below MDC East Face of Salt Pile 3132014 Below MDC Below MDC West Face of Salt Pile 313...

  7. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Broader source: Energy.gov (indexed) [DOE]

    Energy This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of allowing one or more customers to combine their electrical meters for the purpose of net metering. Because local

  11. Demonstration of Air-Power-Assist (APA) Engine Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of ...

  12. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  13. ARM - Instrument - ccn-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ccn-air" does not exist.

  14. ARM - Instrument - cpc-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cpc-air" does not exist.

  15. ARM - Instrument - hk-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshk-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "hk-air" does not exist.

  16. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  17. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  18. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality Maintaining System Air Quality This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment. COMPRESSED AIR TIP SHEET #12 PDF icon Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System Pressure

  19. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  20. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  1. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power DOE Wind & Waterpower Technologies Office Director, Jose Zayas, addresses crowd at Waterpower Week [photo courtesy of the National Hydro Association] Permalink Gallery Sandia Labs participates in DOE's annual Waterpower Week News, News & Events, Renewable Energy, Uncategorized, Water Power Sandia Labs participates in DOE's annual Waterpower Week During the last week of April, Sandia National Laboratories participated in the National Hydropower Association Waterpower Week in

  2. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  3. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  4. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  5. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  6. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  7. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Training * Fundamentals of Compressed Air ... Compressed air needs are defned by the air quality and ... Plants with a fatter load profle can use simpler control ...

  8. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument was intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS was...

  9. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument is intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS will be...

  10. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  11. Tips: Air Conditioners | Department of Energy

    Energy Savers [EERE]

    Air Conditioners Tips: Air Conditioners Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ...

  12. DOE-HDBK-1169-2003; DOE Handbook Nuclear Air Cleaning Handbook

    Energy Savers [EERE]

    may be capable of positive or negative internal pressure. ... maintenance, heat loading, size, and disposal costs. ... with bagging ports for filter changes and waste disposal. ...

  13. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  14. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  15. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  16. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  17. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  18. Power inverters

    DOE Patents [OSTI]

    Miller, David H.; Korich, Mark D.; Smith, Gregory S.

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  19. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  20. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  1. Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod

    SciTech Connect (OSTI)

    Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

    2005-07-30

    Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

  2. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  3. Air ingression calculations for selected plant transients using MELCOR

    SciTech Connect (OSTI)

    Kmetyk, L.N.

    1994-01-01

    Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition to the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.

  4. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  5. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  6. Renaissance for wind power

    SciTech Connect (OSTI)

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  7. Magnus air turbine system

    DOE Patents [OSTI]

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.

  8. Florida Power and Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

  9. EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010

    Broader source: Energy.gov [DOE]

    Presentation to the Electricity Advisory Committe on October 29, 2010 by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

  10. Southern Power District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, water heaters, attic insulation, LED lighting, and HVAC tune-ups. All equipment...

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Reliability: Automotive Power Module Perspective Zhenxian Liang R&D Staff Power ... Power Module Packaging * High Reliability Power Module Packaging Packaging ...

  12. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... operation Dehumidification: * Relative humidity control ( 50%) Lunos e 2 HRV Ultra-Aire ENERGY STAR 70H Dehumidifier 04 Indoor Air Quality 01 Introduction 02 Design Goals 03 ...

  13. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  14. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  15. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  16. Air Force Renewable Energy Programs

    Broader source: Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  17. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  18. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  19. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. Power supply

    DOE Patents [OSTI]

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  2. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  3. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  4. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  5. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  6. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  7. ARM - Instrument - co-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsco-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Monoxide- Airborne (CO-AIR) Instrument Categories Airborne Observations, Atmospheric Carbon Contact(s) Stephen Springston Brookhaven National Laboratory (631) 344-4477 srs@bnl.gov

  8. ARM - Instrument - gustprobe-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgustprobe-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aircraft Gust Probe (GUSTPROBE-AIR) Instrument Categories Airborne Observations Contact(s) Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl

  9. AIR FORCE SPECIAL WEAPONS CENTER

    Office of Legacy Management (LM)

    HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command

  10. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  11. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  12. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  13. Dynamic and other secondary benefits of compressed air energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.

    1984-05-01

    Dynamic benefits of compressed air energy storage include load following, voltage regulation, provision for emergency power, and spinning reserve. Other secondary benefits include environmental acceptability and economic feasibility within the spectrum of potential energy storage methods. Geologic reservoir candidates are salt cavities, hard rock caverns and water-bearing permeable formations occurring as structural traps; the compatibility of solution-mined salt cavities with desired dynamic benefits is illustrated by positive results at Huntorf, West Germany. Air injection into and withdrawal from an aquifer has been conducted successfully at Pittsfield, Illinois. Environmental impacts are believed to be less important than corresponding impacts in rival storage technologies.

  14. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  15. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect (OSTI)

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  16. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  17. Clean Coal Power Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies

  18. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  19. Power optics

    SciTech Connect (OSTI)

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The theoretical estimates are compared with the experimental data. We discuss the issues related to the technology of fabrication of power optics elements based on materials with a porous structure, of lightweight highly stable large optics based on highly porous materials, multi-layer honeycomb structures and silicon carbide, as well as problems of application of physical and technical fundamentals of power optics in modern cutting-edge technology. (invited paper)

  20. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  1. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  2. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  3. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  4. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

  5. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  6. POWER REACTOR

    DOE Patents [OSTI]

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  7. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  8. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  9. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  10. Wireless power transfer magnetic couplers

    DOE Patents [OSTI]

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  11. DunoAir | Open Energy Information

    Open Energy Info (EERE)

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  12. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present Is there something in the air? Is there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 ...

  13. Metal-Air Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Metal-Air Battery Battelle Memorial Institute Contact ... The open electrochemical cells may function as metal-air batteries.Benefits Metal-air ...

  14. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  15. Heating, Ventilation and Air Conditioning Efficiency

    Energy Savers [EERE]

    Functions of HVAC Systems The purpose of a Heating, Ventilation and Air Conditioning ... energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. ...

  16. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for solar power, hydropower, wind power, fuel cells, biofuels, fracking, hybrid cars, geothermal energy, and the power grid * Educator portal being added this fall * ...

  17. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  18. Northwest, the Bonneville Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    voltage power lines that move large amounts of power from hydroelectric projects and power plants to urban centers hundreds of miles away. To keep the electricity flowing safely...

  19. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  20. East Germany struggles to clean its air and water

    SciTech Connect (OSTI)

    Cherfas, J.

    1990-04-20

    East Germans are working hard on a strategy to improve their polluted environment. Industrial plants are largely responsible for this pollution. A shroud of haze veils the suburbs of East Berlin. Far to the south the giant power plants around Leipzig pour more dust and sulfur dioxide into the air than in any other country in Europe. More than 90% of the country's electricity comes from brown coal, accompanied by prodigious quantities of dust and sulfur dioxide: almost 6 million tones of sulfur dioxide and more than 2 million tones of dust in 1988. East Germany enjoys some of the cheapest energy in the world, and the world's third highest energy consumption per capita, behind the United States, and Canada. Naturally, is also suffers air quality and health problems. The country is trying to cut down on consumption and clean up on generation. Actually, water quality is the number one priority, which unlike air is in very short supply.

  1. Evaluate fundamental approaches to longwall dust control: Subprogram H, Air canopies for longwalls

    SciTech Connect (OSTI)

    Rajan, S.; Ruggieri, S.K.

    1990-05-01

    This report describes the laboratory development and evaluation of an air canopy concept for longwall faces. The objective in an underground application would be to create a clean air zone along the face walkway by equipping the shields with water-powered scrubbers or other devices. Contaminated air would be extracted, cleaned and reinjected into the breathing zone of face personnel. The concept was evaluated in a full scale longwall test facility by equipping alternate shields with simulated air canopies. A variety of canopy configurations and airflow capacities were tested under different face ventilation situations to determine the quality and extent of the clean air zone developed by the canopy. The results revealed that even the most optimum configurations were unable to create a suitable clean air zone. Low effectiveness, coupled with high projected costs for underground application, showed the concept to be unfeasible and further development effort was cancelled. 21 figs.

  2. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  3. ARM - Instrument - inletcvi-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletcvi-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletcvi

  4. ARM - Instrument - inletisok-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletisok-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletisok

  5. Clean Air Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  6. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  7. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  8. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  9. Ductless Mini-Split Air Conditioners

    Broader source: Energy.gov [DOE]

    Ductless mini-split air conditioners are a good choice if you want a zoned air conditioning system but have no ducts in your house.

  10. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET 1 PDF icon ...

  11. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Compressed Air Storage Strategies (August 2004) More Documents & Publications Compressed Air System Control Strategies Stabilizing System Pressure Effect of Intake on ...

  12. Save the World Air | Open Energy Information

    Open Energy Info (EERE)

    the World Air Jump to: navigation, search Name: Save the World Air Place: Santa Barbara, California Zip: 93101 Product: California-based, device manufacturer for better fuel...

  13. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    frequently. Based on size alone, an air conditioner generally needs 20 Btu for each square foot of living space. Other important factors to consider when selecting an air...

  14. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  15. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System...

  16. Property:AirMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Barometric Pressure (Air);Precipitation (Air);Relative...

  17. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  18. Reactive Air Aluminizing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Reactive Air Aluminizing Pacific Northwest National Laboratory Contact PNNL About This Technology Reactive Air Aluminizing process diagram ...

  19. Heating Ventilation and Air Conditioning Efficiency | Department...

    Energy Savers [EERE]

    Heating Ventilation and Air Conditioning Efficiency Heating Ventilation and Air Conditioning Efficiency This presentation covers common pitfalls that lead to wasted energy in ...

  20. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  1. Lithium Air Electrodes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy ...

  2. Hopi Tribe Clean Air Partnership Project

    Energy Savers [EERE]

    HOPI TRIBE CLEAN AIR PARTNERSHIP PROJECT Roger Tungovia, Project Manager Ken Lomayestewa, ... Change the name from Hopi Clean Air Partnership Project to Hopi Renewable Energy Office ...

  3. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  4. Internal combustion engine with sustained power stroke

    SciTech Connect (OSTI)

    McNair, R.J.

    1980-09-09

    A four stroke cycle internal combustion engine is presented having a sustained power stroke which results from a delayed mixing of a stratified charge. Use of delayed mixing of an overall stoichiometric air-fuel mixture results in formation of a low amount of the oxides of nitrogen. Delayed mixing of the stratified charge is achieved by placement of at least one Helmholtz resonator cavity in the head or closed end of each combustion chamber. The Helmholtz resonator cavity communicates with the top end of the main combustion chamber via a narrow slot. On the intake stroke of each engine cylinder, the main chamber is filled with a slightly fuel rich gaseous charge while the companion Helmholtz resonator cavity is filled with air. During the compression stroke some of the rich air-fuel mixture is forced into the resonator cavity via the communicating slot. At or near tdc, the air-fuel mixture in the main chamber is ignited. As the flame front progresses across the chamber a rapid increase in pressure serves not only to power the piston, but also to initiate a resonant reaction in the Helmholtz resonator cavity which results in a transfer of the unburned gases therein into the main combustion chamber. This both sustains the power stroke and at the same time lowers the peak flame temperature in the main chamber.

  5. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  6. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  7. Remove Condensate with Minimal Air Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Condensate with Minimal Air Loss This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality. COMPRESSED AIR TIP ...

  8. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  9. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (BBDB) * Floating OWC device consisting of: - Air chamber - L-shaped Duct - Buoyancy modules - PTO (air turbine and ... Type 5th order Dean Steam Wind 100-yr Wind at 10m above ...

  10. Microsoft PowerPoint - FinalModule1.ppt

    Energy Savers [EERE]

    Department of Energy Final translated version of Tsinghua Speech Microsoft PowerPoint - Final translated version of Tsinghua Speech PDF icon Microsoft PowerPoint - Final translated version of Tsinghua Speech More Documents & Publications Heating Ventilation and Air Conditioning Efficiency GNEP Element:Expand Domestic Use of Nuclear Power Greenpower Trap Mufflerl System

    Tutorial Module 1: Introduction to Earned Value Management Prepared by: Module 1 - Introduction 1 Prepared by: Booz

  11. WINDExchange: Buying Wind Power

    Wind Powering America (EERE)

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  12. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  13. Lichens as bioindicators of geothermal air pollution in central Italy

    SciTech Connect (OSTI)

    Loppi, S.

    1996-11-01

    The suitability of lichens as bioindicators of geothermal air pollution was evaluated in central Italy. Fifty-one sites were sampled in the Travale-Radicondoli geothermal field, an area of about 15 km{sup 2}. Lichens on 1-5 trees per station were sampled, using 30 x 50 cm grids on tree boles, where lichens were most dense. Index of Atmospheric Purity (IAP) was calculated as the sum of the frequencies of all lichen species present at the station. Using automatic mapping programs, the area was divided into four air quality zones and the lowest IAP values were found within about 500 m of geothermal power plants. No direct measurements of air pollution are available for the whole study area, however, other studies show that air pollution levels (mercury, boron) fall with distance from a geothermal source. Also no substrate parameter (height, circumference, bark pH, and buffer capacity of the trees) discriminates between IAP zones. This suggests that air pollution arising from geothermal emissions is responsible for the zonation shown, with values for species richness and IAP rising with distance from geothermal installations. It is concluded that lichens are reliable bioindicators of geothermal pollution. 64 refs., 1 fig., 3 tabs.

  14. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect (OSTI)

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  15. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors.

    Broader source: Energy.gov [DOE]

    Learn about energy-efficient power supplies that can help you reduce energy consumption and lower your energy costs.

  16. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to

  17. Fuel cell stack with passive air supply

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  18. Power Services (pbl/about)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Power Services > About Power Services Power Services Home Page Other Related Web Sites Power Services Organization Power Services Financial Information Tribal Affairs Office...

  19. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  20. Electric power 2007

    SciTech Connect (OSTI)

    2007-07-01

    Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

  1. Power Tower System Concentrating Solar Power Basics

    Broader source: Energy.gov [DOE]

    In power tower concentrating solar power systems, a large number of flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower.

  2. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  3. Strong interactions in air showers

    SciTech Connect (OSTI)

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  4. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.

    1997-01-14

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  5. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  6. Electric power plant emissions and public health

    SciTech Connect (OSTI)

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  7. Energy storage for hybrid remote power systems

    SciTech Connect (OSTI)

    Isherwood, W., LLNL

    1998-03-01

    Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

  8. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications, April 2005 | Department of Energy Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 The objective of this paper is to summarize the development status of air-cooled lithium bromide (LiBr)-water absorption chillers to guide future efforts to develop chillers for combined heat and power (CHP) applications in light-commercial buildings. The key

  9. DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties

    Broader source: Energy.gov [DOE]

    The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in...

  10. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  11. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  12. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though their

  13. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given project.

  14. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur; Epstein, Michael

    2010-10-15

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  15. Portable Power Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  16. Biomass: Potato Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time:...

  17. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  18. PowerPoint Presentation

    Office of Environmental Management (EM)

    Southeastern Federal Power Alliance - September 29, 2015 ... of nuclear, coal, pumped storage hydro, and simple-cycle ... facilities - 2 "Wind Power for Schools" facilities - Jr. ...

  19. Power System Dispatcher (Trainer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching (J4100) 5555...

  20. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement (Agreement) between the BC Hydro and Power uthority (BCH) and the Bonneville Power Administration (BP A), jointly the Parties, which BA for accounting purposes is...

  1. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 (Revised 060914) United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue Portland, OR 97232 Bonneville Power Administration's 2014...

  2. power conversion efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power conversion efficiency - Sandia Energy Energy Search Icon Sandia Home Locations ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  3. 10 MWe power cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWe power cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  4. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  5. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  6. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  7. Supervisory Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, J4800 Transmission Scheduling &...

  8. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  9. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exit signs, kitchen equipment, network power management, power strips, showerheads, clothes washers, water heaters and ag stock tanks. Check IM for detailed requirements. c....

  10. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching (J4100) 5555...

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest? Air Northwest is a no-cost membership network that will provide commercial HVAC trade allies with resources to grow their businesses by increasing the sales and...

  12. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Highlights: solvation, trace water, Lithium-air batteries Directions: solvation, ... horizons of performance and cost beyond lithium-ion Lithium-ion - the best battery ...

  13. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company McClure Engineering, Inc. Expertise General industrial processing, food processing, pumping systems (esp. in AG), and compressed air. Address 507 Main Ave...

  14. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Facility Continuing work in the LAW melters - refractory brick and trough and dam installation 14 Analytical Laboratory Exterior Fume hoods Air-handling systems 15 ...

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley Lessons Learned Glass former batch recipes for variable waste streams Air Displacement Slurry Pumps for feeding melters WTP melter design Melter off-gas...

  16. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  17. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

  18. Power plant cumulative environmental impact report. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This report presents the results of studies conducted by the Power Plant Siting Program (PPSP) to determine the cumulative impact of power plants on Maryland's environment. Included in this report are: (1) current and projected power demands and consumption in Maryland; (2) current and planned power generation; (3) air impacts; (4) aquatic effects; (5) radiological effects; (6) social and economic considerations; (7) noise impacts; (8) groundwater effects; (9) solid waste management concerns; (10) transmission line impacts; and (11) descriptions of cooling towers in Maryland. Also contained is the 1982 Ten Year Plan of Maryland Electric Utilities.

  19. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  20. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  1. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  2. ENER G Combined Power formerly Combined Power Ltd | Open Energy...

    Open Energy Info (EERE)

    ENER G Combined Power formerly Combined Power Ltd Jump to: navigation, search Name: ENER.G Combined Power (formerly Combined Power Ltd) Place: United Kingdom Product: Specialises...

  3. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 ...

  4. Indiabulls Power Ltd formerly Sophia Power Company | Open Energy...

    Open Energy Info (EERE)

    Indiabulls Power Ltd formerly Sophia Power Company Jump to: navigation, search Name: Indiabulls Power Ltd. (formerly Sophia Power Company) Place: New Delhi, Delhi (NCT), India Zip:...

  5. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    Open Energy Info (EERE)

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  6. Delmarva Power Light Company Delmarva Power | Open Energy Information

    Open Energy Info (EERE)

    Delmarva Power Light Company Delmarva Power Jump to: navigation, search Name: Delmarva Power & Light Company (Delmarva Power) Place: Wilmington, Delaware Zip: 19886 Product:...

  7. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's ...

  8. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV...

  9. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of...

  10. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  11. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  12. ARM - Campaign Instrument - sp2-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Single Particle Soot Photometer - Airborne (SP2-AIR)...

  13. ARM - Campaign Instrument - mmcr94-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 94 GHz, W-band Airborne Cloud Radar (MMCR94-AIR)...

  14. Protective supplied-breathing-air garment

    DOE Patents [OSTI]

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  15. Advanced Management of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  16. ESPC Success Story - Dyess Air Force Base

    Energy Savers [EERE]

    DYESS AIR FORCE BASE DYESS, TEXAS Water Conservation and Green Energy ESPC SUCCESS STORY Dyess Air Force Base and surrounding west Texas has been under extreme-drought water ...

  17. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  18. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 Clouds over Los Alamos Clouds over Los Alamos Why does LANL...

  19. SolarAire LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Folsom, California Sector: Solar Product: Developing a solar thermal air conditioning unit. References: SolarAire LLC1 This article is a stub. You can help OpenEI by...

  20. Hill Air Force Base | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy savings performance contracting at Hill Air Force Base generated much interest ... There was a need to reduce energy and water use at Hill Air Force Base, which is subjected ...

  1. Air Traffic Operations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the Air Traffic Cloud Click to email this to a friend (Opens in new window) Share on ... In the Air Traffic Cloud Researchers Mike Durling and Liling Ren discuss new technology to ...

  2. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid ...

  3. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  4. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  5. Federal Air Emissions Regulations (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In 2005, the Environmental Protection Agency (EPA) finalized two regulations, the Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule CAMR, that would reduce emissions from coal-fired power plants in the United States. Both CAIR and CAMR are included in the Annual Energy Outlook 2006 reference case. The EPA has received 11 petitions for reconsideration of CAIR and has provided an opportunity for public comment on reconsidering certain aspects of CAIR. Public comments were accepted until January 13, 2006. The EPA has also received 14 petitions for reconsideration of CAMR and is willing to reconsider certain aspects of the rule. Public comments were accepted for 45 days after publication of the reconsideration notice in the Federal Register. Several states and organizations have filed lawsuits against CAMR. The ultimate decision of the courts will have a significant impact on the implementation of CAMR.

  6. Hill Air Force Base | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hill Air Force Base Hill Air Force Base Hill Air Force Base Overview Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy systems in 940 buildings on the Base will be upgraded under an 18-year ESPC between the Government and the energy service company, CES/Way. Improvements are distributed over five task orders that will be completed in five years, with

  7. Preventive Maintenance Strategies for Compressed Air Systems

    Broader source: Energy.gov [DOE]

    This tip sheet discusses preventive maintenance strategies for compressed air systems to avoid high equipment repair and replacement costs.

  8. Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Compressed Air Systems Compressed Air Systems Applying best energy management practices and purchasing energy-efficient equipment can lead to significant savings in compressed air systems. Use the software tools, training, and publications listed below to improve performance and save energy. Compressed Air Tools Tools to Assess Your Energy System AIRMaster+ Tool AIRMaster+ LogTool Qualified Specialists Qualified Specialists have passed a rigorous competency examination on

  9. FAA Air Traffic Organization Safety Management

    Broader source: Energy.gov [DOE]

    Presenter: Mark DeNicuolo, Manager Performance and Analyses Air Traffic Organization Safety and Technical Training Federal Aviation Administration

  10. Biological Air Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Air Emissions Control Biological Air Emissions Control Innovative Technology Enables Low-Cost, Energy-Efficient Treatment of Industrial Exhaust Streams Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol, formaldehyde, acetylaldehyde, and acrolein) during production of wood products must be tightly controlled. Conventional VOCs and HAPs emission

  11. Solar panel driven air purging apparatus for motor vehicles

    SciTech Connect (OSTI)

    Bobier, J.A.; Brown, G.E.

    1992-02-18

    This patent describes improvement in a motor vehicle having an enclosable cabin an internal combustion engine, a battery, an ignition switch having an on position for enabling the internal combustion engine and an off position, an electric motor coupled in driving relationship with an air circulating fan for circulating air through the cabin. The improvement comprises: a solar panel mounted upon the vehicle having a panel output exhibiting variable voltage levels including a peak voltage level and substantially constant current; a power transfer regulator for transferring power form the panel to the motor when enabled, including: energy storage means connectable across the panel output and chargeable by the current to variable charge levels; solid-state switch means connected in energy transfer relationship with the energy storage means and actuable between conducting and non-conducting states when the power transfer regulator is enabled; inductor means connected with the solid-state switch means and connectable with the electric motor for conveying current thereto from the panel and the energy storage means when the solid-state switch means is in the conducting state.

  12. Low Standby Power Products

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) develops acquisition guidance for products with low standby power. Standby power is the level of power consumption that occurs when a device is in the lowest power-consuming mode—typically when the product is switched off or not performing its primary purpose.

  13. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedules Skip Navigation Links Excess Energy Hydro Peaking Power Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative (Rayburn) Hydro Power and Energy Sold to Sam Rayburn Municipal Power Agency (Willis) Non-Federal Transmission/Interconnection Facilities Service Contact swparates@swpa.gov Last Updated: January 05, 2016

  14. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

  15. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  16. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  17. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  18. Reducing Power Factor Cost

    Broader source: Energy.gov [DOE]

    Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system’s distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system’s capacity.

  19. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIA/Privacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power Administration FOIA Program Department of Energy FOIA Program Southeastern Power Administration FOIA Program Western Area Power Administration FOIA Program Contact FOIA/Privacy Act Officer Southwestern Power Administration One West Third Street Tulsa, Oklahoma 74103-3502 Phone: 918-595-6609 Fax: 918-595-6755 foia@swpa.gov Last

  20. Assessment of the Market for Compressed Air Efficiency Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 Characteristics of Compressed Air Systems 14 Compressed Air System Management 17 Customer Knowledge of Compressed Air System Energy Use and Efficiency Opportunities 18 ...

  1. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  2. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes ... PROCESS HEATING TIP SHEET 5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) ...

  3. New Air and Water-Resistive Barrier Technologies for Commercial...

    Energy Savers [EERE]

    New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive ...

  4. ARM - Field Campaign - AIRS Validation Soundings Phase IV and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument was intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS was...

  5. 2011 Air Quality Regulations Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Quality Regulations Report 2011 Air Quality Regulations Report PDF icon 2011 Air Quality Regulations Report120111.pdf More Documents & Publications 2011:...

  6. 2011: Air Quality Regulations Report | Department of Energy

    Office of Environmental Management (EM)

    : Air Quality Regulations Report 2011: Air Quality Regulations Report PDF icon 2011 Air Quality Regulations ReportA120911.pdf More Documents & Publications 2011...

  7. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality(Redirected from RAPIDOverviewGeothermalAir QualityAlaska) Jump to: navigation, search RAPID...

  8. Attic Air Sealing Guide - Building America Top Innovation | Department...

    Energy Savers [EERE]

    Attic Air Sealing Guide - Building America Top Innovation Attic Air Sealing Guide - Building America Top Innovation Image showing step-by-step instructions for air sealing. One of ...

  9. Improving Compressed Air System Performance Third Edition | Department...

    Energy Savers [EERE]

    Compressed Air System Performance Third Edition Improving Compressed Air System Performance Third Edition PDF icon Improving Compressed Air Sourcebook version 3.pdf More Documents ...

  10. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Sealed duct penetrations. ...

  11. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan; Campbell, Steven L; Miller , John M.

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  12. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  13. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  14. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  15. CWS-Fired Residential Warm-Air Heating System. Quarterly report, February 1, 1989--April 30, 1989

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  16. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  17. Pulsed particle beam vacuum-to-air interface

    DOE Patents [OSTI]

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  18. Low dimensional GaAs/air vertical microcavity lasers

    SciTech Connect (OSTI)

    Gessler, J.; Steinl, T.; Fischer, J.; Höfling, S.; Schneider, C.; Kamp, M.; Mika, A.; S?k, G.; Misiewicz, J.

    2014-02-24

    We report on the fabrication of gallium arsenide (GaAs)/air distributed Bragg reflector microresonators with indium gallium arsenide quantum wells. The structures are studied via momentum resolved photoluminescence spectroscopy which allows us to investigate a pronounced optical mode quantization of the photonic dispersion. We can extract a length parameter from these quantized states whose upper limit can be connected to the lateral physical extension of the microcavity via analytical calculations. Laser emission from our microcavity under optical pumping is observed in power dependent investigations.

  19. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  20. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  1. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring

  2. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ±/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ±/kWh.

  3. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ±/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ±/kWh.

  4. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  5. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect (OSTI)

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  6. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  7. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  8. EIS-0095: Bonneville Power Administration's Expanded Residential Weatherization Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this statement to examine the environmental impacts of an expansion of the existing Residential Weatherization Program to include air-infiltration reducing (tightening) measures, such as storm windows and doors, insulation, weather-stripping and other improvements.

  9. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  10. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  11. Vampire Power and Gaming

    Broader source: Energy.gov [DOE]

    There's something out there known as vampire power. Basically, many appliances that continue using power (and thus continue add to your energy bill in some way, shape or form) even when they are turned off.

  12. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  13. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  14. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  15. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly Data for January 2016 | Release Date: March 25, 2016 | Next ... Revisions made to the March 2016 Electric Power Monthly: March 30, 2016 Tables 2.8.A-B ...

  16. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Power Systems Operation N4000 114 Parkshore Drive Folsom, CA...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Standards for Science Grades K-4 Standard C - There is various types of pollution for example air, water, and land pollution. Pollution is the release of contaminants into ...

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NA NA 33% 66% Insulated Door 2% 98% 0% 100% NA NA Air Sealing 28% 72% 89% 11% NA NA Windows 10% 90% 16% 84% 16% 84% All Measures 14% 86% 38% 62% 23% 77% Duct Sealing Single...

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The storm system tapped instability in the air above 850 mb to cause convective cells that contributed to much of Oklahoma's heavy icing. 15 of the SGP's 31 sites were affected by ...

  20. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schwartz, pschwartz@tm-lift.com DE-FOA-0000823 Grantee The Natural Gas Heat Pump and Air ... Goal: To develop a Vuilleumier heat pump (VHP) which includes novel improvements ...

  1. PowerPoint Presentation

    Office of Environmental Management (EM)

    radioactive source term released from Panel 7, Room7 Analysis based on: * Simulations ... Sampler Room 7 * CAM-151 at entrance to panel 7 * Fixed air sampler (FAS) at Station A ...

  2. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  3. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  4. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. high-power LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-power LEDs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  6. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Note: The green power purchasing goal has a target date of 2011. It has not been increased subsequently.

  7. Power Electronics Block Set

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software consists of code that will allow rapid prototyping of advanced power electronics for use in renewable energy systems.

  8. PowerPoint Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    David Sun, PhD david.sun@power.alstom.com Power Automation & Controls, Alstom Power Session: Intelligent Electric Systems Smart Power Future of Energy Sustainability © ALSTOM 2011. All rights reserved. Information contained in this document is provided without liability for information purposes only and is subject to change without notice. No representation or warranty is given or to be implied as to the completeness of information or fitness for any particular purpose. Reproduction, use or

  9. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  10. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ANNUAL REPORT Southwestern Power Administration Letter to the Secretary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 About Southwestern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supplementary

  11. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2, 2014 Smith Named as New Deputy Assistant Administrator Smith Named as New Deputy Assistant Administrator Barbara Smith Barbara Smith, a former Liaison Specialist for Southwestern Power Administration (Southwestern), assumed the duties of Deputy Assistant Administrator in the Power Marketing Liaison Office in Washington, D.C., on March 9, 2014. Smith will serve as the primary contact for Southwestern and the Southeastern Power Administration (Southeastern), representing both Power

  12. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 29, 2015 Stockton Power Plant Back Online Refurbished Stockton Turbine Southwestern Administrator Chris Turner and Kansas City District Commander COL Andrew Sexton dedicate the new turbine at Stockton Power Plant. After a catastrophic failure and nearly two years of major equipment replacement work, the Stockton Power Plant in Stockton, Missouri, is back online, generating low-cost, renewable hydropower and energy for electric consumers in the marketing region of Southwestern Power

  13. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  14. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  15. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  16. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  17. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  18. Enclosed rotary disc air pulser

    DOE Patents [OSTI]

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  19. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  20. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  1. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  2. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  3. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  4. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  5. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  6. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  7. air force | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and ...

  8. PNNL: About: Air Emissions (Radioactive) Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from unacceptable risks resulting from its operations. These reports document PNNL Campus and Marine Science Laboratory (MSL) radionuclide air emissions that result in the...

  9. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, D.C.

    1988-05-24

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

  10. Training: Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This training includes classroom instruction, a practical exam testing hands-on ... previously completed the CAC Advanced Management of Compressed Air Systems course as a ...

  11. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Lead Performer: Mechanical Solutions Inc. - Whippany, NJ Partners: Lennox International Inc. - Richardson, Membrane Based Air Conditioning Lead Performer: Dais Analytic Corporation ...

  12. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning

    Broader source: Energy.gov [DOE]

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way — with heat.

  13. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  14. International Air Transport Association (IATA) | Open Energy...

    Open Energy Info (EERE)

    Name: International Air Transport Association (IATA) Address: 800 Place Victoria PO Box 113 Place: Montreal, Quebec Phone Number: 1 514 874 0202 Website: www.iata.org...

  15. Washington Environmental Permit Handbook - Air Operating Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - Air Operating PermitPermitting...

  16. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using controls, storage, and demand management to ... at part-load is key to a high performance compressed air system. ... A STRONG ENERGY PORTFOLIO FOR A STRONG AMERICA ...

  17. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  18. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  19. Covered Product Category: Room Air Conditioners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This calculator allows the user to input a location, cooling capacity of the room air conditioners, efficiency (i.e., EER) and rate for electricity. The output section ...

  20. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...