Sample records for ahts advanced hydropower

  1. Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization

    E-Print Network [OSTI]

    Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

  2. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Energy Savers [EERE]

    to Advance Low-Impact Hydropower Technologies Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies March 18, 2015 - 11:27am Addthis On March 18, EERE's Water...

  3. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect (OSTI)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01T23:59:59.000Z

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  4. Energy Department Announces $4.4 Million to Advance Hydropower...

    Office of Environmental Management (EM)

    low-head hydropower turbine and generator system prototype that combines lightweight, corrosion-resistant metallic components that can be produced through an additive manufacturing...

  5. Data-Based Performance Assessments for the DOE Hydropower Advancement Project

    SciTech Connect (OSTI)

    March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.] [WolffWare Ltd.; Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy

    2012-01-01T23:59:59.000Z

    The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

  6. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Pumped Storage Hydropower...

  7. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04T23:59:59.000Z

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  8. 16 R&D Projects Across 11 States to Advance Hydropower in U.S...

    Office of Environmental Management (EM)

    while creating jobs. Hydropower technologies capture water's potential energy via a turbine to generate electricity. It is the nation's largest, most reliable, and least...

  9. Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development

    SciTech Connect (OSTI)

    Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

    2014-11-04T23:59:59.000Z

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

  10. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States, and it continues to advance with new developments, including "powering" dams that currently do not generate electricity. Making Hydropower More Eco-Friendly...

  11. First-ever Hydropower Market Report Covers Hydropower Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    website. Addthis Related Articles First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure Hydropower Still in the Mix First-Ever Demonstration of Quantum...

  12. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  13. Hydropower Potential Screening Study

    E-Print Network [OSTI]

    Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

  14. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24T23:59:59.000Z

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  15. Energy 101: Hydropower

    SciTech Connect (OSTI)

    None

    2013-04-01T23:59:59.000Z

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  16. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  17. Council's Regional Hydropower Potential Scoping

    E-Print Network [OSTI]

    Council's Regional Hydropower Potential Scoping Study Generating Resources Advisory Committee 11 to determine potential, and draw conclusions Determine if realistic, reasonable assumption for hydropower at existing non-powered dams, and upgrades at existing hydropower facilities #12;Questions Asked Can

  18. Evaluating New Hydropower Resources

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability. Although the NSD assessment did not make...

  19. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Lab. December 16, 2014 Flexible hydropower: boosting energy Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy source when water levels are...

  20. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  1. Editorial: Time for green certification for all hydropower?

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.

    2012-04-10T23:59:59.000Z

    While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

  2. Virtual Hydropower Prospecting – Searching for Hydropower Gold

    SciTech Connect (OSTI)

    Douglas G. Hall

    2007-12-01T23:59:59.000Z

    The availability of geographic information system (GIS) tools and analytical modeling of natural streams has made it possible to perform virtual “river inventories” that were formerly done using topographic maps, stream flow estimates, and physical reconnaissance. The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) virtually assessed the gross power potential of all natural streams in the United States of America and identified feasible potential project sites and estimated their developable power potential. The results of this virtual prospecting have been incorporated into a GIS application called the Virtual Hydropower Prospector that is available for public use on the Internet.

  3. DOE Hydropower Program Annual Report for FY 2002

    SciTech Connect (OSTI)

    Garold L. Sommers; R. T. Hunt

    2003-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  4. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment Initiative ...16 CONTINUING: Validation and Analysis of Alden Fish-Friendly Turbine ...17 NEW: Advanced...

  5. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  6. A New Vision for United States Hydropower

    Broader source: Energy.gov [DOE]

    Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range National Hydropower Vision.

  7. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »TraveleBooksMathematicianFlexible hydropower:

  8. Hydropower Potential Scoping Study Gauging Interest

    E-Print Network [OSTI]

    6/19/2013 1 Hydropower Potential Scoping Study ­ Gauging Interest Generating Resources Advisory and associated technologies. ­ Hydropower upgrades, new hydropower projects 2 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan

  9. Hydropower and Ocean Energy Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Photo of water flowing from several openings in a hydropower dam....

  10. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1997-06-01T23:59:59.000Z

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  11. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  12. HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2 ABSTRACT: Hydropower represents impacts to natural and human communities, future long-term fixed licenses of hydropower operation. (KEY TERMS: climate change; environmental regulations; hydropower; relicensing; water law; water policy

  13. Challenges and Progress Toward a Commercial Kinetic Hydropower System

    E-Print Network [OSTI]

    Walter, M.Todd

    Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

  14. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  15. EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect (OSTI)

    None

    2011-12-01T23:59:59.000Z

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

  16. Methodology and Process for Condition Assessment at Existing Hydropower Plants

    SciTech Connect (OSTI)

    Zhang, Qin Fen [ORNL] [ORNL; Smith, Brennan T [ORNL] [ORNL; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

  17. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    none,

    2011-04-01T23:59:59.000Z

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  18. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01T23:59:59.000Z

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  19. ORIGINAL ARTICLE Hydropower development in the lower Mekong basin

    E-Print Network [OSTI]

    Vermont, University of

    ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

  20. Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES

    E-Print Network [OSTI]

    Lund, Jay R.

    Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

  1. New Stream-Reach Hydropower Development

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability. Although the NSD assessment did not make...

  2. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  3. Hydropower and Ocean Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

  4. ORNL scientists generate landmark DOE hydropower report | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL scientists generate landmark DOE hydropower report The 2014 Hydropower Market Report provides comprehensive data and trends useful for...

  5. Los Alamos County Completes Abiquiu Hydropower Project, Bringing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy...

  6. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  7. Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower...

    Office of Environmental Management (EM)

    Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower Report (June 2012) Comparison The rehab study is compared to the 11th Circuit Hydropower Report for capacity...

  8. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  9. Memorandum of Understanding for Hydropower Two Year Progress...

    Broader source: Energy.gov (indexed) [DOE]

    Memorandum of Understanding for Hydropower Two Year Progress Report Memorandum of Understanding for Hydropower Two Year Progress Report On March 24, 2010, the Department of the...

  10. Laboratory Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

  11. Considering Climate Change in Hydropower Relicensing

    E-Print Network [OSTI]

    for many purposes including drinking, manufacturing, and energy production. In California due to climate of hydropower units used for energy production. Hydropower is an important renewable energy, supplying including energy production and other human and environmental water use impacts. · Analyze model results

  12. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  13. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  14. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  15. U.S. Hydropower Resource Assessment - Georgia

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

  16. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  17. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  18. Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's

    E-Print Network [OSTI]

    Harrison, Gareth

    Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

  19. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  20. Historical Perspective on the U.S. Department of Energy's Hydropower Program

    SciTech Connect (OSTI)

    Sale, Michael J.; Cada, G. F.; Dauble, Dennis D.

    2006-08-01T23:59:59.000Z

    For 30 years, the U.S. Department of Energy supported unique research and development activities focused on improving the domestic hydropower industry. In the 1970s and early 1980s, DOE’s Hydropower Program focused on technology assessment and a Small Hydropower Demonstration Program. After a period of zero funding in the late 1980s, the Program restarted with the goal of developing new technology that would improve the environmental performance of hydropower projects. A unique partnership of industry and federal cost-sharing allowed the Advanced Hydropower Turbine Systems activity to be established in 1994 – this led to new fish-friendly turbine designs and testing. Interagency cooperation with organizations like the U.S. Army Corps of Engineers has been a consistent part of the Program, along with scientific leadership and technical expertise from three of DOE’s National Laboratories: INL, ORNL, and PNNL. Program accomplishments include several new turbine designs, biological design criteria, computational and physical modeling, and environmental sensors. In contrast to other R&D on fish passage at dams, the DOE-sponsored research has focused on making the path through the turbine safer.

  1. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories' Defense

  2. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  3. Energy Department Making Hydropower More Eco-Friendly

    Broader source: Energy.gov [DOE]

    Hydropower has long provided a flexible, low-cost, and renewable source of power for the United States—since the 1800s, in fact. Even today, in fact, hydropower accounted for roughly half of the...

  4. President Obama Signs Two Bills to Boost Small Hydropower Projects...

    Broader source: Energy.gov (indexed) [DOE]

    President Obama on August 9 signed into law two bills aimed at boosting development of small U.S. hydropower projects. The bills, H.R. 267, the Hydropower Regulatory Efficiency...

  5. 1 INTRODUCTION High-head storage hydropower plants operate

    E-Print Network [OSTI]

    Floreano, Dario

    1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

  6. Research Article Effects of alpine hydropower operations on primary production

    E-Print Network [OSTI]

    Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

  7. Vulnerability of Hydropower Projects to Climate Change Revision: 20th

    E-Print Network [OSTI]

    Harrison, Gareth

    Vulnerability of Hydropower Projects to Climate Change Revision: 20th December 2001 Dr Gareth P and increased use of renewable sources including hydropower. Paradoxically, climate change itself may alter role in whether emissions cuts are achieved. 2. Climate Change and Hydropower A rising demand

  8. forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

  9. Hydropower Potential Studies Reviewed for Scoping Study

    E-Print Network [OSTI]

    States A3 Hydropower Resource Assessment at Existing Reclamation Facilities CONDUIT AND KINETIC PROJECTS in the US D2 Mapping and Assessment of the US Ocean Wave Energy Resources D3 Assessment/Mapping of Riverine Hydroknetic Resource in the Contintental US GENERAL GENERATION PROJECT ASSESSMENTS: E1 New Streamreach

  10. CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER

    E-Print Network [OSTI]

    of climate warming on energy prices. California's EnergyBased Hydropower Optimization Model (EBHOM to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generat WITH CONSIDERATION OF WARMING IMPACTS ON ELECTRICITY DEMAND AND PRICING A White Paper from the California

  11. Estimated impacts of climate warming on California’s high-elevation hydropower

    E-Print Network [OSTI]

    Madani, Kaveh; Lund, Jay R.

    2010-01-01T23:59:59.000Z

    on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

  12. Hydropower resources at risk: The status of hydropower regulation and development - 1997

    SciTech Connect (OSTI)

    Hunt, R.T.; Hunt, J.A. [Richard Hunt Associates, Inc., Annapolis, MD (United States)

    1997-09-01T23:59:59.000Z

    This report documents today`s hydropower licensing and development status based on published data as follows: (a) Federal Energy Regulatory Commission (FERC) databases, maintained by FERC`s Office of Hydropower Licensing, of: (1) operating FERC-regulated projects, federal projects, and known unlicensed projects; (2) surrendered licenses; and, (3) recent licensing and relicensing actions; (b) Energy Information Administration (EIA) data on installed capacity and generation from 1949 through 1995 for the various resources used to produce electricity in the U.S.; and, (c) FERC licensing orders, and environmental assessments or environmental impact statements for each individual project relicensed since 1980. The analysis conducted to prepare this paper includes the effects of all FERC hydropower licensing actions since 1980, and applies those findings to estimate the costs of hydropower licensing and development activity for the next 15 years. It also quantifies the national cost of hydropower regulation. The future estimates are quite conservative. The are presented in 1996 dollars without speculating on the effects of future inflation, license surrenders, conditions imposed through open-ended license articles, license terms greater than 30 years, or low water years. Instead, they show the most directly predictable influences on licensing outcomes using actual experiences since ECPA (after 1986).

  13. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoosting America's Hydropower Output

  14. 2015 Forum on Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergy Systems2015 Forum on Hydropower

  15. Bureau of Reclamation Small Conduit Hydropower Development and...

    Open Energy Info (EERE)

    Bureau of Reclamation Small Conduit Hydropower Development and Rural Jobs Act of 2013 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  16. Hydropower Licensing and Endangered Species A Guide for Applicants...

    Open Energy Info (EERE)

    Staff Abstract A guide developed to assist applicants, contractors, and staff of Federal Energy Regulatory Commission (FERC) regulated hydropower. The guide outlines compliance...

  17. FERC Hydropower Licensing and Endangered Species - A Guide for...

    Open Energy Info (EERE)

    Energy Regulatory Commission. 2001. FERC Hydropower Licensing and Endangered Species - A Guide for Applicants, Contractors, and Staff. Federal Energy Regulatory Commission....

  18. The Next Generation of Hydropower Engineers and Scientists |...

    Energy Savers [EERE]

    | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to...

  19. Memorandum of Understanding for Hydropower Two-Year Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additionally, the MOU aims to "(1) support the maintenance and sustainable optimization of existing federal and non-federal hydropower projects, (2) elevate the goal of...

  20. Power Builds Ships Northwest Hydropower Helps Win World War II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power-Builds-Ships-Northwest-Hydropower-Helps-Win-World-War-II Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  1. Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing Consumers Protection Act (1986), which instructs federal regulators to ``balance'' hydropower

  2. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  3. U.S. hydropower resource assessment for Maine

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  4. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  5. U.S. hydropower resource assessment for Maryland

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-11-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Maryland.

  6. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  7. U.S. hydropower resource assessment for Ohio

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-12-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  8. U.S. hydropower resource assessment for Michigan

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

  9. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisory FinancialErpu HydropowerEryuan

  10. Hydropower Resource Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit a FreedomResearch &Hydropower

  11. National Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPV JumpHydropower Association

  12. Hydropower Modernization Initiative Proposed Implementation Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and FuelInnovation PortalHydropower

  13. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search Name: Tianlin

  14. Hydropower '93: The year in review

    SciTech Connect (OSTI)

    Barnes, M.J.; Smith-Noggle, L.

    1994-01-01T23:59:59.000Z

    During 1993, 43 hydropower projects began operating in North America, adding 970 MW of hydroelectric capacity to electrical grids in the US and Canada. Owners include the US federal government, provincially owned Canadian utilities, municipalities, irrigation and water conservation groups, rural electric cooperatives, and private developers. Taken together, these new projects offer a telling commentary on trends and issues in the North American hydroelectric industry. A pervasive theme among the 1993 projects is one of making the most of what's available; that is, developing new hydropower capacity at existing structures - existing dams, irrigation canals, water supply conduits. Another is attention to environmental protection and incorporation of power facilities into the natural surroundings. A third is blending the old with the new through redevelopment of abandoned sites and refurbishing used equipment. In addition to these themes, another observation can be made: there is an abundance of diversity in hydro development in North America-diversity in approach, diversity in equipment, and diversity in the developers themselves.

  15. advanced hydropower turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems. When... Powell, S. H.; Hamrick, J....

  16. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01T23:59:59.000Z

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  17. Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighlyFromInnovations |Energy|

  18. Energy Department Announces $4.4 Million to Advance Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy BlogDeploymentNextandManufacturing

  19. 16 Projects To Advance Hydropower Technology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is theBrian Larsen 1010 Resources26

  20. Small Businesses Key in Hydropower Tech Advancement | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement | DepartmentImpact of Teaming

  1. 2011 Grants for Advanced Hydropower Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015 SEABOnlyTipsWorkingErichsecurity10Grants for

  2. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember 18, 2012 Agency/ Sub-

  3. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND DTechnologies | Department

  4. Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.

    E-Print Network [OSTI]

    Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

  5. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  6. Solar Energy and Small Hydropower Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

  7. Solar Energy and Small Hydropower Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

  8. Optimal sequencing site of hydro-power stations

    SciTech Connect (OSTI)

    Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

    1995-06-01T23:59:59.000Z

    At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

  9. Climate change impacts on financial risk in hydropower projects 

    E-Print Network [OSTI]

    Harrison, Gareth P; Whittington, Bert; Wallace, Robin

    the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

  10. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  11. Real World Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American...

  12. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03T23:59:59.000Z

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  13. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    the necessary balancing reserves for wind. Hydropower's flexibility and capacity are limited, however, by non-power resources that can adjust their output rapidly to keep power supply in balance with demand. HydropowerA Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement

  14. Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

  15. Water Power Technologies The most widespread environmental constraints to the development of hydropower are interference

    E-Print Network [OSTI]

    to the development of hydropower are interference with fish passage, provision of adequate environmental flows to address these issues and to help ensure environmentally sound hydropower development in the following through hydropower turbines, remains a serious problem at many sites. The fish passage task focuses

  16. SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994

    E-Print Network [OSTI]

    SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

  17. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    E-Print Network [OSTI]

    Lund, Jay R.

    i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

  18. EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations

    E-Print Network [OSTI]

    McCarthy, T.K.

    EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations and associated river on stocking lakes with elvers and fingerling eels. These were trapped at the hydropower facilities.) stocks is a matter of great concern and Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood

  19. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  20. SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE G. P. Harrison, H. W. Whittington

    E-Print Network [OSTI]

    Harrison, Gareth

    1 SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE CHANGE G. P. Harrison, H. W. Whittington and A-fuelled electricity generation with renewable sources including hydropower. However, simultaneous changes in climate may alter the available hydropower resource, threatening the financial viability of schemes

  1. Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,

    E-Print Network [OSTI]

    Stoffel, Markus

    Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a, , Franco H I G H L I G H T S · Impact of climate change on hydropower in the Italian and Swiss alpine regions October 2013 Available online xxxx Keywords: Climate change Hydropower management Electricity market Alps

  2. Potential Economic Impacts of Zebra Mussels on the Hydropower Facilities in the Columbia River Basin

    E-Print Network [OSTI]

    Potential Economic Impacts of Zebra Mussels on the Hydropower Facilities in the Columbia River mussel infestation. We estimated hydropower maintenance costs associated with zebra mussels by examining, and a survey of zebra mussel mitigation costs at other hydropower generation facilities in North America. We

  3. Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,

    E-Print Network [OSTI]

    Stoffel, Markus

    Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a, , Franco H I G H L I G H T S · Impact of climate change on hydropower in the Italian and Swiss alpine regions October 2013 Available online 14 November 2013 Keywords: Climate change Hydropower management Electricity

  4. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S of California at Davis, Davis, California, USA b State Key Laboratory of Water Resources and Hydropower alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using

  5. Climate Warming and Adaptability of High-Elevation Hydropower Generation in California

    E-Print Network [OSTI]

    Keller, Arturo A.

    Climate Warming and Adaptability of High-Elevation Hydropower Generation in California Kaveh Madani's high-elevation hydropower system is composed of more than 150 power plants. Most of the associated to winter, the adaptability of high-elevation hydropower system to new climatic conditions is in question

  6. Research Article Effects of Alpine hydropower dams on particle transport and

    E-Print Network [OSTI]

    Gilli, Adrian

    Research Article Effects of Alpine hydropower dams on particle transport and lacustrine December 2006 Abstract. The effects of high-alpine hydropower damming on lacustrine sedimentation impact, such as by hydropower dam construction that form artifi- cial sediment sinks acting as manmade

  7. How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer

    E-Print Network [OSTI]

    Jager, Henriette I.

    How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Æ Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

  8. Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI

    E-Print Network [OSTI]

    Lund, Jay R.

    i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

  9. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  10. The Use of Traits-Based Assessment to Estimate Effects of Hydropower Projects on Fish Populations

    E-Print Network [OSTI]

    The Use of Traits-Based Assessment to Estimate Effects of Hydropower Projects on Fish Populations Background Safe downstream passage of fish at conventional hydropower projects affects not only migratory fish species for testing, assess impacts of new hydropower development, and develop mitigation measures

  11. Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production

    E-Print Network [OSTI]

    by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

  12. SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y

    E-Print Network [OSTI]

    Jager, Henriette I.

    SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal

  13. Climate change -a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert Whittington

    E-Print Network [OSTI]

    Harrison, Gareth

    Climate change - a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert capital may not favour hydropower given that hydro capital costs are relatively high and payback periods financial return than the public sector, traditionally the main source of funds for hydropower development

  14. Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology to gross final energy consumption is only about 2% ­ hydropower plays a vital role. This is largely due be stored in reservoirs. Hydropower supplies around 56% of Switzerland's electricity needs. Worldwide

  15. Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,

    E-Print Network [OSTI]

    Asselin, Hugo

    Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

  16. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

    2013-05-01T23:59:59.000Z

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  17. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  18. Modeling California's high-elevation hydropower systems in energy units

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    is cheaper; while it costs almost 4 cents and 2 cents for 1 kWh of electricity from coal and nuclear plants power's low cost, near-zero pollution emissions, and ability to quickly respond to peak loads make it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity

  19. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01T23:59:59.000Z

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  20. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  1. Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager

    E-Print Network [OSTI]

    Jager, Henriette I.

    1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

  2. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  3. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

    2006-07-01T23:59:59.000Z

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  4. Xiangtang Xia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenerga JumpXiangtang Xia Hydropower

  5. Xinhua Chengyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhua Chengyuan Hydropower

  6. Xinjiang Heneng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHeneng Hydropower Co Ltd Jump

  7. Xinning County Xinyuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHeneng Hydropower

  8. Xuanen Shiziguan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to: navigation,

  9. Xupu County Xiaoshanyang Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to:Xupu County

  10. Yangcheng Motan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd JumpYang

  11. Yangxian Longsheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd JumpYangYangrui

  12. Yanling Xinsheng Hydropower Plant Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling Xinsheng

  13. Yanshan County Dequan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling XinshengCounty

  14. Yanshan Leqing Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling

  15. Yanyuan Lujiang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanlingYantai

  16. Yellow River Water and Hydropower Development Corp | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga Wire Saw

  17. Yingjiang County Nandan River Hydropower Exploring Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunagaKaiyuan

  18. Yingjiang County Zhanda River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower

  19. Yingjiang Huimin Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan HydropowerInformation

  20. Yingjiang Rongfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen ShiziguanInformation MingyuRongfa Hydropower Co

  1. Yingjiang Zhina River Second Level Hydropower Station Development Co Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen ShiziguanInformation MingyuRongfa HydropowerOpen

  2. Yongzhou Zhongxin Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin Hydropower Development Co Ltd Jump

  3. Yuexi Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba County Water

  4. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba County

  5. Yumen Changyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba CountyYuma

  6. Yumen Jiqianfeng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba CountyYumaYumen

  7. Yun County Changrun Xishan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba

  8. Yunan Province Fugong Hengli Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYun County

  9. Yunlong Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYun CountyYunlong

  10. Yunnan Baoshan Supahe Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYunInformation

  11. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnan DiqingZZhangjiajie Tumuxi Hydropower

  12. Zhangye Longhui Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co Ltd Jump

  13. Zhangye Longqu Stage III Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co Ltd

  14. Zhanyi County Tingzitang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co

  15. Zhaoping I Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui HydropowerZhaoping I

  16. Zhaotong Jili Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui HydropowerZhaoping

  17. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'Hydropower, Wave and

  18. Microsoft Word - FINAL 2014 Hydropower Meeting Agenda 061114

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2Dances done1Q and07HYDROPOWER

  19. Erpu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisory FinancialErpu Hydropower

  20. Federal Memorandum of Understanding for Hydropower/Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformation Hydropower Jump to:

  1. Sichuan Miyi Shixia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan Miyi Shixia Hydropower

  2. Hydropower Regulatory Efficiency Act of 2013 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA)Hydropower Regulatory

  3. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHome Energy Score HomeSustainable» Hydropower

  4. Diebu Donglian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria detheDiebu Donglian Hydropower

  5. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrentHydronic Heating Coil VersusofHydropower

  6. Changde Taohuayuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentralCerealeChangde Taohuayuan Hydropower

  7. Lijiang Nengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang RiverLijiang Nengda Hydropower

  8. Linjiawu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City YujiangLincolnLinjiawu Hydropower

  9. Longsheng Gezu Autonomous County Dayun Hydropower Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformation Dayun Hydropower Co Ltd Jump

  10. Lushui Jiansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,Lushui Jiansheng Hydropower

  11. Lushui Jinman River Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,Lushui Jiansheng HydropowerLushui

  12. Miyi Chengnan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi:Miyi Chengnan Hydropower

  13. Tianquan County Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search Name:Tianquan

  14. Tiantai County Chayuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search

  15. Tongren Jiuzhou Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao Yaolaitan HydroTongren

  16. Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,Anfu Guanshan Hydropower Development Co Ltd

  17. Hydropower Still in the Mix | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe Ranking Member,71 Hydrogen and Fuelof EnergyHydropower

  18. Wudu Xiangyu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin Polysilicon CoWudu Xiangyu Hydropower

  19. Property:PotentialHydropowerCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump to:

  20. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump

  1. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity

  2. Guangdong Meiyan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |Grundy ElectricGuangdong Meiyan Hydropower Co

  3. Guizhou Zhenyuan Putian Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,Guizhou Zhenyuan Putian Hydropower Co

  4. Guizhou Zhijin Ouhua hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,Guizhou Zhenyuan Putian Hydropower

  5. Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmannScoringHongyuan Hydropower

  6. DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-07-01T23:59:59.000Z

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  7. DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)

    SciTech Connect (OSTI)

    Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

    1991-07-01T23:59:59.000Z

    This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

  8. DOE Hydropower Program biennial report 1994--1995 with an updated annotated bibliography

    SciTech Connect (OSTI)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1995-05-01T23:59:59.000Z

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1994 and 1995. The report discusses the activities in the four areas of the hydropower program: Environmental Research; Resource Assessment; Research Cost-Shared with Industry; and Technology Transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  9. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Disappearing rivers — The limits of environmental assessment for hydropower in India

    SciTech Connect (OSTI)

    Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

    2013-11-15T23:59:59.000Z

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

  11. A multi-scale approach to address environmental impacts of small hydropower development

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Samu, Nicole M [ORNL; Kao, Shih-Chieh [ORNL; Bevelhimer, Mark S [ORNL; Hetrick, Shelaine L [ORNL

    2014-01-01T23:59:59.000Z

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  12. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water conducts research on new development opportunities and provides a comprehensive hydropower database integrating information about existing hydropower plants. Research Summary and Resources Example: · Existing

  13. Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing

    SciTech Connect (OSTI)

    Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

  14. Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK

    E-Print Network [OSTI]

    Kammen, Daniel M.

    density of water 1 INTRODUCTION Hydropower is another form of solar energy. Of the Sun's radiation the oceans. It is this solar energy, converted into the latent heat of evaporation of water, that powers, Luytens Close, Chineham, Hants, UK Abstract: Hydropower on a small scale, or micro-hydro, is one

  15. Hydropower Upgrades to Yield Added Generation at Average Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and advanced control systems in order to...

  16. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01T23:59:59.000Z

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  17. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01T23:59:59.000Z

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  18. Hydropower R&D: Recent Advances in Turbine Passage Technology | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel71Listof

  19. Energy Department to Fund R&D to Advance Low-Impact Hydropower Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014ComplianceEnergy |ResidentialToolEnergyEnergy|

  20. Hydropower R&D: Recent Advances in Turbine Passage Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND DTechnologies |

  1. Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Resources Planning and Management, 2012, in press ABSTRACT Representing peak and off-peak energy prices and examines the reliability of an existing approximate method to incorporate hourly energy price information

  2. Cumulative biophysical impact of small and large hydropower development, Nu River, China

    E-Print Network [OSTI]

    Tullos, Desiree

    ; Latin America and Caribbean: Benstead et al., 1999]. New national-level regulations, as well The hydropower sector currently comprises eighty percent of global capacity for renewable energy generation of fostering renewable energy development, allowing realization of low-carbon energy potential in developing

  3. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01T23:59:59.000Z

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  4. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01T23:59:59.000Z

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  5. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect (OSTI)

    Pasha, M. Fayzul K. [California State University, Fresno; Yeasmin, Dilruba [ORNL; Kao, Shih-Chieh [ORNL; Hadjerioua, Boualem [ORNL; Wei, Yaxing [ORNL; Smith, Brennan T [ORNL

    2014-01-01T23:59:59.000Z

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  6. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01T23:59:59.000Z

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  7. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  8. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    SciTech Connect (OSTI)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01T23:59:59.000Z

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  9. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

    2012-01-01T23:59:59.000Z

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  10. Hydropower is one of the oldest power sources on the planet. Flowing water, dire

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen andHydropower is one of

  11. Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEEEnergy0 9 -OfficeofHydropower

  12. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix B HYDROPOWER AVAILABILITY IN RESPONSE TO SALMON RECOVERY

    E-Print Network [OSTI]

    addresses only those measures that affect the operation of the Northwest's hydroelectric power system of the hydroelectric power system. Some energy is lost when it is spilled and some energy is shifted out of winterB-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix B APPENDIX B HYDROPOWER

  13. New Small Hydropower Technology to be Deployed in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

    2012-01-01T23:59:59.000Z

    Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

  14. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-01-01T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore »replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  15. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  16. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  17. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-01-01T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  18. EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01T23:59:59.000Z

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

  19. SCHEDULING TVA'S RESERVOIRS WITH RIVERWARE Timothy M. Magee, Operations Research Analyst, Center for Advanced Decision Support

    E-Print Network [OSTI]

    Ware's capabilities with TVA's daily operations scheduling models which optimize hydropower value while meeting non and operates 29 conventional hydropower plants and one pumped storage hydropower plant in the Tennessee Valley to hydropower generation, the reservoir system provides other beneficial services throughout the Tennessee

  20. Engineers, are focused on advanced water quality modeling on the Cumberland River in Kentucky and

    E-Print Network [OSTI]

    hydropower dams in the Columbia River Basin to protect aquatic life. ORNL is providing an assessment of the effects of climate change on water availability for federal hydropower and on marketing of hydropower by increased understanding the role of climate variability and change. Collaborating with the Hydropower

  1. Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction

    SciTech Connect (OSTI)

    Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

    2010-09-15T23:59:59.000Z

    In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

  2. Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population

    SciTech Connect (OSTI)

    Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

    2006-09-01T23:59:59.000Z

    This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

  3. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects

    SciTech Connect (OSTI)

    Pinho, Paulo [CITTA - Research Centre for Territory, Transports and Environment, University of Oporto, Faculty of Engineering, Rua Roberto Frias, 4200-465 Oporto (Portugal)]. E-mail: pcpinho@fe.up.pt; Maia, Rodrigo [CEHRA - Centre for Hydraulics, Environment and Water Resources, University of Oporto, Faculty of Engineering, Rua Roberto Frias, 4200-465 Oporto (Portugal)]. E-mail: rmaia@fe.up.pt; Monterroso, Ana [CITTA - Research Centre for Territory, Transports and Environment, University of Oporto, Faculty of Engineering, Rua Roberto Frias, 4200-465 Oporto (Portugal)]. E-mail: anamonterroso@yahoo.com

    2007-04-15T23:59:59.000Z

    In most Environmental Impact Assessment (EIA) systems environmental authorities can stop an EIA process by refusing the respective EIA Report, on the grounds of technical or methodological insufficiencies identified in the review procedure. However, often times, it cannot be taken for granted that, once an EIA Report is formally accepted, as part of an EIA process, its quality standard is, consistently, of a satisfactory level. This paper summarises the results of a one-year research project aimed at assessing the quality of EIA studies carried out for small hydropower plants in Portugal. An extensive survey was carried out to analyse all EIA Reports that were the basis of successful EIA processes involving this kind of small scale projects, under the old and the new national EIA legislation, that is, over the last two decades. Often times unnoticeable to the general public and the media, located in isolated areas upstream secondary rivers, these projects are likely to generate some significant environmental impacts, in particular on the aesthetics value and character of local landscapes and on pristine ecological habitats. And yet, they are usually regarded as environmental friendly projects designed to produce emission free energy. The design of the evaluation criteria benefited from the literature review on similar research projects carried out in other EU countries. The evaluation exercise revealed a number of technical and methodological weaknesses in a significant percentage of cases. A set of simple and clear cut recommendations is proposed twofold: to improve the current standard of EIA practice and to strengthen the role of the so called EIA Commissions, at the crucial review stage of the EIA process.

  4. Hydropower computerized reconnaissance package version 2. 0. [HYDRO-CAL, PAPER-ECON, and HYDRO-ECON

    SciTech Connect (OSTI)

    Broadus, C.R.

    1981-04-01T23:59:59.000Z

    The Hydropower Computerized Reconnaissance (HCR) Package is a computerized preliminary engineering and economic study package for small hydroelectric projects which consists of three programs developed at the Idaho National Engineering Laboratory. One engineering program evaluates the flow characteristics of a site and determines the energy generated for various turbine configurations and two economic programs provide two levels of economic studies depending upon the amount of site-specific information available. An Apple II computer is utilized to provide a quick-turnaround capability. The models and methods used in the HCR package are described, and information is provided on program application, sample run sessions, program outputs, and listings of the main programs.

  5. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    SciTech Connect (OSTI)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11T23:59:59.000Z

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ?0.96 and ?0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ? 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  6. Climate change and hydropower production in the Swiss Alps:potential impacts and modelling uncertainties Hydrol. Earth Syst. Sci., 11(3), 11911205, 2007

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    climate change scenarios based on global-mean warming scenarios, the corresponding discharge model). Apart from the obvious economic interest in electricity production from water accumulated in reservoirsClimate change and hydropower production in the Swiss Alps:potential impacts and modelling

  7. Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control the flow of water in hydropower developments, urban

    E-Print Network [OSTI]

    Barthelat, Francois

    Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control, their solution is found either by physical hydraulic modeling or, more recently, by numerical modeling significantly reduce turbine efficiency and cause premature mechanical failure when they occur at hydropower

  8. file://L:\DOE-hanford.gov\public\boards\hab\advice\advice63a.ht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., December 8, 1995 TheNultonAlProjectBackground:

  9. file://L:\DOE-hanford.gov\public\boards\hab\advice\advice84a.ht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., December 8, 1995Unacceptable1997The200

  10. file://L:\DOE-hanford.gov\public\boards\hab\advice\advice94a.ht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., December 8,John Wagoner, Manager U.S.2, Chuck

  11. file://L:\DOE-hanford.gov\public\boards\hab\advice\advice17a.ht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ...,exerciseTheoreticalEA (Revised May 4,

  12. file://L:\DOE-hanford.gov\public\boards\hab\advice\advice18A.ht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ...,exerciseTheoreticalEA (Revised May

  13. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15T23:59:59.000Z

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

  14. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  15. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  16. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  17. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare For26, 2015MEMORANDUM

  18. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  19. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 · REPORT OF THE INSTITUTE LIBRARIES 93 · INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  20. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  1. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  2. History of Hydropower

    Broader source: Energy.gov [DOE]

    Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour more than 2,000 years ago. The evolution of the modern...

  3. Brainpower for Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today the Energy Department announced the 2012 selections for the Hydro Fellowship Program in cooperation with the Hydro Research Foundation.

  4. Commonwealth Hydropower Program

    Broader source: Energy.gov [DOE]

    Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding is exhausted. See the program web site for...

  5. 2014 Hydropower Market Report

    Energy Savers [EERE]

    conduit exemptions. They amounted to 101.84 MW and their median size was 241 kW. The search for development timeline information focused on the 54 exempted projects above 100 kW....

  6. Hydropower in the Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'

  7. Hydropower Process Improvements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel71List

  8. 2014 Hydropower Market Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice14Departmentofthe

  9. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoals DuringMarkets -Heavy-Duty

  10. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  11. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  12. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  13. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  14. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  15. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  16. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  17. advanced reactors advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  20. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  1. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  2. Institute /or ADVANCED STUDY

    E-Print Network [OSTI]

    OF THE INSTITUTE LIBRARIES 63 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS INSTITUTE 66 · MENTORING PROGRAM sustained and has yielded an unsurpassed record of definitive scholarship. Although small in scale

  3. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    · PROGRAM IN THEORETICAL BIOLOGY 103 · REPORT OF THE INSTITUTE LIBRARIES 107 INSTITUTE FOR ADVANCED STUDY Study has sustained its founding principle for seventy years. This com- mitment his yielded

  4. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  5. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  6. Advanced Energy Design Guides

    Energy Savers [EERE]

    hotels up to 80 rooms and 4 stories Advanced Energy Design Guide for Small Hospitals and Health- care Facilities ASHE, ASHRAE, AIA, IES, USGBC, DOE Small healthcare facilities up...

  7. Characterization of Bead Trajectories Through the Draft Tube of a Turbine Physical Model.

    SciTech Connect (OSTI)

    Weiland, Mark A.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiquan; McKinstry, Craig A.

    2005-02-18T23:59:59.000Z

    Using high-speed video imaging, trajectories, and kinematics of beads passing below the turbine runner and through the draft tube region of the 1:25 scale model of a single turbine unit from Bonneville Dam powerhouse 1 were collected from May 6-9, 2003 at U.S. Army Corps of Engineers (USACE) Environmental Research and Development Center (ERDC) in Vicksburg, MS. An individual camera was used to produce 2-dimensional trajectories and paired cameras with overlapping fields of view were used to produce 3-dimension trajectories of near neutrally buoyant beads as they passed through the draft tube region of the turbine model. Image data was collected at two turbine operating levels, lower 1% efficiency and maximum rated output for beads released mid-depth into the turbine intake from each of the three gatewell slots. The purpose of this study was to determine the feasibility of using video imaging to track the trajectories of beads through the draft tube of turbine physical models and from the trajectories calculate the kinematics of the bead trajectory and the beads response to turbulence in the model. This project is part of a research program supported by the U.S. Department of Energy Advanced Hydropower Turbine System Program (AHTS) who's goal is to increase the operating potential of hydroelectric facilities while also reducing the reducing the risk of injury and death to fish as they pass through the turbines.

  8. Advanced Worker Protection System

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  9. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  10. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  11. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  12. Gills Onions Advanced Energy

    E-Print Network [OSTI]

    !!! One-third incoming onions discarded as tail, top, and peel! #12;The Solution... Advanced Energy honor from the American CouncilThe highest honor from the American Council of Engineering Companies Residential & Food Service Anaerobic Digestion Fats, Oil, and Grease (FOG) from Food Service Anaerobic Methane

  13. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  14. Search Asia Advanced Search

    E-Print Network [OSTI]

    on state-run forestry companies. Illegal logging activities have cost the Indonesian government some US$600Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling to discuss the issue of log smuggling, Forestry Minister M Prakosa said. "We will hold bilateral dialogues

  15. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  16. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  17. Advances in Lung Volume

    E-Print Network [OSTI]

    Jones, Michelle

    Advances in Lung Volume Reduction Surgery The Ohio University Medical Center Lung Volume Reduction LungVolumeReductionSurgery Spring 2010 © 2010 The Ohio State University Medical Center ­ 04 Consult Ohio State's #12;The Ohio State University Medical Center Lung Volume Reduction Surgery Patient

  18. Herty Advanced Materials Development Center

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

  19. ADVANCE! Leadership Experience Project Guidelines

    E-Print Network [OSTI]

    Hone, James

    ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active

  20. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  1. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  2. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  3. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  4. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  5. Advanced Energy Design Guides | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

  6. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  7. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  8. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  9. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Damsky, B.L.

    1984-01-01T23:59:59.000Z

    General Electrics's thyristor valve project incorporates the most advanced technologies available. With joint funding from the Electric Power Research Institute, commercial application of the separate light-triggered thyristor is now underway. The cesium vapor lamp source to trigger the light sensitive thyristors will reduce component complexity and cost. A unique thermal management feature relies on forced vaporization cooling with Freon-113, which equals the thermal performance of water without posing insulation reliability problems. 7 figures.

  10. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    None

    2005-12-31T23:59:59.000Z

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  11. Bringing Environmental Considerations into Water-use Optimization

    E-Print Network [OSTI]

    sustainable hydropower? Conventional hydropower provides the bulk of renewable energy in the US. Popular hydropower meets sustainable production standards that protect aquatic ecosystems downstream. This can best considerations into the equations used to make decisions guiding the operation of hydropower projects. To advance

  12. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  13. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review...

  14. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  15. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  16. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  17. Department of Mathematics: Advanced Graduate Course ...

    E-Print Network [OSTI]

    Advanced Graduate Course Advertisements. Descriptions of advanced graduate courses for specific semesters. The course advertisements are PDF documents.

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  19. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate...

  20. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate...

  1. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  2. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  3. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22T23:59:59.000Z

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  4. Advanced NTR options. [Ta

    SciTech Connect (OSTI)

    Davis, J.W.; Mills, J.C.; Glass, J.F.; Tu, W. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, MS HB23 Canoga Park, California 81303 (US))

    1991-01-05T23:59:59.000Z

    Advanced NTR concepts which offer performance improvements over the ROVER/NERVA designs have been investigated. In addition, the deliverable performance of low pressure operation and materials issues have been investigated. Based on current experience, a maximum exit gas temperature of 3200 K is likely achievable with a ZrC based PBR design. At 3200 K a low pressure NTR would have marginal performance advantage (Isp) over a high pressure system. If tantalum or other high melting point carbides are used then an exit gas temperature of 3500 K may be feasible. At 3500 K low pressure operation offers more significant performance improvements which could outweigh associated size and mass penalties.

  5. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced

  6. Advanced Simulation Capability

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status Report The Advanced2

  7. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy Efficiency Grants |Energy|AdvancedLeslie

  8. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced

  9. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWG

  10. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced ModelingNuclear

  11. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced

  12. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering Institute

  13. Advanced Target Effects Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute Engineering

  14. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | BioenergyAdvanced

  15. Departments of Energy and Interior Award Nearly $17 Million for...

    Office of Environmental Management (EM)

    enhance environmental performance while increasing electricity generation, mitigating fish and habitat impacts and enhancing downstream water quality. Advanced Hydropower System...

  16. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  17. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  18. Sandia National Laboratories: advanced combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership, Transportation Energy...

  19. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  20. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...

  1. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos: Building...

  2. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon Source...

  3. Sandia National Laboratories: Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Biofuels Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass,...

  4. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  5. Advanced HEV/PHEV Concepts

    Broader source: Energy.gov (indexed) [DOE]

    - In-kind Barriers Addressed * Cost * Settingvalidating technical targets * Design optimization for maximum mpg * Infrastructure and convenience for advanced technology vehicle...

  6. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    Fuels for Advanced Combustion Engines Bradley T. Zigler National Renewable Energy Laboratory 15 May 2012 Project ID FT002 This presentation does not contain any proprietary,...

  7. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  8. The Advanced Light Source

    SciTech Connect (OSTI)

    Jackson, A.

    1991-05-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs.

  9. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Flairty, C. (General Electric Co., Malvern, PA (USA))

    1991-04-01T23:59:59.000Z

    An advanced thyristor value was developed HVDC conversion applications. New features incorporated in the design include: improved heat transfer from the thyristors, two phase cooling of components, and light firing required the development of both a separate light triggered thyristor with a full forward blocking voltage rating and a special flash lamp employing cesium vapor as the associated light source. A valve rated 133 kV and 2200 A bridge current was constructed and lab tested before shipment to the Sylmar Converter Station, which is the southern terminus of the Pacific DC Intertie. The Los Angeles Department of Water and Power, which operates the Sylmar Station, installed the valve and operated it to gain experience. 36 figs., 5 tabs.

  10. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25T23:59:59.000Z

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  11. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2004-10-12T23:59:59.000Z

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  12. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2005-05-24T23:59:59.000Z

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  13. First-ever Hydropower Market Report Covers Hydropower Generation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. AreSecond SolarExternal

  14. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  15. Advanced LBB methodology and considerations

    SciTech Connect (OSTI)

    Olson, R.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)] [and others

    1997-04-01T23:59:59.000Z

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  16. Systems Engineering Advancement Research Initiative

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Systems Engineering Advancement Research Initiative RESEARCH PORTFOLIO Fall 2008 About SEAri http://seari.mit.edu The Systems Engineering Advancement Research Initiative brings together a set of sponsored research projects and a consortium of systems engineering leaders from industry, government, and academia. SEAri is positioned within

  17. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  18. Regulatory and Hydropower Policy (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes establish the State's authority to “control and supervise activity that changes or will change the course, current, or cross section of public waters, including the construction,...

  19. Hydropower Appropriations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen and Fuel71List of

  20. Hydropower Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrentHydronic Heating Coil Versus

  1. Hydropower Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and FuelInnovation Portal BiomassBasics

  2. Hydropower Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe Ranking Member,71 Hydrogen and Fuel

  3. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01T23:59:59.000Z

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30T23:59:59.000Z

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  5. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  6. University of Rochester Medical Center Advancement Director for Advancement and Alumni Relations

    E-Print Network [OSTI]

    Portman, Douglas

    University of Rochester Medical Center Advancement Director for Advancement 58 Overview: Reporting to the Sr. Assistant Vice President for Medical Center Advancement for Academic Programs (SAVP), the Director of Advancement

  7. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

  8. Advanced Materials Center of Excellence Jason Boehm

    E-Print Network [OSTI]

    Advanced Materials Center of Excellence Webinar Jason Boehm Program Coordination Office National · Materials Genome Initiative · Advanced Materials Center of Excellence · Overview Federal Funding Opportunity one Center focused on Advanced Materials Depending on FY2014 Funding NIST expects to announce

  9. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01T23:59:59.000Z

    upgrade on the Advanced Light Source," Nucl. Instrum. Meth.n photoemission at the Advanced Light Source," Radiât. Phys.high-pressure studies at the Advanced Light Source w i t h a

  10. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  11. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01T23:59:59.000Z

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  12. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  13. Advances in rapid prototyping

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  14. DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...

    Office of Legacy Management (LM)

    Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

  15. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  17. Advanced Computational Methods for Turbulence and Combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  19. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  20. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - Oscillation Monitoring System - Mani...

  1. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Models for Advanced Engine Combustion William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory June 17, 2014 DOE National Laboratory Advanced...

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  4. Development of Advanced Electrolytes and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component R&D within the ABR Program, 2009 thru 2013 Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  5. Advanced Materials for Proton Exchange Membranes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

  6. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  7. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  9. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

  10. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review Ecology Action: Small Market Advanced Retrofit Transformation Program - 2015 Peer Review...

  11. Advances in understanding solar energy collection materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

  12. Advanced Engine Development | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

  13. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  14. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  15. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

  16. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

  17. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating...

  18. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  19. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  20. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  1. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  2. Webinar: Systems Performance Advancement II Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

  3. Advanced Low Temperature Absorption Chiller Module Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

  4. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  5. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  6. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  7. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  8. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  9. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  10. Advanced Policy Practice Spring 2014

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

  11. GEOSCIENCES 585 ADVANCED REMOTE SENSING

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    . Topics covered include: field methods, field spectroscopy, textural analysis, spectral mixture analysis analysis (3) Perform advanced concepts in digital image processing including texture analysis, atmospheric reasons (e.g. illness, accident, etc.), the instructor will, at her discretion, decide whether

  12. Advancing Measurement of Family Leisure

    E-Print Network [OSTI]

    Melton, Karen

    2014-08-06T23:59:59.000Z

    This study advanced knowledge of the measurement properties of the Family Leisure Activity Profile (FLAP). The FLAP is a sixteen-item index based on the Core and Balance Model of Family Functioning. This study assessed three distinct scaling...

  13. Advanced Process Management and Implementation

    E-Print Network [OSTI]

    Robinson, J.

    Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

  14. Westinghouse advanced particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  15. Recent advances in hydraulic fracturing

    SciTech Connect (OSTI)

    Gidley, J.L.

    1989-01-01T23:59:59.000Z

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  16. Lung Transplantation for Advanced Bronchiectasis

    E-Print Network [OSTI]

    Turner, Monica G.

    Lung Transplantation for Advanced Bronchiectasis Don Hayes Jr., M.D., F.A.A.P., F.A.C.P., F.C.C.P.1 and Keith C. Meyer, M.D., M.S., F.A.C.P., F.C.C.P.2 ABSTRACT Lung transplant (LT) can be successfully performed on patients with advanced bronchiectatic lung disease with subsequent good posttransplant quality

  17. Fish Protection: Cooperative research advances fish-friendly turbine design

    SciTech Connect (OSTI)

    Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

    2012-12-01T23:59:59.000Z

    Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  19. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect (OSTI)

    Judson Hedgehock

    2001-03-16T23:59:59.000Z

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

  20. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24T23:59:59.000Z

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  1. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31T23:59:59.000Z

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  2. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31T23:59:59.000Z

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

  3. Twin Cities Metro Advanced Practice Center

    E-Print Network [OSTI]

    Offsite cold storage options (contact info for truck, warehouse) #12;Twin Cities Metro Advanced Practice

  4. Industry and the APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important applications, including advances in manufacturing, information technology, nanotechnology, pharmaceuticals, biomedicine, oil and gas, transportation, agriculture,...

  5. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  6. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    2006-08-01T23:59:59.000Z

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  7. National Training and Education Resource Advanced Authoring Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Authoring Training Participant Guide NTER Advanced Authoring Training Participant Guide (032012 pw) 2 Contents OBJECTIVES ......

  8. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  9. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing (Tuscaloosa, AL)

    1996-01-01T23:59:59.000Z

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  10. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  11. Advanced Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015EnergyTheAdvanced BiofuelsAdvanced DOEfunds

  12. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWGLaboratoryAdvanced

  13. PAMPA II Advanced Charting System

    E-Print Network [OSTI]

    Inbarajan, Prabhu Anand

    2004-09-30T23:59:59.000Z

    where the project is heading, and if needed, then look into the finer level details by drilling down to locate and correct problems. The objective of this thesis is to build an Advanced Charting System (ACS), which would act as a companion to PAMPA 2...

  14. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. Advanced Networking Voice over IP

    E-Print Network [OSTI]

    Lo Cigno, Renato Antonio

    by the original monopoly system The structure was tailored and optimized for voice transport Local Exchange to allow direct curret for powering the phone and to limit the signal bandwidth to a known extent ­ routing and setup ­ resource finding and reservation #12;5 Renato.LoCigno@disi.unitn.it Advanced

  17. Advanced Networking Voice over IP

    E-Print Network [OSTI]

    Lo Cigno, Renato Antonio

    are not uniform across coutries. Architecture is still biased by the original monopoly system The structure technique on the local loop, filtered between 300 and 3400 Hz to allow direct curret for powering the phone ­ routing and setup ­ resource finding and reservation #12;Renato.LoCigno@disi.unitn.it Advanced Networking

  18. Digital Tomosynthesis: Advanced Breast Cancer

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

  19. Banner Advancement Account Request Form

    E-Print Network [OSTI]

    Karsai, Istvan

    Banner Advancement Account Request Form ETSU Office of Information Technology 424 Roy Nicks Hall, Box 70728 Johnson City, Tennessee 37614 (423) 439-4648 · oithelp@etsu.edu This section for use ______________________________________________________________________________________ [last] [first] [middle] ETSU Domain Name _____________________@etsu.edu School / College

  20. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  1. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01T23:59:59.000Z

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  2. Advanced Workshop in Regulation and

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Workshop in Regulation and Competition 2011-2012 Conflicting Technological and Competitive Forces in Regulated Industries January 13, 2012 Smart Grid and Rates Location: Rutgers Business School 1:40pm "Smart Grid in Maryland" Kurt Strunk, NERA Economic Consulting, 1:40pm-2:05pm "Gas Pipeline Rates

  3. Advance Indexing July 3, 2014

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    the existing index High query performance > contiguous posting list High index maintenance cost #12;15 Index Tree #12;16 Index Tree ­ Step by Step Construction #12;17 Index Tree - Algorithm #12;18 Experiment1 Advance Indexing Limock July 3, 2014 #12;2 Papers 1) Gurajada, Sairam : "On-line index

  4. Gas fired Advanced Turbine System

    SciTech Connect (OSTI)

    LeCren, R.T.; White, D.J.

    1993-01-01T23:59:59.000Z

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  5. Advancing Michigan's State of Knowledge

    E-Print Network [OSTI]

    Zhao, Jennifer Jing

    Advancing Michigan's State of Knowledge GRADUATE E D U C AT I O N "To attract and grow quality jobs for Michigan's Economic Future: Jobs, Education and Protecting Families State of the State Address - 2009 Michigan Graduate Education Day Thursday, April 23, 2009 , Andrews University Aquinas College Baker College

  6. POSTDOCTORAL POSITION ADVANCED SUBSTRATE ENGINEERING

    E-Print Network [OSTI]

    ; Information regarding SMART: http://smart.mit.edu/home.html Professor Fitzgerald's Web Site: http AND SMART, C.S. TAN, NTU AND SMART, AND S.F. YOON, NTU AND SMART BACKGROUND: There is an opening in MIT's Singapore research center (SMART) for post-doctoral fellow in the area of advanced substrate engineering

  7. TUM Institute for Advanced Study

    E-Print Network [OSTI]

    Haug, Stephan

    , 85748 Garching When October 21, 2010, 9.00 a.m. With the new home for the TUM Institute for Advanced in Smart Grids Prof. Sandra Hirche (TUM) Dr. Dragan Obradovic (Siemens AG) Electrochemistry and the Future of the Automobile Dr. Frederick T. Wagner (General Motors R&D) 12:00 Lunch · Ideas Market (Faculty of Mechanical

  8. DISSERTATION ADVANCING THE EDUCATION OF EXCEPTIONALLY

    E-Print Network [OSTI]

    Loudon, Catherine

    DISSERTATION FELLOWSHIP AWARD ADVANCING THE EDUCATION OF EXCEPTIONALLY PROMISING STUDENTS WHO HAVE FINANCIAL NEED WHAT WE PROVIDE The Jack Kent Cooke Foundation Dissertation Fellowship Award supports advanced doctoral students completing dissertations that further the understanding of the educational

  9. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Alone IGCC+CCS Coal Plant The levelized cost of electricitythan advanced coal plants and hence their cost estimates areestimates of the costs of an advanced coal plant, since they

  10. RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Gilchrist, James F.

    RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY Department of Materials Science. #12;Job Description (for website) Job Title: Research Engineer in Advanced Analytical Electron or an engineering discipline and four years of demonstrated experience in electron microscopy. Requirements

  11. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  12. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  13. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  14. Sandia National Laboratories: Advanced Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Electric Systems grid-slide1 grid-slide2 grid-slide3 grid-slide4 Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid...

  15. Human Factors Aspects of Advanced Process Control

    E-Print Network [OSTI]

    Shaw, J. A.

    HUMAN FACTORS ASPECTS OF ADVANCED PRO?CESS CONTROL John A. Shaw Combustion Engineering Taylor Instrument Division Rochester, New York ABSTRACT Energy conservation practices, such as heat recovery and integration, require that many... chemical and related processes use advanced control systems. Many of the more advanced process control strategies and algorithms can cause operator confusion, leading to incorrect operator actions and negating the advantages of the advanced control...

  16. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  17. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    site it operates at partial load in more hours Advanced Coalthe ACWH operates more often at partial load conditions to

  19. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  20. Advanced Engine Trends, Challenges and Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

  1. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite...

  2. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Energy Savers [EERE]

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and...

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  4. advanced configurations topical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 264 ADVANCE-Nebraska Advancing Women, Advancing STEM Engineering...

  5. advanced genetic strategies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reverse-genetic screen Roth, Frederick 3 Advanced Genetics PCB 5065 Fall 2013 page 1 Syllabus Advanced Genetics PCB 5065 Fall 2013 Biology and Medicine Websites Summary: Advanced...

  6. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  7. PIA - Advanced Test Reactor National Scientific User Facility...

    Energy Savers [EERE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  8. FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED

    E-Print Network [OSTI]

    Bertini, Robert L.

    FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM Final Report SPR 352 #12;#12;FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM SPR 352 Final Report by Robert L's Catalog No. 5. Report Date June 2006 4. Title and Subtitle Field Evaluation of the Myrtle Creek Advanced

  9. Advanced Technology Briefing to VLT/PAC

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology ­ Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

  10. Advanced control documentation for operators

    SciTech Connect (OSTI)

    Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

    1988-09-01T23:59:59.000Z

    Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

  11. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16T23:59:59.000Z

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01T23:59:59.000Z

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  13. Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on

    E-Print Network [OSTI]

    Keller, Arturo A.

    , brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

  14. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  15. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01T23:59:59.000Z

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  16. Obama Administration Awards First Three Auto Loans for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUseIowa | DepartmentHydropower

  17. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01T23:59:59.000Z

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  18. advancing industrial efficiency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of California eScholarship Repository Summary: Treatment Motor System Optimization Fuel Cells Microturbinesoptimization Advanced reciprocating engines Advanced...

  19. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  20. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  1. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  2. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application...

  3. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  4. Voices of Experience | Insights into Advanced Distribution Management...

    Office of Environmental Management (EM)

    Voices of Experience | Insights into Advanced Distribution Management Systems (February 2015) Voices of Experience | Insights into Advanced Distribution Management Systems...

  5. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01T23:59:59.000Z

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  6. Advanced fusion concepts: project summaries

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  7. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  8. Advanced Leds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CA 94105AdvancedAcid

  9. Advanced Scientific Computing Research Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNews &OfficeAdvanced

  10. Advanced Materials Research Highlights | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AA GeothermalAdvanced

  11. Sandia Energy - Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvanced Materials

  12. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvanced

  13. Sandia Energy - Advanced Bit Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalysts and2015Advanced Bit

  14. Sandia Energy - Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalysts and2015Advanced

  15. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWGLaboratory

  16. Advanced R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced Modeling

  17. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  18. AGATA - Advanced Gamma Tracking Array

    E-Print Network [OSTI]

    S. Akkoyun; A. Algora; B. Alikhani; F. Ameil; G. de Angelis; L. Arnold; A. Astier; A. Ataç; Y. Aubert; C. Aufranc; A. Austin; S. Aydin; F. Azaiez; S. Badoer; D. L. Balabanski; D. Barrientos; G. Baulieu; R. Baumann; D. Bazzacco; F. A. Beck; T. Beck; P. Bednarczyk; M. Bellato; M. A. Bentley; G. Benzoni; R. Berthier; L. Berti; R. Beunard; G. Lo Bianco; B. Birkenbach; P. G. Bizzeti; A. M. Bizzeti-Sona; F. Le Blanc; J. M. Blasco; N. Blasi; D. Bloor; C. Boiano; M. Borsato; D. Bortolato; A. J. Boston; H. C. Boston; P. Bourgault; P. Boutachkov; A. Bouty; A. Bracco; S. Brambilla; I. P. Brawn; A. Brondi; S. Broussard; B. Bruyneel; D. Bucurescu; I. Burrows; A. Bürger; S. Cabaret; B. Cahan; E. Calore; F. Camera; A. Capsoni; F. Carrió; G. Casati; M. Castoldi; B. Cederwall; J. -L. Cercus; V. Chambert; M. El Chambit; R. Chapman; L. Charles; J. Chavas; E. Clément; P. Cocconi; S. Coelli; P. J. Coleman-Smith; A. Colombo; S. Colosimo; C. Commeaux; D. Conventi; R. J. Cooper; A. Corsi; A. Cortesi; L. Costa; F. C. L. Crespi; J. R. Cresswell; D. M. Cullen; D. Curien; A. Czermak; D. Delbourg; R. Depalo; T. Descombes; P. Désesquelles; P. Detistov; C. Diarra; F. Didierjean; M. R. Dimmock; Q. T. Doan; C. Domingo-Pardo; M. Doncel; F. Dorangeville; N. Dosme; Y. Drouen; G. Duchêne; B. Dulny; J. Eberth; P. Edelbruck; J. Egea; T. Engert; M. N. Erduran; S. Ertürk; C. Fanin; S. Fantinel; E. Farnea; T. Faul; M. Filliger; F. Filmer; Ch. Finck; G. de France; A. Gadea; W. Gast; A. Geraci; J. Gerl; R. Gernhäuser; A. Giannatiempo; A. Giaz; L. Gibelin; A. Givechev; N. Goel; V. González; A. Gottardo; X. Grave; J. Gr?bosz; R. Griffiths; A. N. Grint; P. Gros; L. Guevara; M. Gulmini; A. Görgen; H. T. M. Ha; T. Habermann; L. J. Harkness; H. Harroch; K. Hauschild; C. He; A. Hernández-Prieto; B. Hervieu; H. Hess; T. Hüyük; E. Ince; R. Isocrate; G. Jaworski; A. Johnson; J. Jolie; P. Jones; B. Jonson; P. Joshi; D. S. Judson; A. Jungclaus; M. Kaci; N. Karkour; M. Karolak; A. Ka?ka?; M. Kebbiri; R. S. Kempley; A. Khaplanov; S. Klupp; M. Kogimtzis; I. Kojouharov; A. Korichi; W. Korten; Th. Kröll; R. Krücken; N. Kurz; B. Y. Ky; M. Labiche; X. Lafay; L. Lavergne; I. H. Lazarus; S. Leboutelier; F. Lefebvre; E. Legay; L. Legeard; F. Lelli; S. M. Lenzi; S. Leoni; A. Lermitage; D. Lersch; J. Leske; S. C. Letts; S. Lhenoret; R. M. Lieder; D. Linget; J. Ljungvall; A. Lopez-Martens; A. Lotodé; S. Lunardi; A. Maj; J. van der Marel; Y. Mariette; N. Marginean; R. Marginean; G. Maron; A. R. Mather; W. M?czy?ski; V. Mendéz; P. Medina; B. Melon; R. Menegazzo; D. Mengoni; E. Merchan; L. Mihailescu; C. Michelagnoli; J. Mierzejewski; L. Milechina; B. Million; K. Mitev; P. Molini; D. Montanari; S. Moon; F. Morbiducci; R. Moro; P. S. Morrall; O. Möller; A. Nannini; D. R. Napoli; L. Nelson; M. Nespolo; V. L. Ngo; M. Nicoletto; R. Nicolini; Y. Le Noa; P. J. Nolan; M. Norman; J. Nyberg; A. Obertelli; A. Olariu; R. Orlandi; D. C. Oxley; C. Özben; M. Ozille; C. Oziol; E. Pachoud; M. Palacz; J. Palin; J. Pancin; C. Parisel; P. Pariset; G. Pascovici; R. Peghin; L. Pellegri; A. Perego; S. Perrier; M. Petcu; P. Petkov; C. Petrache; E. Pierre; N. Pietralla; S. Pietri; M. Pignanelli; I. Piqueras; Z. Podolyak; P. Le Pouhalec; J. Pouthas; D. Pugnére; V. F. E. Pucknell; A. Pullia; B. Quintana; R. Raine; G. Rainovski; L. Ramina; G. Rampazzo; G. La Rana; M. Rebeschini; F. Recchia; N. Redon; M. Reese; P. Reiter; P. H. Regan; S. Riboldi; M. Richer; M. Rigato; S. Rigby; G. Ripamonti; A. P. Robinson; J. Robin; J. Roccaz; J. -A. Ropert; B. Rossé; C. Rossi Alvarez; D. Rosso; B. Rubio; D. Rudolph; F. Saillant; E. ?ahin; F. Salomon; M. -D. Salsac; J. Salt; G. Salvato; J. Sampson; E. Sanchis; C. Santos; H. Schaffner; M. Schlarb; D. P. Scraggs; D. Seddon; M. ?enyi?it; M. -H. Sigward; G. Simpson; J. Simpson; M. Slee; J. F. Smith; P. Sona; B. Sowicki; P. Spolaore; C. Stahl; T. Stanios; E. Stefanova; O. Stézowski; J. Strachan; G. Suliman; P. -A. Söderström; J. L. Tain; S. Tanguy; S. Tashenov; Ch. Theisen; J. Thornhill; F. Tomasi; N. Toniolo; R. Touzery; B. Travers; A. Triossi; M. Tripon; K. M. M. Tun-Lanoë; M. Turcato; C. Unsworth; C. A. Ur; J. J. Valiente-Dobon; V. Vandone; E. Vardaci; R. Venturelli; F. Veronese; Ch. Veyssiere; E. Viscione; R. Wadsworth; P. M. Walker; N. Warr; C. Weber; D. Weisshaar; D. Wells; O. Wieland; A. Wiens; G. Wittwer; H. J. Wollersheim; F. Zocca; N. V. Zamfir; M. Zi?bli?ski; A. Zucchiatti

    2012-09-17T23:59:59.000Z

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  19. Advanced structure-borne sound Wave mobilities

    E-Print Network [OSTI]

    Berlin,Technische Universität

    ^p e j(v -p ) · Wave mobilities © Prof. B.A.T. Petersson Advanced structure-borne sound · Decomposed1 Advanced structure-borne sound p(kx) v(kx) v = p Y = ^ve- jkx x ejv ^pe- jkx x e jp = ^v ^p = ^v;2 Advanced structure-borne sound · Interface mobilities s C kp = 2p C kq = 2q C ; p = 0 ±1 ±2 ±3... ; q = 0

  20. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.