National Library of Energy BETA

Sample records for agricultural sources industrial

  1. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  2. Industrial and Agricultural Production Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    food processing, cold storage, agricultural, greenhouses, irrigation districts, and waterwastewater treatment. Standard prescriptive incentives include lighting, green motor...

  3. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  4. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand...

  5. Industry Group Learns About Light Source Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Group Learns About Light Source Opportunities Industry Group Learns About Light Source Opportunities Print Tuesday, 25 September 2012 08:45 On Monday, September 24, the Silicon Valley Leadership Group (SVLG) hosted a meeting to introduce its members to the area's light sources and how they help advance innovation and promote economic competitiveness. The event was sponsored by Congresswomen Zoe Lofgren and Anna Eshoo together with Berkeley Lab (LBNL) and SLAC National Accelerator

  6. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  7. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  8. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  9. Industry Group Learns About Light Source Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Bay Area Photovoltaic Consortium-an industry-supported program that counts GE, DuPont, Bosch, and Corning among its members-is working with Berkeley Lab, SLAC, and other ...

  10. Carbon Capture and Storage from Industrial Sources

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from...

  11. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  12. Second biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings

    SciTech Connect (OSTI)

    1995-01-01

    This volume provides the proceedings for the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry which was held August 21-24, 1995. The volume contains copies of full papers as provided by the researchers. Individual papers were separately indexed and abstracted for the database.

  13. An Industry Approach to Sealed Source Management at the End of Useful Life

    SciTech Connect (OSTI)

    Malkoske, G.; Gray, P.; Fasten, W.

    2008-07-01

    Radioactive sources provide significant benefits which enhance the general welfare of mankind. These beneficial applications include medical treatment, sterilization of single use medical devices, food safety and agriculture, as well as industrial safety and exploration. The radioisotope sector is broad, diverse, and well established, with a culture of safety and security. ISSPA's mission is to ensure that the beneficial use of radioactive sources continues to be regarded by the public, the media, legislators, and regulators as a safe, secure, viable technology for medical, industrial, and research applications. A key consideration of a vibrant safety and security culture is the comprehensive life cycle management of radioactive sources which ensures effective control throughout their life span. Closely linked to this is the commitment by responsible suppliers to take back radioactive sources at the end of their useful life. This is an essential obligation of ISSPA members, as stated in the framework for the ISSPA Code of Good Practice. This presentation will discuss the above topics and will provide some examples which demonstrate how ISSPA members have effectively managed sources at the end of their useful life. In conclusion: Sealed radioactive sources play a major and very important role in global industry and health. Their applications are varied and they are produced and shipped in the thousands each year around the world. The importance of an effective life cycle management is imperative to the safety and security of these sources. A multi-faceted approach to sealed source life cycle management between manufacturers/distributors, shippers, customers/users, and those involved in disposition of disused sources is critical. The IAEA Code of Conduct, from a regulatory perspective, and the ISSPA Code of Good Practice, from an industry perspective, will help to ensure that sealed sources are able to be effectively utilized to the benefit of mankind for generations to come. (authors)

  14. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect (OSTI)

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  15. Opportunities to assist developing countries in the proper use of agricultural and industrial chemicals. Report of the Committee on Health and Environment. Volume 1. Research paper(Final)

    SciTech Connect (OSTI)

    Not Available

    1988-02-18

    This report was prepared to examine opportunities for promoting the proper use of agricultural and industrial chemicals, and of alternatives such as integrated pest management. Volume one provides an overview of the economic, health, and environmental costs developing countries incur from improper pesticide and chemical use and presents detailed action recommendations for the Agency for International Development (AID). Volume two provides source information: included are sections on AID's and other donors' environmental policies, the activities of other US government agencies operating abroad, and lessons learned from integrated pest management programs, along with a 35-page bibliography.

  16. Carbon Capture and Storage from Industrial Sources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, ...

  17. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  18. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect (OSTI)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  19. Delaware Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 "Wood/Wood

  20. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Ohio Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",137494,138543,134878,119712,126652 " Coal",133400,133131,130694,113712,117828 " Petroleum",1355,1148,1438,1312,1442 " Natural Gas",2379,3975,2484,4650,7128 " Other Gases",360,289,261,37,254 "Nuclear",16847,15764,17514,15206,15805 "Renewables",1091,846,1010,1161,1129 "Pumped

  3. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  4. Oklahoma Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural Gas",32981,33144,33774,34631,33942 " Other Gases",16,22,10,"-","-" "Nuclear","-","-","-","-","-" "Renewables",2633,5195,6362,6482,6969 "Pumped

  5. Oregon Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",37850,33587,33805,33034,30542 "Solar","-","-","-","-","-" "Wind",931,1247,2575,3470,3920 "Wood/Wood Waste",799,843,717,674,632 "MSW Biogenic/Landfill Gas",71,100,131,128,205 "Other

  6. Oregon Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,16133,15651 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",39679,35816,37228,37306,35299 "Pumped

  7. Pennsylvania Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2844,2236,2549,2683,2332 "Solar","-","-","s",4,8 "Wind",361,470,729,1075,1854 "Wood/Wood Waste",683,620,658,694,675 "MSW Biogenic/Landfill Gas",1411,1441,1414,1577,1706 "Other Biomass",18,16,2,3,3

  8. Pennsylvania Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",138173,143909,137862,136047,145210 " Coal",122558,122693,117583,105475,110369 " Petroleum",1518,1484,938,915,571 " Natural Gas",13542,19198,18731,29215,33718 " Other Gases",554,534,610,443,552 "Nuclear",75298,77376,78658,77328,77828 "Renewables",5317,4782,5353,6035,6577 "Pumped Storage",-698,-723,-354,-731,-708

  9. Louisiana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",713,827,1064,1236,1109 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",2881,2898,2639,2297,2393 "MSW Biogenic/Landfill

  10. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  11. Maine Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4278,3738,4457,4212,3810 "Solar","-","-","-","-","-" "Wind","-",99,132,299,499 "Wood/Wood Waste",3685,3848,3669,3367,3390 "MSW Biogenic/Landfill Gas",235,208,206,232,237 "Other Biomass",48,52,52,41,27

  12. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  13. Maryland Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2104,1652,1974,1889,1667 "Solar","-","-","-","-","s" "Wind","-","-","-","-",1 "Wood/Wood Waste",218,203,198,175,165 "MSW Biogenic/Landfill Gas",408,400,415,376,407 "Other

  14. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  15. Massachusetts Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1513,797,1156,1201,996 "Solar","-","-","s","s",1 "Wind","-","-",4,6,22 "Wood/Wood Waste",125,119,123,115,125 "MSW Biogenic/Landfill Gas",1126,1094,1128,1104,1125 "Other Biomass",27,27,2,4,1

  16. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  17. Michigan Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1520,1270,1364,1372,1251 "Solar","-","-","-","-","-" "Wind",2,3,141,300,360 "Wood/Wood Waste",1704,1692,1710,1489,1670 "MSW Biogenic/Landfill Gas",735,721,738,829,795 "Other Biomass",2,1,1,5,8

  18. Michigan Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural Gas",11410,13141,9602,8420,12249 " Other Gases",412,282,264,203,299 "Nuclear",29066,31517,31484,21851,29625 "Renewables",3963,3687,3956,3995,4083 "Pumped Storage",-1039,-1129,-916,-857,-1023 "Other",563,303,286,344,332

  19. Minnesota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",572,654,727,809,840 "Solar","-","-","-","-","-" "Wind",2055,2639,4355,5053,4792 "Wood/Wood Waste",590,727,725,796,933 "MSW Biogenic/Landfill Gas",412,423,399,384,340 "Other Biomass",3,143,372,503,576

  20. Mississippi Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1535,1488,1386,1417,1503 "MSW

  1. Mississippi Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural Gas",15706,21335,20607,23267,29619 " Other Gases",44,42,40,25,2 "Nuclear",10419,9359,9397,10999,9643 "Renewables",1541,1493,1391,1424,1504 "Pumped Storage","-","-","-","-","-"

  2. Missouri Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",199,1204,2047,1817,1539 "Solar","-","-","-","-","-" "Wind","-","-",203,499,925 "Wood/Wood Waste","s","s",2,2,"s" "MSW Biogenic/Landfill Gas",15,22,30,50,58 "Other

  3. Missouri Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural Gas",3729,4979,5196,3416,4690 " Other Gases",5,3,3,7,7 "Nuclear",10117,9372,9379,10247,8996 "Renewables",223,1234,2293,2391,2527 "Pumped Storage",48,383,545,567,888 "Other",54,37,24,27,32

  4. Montana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",10130,9364,10000,9506,9415 "Solar","-","-","-","-","-" "Wind",436,496,593,821,930 "Wood/Wood Waste",94,111,111,95,97 "MSW Biogenic/Landfill Gas","-","-","-","-","-"

  5. Montana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural Gas",68,106,66,78,57 " Other Gases",11,19,6,1,2 "Nuclear","-","-","-","-","-" "Renewables",10661,9971,10704,10422,10442 "Pumped

  6. Nebraska Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",893,347,346,434,1314 "Solar","-","-","-","-","-" "Wind",261,217,214,383,422 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",37,46,45,47,53 "Other

  7. Nebraska Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21461,20776,22273,23684,23769 " Coal",20683,19630,21480,23350,23363 " Petroleum",19,36,35,23,31 " Natural Gas",759,1110,758,312,375 " Other Gases","-","-","-","-","-" "Nuclear",9003,11042,9479,9435,11054 "Renewables",1207,625,622,883,1807 "Pumped

  8. Nevada Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",1344,1253,1383,1633,2070 "Hydro Conventional",2058,2003,1751,2461,2157 "Solar","-",44,156,174,217 "Wind","-","-","-","-","-" "Wood/Wood Waste","-","-","-",1,"-" "MSW Biogenic/Landfill Gas","-","-","-","-","-"

  9. Nevada Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28459,29370,31801,33436,30702 " Coal",7254,7091,7812,7540,6997 " Petroleum",17,11,14,16,11 " Natural Gas",21184,22263,23972,25878,23688 " Other Gases",4,4,2,2,6 "Nuclear","-","-","-","-","-" "Renewables",3401,3300,3289,4269,4444 "Pumped

  10. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  11. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  12. Alaska Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1224,1291,1172,1324,1433 "Solar","-","-","-","-","-" "Wind",1,1,"s",7,13 "Wood/Wood Waste",1,"s","-","-","-" "MSW Biogenic/Landfill

  13. Alaska Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577,3750 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1231,1302,1177,1337,1452 "Pumped

  14. Arizona Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural Gas",32869,38469,38822,34739,29676 " Other Gases","-","-","-","-","-" "Nuclear",24012,26782,29250,30662,31200 "Renewables",6846,6639,7400,6630,6941 "Pumped Storage",149,125,95,169,209

  15. Arkansas Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1551,3237,4660,4193,3659 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1689,1581,1466,1529,1567 "MSW Biogenic/Landfill Gas",7,33,36,34,38

  16. Arkansas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural Gas",9282,8364,8461,11221,12469 " Other Gases","-","-","-","-","-" "Nuclear",15233,15486,14168,15170,15023 "Renewables",3273,4860,6173,5778,5283 "Pumped Storage",15,30,48,100,-1

  17. California Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",12821,12991,12883,12853,12600 "Hydro Conventional",48047,27328,24128,27888,33431 "Solar",495,557,670,647,769 "Wind",4883,5585,5385,5840,6079 "Wood/Wood Waste",3422,3407,3484,3732,3551 "MSW Biogenic/Landfill Gas",1685,1657,1717,1842,1812 "Other Biomass",610,648,645,626,639 "Total",71963,52173,48912,53428,58881 "

  18. California Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural Gas",105691,115700,119992,113463,107522 " Other Gases",2022,1818,1685,1623,1695 "Nuclear",31959,35792,32482,31764,32201 "Renewables",71963,52173,48912,53428,58881 "Pumped Storage",96,310,321,153,-171

  19. Colorado Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1791,1730,2039,1886,1578 "Solar","-",2,18,26,42 "Wind",866,1292,3221,3164,3452 "Wood/Wood Waste","-","-","s","s",2 "MSW Biogenic/Landfill Gas","-","-",8,17,20 "Other Biomass",31,31,37,39,38

  20. Colorado Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural Gas",11919,15014,13487,13840,11062 " Other Gases",3,2,"-","-","-" "Nuclear","-","-","-","-","-" "Renewables",2687,3054,5324,5132,5133 "Pumped

  1. Connecticut Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",544,363,556,510,391 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",9,2,2,1,"s" "MSW Biogenic/Landfill Gas",755,728,732,758,739

  2. Connecticut Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16046,14982,12970,12562,14743 " Coal",4282,3739,4387,2453,2604 " Petroleum",1279,1311,514,299,409 " Natural Gas",10484,9930,8070,9809,11716 " Other Gases",2,2,"-","-",14 "Nuclear",16589,16386,15433,16657,16750 "Renewables",1307,1093,1290,1268,1130 "Pumped Storage","-",-15,7,5,9

  3. Delaware Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural Gas",1171,1902,1387,1376,2865 " Other Gases",910,721,476,227,"-" "Nuclear","-","-","-","-","-" "Renewables","s",48,163,126,138 "Pumped

  4. Florida Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",203,154,206,208,177 "Solar","-","-","-",9,80 "Wind","-","-","-","-","-" "Wood/Wood Waste",1979,1930,1969,1954,2019 "MSW Biogenic/Landfill Gas",1825,1794,1726,1846,1846 "Other

  5. Florida Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " Natural Gas",96186,100307,103363,118322,128634 " Other Gases",17,15,10,7,8 "Nuclear",31426,29289,32133,29118,23936 "Renewables",4534,4457,4509,4549,4664 "Pumped

  6. Georgia Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2569,2236,2145,3260,3322 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3362,3362,2660,2746,3054 "MSW Biogenic/Landfill Gas",25,16,31,51,83

  7. Georgia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural Gas",12961,16079,13428,20506,23884 " Other Gases","-","-","-","-","-" "Nuclear",32006,32545,31691,31683,33512 "Renewables",5988,5652,4927,6085,6502 "Pumped

  8. Hawaii Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural Gas","-","-","-","-","-" " Other Gases",43,45,39,22,22 "Nuclear","-","-","-","-","-" "Renewables",738,846,861,817,817 "Pumped

  9. Idaho Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-",86,76,72 "Hydro Conventional",11242,9022,9363,10434,9154 "Solar","-","-","-","-","-" "Wind",170,172,207,313,441 "Wood/Wood Waste",520,481,455,478,478 "MSW Biogenic/Landfill Gas","-","-","-","-","-" "Other

  10. Idaho Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  11. Illinois Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",173,154,139,136,119 "Solar","-","-","-","s",14 "Wind",255,664,2337,2820,4454 "Wood/Wood Waste","-","-",1,"s","s" "MSW Biogenic/Landfill Gas",582,603,697,709,670 "Other

  12. Illinois Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural Gas",5279,7542,4260,4495,5724 " Other Gases",149,134,54,88,161 "Nuclear",94154,95729,95152,95474,96190 "Renewables",1022,1438,3174,3666,5257 "Pumped Storage","-","-","-","-","-"

  13. Indiana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",490,450,437,503,454 "Solar","-","-","-","-","-" "Wind","-","-",238,1403,2934 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  14. Indiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",129345,129576,128206,114118,121101 " Coal",123645,122803,122036,108312,112328 " Petroleum",148,170,178,157,155 " Natural Gas",2682,4012,3636,3830,6475 " Other Gases",2870,2591,2356,1820,2144 "Nuclear","-","-","-","-","-" "Renewables",710,681,948,2209,3699 "Pumped

  15. Iowa Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",909,962,819,971,948 "Solar","-","-","-","-","-" "Wind",2318,2757,4084,7421,9170 "Wood/Wood Waste","-","s","s","s","-" "MSW Biogenic/Landfill Gas",100,123,98,93,91 "Other

  16. Iowa Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",37014,41388,42734,38621,42749 " Coal",34405,37986,40410,37351,41283 " Petroleum",208,312,161,85,154 " Natural Gas",2400,3091,2163,1184,1312 " Other Gases","-","-","-","-","-" "Nuclear",5095,4519,5282,4679,4451 "Renewables",3364,3870,5070,8560,10309 "Pumped

  17. Kansas Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",10,11,11,13,13 "Solar","-","-","-","-","-" "Wind",992,1153,1759,2863,3405 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  18. Kansas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural Gas",1839,2133,2230,2669,2287 " Other Gases","-","-","-","-","-" "Nuclear",9350,10369,8497,8769,9556 "Renewables",1002,1163,1770,2876,3473 "Pumped

  19. Kentucky Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2592,1669,1917,3318,2580 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",369,370,351,263,349 "MSW Biogenic/Landfill Gas",88,93,105,96,89

  20. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  1. Utah Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",191,164,254,279,277 "Hydro Conventional",747,539,668,835,696 "Solar","-","-","-","-","-" "Wind","-","-",24,160,448 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",15,31,24,48,56 "Other

  2. Utah Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural Gas",3389,7424,7366,6444,6455 " Other Gases","-","-",36,28,36 "Nuclear","-","-","-","-","-" "Renewables",952,734,970,1322,1476 "Pumped

  3. Vermont Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1519,647,1493,1486,1347 "Solar","-","-","-","-","-" "Wind",11,11,10,12,14 "Wood/Wood Waste",439,453,415,393,443 "MSW Biogenic/Landfill Gas","-","-","-",24,25 "Other

  4. Vermont Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9,10,7,7,8 " Coal","-","-","-","-","-" " Petroleum",7,8,4,2,5 " Natural Gas",2,2,3,4,4 " Other Gases","-","-","-","-","-" "Nuclear",5107,4704,4895,5361,4782 "Renewables",1969,1110,1918,1915,1829 "Pumped

  5. Virginia Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1351,1248,1011,1479,1500 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1780,1792,1916,1708,1404 "MSW Biogenic/Landfill Gas",662,753,761,695,802

  6. Virginia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",42343,48422,42242,38888,43751 " Coal",34288,35421,31776,25599,25459 " Petroleum",839,2097,1150,1088,1293 " Natural Gas",7215,10904,9315,12201,16999 " Other Gases","-","-","-","-","-" "Nuclear",27594,27268,27931,28212,26572 "Renewables",3810,3814,3709,3896,3720 "Pumped

  7. Washington Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",82008,78829,77637,72933,68288 "Solar","-","-","-","-","-" "Wind",1038,2438,3657,3572,4745 "Wood/Wood Waste",1281,1116,1113,1305,1676 "MSW Biogenic/Landfill Gas",165,163,156,156,185 "Other

  8. Washington Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14255,16215,18879,19747,19211 " Coal",6373,8557,8762,7478,8527 " Petroleum",38,37,35,54,32 " Natural Gas",7495,7287,9809,11971,10359 " Other Gases",349,334,272,245,292 "Nuclear",9328,8109,9270,6634,9241 "Renewables",84510,82560,82575,77977,74905 "Pumped Storage",47,45,49,52,53 "Other",62,62,56,59,62

  9. Wisconsin Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1679,1516,1616,1394,2112 "Solar","-","-","-","-","-" "Wind",101,109,487,1052,1088 "Wood/Wood Waste",774,785,775,769,878 "MSW Biogenic/Landfill Gas",375,414,474,489,470 "Other Biomass",16,21,18,30,38

  10. Wisconsin Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",46352,47530,47881,43477,46384 " Coal",40116,40028,41706,37280,40169 " Petroleum",877,1013,931,712,718 " Natural Gas",5358,6489,5244,5484,5497 " Other Gases","-","-","-","-","s" "Nuclear",12234,12910,12155,12683,13281 "Renewables",2944,2846,3370,3734,4586 "Pumped

  11. Wyoming Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",843,729,835,967,1024 "Solar","-","-","-","-","-" "Wind",759,755,963,2226,3247 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  12. Wyoming Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural Gas",501,594,495,488,459 " Other Gases",310,312,289,284,279 "Nuclear","-","-","-","-","-" "Renewables",1602,1484,1798,3193,4271 "Pumped

  13. Ohio Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",632,410,386,528,429 "Solar","-","-","-","-",13 "Wind",14,15,15,14,13 "Wood/Wood Waste",410,399,418,410,399 "MSW Biogenic/Landfill Gas",24,11,183,198,264 "Other Biomass",10,10,8,11,12 "Total",1091,846,1010,1161,1

  14. Arizona Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",6793,6598,7286,6427,6622 "Solar",13,9,15,14,16 "Wind","-","-","-",30,135 "Wood/Wood Waste",8,"-",76,137,140 "MSW Biogenic/Landfill Gas",28,29,19,18,24 "Other Biomass",4,4,4,4,4 "Total",6846,6639,7400,6630,694

  15. Hawaii Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",212,230,234,168,201 "Hydro Conventional",120,92,84,113,70 "Solar","-","-","s",1,2 "Wind",80,238,240,251,261 "Wood/Wood Waste","-","-","-","-","s" "MSW Biogenic/Landfill Gas",189,169,184,180,174 "Other Biomass",137,116,118,104,109 "Total",738,846,861,817,817

  16. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  17. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  18. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    SciTech Connect (OSTI)

    Roger Hoy

    2014-09-01

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  19. Industrial applications of accelerator-based infrared sources: Analysis using infrared microspectroscopy

    SciTech Connect (OSTI)

    Bantignies, J.L.; Fuchs, G.; Wilhelm, C.; Carr, G.L.; Dumas, P.

    1997-09-01

    Infrared Microspectroscopy, using a globar source, is now widely employed in the industrial environment, for the analysis of various materials. Since synchrotron radiation is a much brighter source, an enhancement of an order of magnitude in lateral resolution can be achieved. Thus, the combination of IR microspectroscopy and synchrotron radiation provides a powerful tool enabling sample regions only few microns size to be studied. This opens up the potential for analyzing small particles. Some examples for hair, bitumen and polymer are presented.

  20. United States Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",14568,14637,14840,15009,15219 "Hydro Conventional",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 "Wind",26589,34450,55363,73886,94652 "Wood/Wood Waste",38762,39014,37300,36050,37172 "MSW Biogenic/Landfill

  1. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  2. United States Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2885295,2992238,2926731,2726452,2883361 " Coal",1990511,2016456,1985801,1755904,1847290 " Petroleum",64166,65739,46243,38937,37061 " Natural Gas",816441,896590,882981,920979,987697 " Other Gases",14177,13453,11707,10632,11313

  3. United States Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",761603,763994,770221,774279,782176 " Coal",312956,312738,313322,314294,316800 " Petroleum",58097,56068,57445,56781,55647 " Natural Gas",388294,392876,397460,401272,407028 " Other Gases",2256,2313,1995,1932,2700

  4. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  5. Delaware Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood/Wood

  6. District of Columbia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81,75,72,35,200 " Coal","-","-","-","-","-" " Petroleum",81,75,72,35,200 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  7. District of Columbia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",806,806,790,790,790 " Coal","-","-","-","-","-" " Petroleum",806,806,790,790,790 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  8. New York Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",27345,25253,26723,27615,25472 "Solar","-","-","-","-","-" "Wind",655,833,1251,2266,2596 "Wood/Wood Waste",522,492,555,536,547 "MSW Biogenic/Landfill Gas",1410,1442,1513,1665,1671 "Other

  9. New York Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4307,4301,4299,4310,4314 "Solar","-","-","-","-","-" "Wind",370,425,707,1274,1274 "Wood/Wood Waste",37,37,87,86,86 "MSW/Landfill Gas",313,324,340,344,359 "Other

  10. New York Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69880,75234,66756,57187,64503 " Coal",20968,21406,19154,12759,13583 " Petroleum",6778,8195,3745,2648,2005 " Natural Gas",42134,45634,43856,41780,48916 " Other Gases","-","-","-","-","-" "Nuclear",42224,42453,43209,43485,41870 "Renewables",29941,28028,30042,32082,30286 "Pumped

  11. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  12. North Carolina Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3839,2984,3034,5171,4757 "Solar","-","-",2,5,11 "Wind","-","-","-","-","-" "Wood/Wood Waste",1737,1585,1800,1757,1876 "MSW Biogenic/Landfill Gas",88,86,102,120,136 "Other

  13. North Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1954,1960,1952,1952,1956 "Solar","-","-",3,3,35 "Wind","-","-","-","-","-" "Wood/Wood Waste",324,324,318,318,481 "MSW/Landfill Gas",14,18,20,20,27 "Other

  14. North Carolina Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",79134,84935,80312,70232,80692 " Coal",75487,79983,75815,65083,71951 " Petroleum",451,496,320,297,293 " Natural Gas",3196,4457,4177,4852,8447 " Other Gases","-","-","-","-","-" "Nuclear",39963,40045,39776,40848,40740 "Renewables",5667,4656,4956,7065,6840 "Pumped

  15. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  16. North Dakota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1521,1305,1253,1475,2042 "Solar","-","-","-","-","-" "Wind",369,621,1693,2998,4096 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  17. North Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  18. North Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28987,29283,29721,29712,28552 " Coal",28879,29164,29672,29607,28462 " Petroleum",42,51,49,45,38 " Natural Gas",7,17,"s",17,16 " Other Gases",59,53,"-",44,36 "Nuclear","-","-","-","-","-" "Renewables",1894,1940,2959,4484,6150 "Pumped

  19. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  20. Ohio Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",101,101,101,101,101 "Solar","-","-","-","-",13 "Wind",7,7,7,7,7 "Wood/Wood Waste",64,64,65,65,60 "MSW/Landfill Gas",4,41,41,41,48 "Other Biomass","-","-","-",1,2

  1. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  2. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  3. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  4. Oregon Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",8374,8385,8364,8430,8425 "Solar","-","-","-","-","-" "Wind",399,885,1059,1659,2004 "Wood/Wood Waste",195,215,230,241,221 "MSW/Landfill Gas",14,20,20,26,31 "Other Biomass",3,18,3,3,3

  5. Oregon Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " Coal",585,585,585,585,585 " Petroleum","-","-","-","-","-" " Natural Gas",2764,3101,3068,3041,2992 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  6. Pennsylvania Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",748,748,751,747,747 "Solar","-","-",2,2,9 "Wind",150,293,361,696,696 "Wood/Wood Waste",108,108,108,108,108 "MSW/Landfill Gas",359,379,397,419,424 "Other Biomass","-","-","-","-","-"

  7. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  8. Rhode Island Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",6,4,5,5,4 "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  9. Rhode Island Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4,4,3,3,3 "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  10. Rhode Island Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5813,6891,7224,7547,7595 " Coal","-","-","-","-","-" " Petroleum",33,34,26,17,12 " Natural Gas",5780,6857,7198,7530,7583 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  11. Rhode Island Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " Coal","-","-","-","-","-" " Petroleum",31,29,26,16,16 " Natural Gas",1712,1725,1728,1738,1738 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  12. South Carolina Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1807,1556,1123,2332,2376 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1804,1895,1696,1611,1742 "MSW Biogenic/Landfill Gas",106,101,120,137,131

  13. South Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1345,1337,1337,1337,1340 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",220,220,220,220,255 "MSW/Landfill Gas",29,29,35,23,29 "Other

  14. South Carolina Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",45778,47765,47449,44781,48789 " Coal",39473,41583,41540,34478,37671 " Petroleum",237,217,180,523,191 " Natural Gas",6068,5965,5729,9780,10927 " Other Gases","s","s","-","-","-" "Nuclear",50797,53200,51763,52150,51988 "Renewables",3717,3552,2939,4080,4250 "Pumped

  15. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  16. South Dakota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3397,2917,2993,4432,5239 "Solar","-","-","-","-","-" "Wind",149,150,145,421,1372 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  17. South Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  18. South Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3586,3069,3912,3306,3439 " Coal",3316,2655,3660,3217,3298 " Petroleum",5,63,23,8,6 " Natural Gas",266,351,229,80,135 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",3546,3067,3140,4859,6611 "Pumped

  19. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  20. Louisiana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",192,192,192,192,192 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",318,380,380,373,311 "MSW/Landfill

  1. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  2. Maine Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",719,718,730,738,738 "Solar","-","-","-","-","-" "Wind","-",42,47,170,263 "Wood/Wood Waste",609,612,612,606,600 "MSW/Landfill Gas",53,53,53,57,57 "Other Biomass",36,36,36,36,35

  3. Maine Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,1645 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1418,1462,1478,1606,1692 "Pumped

  4. Maryland Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",566,590,590,590,590 "Solar","-","-","-","-",1 "Wind","-","-","-","-",70 "Wood/Wood Waste",2,3,3,3,3 "MSW/Landfill Gas",126,130,132,135,135 "Other

  5. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  6. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  7. Michigan Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",257,249,250,251,237 "Solar","-","-","-","-","-" "Wind",2,2,124,143,163 "Wood/Wood Waste",210,231,230,230,232 "MSW/Landfill Gas",149,156,169,168,176 "Other

  8. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  9. Minnesota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",175,176,194,194,193 "Solar","-","-","-","-","-" "Wind",827,1139,1460,1615,2009 "Wood/Wood Waste",129,161,170,177,177 "MSW/Landfill Gas",127,128,130,132,134 "Other Biomass","-",55,55,75,75

  10. Mississippi Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",229,229,229,229,235

  11. Mississippi Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,14205 " Coal",2548,2542,2555,2555,2526 " Petroleum",36,36,36,35,35 " Natural Gas",12537,12125,11859,11746,11640 " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 "Renewables",229,229,229,229,235 "Pumped Storage","-","-","-","-","-"

  12. Missouri Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",552,552,566,564,564 "Solar","-","-","-","-","-" "Wind","-",57,163,309,459 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",3,3,5,8,8 "Other

  13. Missouri Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18197,18099,18126,18101,18861 " Coal",11299,11259,11240,11231,12070 " Petroleum",1279,1287,1282,1272,1212 " Natural Gas",5619,5553,5604,5598,5579 " Other Gases","-","-","-","-","-" "Nuclear",1190,1190,1190,1190,1190 "Renewables",555,612,734,880,1030 "Pumped Storage",657,657,657,657,657

  14. Montana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-",22,"-","-","-" "Hydro Conventional",2604,2620,2660,2692,2705 "Solar","-","-","-","-","-" "Wind",145,149,255,369,379 "Wood/Wood Waste",17,17,17,17,"-" "MSW/Landfill Gas","-","-","-","-","-" "Other

  15. Montana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " Coal",2460,2458,2442,2442,2442 " Petroleum",57,59,57,57,54 " Natural Gas",154,154,181,200,284 " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" "Renewables",2766,2809,2932,3078,3085 "Pumped

  16. Nebraska Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",272,273,278,278,278 "Solar","-","-","-","-","-" "Wind",73,25,25,105,154 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",6,6,6,6,6 "Other

  17. Nebraska Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5478,5423,5459,6123,6169 " Coal",3204,3204,3204,3871,3932 " Petroleum",642,330,382,387,387 " Natural Gas",1632,1889,1874,1864,1849 " Other Gases","-","-","-","-","-" "Nuclear",1238,1240,1252,1252,1245 "Renewables",355,308,313,393,443 "Pumped

  18. Nevada Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",188,189,215,306,319 "Hydro Conventional",1047,1048,1051,1051,1051 "Solar","-",79,89,89,137 "Wind","-","-","-","-","-" "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas","-","-","-","-","-"

  19. Nevada Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6996 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1236,1316,1355,1446,1507 "Pumped

  20. New Hampshire Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1529,1265,1633,1680,1478 "Solar","-","-","-","-","-" "Wind","-","-",10,62,76 "Wood/Wood Waste",590,970,1010,984,1030 "MSW Biogenic/Landfill Gas",156,153,155,151,127 "Other

  1. New Hampshire Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",512,494,500,498,489 "Solar","-","-","-","-","-" "Wind","-","-",24,24,24 "Wood/Wood Waste",141,140,140,140,129 "MSW/Landfill Gas",31,29,29,29,29 "Other

  2. New Hampshire Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10331,10066,10660,8411,8519 " Coal",3885,3927,3451,2886,3083 " Petroleum",439,385,136,183,72 " Natural Gas",6007,5754,7073,5342,5365 " Other Gases","-","-","-","-","-" "Nuclear",9398,10764,9350,8817,10910 "Renewables",2275,2389,2808,2878,2710 "Pumped

  3. New Hampshire Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural Gas",1354,1341,1205,1198,1215 " Other Gases","-","-","-","-","-" "Nuclear",1244,1245,1245,1247,1247 "Renewables",685,663,694,691,671 "Pumped

  4. New Jersey Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",35,21,26,32,18 "Solar","-","-",3,11,21 "Wind",16,20,21,21,13 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",803,822,879,925,816 "Other Biomass",98,1,3,4,"-"

  5. New Jersey Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26910,29576,30264,26173,31662 " Coal",10862,10211,9028,5100,6418 " Petroleum",270,453,325,278,235 " Natural Gas",15668,18752,20752,20625,24902 " Other Gases",110,161,159,170,106 "Nuclear",32568,32010,32195,34328,32771 "Renewables",952,864,931,992,868 "Pumped Storage",-299,-269,-275,-202,-194 "Other",569,489,559,520,575

  6. New Jersey Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14363,13741,13771,13759,13676 " Coal",2124,2054,2054,2065,2036 " Petroleum",1810,1345,1514,1362,1351 " Natural Gas",10385,10298,10159,10288,10244 " Other Gases",44,44,44,44,44 "Nuclear",3984,3984,4108,4108,4108 "Renewables",212,215,219,221,230 "Pumped Storage",400,400,400,400,400 "Other",11,11,11,11,11

  7. New Mexico Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",198,268,312,271,217 "Solar","-","-","-","-",9 "Wind",1255,1393,1643,1547,1832 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  8. New Mexico Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",82,82,82,82,82 "Solar","-","-","-","-",30 "Wind",494,494,496,597,700 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  9. New Mexico Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35790,34308,35033,37823,34180 " Coal",29859,27604,27014,29117,25618 " Petroleum",41,44,53,45,50 " Natural Gas",5890,6660,7966,8661,8512 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1476,1677,1974,1851,2072 "Pumped

  10. New Mexico Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6520,6620,7366,7308,7312 " Coal",3957,3957,3957,3977,3990 " Petroleum",28,28,28,28,24 " Natural Gas",2535,2634,3381,3302,3298 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",582,582,584,686,818 "Pumped

  11. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  12. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  13. Alaska Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",397,397,400,414,414 "Solar","-","-","-","-","-" "Wind",3,3,3,7,7 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  14. Alaska Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",400,400,403,422,422 "Pumped

  15. Arizona Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2720,2720,2720,2720,2720 "Solar",9,9,9,11,20 "Wind","-","-","-",63,128 "Wood/Wood Waste",3,3,29,29,29 "MSW/Landfill Gas",4,4,4,4,4 "Other Biomass","-","-","-","-","-"

  16. Arizona Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural Gas",12864,12845,13031,13031,13012 " Other Gases","-","-","-","-","-" "Nuclear",3872,3872,3942,3942,3937 "Renewables",2736,2736,2762,2826,2901 "Pumped Storage",216,216,216,216,216

  17. Arkansas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1389,1321,1321,1337,1341 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",292,292,312,312,312 "MSW/Landfill Gas",5,5,5,5,9 "Other

  18. Arkansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural Gas",7096,7939,7873,7867,7894 " Other Gases","-","-","-","-","-" "Nuclear",1824,1838,1839,1835,1835 "Renewables",1691,1623,1643,1659,1667 "Pumped Storage",28,28,28,28,28

  19. California Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2032,1940,1940,2004,2004 "Hydro Conventional",10083,10041,10122,10144,10141 "Solar",402,404,416,450,475 "Wind",2255,2312,2368,2650,2812 "Wood/Wood Waste",584,596,616,646,639 "MSW/Landfill Gas",275,380,374,306,292 "Other Biomass",145,102,109,96,97 "Total",15776,15774,15945,16295,16460 "

  20. California Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural Gas",38001,38556,38635,40146,41370 " Other Gases",171,262,197,197,209 "Nuclear",4390,4390,4390,4390,4390 "Renewables",15776,15774,15945,16295,16460 "Pumped Storage",3688,3688,3813,3813,3813 "Other",8,"-",7,7,11

  1. Colorado Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",652,665,666,666,662 "Solar","-",8,11,14,41 "Wind",289,1063,1063,1238,1294 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas","-","-",3,3,3 "Other Biomass",10,10,10,10,10

  2. Colorado Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9644,9979,10229,10545,11204 " Coal",4939,4961,4965,5010,5702 " Petroleum",181,182,184,178,178 " Natural Gas",4523,4836,5080,5357,5325 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",950,1746,1753,1931,2010 "Pumped

  3. Connecticut Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",147,122,122,122,122 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste","-","-","-","-","-"

  4. Connecticut Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " Coal",551,551,553,564,564 " Petroleum",2926,2709,2741,2749,2989 " Natural Gas",2020,2100,2171,2268,2292 " Other Gases","-","-","-","-","-" "Nuclear",2037,2022,2015,2103,2103 "Renewables",316,285,287,287,281 "Pumped Storage",4,29,29,29,29

  5. Delaware Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural Gas",1282,1262,1397,1417,1455 " Other Gases",307,307,307,307,307 "Nuclear","-","-","-","-","-" "Renewables",7,7,7,7,10 "Pumped

  6. Florida Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",55,55,55,55,55 "Solar","-","-","-",25,123 "Wind","-","-","-","-","-" "Wood/Wood Waste",343,354,351,351,344 "MSW/Landfill Gas",447,463,470,492,491 "Other Biomass",163,176,171,171,171

  7. Florida Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48044,50280,50166,53733,53791 " Coal",10333,10297,10265,10261,9975 " Petroleum",11677,11671,13128,12602,12033 " Natural Gas",26035,28312,26773,30870,31563 " Other Gases","-","-","-","-",220 "Nuclear",3902,3902,3924,3924,3924 "Renewables",1008,1048,1046,1093,1182 "Pumped

  8. Georgia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2027,2032,2041,2046,2052 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",450,621,591,587,617 "MSW/Landfill Gas",5,10,10,15,17 "Other

  9. Georgia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28238,28096,28078,28103,28087 " Coal",13438,13275,13256,13211,13230 " Petroleum",2182,2169,2187,2188,2189 " Natural Gas",12618,12652,12635,12705,12668 " Other Gases","-","-","-","-","-" "Nuclear",4060,3995,4061,4061,4061 "Renewables",2526,2706,2642,2648,2689 "Pumped

  10. Hawaii Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",31,31,31,31,31 "Hydro Conventional",24,24,24,24,24 "Solar","-","-",1,1,2 "Wind",43,64,64,64,62 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",60,60,60,60,60 "Other Biomass",49,49,49,162,162 "Total",206,227,228,341,3

  11. Hawaii Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2208,2209,2208,2223,2196 " Coal",180,180,180,180,180 " Petroleum",2019,2020,2019,2034,2007 " Natural Gas","-","-","-","-","-" " Other Gases",9,9,9,9,9 "Nuclear","-","-","-","-","-" "Renewables",206,227,228,341,340 "Pumped

  12. Idaho Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-",10,7,10 "Hydro Conventional",2378,2367,2346,2682,2704 "Solar","-","-","-","-","-" "Wind",75,75,117,146,352 "Wood/Wood Waste",75,71,63,68,68 "MSW/Landfill Gas","-","-","-","-","-" "Other

  13. Idaho Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",2528,2514,2535,2909,3140 "Pumped

  14. Illinois Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",33,33,34,34,34 "Solar","-","-","-",9,9 "Wind",105,740,962,1596,1946 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",111,131,150,139,123 "Other

  15. Illinois Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural Gas",13705,13709,13870,13806,13771 " Other Gases",47,47,40,47,125 "Nuclear",11379,11379,11379,11441,11441 "Renewables",264,916,1145,1777,2112 "Pumped Storage","-","-","-","-","-"

  16. Indiana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",60,60,60,60,60 "Solar","-","-","-","-","-" "Wind","-","-",131,1037,1340 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",31,39,39,45,53

  17. Indiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26899,26922,26850,26808,26186 " Coal",19718,19759,19721,19757,19096 " Petroleum",503,503,503,503,504 " Natural Gas",6052,6048,6007,6003,5766 " Other Gases",626,612,618,545,819 "Nuclear","-","-","-","-","-" "Renewables",91,99,229,1141,1452 "Pumped

  18. Iowa Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",131,131,142,144,144 "Solar","-","-","-","-","-" "Wind",921,1170,2635,3352,3569 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",11,11,11,11,11 "Other

  19. Iowa Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural Gas",2371,2402,2395,2346,2299 " Other Gases","-","-","-","-","-" "Nuclear",581,580,580,601,601 "Renewables",1067,1316,2791,3511,3728 "Pumped

  20. Kansas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3,3,3,3,3 "Solar","-","-","-","-","-" "Wind",363,363,812,1011,1072 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  1. Kansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural Gas",3824,3932,4262,4611,4573 " Other Gases","-","-","-","-","-" "Nuclear",1166,1166,1160,1160,1160 "Renewables",366,366,815,1014,1082 "Pumped

  2. Kentucky Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",815,817,824,824,824 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",43,47,47,52,52 "MSW/Landfill Gas",12,15,15,17,17 "Other

  3. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  4. Tennessee Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13051,12974,12999,12982,13517 " Coal",8841,8816,8841,8805,8805 " Petroleum",58,58,58,58,58 " Natural Gas",4153,4101,4101,4120,4655 " Other Gases","-","-","-","-","-" "Nuclear",3398,3397,3397,3401,3401 "Renewables",2821,2838,2842,2817,2847 "Pumped Storage",1635,1653,1653,1653,1653

  5. Texas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " Coal",19843,19817,20189,20247,22335 " Petroleum",220,216,218,221,204 " Natural Gas",71737,71152,70856,66896,69291 " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 "Renewables",3607,5385,8380,10354,10985 "Pumped Storage","-","-","-","-","-"

  6. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  7. Utah Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " Coal",4891,4871,4871,4871,4903 " Petroleum",35,25,25,25,23 " Natural Gas",1473,1934,1923,2002,2042 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",282,293,313,521,528 "Pumped

  8. Vermont Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",309,308,322,322,324 "Solar","-","-","-","-","-" "Wind",5,5,5,5,5 "Wood/Wood Waste",76,76,76,76,76 "MSW/Landfill Gas","-","-",3,3,3 "Other

  9. Vermont Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",108,101,101,100,100 " Coal","-","-","-","-","-" " Petroleum",108,101,101,100,100 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-" "Nuclear",620,620,620,620,620

  10. Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",671,675,677,716,866 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",410,418,422,409,331 "MSW/Landfill Gas",170,254,269,278,290 "Other

  11. Virginia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 " Coal",5774,5794,5773,5777,5868 " Petroleum",2386,2418,2418,2427,2432 " Natural Gas",6809,6869,7351,7536,7581 " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 "Renewables",1251,1347,1368,1403,1487 "Pumped Storage",2997,3161,3161,3241,3241

  12. Washington Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",21156,21333,21203,21088,21181 "Solar","-",1,1,1,1 "Wind",821,1162,1365,2006,2296 "Wood/Wood Waste",326,296,314,369,368 "MSW/Landfill Gas",35,36,36,41,39 "Other Biomass",4,"-","-","-","-"

  13. Washington Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4436,4343,5130,5145,5183 " Coal",1405,1405,1376,1376,1340 " Petroleum",40,4,4,5,15 " Natural Gas",2991,2933,3750,3764,3828 " Other Gases","-","-","-","-","-" "Nuclear",1131,1131,1131,1131,1097 "Renewables",22343,22828,22919,23504,23884 "Pumped Storage",314,314,314,314,314

  14. West Virginia Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1572,1254,1248,1646,1367 "Solar","-","-","-","-","-" "Wind",174,168,392,742,939 "Wood/Wood Waste","-","-","s",-1,"-" "MSW Biogenic/Landfill

  15. West Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",264,264,264,264,285 "Solar","-","-","-","-","-" "Wind",66,66,330,330,431 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  16. West Virginia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92063,92511,89481,68395,78482 " Coal",91473,91866,89113,68080,78148 " Petroleum",175,200,137,169,155 " Natural Gas",362,389,180,109,140 " Other Gases",53,56,50,36,40 "Nuclear","-","-","-","-","-" "Renewables",1746,1422,1640,2388,2307 "Pumped

  17. West Virginia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,15779 " Coal",14745,14715,14703,14713,14713 " Petroleum",12,12,11,11,11 " Natural Gas",1357,1042,1042,1042,1056 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",330,330,594,594,715 "Pumped

  18. Wisconsin Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",476,488,485,492,492 "Solar","-","-","-","-","-" "Wind",53,44,231,430,449 "Wood/Wood Waste",220,232,208,208,239 "MSW/Landfill Gas",62,71,72,72,76 "Other Biomass",1,1,8,11,12

  19. Wisconsin Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14000,13926,15015,14928,14964 " Coal",7063,6945,7597,7519,8063 " Petroleum",881,949,874,873,790 " Natural Gas",6056,6032,6544,6536,6110 " Other Gases","-","-","-","-","-" "Nuclear",1582,1582,1582,1583,1584 "Renewables",813,836,1003,1212,1267 "Pumped

  20. Wyoming Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  1. Wyoming Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " Coal",5847,5847,5932,5929,6035 " Petroleum",6,7,7,7,7 " Natural Gas",160,120,120,120,120 " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" "Renewables",590,590,983,1408,1722 "Pumped

  2. Lien Hwa Industrial Corporation | Open Energy Information

    Open Energy Info (EERE)

    Lien Hwa Industrial Corporation Jump to: navigation, search Name: Lien Hwa Industrial Corporation Place: Taipei, Taiwan Product: Lien Hwa Industrial Corporation is an agricultural,...

  3. Massachusetts Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",259,259,258,261,262 "Solar","-","-","s","s",4 "Wind","-",2,2,5,10 "Wood/Wood Waste",26,26,26,26,26 "MSW/Landfill Gas",261,264,263,264,255 "Other Biomass",9,9,9,9,9 "Total",554,560,557,564,566

  4. New Jersey Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",5,4,4,6,4 "Solar","-",2,4,13,28 "Wind",8,8,8,8,8 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",181,182,184,175,171 "Other Biomass",20,20,20,20,20 "Total",212,215,219,221,230

  5. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  6. Industry Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Partnerships

  7. Impact of external industrial sources on the regional and local SO? and O? levels of the Mexico megacity

    SciTech Connect (OSTI)

    Almanza, V. H.; Molina, Luisa T.; Li, Guohui; Fast, Jerome D.; Sosa, G.

    2014-08-22

    The air quality of megacities can be influenced by external emissions sources on both global and regional scale, and at the same time their outflow emissions can exert an important impact to the surrounding environment. The present study evaluates an SO? peak observed on 24 March 2006 at the suburban supersite T1 and ambient air quality monitoring stations located in the north region of the Mexico City Metropolitan Area (MCMA) during MILAGRO campaign. We found that this peak could be related to an important episodic emission event from Tizayuca region, northeast of the MCMA. Back trajectories analyses suggest that the emission event started in the early morning at 10 04:00 LST and lasted for about 9 h. The estimated emission rate is noticeably high, about 2 kgs-. This finding suggests the possibility of "overlooked"emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the State of Hidalgo and in the State of Mexico, and we found that they can contribute in the NE region of the basin (about 15 41.7%), at the suburban supersite T1 (41.23%) and at some monitoring stations their contribution can be even higher than from the Tula Industrial Complex. The contribution of Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 ppb to 4 ppb) and slightly higher at the suburban T1 (6 ppb) and rural T2 (5 ppb) supersites. However, the contribution could be 20 as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of State of Hidalgo. In addition, a first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Emission rates are estimated with a CFD combustion model. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities. 25 Finally, the influence in SO? levels from technological changes in the existing refinery is briefly discussed. These changes are due to the upcoming construction of a new refinery in Tula. The combination of emission reductions in the power plant, the refinery and in local sources in the MCMA could result in higher reductions on the average SO? 26580 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | concentration. Reductions in external sources tend to affect more the northern part of the basin (-16.35% to -45.58%), whilst reductions of urban sources in the megacity tend to diminish SO? levels substantially in the central, southwest, and southeast regions (-30.71% to -49.75%).

  8. 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9

    U.S. Energy Information Administration (EIA) Indexed Site

    "Planned Year","State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9 2014,"AK","Total Electric Power Industry","Hydroelectric",2,1,4.8,4.8 2014,"AK","Total Electric Power

  9. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  10. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  11. The Future of Biofuels an Agricultural Perspective

    U.S. Energy Information Administration (EIA) Indexed Site

    Biofuels An Agricultural Perspective Beth J. Calabotta Monsanto Company POPULATION GROWING AT 1.1% EACH YEAR Source: UN Population Division, Monsanto analysis INCOMES GROWING AT 3.5% PER YEAR... $5 BILLION PER DAY Source: IHS Global Insight, Agriculture Division, Monsanto analysis FOOD DEMAND GROWING AT ~1.75% EACH YEAR Source: IHS Global Insights, Agriculture Division, Monsanto analysis WATER DEMAND IS GROWING AT ~2% PER YEAR Source: McKinsey Resource Revolution 2011, Monsanto Analysis ENERGY

  12. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  13. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  14. Klamath and Lake Counties Agricultural Industrial Park

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project goal: to attract new businesses to Klamath and Lake counties for the purpose of capitalizing on our abundant geothermal resources.

  15. Army Industrial, Landscaping, and Agricultural Water Use

    SciTech Connect (OSTI)

    McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  16. " Energy Sources by Industry Group, Selected Industries...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 3321," Gray and Ductile Iron Foundries",144,8,128,"*",7,0,0,0,1,1,26 3331," Primary Copper","W","W",25,1,"W","W",0,0,"W",0,1.1 3334," Primary Aluminum",127,0,123,0,0,0,0,0,0,0,5...

  17. " Sources by Industry Group, Selected Industries...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Ductile Iron Foundries",6414,63,6148,"Q","Q","Q","*","W","Q",11,17.1 3331," Primary Copper",1246,"W",929,"W",0,0,0,0,0,"W",1.4 3334," Primary Aluminum",67707,"W",66272,0,"W",0,0...

  18. " Sources by Industry Group, Selected Industries...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 3321," Gray and Ductile Iron Foundries",28,8,18,"*",3,1,0,0,5,"*",13 3331," Primary Copper",15,7,7,0,"W","W","*",0,"W",0,1.3 3334," Primary Aluminum",20,10,10,0,3,2,0,0,8,0,3.6 ...

  19. " Sources by Industry Group, Selected Industries...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 3321," Gray and Ductile Iron Foundries",4,"W","Q",0,"W",0,0,0,0,0,34.2 3331," Primary Copper","W","W",0,0,"W","W",0,0,0,"W",1.2 3334," Primary Aluminum","*","*","*",0,"*","*",0,0,...

  20. Food and Agriculture Organization of the United Nations | Open...

    Open Energy Info (EERE)

    and Health Atlas (GLiPHA) Impact of the Global Forest Industry on Atmospheric Greenhouse Gas National Mitigation Planning in Agriculture: Review and Guidelines National Planning...

  1. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting

  2. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  3. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands. 

  4. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  5. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  6. Agricultural Outlook Forum

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Agriculture on February 19–20 in Crystal City, Virginia, the theme of the 91st Annual Agricultural Outlook Forum will be centered on “Smart Agriculture in the 21st Century.”

  7. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  8. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  9. USDA Agricultural Conservation Easement Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA's) Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

  10. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  11. Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20

    SciTech Connect (OSTI)

    Coe, B.A.

    1982-04-01

    Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

  12. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  13. Agricultural Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  14. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  15. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  16. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  17. 1990,"AK","Total Electric Power Industry","All Sources",4208809,18741,12562

    U.S. Energy Information Administration (EIA) Indexed Site

    State","Producer Type","Energy Source","CO2 (Metric Tons)","SO2 (Metric Tons)","NOx (Metric Tons)" 1990,"AK","Commercial Cogen","All Sources",824004,13198,3011 1990,"AK","Commercial Cogen","Coal",821929,13191,3009 1990,"AK","Commercial Cogen","Petroleum",2075,6,2 1990,"AK","Commercial Non-Cogen","All Sources",0,149,42

  18. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  19. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  20. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  1. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  2. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  3. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User...

  6. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  7. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  8. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  9. Colorado 2012 Nonpoint Source Management Plan | Open Energy Informatio...

    Open Energy Info (EERE)

    agricultural lands or metals-laden sediments from mine waste or tailings. This diffuse nature distinguishes nonpoint source pollution from point source pollution, which in contrast...

  10. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  11. Computerized simulation of fuel consumption in the agriculture industry

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/yr greater than that of ethanol and diesel must inflate at least 23 percent/yr more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years.

  12. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  14. American Society of Agricultural and Biological Engineers Annual International Meeting

    Broader source: Energy.gov [DOE]

    The 2015 American Society of Agricultural and Biological Engineers Annual International Meeting will be held in New Orleans, Louisiana on July 26–29, 2015, and will examine industry trends and innovations, with a focus on the focus on the economic, political and social factors influencing the industry. Bioenergy Technologies Office Director Jonathan Male, Program Manager Alison Goss Eng, and Technology Managers Sam Tagore, Mark Elless, and Steve Thomas will be in attendance.

  15. "Table A42. Average Prices of Purchased Energy Sources by...

    U.S. Energy Information Administration (EIA) Indexed Site

    per Million Btu)" ,,,,,"Noncombustible Energy Sources",,,..."Combustible ...,"Electricity","Steam","Steam","Steam","Industrial",," ","Bituminous and"," ",," ...

  16. "Table A42. Average Prices of Purchased Energy Sources by...

    U.S. Energy Information Administration (EIA) Indexed Site

    per Physical Units)" ,,,,,"Noncombustible Energy Sources",,,..."Combustible ...,"Electricity","Steam","Steam","Steam","Industrial",," ","Bituminous and"," ",," ...

  17. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  18. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  19. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Read more... ALS, Molecular Foundry, and aBeam

  20. Sustainable Agriculture Network | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  1. Industry and the APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and nonproprietary research and considers requests for work ranging from short-term feasibility studies to long-term research projects, either on a stand-alone basis or in...

  2. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  3. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  4. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  5. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  6. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... the forest products industry through innovation 2 The U.S. Forest Products Industry's ...

  7. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  8. Oregon Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Oregon Department of Agriculture Address: 635 Capitol St NE Place: Salem, Oregon Zip: 97301 Phone Number: 503-986-4550 Website:...

  9. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Wyoming Department of Agriculture Address: 2219 Carey Avenue Place: Cheyenne, Wyoming Zip: 82002 Phone Number: 307-777-7321 Website:...

  10. LEDSGP/sector/Agriculture | Open Energy Information

    Open Energy Info (EERE)

    LEDSGPsectorAgriculture < LEDSGP(Redirected from Agriculture Work Space) Redirect page Jump to: navigation, search REDIRECT LEDSGPsectorAFOLU Retrieved from "http:...

  11. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

  12. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  13. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self ... without the capability to use coal or another alternate fuel as a primary energy source. ...

  14. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam ...

  15. GEA Industry Briefing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Briefing GEA Industry Briefing U.S. Department of Energy progress in geothermal energy deployment was addressed at the State of the Industry Geothermal Briefing in Washington, DC on February 24, 2015. Eric Hass, hydrothermal program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the geothermal resource there. Source: Wyoming State Geological Survey U.S. Department of Energy progress in geothermal energy deployment

  16. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  17. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix E.) J. Jennings. ERC Environmental and Energy Services, Co. ERCEPO-49. (190) Empirical Impact Evaluation of the Energy Savings Resulting From BPA's Stage II Irrigation...

  18. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  19. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  20. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  1. Industry Growth Forum Cultivates Clean Energy Entrepreneurship -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum Magazine | NREL Five men sitting in yellow chairs on a stage during a discussion at an event panel session. Panel discussion at the 2013 Industry Growth Forum. From left: Michael Knotek, Deputy Undersecretary for Science and Energy, DOE; Tom Morehouse, Principal Deputy Asst. Secretary of Defense, Operational Energy Plans and Programs, DOD; Dan Arvizu, NREL Director; Ilan Gur, Program Director and Technology to Market Senior Advisor, ARPA-E; and Rick Brenner, Director, Agricultural

  2. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  3. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  4. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  5. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  6. EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dairy Industry Boosts Energy Efficiency EERE Success Story-Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis EERE Success Story—Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy

  7. Mathias Agricultural Energy Efficiency Grant program

    Broader source: Energy.gov [DOE]

    Mathias Agriculture Energy Efficiency program offered by the Maryland Energy Administration (MEA) provides grants to farms and businesses in agricultural sector to offset 50% of the cost of energ...

  8. Randolph EMC- Agricultural Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Agricultural members of Randolph EMC (REMC) who upgrade to energy-efficientCFL bulbs in agricultural facilities are eligible for an incentive to help cover the initial cost of installation. The...

  9. Agricultural Research Service (ARS) Research Participation Program -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managed by ORAU Agricultural Research Service (ARS) Research Participation Program Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research Participation Program The Agricultural Research Service (ARS) Research Participation Program will serve as the next step in the educational and professional development of scientists and engineers interested in agricultural related

  10. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  11. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D. Hiskakis, M.; Babou, E.

    2013-06-15

    Highlights: Technical specifications for agricultural plastic wastes (APWs) recycling proposed. Specifications are the base for best economical and environmental APW valorisation. Analysis of APW reveals inherent characteristics and constraints of APW streams. Thorough survey on mechanical recycling processes and industry as it applies to APW. Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project LabelAgriWaste revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (Quality I) and another one for plastic profile production process (Quality II). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

  12. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  13. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    SciTech Connect (OSTI)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  14. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  15. California Department of Food and Agriculture | Open Energy Informatio...

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Logo: California Department of Food and Agriculture Name: California Department of Food and Agriculture Abbreviation: CDFA Address: 1220 N...

  16. Energy Department Funding Helping Energy-Intensive Dairy Industry

    Broader source: Energy.gov [DOE]

    Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Dairies operate every hour of every day. Milk harvesting and cooling, equipment sterilization, lighting, and ventilation all require energy. With support from the Energy Department's State Energy Program, Colorado has implemented a successful pilot program to help the dairy industry reduce it electricity bill that could be emulated in other states.

  17. DOE Announces Additional Steps in Developing Sustainable Biofuels Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Steps in Developing Sustainable Biofuels Industry DOE Announces Additional Steps in Developing Sustainable Biofuels Industry October 7, 2008 - 4:14pm Addthis Releases Results from Preliminary Intermediate Blends Report, Continues Commitment of Commercial Scale Biorefinery, Announces $7 Million for New Biofuels Projects WASHINGTON - Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Ed Schafer today released the National Biofuels Action Plan (NBAP). The

  18. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  19. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  20. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  1. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  2. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  3. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  4. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  5. The potential of wetlands for mitigating adverse effects of agricultural drainage

    SciTech Connect (OSTI)

    Silverman, G.S.

    1995-12-01

    Agricultural runoff has been clearly identified as a major contributor to the failure of much of the surface water in the United States to meet designated use objectives. Control of agricultural drainage is very problematic. The agriculture industry strongly resists mandated controls, and warns of potential catastrophic consequences in food shortages should production methods be altered. Yet concern grows over the long and short term impact of a variety of contaminants - particularly sediments, nutrients, and pesticides - released to our waters as part of normal agricultural practices. For quite some time, wetlands have been explored for their potential in treating sewage (from both municipal and private systems) and acid mine drainage. Much less work has been done looking at the potential for wetlands to treat agricultural drainage. yet, wetlands may offer tremendous potential for mitigating problems of agricultural runoff while offering farmers desirable (or at least acceptable) uses of marginal land. This paper has two objectives. First, the opportunities for wetlands to be used as agricultural drainage treatment facilities are described. Processes are identified which trap or degrade pollutants, with particular attention given to long-term environmental fate. Second, an experimental wetlands system recently developed in Northwest Ohio is used as an example of system implementation. Emphasis will be given to how the system was developed to optimize pollutant removal within the physical constraints of the site. Preliminary performance data with respect to water quality changes will also be presented.

  6. ORISE: Multiple research appointments available through Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Service Postdoctoral Research Program Multiple research appointments available through Agricultural Research Service Postdoctoral Research Program Selected candidates participate in USDA research for one to four years FOR IMMEDIATE RELEASE March 26, 2014 FY14-23 OAK RIDGE, Tenn.-ORAU and the U.S. Department of Agriculture are currently seeking recent doctoral degree recipients for various appointments in the Agricultural Research Service Postdoctoral Research Program. The ARS is the

  7. H. R. 1198: A Bill to amend the Internal Revenue Code of 1986 to restore the application of the credit for producing fuels from a nonconventional source to steam produced from agricultural byproducts, introduced in the House of Representatives, One Hundred Second Congress, First Session, February 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The bill would allow a tax credit for steam produced from solid agricultural byproducts (including sugar cane residues, but not including timber byproducts). The bill applies to steam produced which is sold after December 31, 1989, the effective date of this amendment. Steam produced which is used by the taxpayer in his trade or business would be treated as having been sold by the taxpayer to an unrelated person on the date on which it is used.

  8. Farmers Electric Cooperative - Residential/Agricultural Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Agricultural Savings Category Solar Photovoltaics Wind (All) Geothermal Heat Pumps Water Heaters Lighting Heat Pumps CaulkingWeather-stripping Building Insulation...

  9. Consultative Group on International Agricultural Research (CGIAR...

    Open Energy Info (EERE)

    academia, and the private sector. The 15 Research Centers generate and disseminate knowledge, technologies, and policies for agricultural development through the CGIAR...

  10. OTEC- Agricultural Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Consumers Cooperative (OTEC) offers programs to agricultural customers.  Interested customers should contact a local OTEC office.

  11. WINDExchange: Agricultural and Rural Resources and Tools

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Agricultural and Rural Resources and Tools This page lists...

  12. Consultative Group on International Agricultural Research | Open...

    Open Energy Info (EERE)

    reduce poverty and hunger, improve human health and nutrition, and enhance ecosystem resilience through high-quality international agricultural research, partnershp and...

  13. Agricultural Lighting and Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    In Vermont, agricultural operations are eligible for prescriptive and customized incentives for equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting...

  14. "Table A25 Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and ....015,"W",7.25,2.434,6.685,"W",1.1 33,"Primary Metal Industries",10.178,2.172,5.835,2...

  15. "Table A25. Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and ...044,"W",1.006,2.507,0.576,"W",1.1 33,"Primary Metal Industries",0.035,0.325,0.809,2....

  16. Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; El-Zakla, T.

    2013-07-01

    Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

  17. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  18. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  19. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  20. U.S. Department of Agriculture

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) works to support the American agricultural economy to strengthen rural communities; to protect and conserve our natural resources; and to provide a safe, sufficient, and nutritious food supply for the American people. The Department’s wide range of programs and responsibilities touch the lives of every American every day.

  1. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect (OSTI)

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  2. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  3. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  4. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  5. FACTSHEET: Energy Department Launches Open-Source Online Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    audits to science, mathematics and engineering education to manufacturing industries. ... offering an open-source, web-based interactive learning environment for ...

  6. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  7. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  8. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  9. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  11. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  12. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  13. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  14. The feasibility of effluent trading in the energy industries

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  15. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect (OSTI)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  16. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  17. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  18. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  19. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect (OSTI)

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as conducting a more comprehensive survey of California growers.

  20. Renewable Agricultural Energy | Open Energy Information

    Open Energy Info (EERE)

    Sector: Renewable Energy Product: Renewable Agricultural Energy plans to bring five ethanol plants on line by the end of 2009 with a combined annual capacity of at least 1.89bn...

  1. ORISE: Multiple research appointments available through Agricultural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE March 26, 2014 FY14-23 OAK RIDGE, Tenn.-ORAU and the U.S. Department of Agriculture are currently seeking recent doctoral degree recipients for various appointments in...

  2. Sustainable Energy Utility (SEU)- Agricultural Loan Program

    Broader source: Energy.gov [DOE]

    Delaware Sustainable Energy Utility (DESEU) offers customized loans for agricultural customer as a part of DESEU’s revolving loan program. Program applications are accepted on a rolling basis, and...

  3. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  4. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. FGD gypsum's place in American agriculture

    SciTech Connect (OSTI)

    Haynes, C.

    2007-07-01

    Surface cracks and soil clumps form when saline-sodic, high-clay soil dries out. Treatment with FGD gypsum and irrigation water flowing into these cracks leaches salts until the aggregates swell and the cracks close up. The article describes research projects to develop agricultural uses of FGD gypsum from coal-fired power plants that have been conducted by university researchers and USDA-Agricultural Research Service scientists.

  6. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. PDF icon Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) More Documents

  7. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575

  8. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  9. Neutron source

    DOE Patents [OSTI]

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  10. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  11. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  12. NEUTRON SOURCE

    DOE Patents [OSTI]

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  13. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  14. Experience of Consolidation Of Disused Sources In Developing Countries, An African Perspective

    SciTech Connect (OSTI)

    Kifanga, L.D.; Mompome, W.K.; Shao, D.

    2008-07-01

    Application of sealed sources in agriculture, medicine and industry was used in many African countries without having any arrangements in place for managing the sources when their useful life was over. In Tanzania a substantial use of such sources was utilized. In the early days source management was not an area that was given the required attention hence a legacy associated with sealed sources became evident in many African countries and Tanzania was one of them. In the 90's Tanzania Atomic Energy Commission (TAEC), realized the scope of the waste problem and began to participate in an International Atomic Energy Agency Regional (IAEA) project on waste management. Tanzania in cooperation with IAEA initiated activities under the IAEA Technical Cooperation and the Regional projects 'Strengthening Waste Management Infrastructure, RAF/4/015'; and 'Sustaining the Waste Management Infrastructure RAF/3/005' which played a significant role. The first outcome of the project was realized in 1999, as the first 'Temporary Radioactive Waste Storage Facility' began to operate. This particular Storage facility gave the first impact as well as the need to develop this particular infrastructure further. As the project carried on, more and more orphan sources were recovered, collected and safely stored at the facility. As the use of nuclear technology was expanding and the identification of the extent of sealed sources in the countries became more defined, the need to develop a 'Central Radioactive Waste Management Facility' (CRWMF) was becoming more desired. The central radioactive waste storage facility was constructed and commissioned in 2005. The facility was more advanced and could be used for much longer periods of time, as one of the most advanced storage facility in the Region. At present a large number of disused sources from various industries as well as from different activities are being stored at the facility. Tanzanian authorities are also planning to initiate a nationwide mission to recover and properly store as well as dispose of abandoned sources. Cooperation among the AFRA Member states has been very rewarding in terms of experience and its importance. Skills that have been gained during the past years of existence of the AFRA project will be a vital contribution for years to come. This paper discusses the experiences of United Republic of Tanzania on management of orphan radioactive sources. The need to develop its own radioactive waste management infrastructure was required due to the fact, that many disused radioactive sources have been found abandoned and needed to be properly disposed of. The paper will also discuss some of these experiences. (authors)

  15. Hazmat work opens up career options for Adam Sayre, agricultural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural economics undergraduate works behind the scenes to ensure quality work on ... Adam will be a freshman at New Mexico State University, studying agricultural economics. ...

  16. Royal Agricultural and Horticultural Society of South Australia...

    Open Energy Info (EERE)

    Agricultural and Horticultural Society of South Australia Jump to: navigation, search Name: Royal Agricultural and Horticultural Society of South Australia Place: South Australia,...

  17. Colombia-The Development of a Climate Compatible Agriculture...

    Open Energy Info (EERE)

    Colombia-The Development of a Climate Compatible Agriculture Plan Jump to: navigation, search Name Colombia-CDKN-The Development of a Climate Compatible Agriculture Plan Agency...

  18. Colombia-The Development of a Climate Compatible Agriculture...

    Open Energy Info (EERE)

    Colombia-The Development of a Climate Compatible Agriculture Plan (Redirected from CDKN-Colombia-The Development of a Climate Compatible Agriculture Plan) Jump to: navigation,...

  19. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  20. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  1. Applying Innovation System Concept in Agricultural Research for...

    Open Energy Info (EERE)

    in Agricultural Research for Development: A learning module AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  2. Ohio Agricultural Research and Development Center | Open Energy...

    Open Energy Info (EERE)

    Agricultural Research and Development Center Jump to: navigation, search Name: Ohio Agricultural Research and Development Center Place: Wooster, Ohio Zip: OH 44691-4096 Product:...

  3. USDA Global Agricultural Information Network (GAIN) | Open Energy...

    Open Energy Info (EERE)

    Agriculture Information Network (GAIN) provides timely information on the agricultural economy, products and issues in foreign countries since 1995 that are likely to have an...

  4. Aq Dryers Agricultural Drying Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Facility Aq...

  5. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  6. IISD Climate Change and Agriculture Research | Open Energy Information

    Open Energy Info (EERE)

    Climate Change and Agriculture Research Jump to: navigation, search Tool Summary Name: IISD Climate Change and Agriculture Research AgencyCompany Organization: International...

  7. Chile-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name...

  8. Impacts of Climate Change on Agriculture and Adaptation in Vietnam...

    Open Energy Info (EERE)

    Climate Change on Agriculture and Adaptation in Vietnam Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Impacts of Climate Change on Agriculture and Adaptation in...

  9. FAO-Modelling System for Agricultural Impacts of Climate Change...

    Open Energy Info (EERE)

    Modelling System for Agricultural Impacts of Climate Change (MOSAICC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Modelling System for Agricultural Impacts of...

  10. A Synthesis of Agricultural Policies in Bangladesh | Open Energy...

    Open Energy Info (EERE)

    of Agricultural Policies in Bangladesh1 Overview "There is a plethora of policy strategy documents relevant to broad agriculture and rural development in Bangladesh. These...

  11. USDA Agricultural Conservation Easement Program Webinar for Tribes

    Broader source: Energy.gov [DOE]

    Hosted by the American Indian Higher Education Consortium, this webinar will cover details on the U.S. Department of Agriculture's (USDA's) new Agricultural Conservation Easement Program (ACEP)...

  12. Agricultural Waste Solutions Inc AWS | Open Energy Information

    Open Energy Info (EERE)

    Waste Solutions Inc AWS Jump to: navigation, search Name: Agricultural Waste Solutions Inc (AWS) Place: Westlake Village, California Zip: CA 91361 Product: Agricultural Waste...

  13. Analysis of Impacts on Prime or Unique Agricultural Lands in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing the National Environmental Policy Act was developed in cooperation with the Department of Agriculture. ...

  14. Creating an Evergreen Agriculture in Africa: for Food Security...

    Open Energy Info (EERE)

    Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Jump to: navigation, search Name Creating an Evergreen Agriculture in Africa: for Food...

  15. FAO Climate-Smart Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Company Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture Topics: Policiesdeployment programs Website: www.fao.org...

  16. Energy Department Joins Agriculture and Navy in the Fight for Clean Energy Transportation

    Broader source: Energy.gov [DOE]

    Earlier this month, on September 19, 2014, Energy Department (DOE) Deputy Secretary Daniel Poneman joined Secretary Tom Vilsack of the Department of Agriculture (USDA), and Secretary Ray Mabus of the Department of Navy (Navy) to announce three projects that will produce renewable jet and diesel for the military. DOE, USDA, and Navy are working with private industry to produce advanced drop-in biofuels that can be used by the Department of Defense and the private transportation sector.

  17. Macro Industrial Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    2025 * What you'll see today - Shipments - Industrial energy use (total and excluding both refining and lease &plant fuel) * AEO2015 Reference and selected side cases * AEO2015 v. ...

  18. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  19. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  20. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  1. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-{sup 103}Pd brachytherapy source

    SciTech Connect (OSTI)

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-04-15

    This article presents a brachytherapy source having {sup 103}Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model {sup 103}Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-{sup 103}Pd source in water was found to be 0.678 cGy h{sup -1} U{sup -1} with an approximate uncertainty of {+-}0.1%. The anisotropy function, F(r,{theta}), and the radial dose function, g(r), of the IRA-{sup 103}Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.

  2. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  3. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  4. CASL Industry Council Members:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  5. Management of Spent and Disused Sealed Radioactive Sources in the Czech Republic - 12124

    SciTech Connect (OSTI)

    Podlaha, J.

    2012-07-01

    The Czech Republic is a country with a well-developed peaceful utilization of nuclear energy and ionizing radiation. Sealed Radioactive Sources (further also SRS) are broadly used in many areas in the Czech Republic, e.g. in research, industry, medicine, education, agriculture, etc. Legislation in the field of ionizing radiation source utilization has been fully harmonized with European Community legislation. SRS utilization demands a proper system which must ensure the safe use of SRS, including the management of disused (spent) and orphaned SRS. In the Czech Republic, a comprehensive system of SRS management has been established that is comparable with systems in other developed countries. The system covers both legal and institutional aspects. The Central Register of Ionizing Radiation Sources is an important part of the system. It is a tracking system that covers all activities related to SRS, from their production or import to the end of their use (recycling or disposal). Many spent SRS are recycled and can be used for other purposes after inspection, repacking or reprocessing. When the disused SRS are not intended for further use, they are managed as radioactive waste (RAW). The system of SRS management also ensures the suitable resolution of situations connected with improper SRS handling (in the case of orphaned sources, accidents, etc.). (author)

  6. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  7. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  8. Electric industry restructuring in Massachusetts

    SciTech Connect (OSTI)

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  9. Session: Wind industry project development

    SciTech Connect (OSTI)

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  10. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  11. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  12. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  13. Industry Self-Regulation as a Means to Promote Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Elkhamri, Oksana O.

    2005-10-01

    Companies within numerous industries that have been “early adopters” of self-regulation concept, considering the environment and society alongside business issues, have realized several benefits and some competitive advantage while substantially improving their environmental performance. Given that proliferation prevention is also a public good, our premise is that the experience gained and lessons learned from the self-regulation initiative in other industries and more broadly in the arena of sustainable development provide a basis for examining the feasibility of developing self-regulation mechanisms applicable to industries involved with sensitive technologies (nuclear, radiological source, and other dual-use industries)

  14. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  15. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  16. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in ...

  17. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  18. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  19. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  20. Before the Senate Agriculture, Nutrition, and Forestry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agriculture, Nutrition, and Forestry Before the Senate Agriculture, Nutrition, and Forestry Before the Senate Agriculture, Nutrition, and Forestry By: Richard Newell, Administrator Energy Information Administration Subject: Development in Energy Markets and their possible implications on Agriculture PDF icon Final_Testimony(22).pdf More Documents & Publications Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Before the House Natural

  1. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect (OSTI)

    McIntosh, Jane; Schumacher, Leon

    2014-10-23

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the livestock producers, 254 invited the team to conduct a farm energy assessment which complied with ASABE 612. A total of 147 livestock farm upgrades were implemented, representing 57.5 percent of the farms for which a farm energy assessment was completed. This represented a statewide average annual savings of 1,088,324 kWh and 75,516 therms. The team also reviewed the condition of the livestock producer’s home(s). A total of 106 home energy assessments were completed and 48 individual homes implemented their recommended upgrades, representing 45 percent of the farm homes for which an energy assessment was completed. This represented a statewide average annual savings of 323,029 kWh, and 769.4 therms. More of these farmers likely would have updated their homes but the funding to incentivize them fell short. In spite of the shortfall in incentive funds, some farmers still updated their homes as they saw the value in making these changes to their home.

  2. PIA - Industrial Hygiene Analytical System (IHAS) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PDF icon PIA - Industrial Hygiene ...

  3. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  4. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  5. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  6. International Data on Radiological Sources

    SciTech Connect (OSTI)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  7. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  8. Final Technical Report for University of Michigan Industrial Assessment Center

    SciTech Connect (OSTI)

    Atreya, Arvind

    2007-04-17

    The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

  9. USDA, Departments of Energy and Navy Seek Input from Industry to Advance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels for Military and Commercial Transportation | Department of Energy Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation August 30, 2011 - 12:23pm Addthis WASHINGTON, Aug. 30, 2011 -Secretary of Agriculture Tom Vilsack, Secretary of Energy Steven Chu, and Secretary of the Navy Ray Mabus today

  10. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lora Toy (Principal Investigator) RTI International Research Triangle Park, NC 27709 U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6---7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. (1 slide) Develo Project Objec�ve Current State/Challenges § Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic Agricultural 14% 40% Industrial (incl. Power

  11. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  12. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  14. United States Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    1 Mission Statement 2 Vision 3 Strategic Plan Framework 4 Agencies 4.1 Agricultural Marketing Service (AMS) 4.2 Agricultural Research Service (ARS) 4.3 Animal and Plant Health...

  15. U.S. Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    1 Mission Statement 2 Vision 3 Strategic Plan Framework 4 Agencies 4.1 Agricultural Marketing Service (AMS) 4.2 Agricultural Research Service (ARS) 4.3 Animal and Plant Health...

  16. Assessment of On-Site Power Opportunities in the Industrial Sector

    SciTech Connect (OSTI)

    Bryson, T.

    2001-10-08

    The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

  17. Perennial grasses for energy and conservation: Evaluating some ecological agricultural, and economic issues

    SciTech Connect (OSTI)

    Downing, M.; Walsh, M.; McLaughlin, S.

    1995-11-01

    Perennial prairie grasses offer many advantages to the developing biofuels industry. High yielding varieties of native prairie grasses such as switchgrass, which combine lower levels of nutrient demand, diverse geographical growing range, high net energy yields and high soil and water conservation potential indicate that these grasses could and should supplement annual row crops such as corn in developing alternative fuels markets. Favorable net energy returns, increased soil erosion prevention, and a geographically diverse land base that can incorporate energy grasses into conventional farm practices will provide direct benefits to local and regional farm economies and lead to accelerated commercialization of conversion technologies. Displacement of row crops with perennial grasses will have major agricultural, economic, sociologic and cross-market implications. Thus, perennial grass production for biofuels offers significant economic advantages to a national energy strategy which considers both agricultural and environmental issues.

  18. Comparative Analysis for Polluted Agricultural Soils with Arsenic, Lead, and Mercury in Mexico

    SciTech Connect (OSTI)

    Yarto-Ramirez, Mario; Santos-Santos, Elvira; Gavilan-Garcia, Arturo; Castro-Diaz, Jose; Gavilan-Garcia, Irma Cruz; Rosiles, Rene; Suarez, Sara

    2004-03-31

    The use of mercury in Mexico has been associated with the mining industry of Zacatecas. This activity has polluted several areas currently used for agriculture. The main objective of this study was to investigate the heavy metal concentration (Hg, As and Pb) in soil of Guadalupe Zacatecas in order to justify a further environmental risk assessment in the site. A 2X3 km grid was used for the sampling process and 20 soil samples were taken. The analysis was developed using EPA SW 846: 3050B/6010B method for arsenic and metals and EPA SW 846: 7471A for total mercury. It was concluded that there are heavy metals in agricultural soils used for corn and bean farming. For this it is required to make an environmental risk assessment and a bioavailability study in order to determine if there's a risk for heavy metals bioaccumulation in animals or human beings or metal lixiviation to aquifers.

  19. National Geothermal Data System Deployed to Serve Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Geothermal Data System Deployed to Serve Industry National Geothermal Data System Deployed to Serve Industry May 28, 2014 - 9:08am Addthis The National Geothermal Data System deploys free, open-source online scientific information, a mammoth resource of geoscience data. In the data visualization shown here, Schlumberger utilized bottom hole temperatures from the National Geothermal Data Systems (NDGS) on-line platform to supplement subscription data temperatures used to

  20. Obama Administration Announces New Investments to Advance Biofuels Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Enhance America's Energy Security | Department of Energy Investments to Advance Biofuels Industry and Enhance America's Energy Security Obama Administration Announces New Investments to Advance Biofuels Industry and Enhance America's Energy Security July 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON, D.C. - As part of the Obama Administration's commitment to deploying every available source of American energy and reducing our reliance on imported oil, U.S.

  1. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  2. Industrial Process Heating - Technology Assessment

    Energy Savers [EERE]

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  3. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  4. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  5. Abstract: Design and Demonstration of an Advanced Agricultural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Director Principal Investigator: Fred Circle, President Project Title: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for...

  6. Agricultural Monitoring and Evaluation Systems: What can we learn...

    Open Energy Info (EERE)

    Sector: Land, Climate Focus Area: Agriculture, Land Use Topics: Implementation, GHG inventory Resource Type: Publications, Lessons learnedbest practices, Case studies...

  7. Tribological sinks in emerging industries: electronics and robotics

    SciTech Connect (OSTI)

    Russell, J.A.; Hane, G.J.

    1986-08-01

    This report describes a preliminary review of the impact of tribological effects - losses due to friction and wear - in two emerging industries: robotics and electronics. Major sources of tribological wear in the robotics industry include the chains used to drive the robots and the joints in the elbow and wrist. In the electronics industry, the largest source of tribological wear is the particulate wear of vacuum pumps used in corrosive environments. Other significant sources of wear are the conveyor belts, blowers, and fans used for clean rooms, and the slicing, lapping and polishing operations for silicon wafers. The major loss mechanisms are friction and abrasion (abrasion includes 2-body wear, 3-body wear, gouging, grinding, erosion, and cutting wear).

  8. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  9. Enviromech Industries | Open Energy Information

    Open Energy Info (EERE)

    search Name: Enviromech Industries Place: Thousands Palms, California Zip: 92276 Product: Alternative fuel system design and integration company. References: Enviromech...

  10. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  11. Pollution prevention in the pharmaceutical industry

    SciTech Connect (OSTI)

    Venkataramani, E.S.

    1995-09-01

    A clear understanding of the process, reaction pathways, process equipment, operational requirements, and waste stream characteristics are critical for the evaluation, selection, and implementation of pollution prevention in the pharmaceutical industry. Although pollution prevention opportunities are always preferred over treatment and disposal techniques, consideration of a full range of options--including at-source treatments and disposal--is a practical necessity to ensure protection of the environment using best available technology. General housekeeping can also play a major role in waste minimization. Waste minimization and pollution prevention are not new concepts for the pharmaceutical industry. But the confidential and highly competitive nature of the business stands in the way of disseminating information regarding specific activities in this area. The pharmaceutical industry could probably do much better in this respect. Successful implementation of waste minimization in the pharmaceutical industry requires that a process modification not have a negative impact on product quality. Recovered and recycled materials must meet quality specifications that are similar to those for virgin raw materials.

  12. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  13. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  14. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  15. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  16. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  17. Paraguay industrial and municipal waste-water project definitional mission. Export trade information

    SciTech Connect (OSTI)

    Meenahan, J.G.

    1992-04-20

    The Ministry of Agriculture of Paraguay and the Municipality of Asuncion (MA) requested the assistance of the U.S. Trade and Development Program (TDP) in the form of a grant to support an Engineering/Economic Feasibility Study. The study would address the requirements for the collection and treatment of wastewaters generated from municipal and industrial sources within the greater Asuncion area. The feasibility study would be contracted to a U.S. firm. The Definitional Mission (DM) recommends that TDP finance the requested Feasibility Study (FS) for the implementation of an adequate wastewater collection and treatment system for Paraguay. The recommended TDP investment is justifiable because this is a project that has strong popular and government support. Treating wastewaters will benefit the public health and environment of all the people within a vast geographical region and will promote economic growth. This recommendation is consistent and supportive of the U.S. foreign policy as well as providing significant opportunities for the export of U.S. goods and services.

  18. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  19. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  20. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This ...

  1. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  2. Industrial Assessment Centers Update, March 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  3. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  4. Ternion Bio Industries | Open Energy Information

    Open Energy Info (EERE)

    Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name: Ternion Bio Industries Address: 1060 Minnesota Ave., Suite 6 Place: San Jose, California Zip:...

  5. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be...

  6. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  7. TG Agro Industrial | Open Energy Information

    Open Energy Info (EERE)

    TG Agro Industrial Jump to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a...

  8. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  9. Meehan s Industrial | Open Energy Information

    Open Energy Info (EERE)

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  10. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  11. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

  12. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Harvesting Energy from Abundant, Low Quality Sources of Heat Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryThe basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to

  13. Macro-Industrial Working Group Meeting 2: Industrial updates...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Team, MIWG 2, February 18, 2016 2 Technology ... & pump standards - Clean Power Plan: Part of AEO2016 ... Energy Consumption by Fuel Coal Natural Gas Purchased ...

  14. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers Special (Commercial) Units Note(s): Source(s): 170 1) 170 of these companies also produce panelized homes. Automated Builder Magazine, Mar. 2005, p. 34-35; Automated Builder Magazine, Jan. 2004, p. 16. Number of Companies 3,500 200 90 7,000 2,200

  15. California: Agricultural Residues Produce Renewable Fuel

    Broader source: Energy.gov [DOE]

    Logos Technologies and EERE are partnering with Edeniq of Visalia to build a plant that will produce cellulosic ethanol from switchgrass, wood chips, and corn leaves, stalks, and husks--all plentiful, nonfood feedstock sources in California.

  16. A new storage-ring light source

    SciTech Connect (OSTI)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  17. The potential for effluent trading in the energy industries.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Assessment

    1998-01-01

    In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded under a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  18. Near infrared spectral imaging of explosives using a tunable laser source

    SciTech Connect (OSTI)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  19. Industrial Hygiene | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.

  20. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: San Rafael, California Zip: 94901 Product: Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

  1. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  2. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    Jax Industries Place: Hillsboro, Oregon Product: Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates:...

  3. DMI Industries | Open Energy Information

    Open Energy Info (EERE)

    (NASDAQ: OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References: DMI Industries1 This article is a stub....

  4. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect (OSTI)

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  5. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  6. Industry Interactive Procurement System (IIPS)

    Broader source: Energy.gov [DOE]

    Presentation on DOE’s Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

  7. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations April 2011 (DRAFT) Acknowledgement Guiding Principles ...

  8. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING ...

  9. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment ...

  10. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  11. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  12. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  13. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  14. Funding Opportunity Webinar - Building America Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar - Building America Industry Partnerships for High Performance Housing Innovations (Text Version) Funding Opportunity Webinar - Building America Industry Partnerships for ...

  15. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  16. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  17. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect (OSTI)

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  18. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  19. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminant Sources are Known Contaminant Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant source map RELATED IMAGES http://farm4.staticflickr.com/3789/9631743884_4caeb970f9_t.jpg Enlarge

  20. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.